STUDENTS-HUB.com

Loading a 32 bit Immediate

Introduction

Is it possible to load a 32 bit immediate to a register? Immediate implies the
constant is part of the instruction. Let's forget, for a moment, that none of the
MIPS instruction formats support 32 bit constants. Is it possible for any ISA
that uses 32-bit instructions to load an arbitrary 32 bit immediate value to a
register?

Of course, by phrasing the question in that way, I'm giving away the answer. If
the instruction must be 32-bits, there's no way to do it. First of all, if all 32 bits
are used for the immediate, where are the bits for the opcode? Where are the
bits to indicate which register to place the immediate value? This information
also has to be there, but there's no space.

Notice it's important that we say arbitrary 32 bits. Clearly, you can load a 32
bit quantity using addi, but since addi uses a 16 bit quantity (which is then
sign-extended to 32 bits), there's only 21 different 32-bit quantities you can
store, not the full 232 you'd normally expect with a 32-bit immediate value.

Even if you left everything implicit, for example, you assumed you were
always using register 1, and you assumed that the 32-bit immediate value was
always loaded in that register, then, you'd be saying no other instructions are
possible.

Since there's no way to do it one instruction, is there a way to do it in two
instructions?

Loading 32 bit Immediates in Two Instructions

There's a MIPS instruction called lui which stands for "load upper immediate".
The instruction looks like:

lui S$rt, immed

This is an I-type instruction. $rs is unused in this instruction.

The semantics are:

R[t] = IRis5-0 0%°
It loads the upper 16 bits of R[t] with the 16 bit immediate, and the lower 16
bits with all O's.

https://students-hub.com

STUDENTS-HUB.com

One possiblility for loading a 32 bit constant, say, 0x0123abcd is:

lui S$rl, 0x0123

addi rl, Srl, Oxabcd

However, this has problems. In particular, recall that addi sign-extends. If the
immediate value is negative, then the upper 16 bits will be all 1's, and adding
this will ruin the upper 16 bits.

One solution is to use ori

lui $rl, 0x0123

ori S$rl, $rl, Oxabcd

ori zero-extends the immediate value. It also takes advantage of the fact that
the low 16 bits of the register is all 0's. Thus, using bitwise OR is like adding, if
there is no carry. Since you are adding 0x01230000 (which is

what $rl contains after the lui instruction) to 0x0000abdc (which is the zero-
extended immediate of the ori instruction), there's no carries, thus ori behaves
like unsigned addition.

The other possibility is to use addiu which adds, but does so by zero-extending
the immediate instead of sign-extending it.

Using $at

The pseudo instruction, li $rt, immed loads an immediate value to a register.

This can be a 32 bit value. Such an instruction is translated to:
lui $Sat, 0x0123
ori at, Sat, Oxabcd

where $at is actually register $rl. This register is used by the assembler for
translating pseudoinstructions to real instructions. After all, when the assembler
does this translation, it wants to avoid clobbering other registers. $at is reserved
specifically for this purpose.

If the immediate value is written in base 10, then the assembler must represent
it as a 32 bit 2C binary number, then split the high 16 bits for the lui instruction
and the low 16 bits for the ori instruction.

Machine Code Representation

lui is an I-type instruction. $rs is ignored. It can have any value.
Instruction | Bai-26 Bos-21 B20-16 Bis-o

https://students-hub.com

opcode register s register t immediate

lui $rt, immed |001 111 | ignored - immed

The dashes are 5-bit encoding of the register number in UB. For
example, $r7 is encoded as 00111. The offset is represented in 16-bit 2C.

STUDENTS-HUB.com

https://students-hub.com

