
ENCS5337: Chip Design Verification

Spring 2023/2024

Verification Hierarchy

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

STUDENTS-HUB.com

https://students-hub.com


2

Outline

 Observability and Controllability

 Verification hierarchy

– Levels of verification

 Fundamentals of Simulation-based 

Verification:

– Strategy

 Driving principles

 Checking strategies Driver

Checker

STUDENTS-HUB.com

https://students-hub.com


Observability

and Controllability

STUDENTS-HUB.com

https://students-hub.com


4

Observability and Controllability

 Observability: Indicates the ease 

at which the verification engineer 

can identify when the design acts 

appropriately versus when it 

demonstrates incorrect behavior.

 Controllability: Indicates the ease 

at which the verification engineer 

creates the specific scenarios that 

are of interest.

STUDENTS-HUB.com

https://students-hub.com


5

Levels of Observability

 Black Box

 White Box

 Grey Box

DUVInputs Outputs

Inputs OutputsDUV

Inputs OutputsDUV

Monitor

STUDENTS-HUB.com

https://students-hub.com


6

Black Box Verification

 The black box has inputs, outputs, and performs some (well 
documented) function.

 To verify a black box, you need to understand the function.

 The verification code utilizes only the external interfaces. 

 The internal signals and state remain in the dark.

 Pros:
– No knowledge of the actual implementation is required.

– Ability to predict functional results based on inputs alone ensures that the 
reference model remains independent from the DUV implementation.

– Verification code is less sensitive to changes inside the DUV.

 Cons:
– Difficult to locate source of problem, only exposes effects. (If at all! Remember, 

not all bugs propagate to the outputs.)

– Lacks controllability and observability.

DUVInputs Outputs

STUDENTS-HUB.com

https://students-hub.com


7

White Box Verification

(Opposite of black-box approach.)

 For white box verification the internal facilities of the DUV are 
known, visible and utilised for verification.

 Pros:
– Full visibility and controllability of internal signals.

 Can identify and cover corner cases.

 Can detect bugs as soon as they occur.

– Quickly possible to set up interesting conditions.

 Cons:
– Danger to follow the implementation/design instead of the specification.

– Sensitive to changes in the DUV (implementation).

– Too many details make it hard to create and maintain.

Inputs OutputsDUV

STUDENTS-HUB.com

https://students-hub.com


8

Grey Box Verification

 For grey box verification a limited number of DUV facilities are 
utilised in a mostly black-box environment.

– Access important and stable features, the rest is kept in the dark.

 Combines the pros (if done the right way) or the cons (if done the 
wrong way) of black and white box.

– Progression from black box to grey box should be carefully planned and 
started only when the DUV is sufficiently stable.

 In practice: Most verification environments are grey box.

– May need to start with black box with planned evolution into grey 
box.

– Note: Prediction of correct results on an interface is occasionally 
impossible without viewing an internal signal.

Inputs OutputsDUV

Monitor

STUDENTS-HUB.com

https://students-hub.com


9

Be careful with White Box Controllability

 In theory, the same levels as for observability 
also exist for controllability:
– black, grey and white box

 In practice:
– We seldom control the internals of the DUV.

– This may drive the design into a state that is not 

reachable under normal circumstances.
– It may thus lead to an inconsistent DUV state.

 The main exception: Warm Loading

– Brings the DUV to a predefined interesting state.

 E.g. cache initialization, almost full buffer

– Reduces the time needed for reaching this state.

STUDENTS-HUB.com

https://students-hub.com


Verification Hierarchy

STUDENTS-HUB.com

https://students-hub.com


11

Verification Hierarchy

 Today’s complex chips and systems are divided 
into logical units
– Usually determined during specification / high-level 

design

– Usually follow the architecture of the system

– This practice is called hierarchical design

 Hierarchical design allows a designer to 
subdivide a complex problem into more 
manageable blocks
– The design team combines these blocks to form 

bigger units, and continues to merge/integrate these 
blocks until the chip or system is complete

STUDENTS-HUB.com

https://students-hub.com


12

Pros and Cons of Hierarchical Design

 Pros

– Breaks the design into manageable pieces

– Allow designers to focus on single function / 

aspect of the design

 Cons

– More interfaces to specify / design / verify

– Integration issues

STUDENTS-HUB.com

https://students-hub.com


13

total

Verification at different Design Levels

Operating 

System and

Application 

S/W

system

top

unitunit

Bugs 

found

Time

top
system

Volume

of testing

Time

unit

top

system

STUDENTS-HUB.com

https://students-hub.com


14

Levels of Verification

 Verification usually adapts to and takes 
advantage of the hierarchical design stages and 
boundaries

 Common levels of verification
– Designer level (block level)

– Unit level

– (Core level)

– Chip level

– System level

– Hardware / software co-verification

STUDENTS-HUB.com

https://students-hub.com


15

Designer (Block) Level Verification

 Used for verification of single blocks and 
macros

 Usually, done by the designer him/herself

 Main goal – Sanity checking and 
certification for a given block

 Ranges from a simple test of basic 
functionality to complete verification 
environments

 The common level for formal verification

STUDENTS-HUB.com

https://students-hub.com


16

Unit Level Verification

 A set of blocks that are designed to handle 

a specific function or aspect of the system

– E.g., memory controller, floating-point unit

 Usually have formalized spec

– More stable interface and function

 The target of first serious verification effort

 Verification is based on custom-made 

verification environment

STUDENTS-HUB.com

https://students-hub.com


17

Core Level Verification

 A core is a unit or set of units designed to 

be used across many designs

– Well defined function

– Standardized interfaces

 Verification need to be thorough and 

complete

– Address all possible uses of the core

 The verification team can use “Verification 

IP” for the standardized interfaces

STUDENTS-HUB.com

https://students-hub.com


18

Chip Level Verification

 Verification of a set of units that are 

packaged together in a physical entity

 Main goals of verification

– Connection and integration of the various 

units

– Function that could not be verified at unit level

 Need verification closure to avoid 

problems in tape-out 

STUDENTS-HUB.com

https://students-hub.com


19

System Level Verification

 The purpose of this level of verification is 
to confirm 

– Interconnection

– Integration

– System design

 Verification focuses on the interactions 
between the components of the system 
rather then the functionality of each 
individual component

STUDENTS-HUB.com

https://students-hub.com


20

HW / SW Co-Verification

 Combines the system level hardware with 
the code that runs on it

 Combines techniques from the hardware 
verification and software testing domains

 This combination creates many issues

– Different verification / testing techniques

– Different modes of operation

– Different speed

 Beyond the scope of this course

STUDENTS-HUB.com

https://students-hub.com


21

Which Level To Choose?

 Always choose the lowest level that 

completely contains the targeted function

 Each verifiable piece should have its own 

specification 

 Function may dictate verification levels

– The appropriate level of control and 

observability drives decisions on which levels 

to select for verification

STUDENTS-HUB.com

https://students-hub.com


22

Which Level To Choose?

 In general, each level that is exposed to 

the “outside world” is mandatory

– For example, chip level, system level

 The rest depends on many factors

– Complexity

– Risk

– Schedule

– Resources

STUDENTS-HUB.com

https://students-hub.com


Fundamentals of 

Simulation-based 

Verification

The Strategy of

Driving & Checking

STUDENTS-HUB.com

https://students-hub.com


24

Strategy of Verification

 Verification can be divided into two 

separate tasks

1. Driving the design - Controllability

2. Checking its behavior - Observability

 The basic questions a verification 

engineer must ask

1. Am I driving all possible input scenarios?

2. How will I know when a failure has occurred?

STUDENTS-HUB.com

https://students-hub.com


25

The Yin-Yang of Verification

 Driving and checking are the yin and yang 

of verification

– We cannot find bugs without 

creating the failing conditions

 Drivers

– We cannot find bugs without 

detecting the incorrect behavior

 Checkers

Driver

Checker

STUDENTS-HUB.com

https://students-hub.com


26

Comments on Yin and Yang 

 This perfect harmony does not always exist
– Not all failing conditions are equal

 Same bug can lead under different failing conditions to 
different failures (with big difference in consequences)

– We cannot (or don’t want to) detect all incorrect 
behaviors
 Some are not important enough

 For others we have safety nets

 The right balance is a function of the level of 
verification and specific needs
– Example: Block vs Chip level verification – difference 

in drivers and checkers and in focus of verification.

STUDENTS-HUB.com

https://students-hub.com


27

The Black Box Example

 What does it mean to

– Drive all input scenarios

– Know when the design fails

Design Under 

Verification

(DUV)

Inputs Outputs

STUDENTS-HUB.com

https://students-hub.com


28

Verification of the Black Box

 Black box since we don’t look inside it
– What does this mean?

 The black box may have a complete documentation
… or not

 To verify a black box the verification engineer must
– understand the function and be able to 

– predict the output based on the inputs.

 It is important that the verification team obtain the 
input, output and functional description of the black 
box from a source other than the HDL designer
– Standard specification

– High-level design

– Other designer that interfaces with the black box

– …
STUDENTS-HUB.com

https://students-hub.com


29

Driving the Black Box

 We can start planning the stimuli even before 

the complete specification of the DUV is given

 The definition of the inputs can provide 

information and hints on

– The interface

– The functionality

 This information can lead to first set of stimuli

 More stimuli will be added as we learn more 

details on the DUV

STUDENTS-HUB.com

https://students-hub.com


30

Checking Strategies

 In microelectronic system design there are 
five main sources of checkers

– The inputs and outputs of the design 
(specification)

– The architecture of the design

– The microarchitecture of the design

– The implementation of the design

– The context of the design (up the hierarchy)

 Note that the source of checkers and their 
implementation are two different issues

STUDENTS-HUB.com

https://students-hub.com


31

Checking Based On the DUV I/O

 Check the output signals of the DUV based on

– The input signals

– Understanding of the specification of the DUV

DUV
DUV(Input) = Output

DUV Function

Inputs Outputs

STUDENTS-HUB.com

https://students-hub.com


32

Checking Based On the Architecture

Example instruction stream:

SUB R7 R1 R2 

BRZ R7 L

Architectural (ISA-level) checking is abundant.

 The SUB and BRZ instructions are defined in the ISA.

 Architecture defines that instructions must complete in 
order.

 Architecture defines that results of SUB must be used by 
BRZ.

Many checkers have their roots in the Architecture 
of the design!

STUDENTS-HUB.com

https://students-hub.com


33

 Check that architectural and 

microarchitectural mechanisms in the DUV 

are operating as expected

– Buffers: overflow and underflow

– Invalid states and transitions in state machines

– Pipelines

– Reorder buffers

– Writeback and forwarding logic 

 performance enhancing features 

– …

Checking Based On the 

Architecture and Microarchitecture

STUDENTS-HUB.com

https://students-hub.com


34

Checking Based On the Implementation

 Check items that are related to specific 

implementation details

– Cyclic buffers for queues

– Pipeline buffer stages

– …

STUDENTS-HUB.com

https://students-hub.com


35

Driving and Checking

 You need both or you get 

nothing!

 To find a bug:

– Your driver must create the 

failing scenario, and

– Your checker must flag the 

behaviour mismatch.

Driver

Checker

STUDENTS-HUB.com

https://students-hub.com

