ENCS5337: Chip Design Verification
Spring 2023/2024

Verification Hierarchy

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

SSSSSSSSSSSSSSSS

https://students-hub.com

Outline

= Observability and Controllability

= Verification hierarchy
— Levels of verification

= Fundamentals of Simulation-based
Verification:

— Strategy
* Driving principles
» Checking strategies

SSSSSSSSSSSSSSSS

https://students-hub.com

Observability
and Controllability

SSSSSSSSSSSSSSSS

https://students-hub.com

Observability and Controllability

gk = Observability: Indicates the ease
_ h?@ at which the verification engineer

" can identify when the design acts
appropriately versus when it

demonstrates incorrect behavior.

= Controllability: Indicates the ease
at which the verification engineer
creates the specific scenarios that
are of interest.

SSSSSSSSSSSSSSSS

https://students-hub.com

Levels of Observability

= Black Box

Inputs) Outputs

= White Box N

Inputs]:ﬁ /1|0 Outputs

. Grey Box Inputs - Iy Outputs

SSSSSSSSSSSSSSSS

https://students-hub.com

Black Box Verification

Inputs Outputs

The black box has inputs, outputs, and performs some (well
documented) function.

To verify a black box, you need to understand the function.
The verification code utilizes only the external interfaces.
The internal signals and state remain in the dark.

Pros:

— No knowledge of the actual implementation is required.

— Ability to predict functional results based on inputs alone ensures that the
reference model remains independent from the DUV implementation.

— Verification code is less sensitive to changes inside the DUV.

cons:

— Difficult to locate source of problem, only exposes effects. (If at all! Remember,
not all bugs propagate to the outputs.)

— Lacks controllability and observability.

STUDENTS-HUB.com

https://students-hub.com

White Box Verification

OO0
Inputs | O Outputs
10 Eﬂ O
0o 1

(Opposite of black-box approach.)

= For white box verification the internal facilities of the DUV are
known, visible and utilised for verification.

= Pros:
— Full visibility and controllability of internal signals.

= Can identify and cover corner cases.
= Can detect bugs as soon as they occur.

— Quickly possible to set up interesting conditions.
= Cons:
— Danger to follow the implementation/design instead of the specification.
— Sensitive to changes in the DUV (implementation).
— Too many details make it hard to create and maintain.

STUDENTS-HUB.com

https://students-hub.com

Grey Box Verification

Inputs Outputs

[Monitor |

= For grey box verification a limited number of DUV facilities are
utilised in a mostly black-box environment.

— Access important and stable features, the rest is kept in the dark.

= Combines the pros (if done the right way) or the cons (if done the
wrong way) of black and white box.

— Progression from black box to grey box should be carefully planned and
started only when the DUV is sufficiently stable.

= |n practice: Most verification environments are grey box.

— May need to start with black box with planned evolution into grey
box.

— Note: Prediction of correct results on an interface is occasionally
Impossible without viewing an internal signal.

STUDENTS-HUB.com

https://students-hub.com

Be careful with White Box Controllability

= |n theory, the same levels as for observability
also exist for controllability:

— black, grey and white box
= |n practice:

— We seldom control the internals of the DUV.

— This may drive the design into a state that is not
reachable under normal circumstances.

— It may thus lead to an inconsistent DUV state.
= The main exception: Warm Loading

— Brings the DUV to a predefined Interesting state.
» E.g. cache initialization, almost full buffer

— Reduces the time needed for reaching this state.

SSSSSSSSSSSSSSSS

https://students-hub.com

Verification Hierarchy

SSSSSSSSSSSSSSSS

https://students-hub.com

Verification Hierarchy

= Today’s complex chips and systems are divided
Into logical units

— Usually determined during specification / high-level
design

— Usually follow the architecture of the system
— This practice is called

= Hierarchical design allows a designer to
subdivide a complex problem into more
manageable blocks
— The design team combines these blocks to form

bigger units, and continues to merge/integrate these
blocks until the chip or system is complete

SSSSSSSSSSSSSSSS

11

https://students-hub.com

Pros and Cons of Hierarchical Design

" Pros
— Breaks the design into manageable pieces

— Allow designers to focus on single function /
aspect of the design

= Cons
— More interfaces to specify / design / verify
— Integration issues

SSSSSSSSSSSSSSSS

12

https://students-hub.com

Verification at different Design Levels

Volume
1 SySte m Clusterl Cluster2 D Video
Of te Stl n g ’ socket socket ocket

t O p ~ AXI AXI AXI
~
So NIC 301
~
ACE ACE ~ ACE-Lite ACE-Lite ACE-Lite
?N. 1 Matrix subsystem

GPU

I

Time

STUDENTS-HUB.com 13

https://students-hub.com

L evels of Verification

= Verification usually adapts to and takes
advantage of the hierarchical design stages and

boundaries
= Common levels of verification
— Designer level (block level)
— Unit level
— (Core level)
— Chip level
— System level
— Hardware / software co-verification

SSSSSSSSSSSSSSSS

14

https://students-hub.com

Designer (Block) Level Verification

= Used for verification of single blocks and
macros

= Usually, done by the designer him/herself
= Main goal — Sanity checking and
certification for a given block

= Ranges from a simple test of basic
functionality to complete verification
environments

= The common level for formal verification

SSSSSSSSSSSSSSSS

15

https://students-hub.com

Unit Level Verification

= A set of blocks that are designed to handle
a specific function or aspect of the system

— E.g., memory controller, floating-point unit

= Usually have formalized spec
— More stable interface and function

= The target of first serious verification effort

= Verification I1s based on custom-made
verification environment

SSSSSSSSSSSSSSSS

16

https://students-hub.com

Core Level Verification

= A core Is a unit or set of units designed to
be used across many designs

— Well defined function
— Standardized interfaces

= Verification need to be thorough and
complete

— Address all possible uses of the core

= The verification team can use “Verification
IP” for the standardized interfaces

SSSSSSSSSSSSSSSS

17

https://students-hub.com

Chip Level Verification

= Verification of a set of units that are
packaged together in a physical entity
= Main goals of verification

— Connection and integration of the various
units

— Function that could not be verified at unit level

= Need verification closure to avoid
problems In tape-out

SSSSSSSSSSSSSSSS

18

https://students-hub.com

System Level Verification

= The purpose of this level of verification Is
to confirm

— Interconnection
— Integration
— System design
= Verification focuses on the interactions
between the components of the system

rather then the functionality of each
individual component

SSSSSSSS -HUB.com 19

https://students-hub.com

HW / SW Co-Verification

= Combines the system level hardware with
the code that runs on it

= Combines techniques from the hardware
verification and software testing domains

= This combination creates many Issues

Different verification / testing techniques
Different modes of operation

Different speed

= Beyond the scope of this course

SSSSSSSSSSSSSSSS

20

https://students-hub.com

Which Level To Choose?

= Always choose the lowest level that
completely contains the targeted function

= Each verifiable piece should have its own
specification
= Function may dictate verification levels

— The appropriate level of control and
observability drives decisions on which levels
to select for verification

SSSSSSSSSSSSSSSS

21

https://students-hub.com

Which Level To Choose?

= |n general, each level that is exposed to
the “outside world” is mandatory

— For example, chip level, system level
= The rest depends on many factors

— Complexity

— Risk

— Schedule

— Resources

SSSSSSSSSSSSSSSS

22

https://students-hub.com

SSSSSSSSSSSSSSSS

Fundamentals of
Simulation-based
Verification

The Strategy of
Driving & Checking

https://students-hub.com

Strategy of Verification

SSSSSSSSSSSSSSSS

Verification can be divided into two
separate tasks

1.

2. Checking its behavior - Observability

The basic questions a verification
engineer must ask

1.
2. How will | know when a failure has occurred?

24

https://students-hub.com

The Yin-Yang of Verification

= Driving and checking are the yin and yang
of verification

— We cannot find bugs without
creating the failing conditions

= Drivers

Driver

— We cannot find bugs without
detecting the incorrect behavior

= Checkers

SSSSSSSS -HUB.com 25

https://students-hub.com

Comments on Yin and Yang

= This perfect harmony does not always exist

— Not all failing conditions are equal

= Same bug can lead under different failing conditions to
different failures (with big difference in consequences)

— We cannot (or don’t want to) detect all incorrect
behaviors
= Some are not important enough
* For others we have safety nets

= The right balance is a function of the level of
verification and specific needs

— Example: Block vs Chip level verification — difference
In drivers and checkers and in focus of verification.

26

https://students-hub.com

The Black Box Example

..................................

Inputs CoemkkNerification

= \What does it mean to

— Know when the design fails

SSSSSSSSSSSSSSSS

Outputs

27

https://students-hub.com

Verification of the Black Box

= Black box since we don’t look inside it
— What does this mean?

= The black box may have a complete documentation

... ornot

= To verify a black box the verification engineer must
— understand the function and be able to
— predict the output based on the inputs.

= |t Is Important that the verification team obtain the

Input, output and functional description of the black
box from a source other than the HDL designer

— Standard specification
— High-level design
— Other designer that interfaces with the black box

SSSSSSSSSSSSSSSS

28

https://students-hub.com

Driving the Black Box

We can start planning the stimuli even before
the complete specification of the DUV is given

The definition of the inputs can provide
Information and hints on

— The interface

— The functionality

This information can lead to first set of stimuli

More stimuli will be added as we learn more
detalls on the DUV

SSSSSSSSSSSSSSSS

29

https://students-hub.com

Checking Strategies

In microelectronic system design there are
flve main sources of checkers

— The Inputs and outputs of the design
(speC|f|cat|on)

— The architecture of the design

— The microarchitecture of the design

— The implementation of the design

— The context of the design (up the hierarchy)

Note that the source of checkers and their
Implementation are two different issues

SSSSSSSSSSSSSSSS

30

https://students-hub.com

Checking Based On the DUV 1I/O

DUV Function

Inputs Outputs

= Check the output signals of the DUV based on
— The Input signals
— Understanding of the specification of the DUV

SSSSSSSS -HUB.com 31

https://students-hub.com

Checking Based On the Architecture

Example instruction stream:
SUB R7 R1 R2
BRZ R7 L

Architectural (ISA-level) checking is abundant.

= The SUB and BRZ instructions are defined in the ISA.

= Architecture defines that instructions must complete in
order.

= Architecture defines that results of SUB must be used by
BRZ.

Many checkers have their roots in the Architecture
of the design!

SSSSSSSSSSSSSSSS

32

https://students-hub.com

Checking Based On the
Architecture and Microarchitecture

= Check that architectural and
microarchitectural mechanisms in the DUV
are operating as expected
— Buffers: overflow and underflow
— Invalid states and transitions in state machines
— Pipelines
— Reorder buffers

— Writeback and forwarding logic
» performance enhancing features

SSSSSSSS -HUB.com 33

https://students-hub.com

Checking Based On the Implementation

= Check items that are related to specific
Implementation detalls

— Cyclic buffers for queues
— Pipeline buffer stages

SSSSSSSSSSSSSSSS

34

https://students-hub.com

Driving and Checking

= You need both or you get
nothing!

= To find a bug:

— Your driver must create the
failing scenario, and

— Your checker must flag the
behaviour mismatch.

Driver

SSSSSSSSSSSSSSSS

35

https://students-hub.com

