fi

3.2. THE ADT 57

S1 52 53 54
7
@ /
r . /
T / o
ie C2 : ,/
1. ' 4
re
[— —
enllr NE'NECHER
e A S
th g
ts. : |
by)]
i | - . -
EC Figure 3.27 Multiljst implementation for
Y registration problem

(xfe . 3 - .
ST 3.2.8. Cursor Implemeniation of Linked Lists

Many languages, such as Basic and FORTRAN, do not support pointers. If linked lists
71_‘31' are required and pointers are not available, then an alternative implementation must
s be used. The method we will describe is known ds a cursor implementation.
it - The two important features present in a pointer implementation of linked lists :
ed are as follows:
red]
.. - 1. The dara are stored in a collection of structures. Each structure conrains
nd data and a pointer to the next structure. .
far 2. A new structure can be obtained from the system’s global memory by a call

STUDENTS-HUWgwaHec and released by a call to free. Uploaded By: Jibreel Bornat

st . . T . - - ; ;
ed Our cursor implementation must be able to simulate this. The logical way to sansfy
his condition 1 is to have a global array of structures. For any cell in the array, its array
. index can be used in place of an address. Figure 3.28 gives the declarations for a
w’ cursor implementation of linked lists.
"mt We must now simulate condition 2 by allowing the equivalent of malloc and
- free for cells in the CursorSpace array. To do this, we will keep a list (the freelist)

of cells that are not in any list. The list will use cell 0 as a header. The inital
configuration is shown in Figure 3.29.

A value of O for Next is the equivalent of a NULL pointer) The initialization of
CursorSpace is a straightforward loop, which we leave as an exercise. To perform a

mallos, the first element (afrec the header) is removed from rhe freglist. To pesform

wad

CHAPTER 3/LISTS, STACKS, AND QUEUES }

#ifndef _Cursor_H

typedef int PtrToNode;
typedef PtrToNode List;
typedef PtrToNode Position: ;

void InitializeCursorSpace(void b [

List MakeEmpty(List L);

int IsEmpty(const List L);: ;
int IsLast(const Position P, const List L
Position Find(ElementType X, const List L
void Delete(ElementType X, List L)i
Position FindPrevious(ElementType X, const List L)
void Insert(ElementType X, List L, Position P 3
void Deletelist(List L);

Position Header(const List L);

Position First(const List L):

Position Advance(const Position P);

ElementType Retrieve(const Position P Iz

)
);7

#endit /¥ _Cursor_H */

/* Place in the implementation file &) : % -
struct Node . B i

{

ElementType Element; i
Position Next;

E

struct Node CursorSpace[SpaceSize }:

Figure 3.28 Declarations for cursor implementation -
of linked lists

a free, we place the cell ar the front of the freelist. Figure 3.30 shows the cursor
implementation of mailoc and free. Notice that if there is no space available, our
routine does the correct thing by setting P = 0. This indicates that there are no more _
STUDENTS-H&!Es deftnand also makes the second line of CursorAlloc a nonoperation [ﬂ@l@@jed By: Jibreel Bornat
Given this, the cursor implementation of linked lists is straightforward.- For
consistency, we will implement our lists with a header node. As an example, in
~ Figure 3.31, if the value oand the value O@@ then L represents the list
\ a, b, €) and M represents the listlc, d,) -
To write the functions for a cursor implementation of linked lists, we must pass
and return the identical parameters as the pointer implementation. The routines
are straightforward. Figure 3.32 implements a function to test whether a list
is empty. Figure 3.33 implements the test of whether the current position-is the

3.2. THELISTaor - 59

Stot : Element Next

0 1

1 2

2 3

3 4

4 s

: 5 6

a ! 6 7

7 8

8 9

; 9 ' 10

_§ 10 0
E

' Figure 3.29 An initialized CursorSpa.fse

static Position
CursorAlloc(void)

{
Position—P
"P = CursorSpace[0].Next;
CursorSpace[0].Next = CursorSpace[P].Next;
return P;

} .

static void
CursorfFree(Position P)

{

e CursorSpace[P].Next = CursorSpace[0].Next;
i Cu rsorSpace[0].Next = P;
ore }
:OFSTUI)EN'F%'{?EI@%QCO}M’”U“CS: CursorAlloc and CursorFree Uploaded By: Jibreel Bornat
in
5 last in a linked list. The function Find in Figure 3.34 returns the position of X in list

L. The code to implement deletion is shown in Figure 3.35. Again, the interface for
ek the cursor implementation is identical to the pointer implementation. Finally, Figure
i 3.36 shows a cursor implementation of Insert.
ist The rest of the routines are similarly coded. The crucial point is that these

o
o3

foutines follow the apT specification. They take specific arguments and per-
orm specific operations. The implementation is transparent to the user. The
Cursor implementation could be used instead of the linked list implementation,
With virtually no change required in the rest of the code. If relatively few Finds are

CHAPTEH 3/LISTS, STACKS,

\ (Slot Element
.) 0 -
L% TP /
; 6
eader)!

y o

R

| —

[E;eaaég"z
—

/ !
o p 7 | e
s ..-—/";’Ej.,/? D) Jg:/’ = .d
A —h | -
i 10
/—"’"‘-/ F 5// p)

/{/-*""\Figure 331 Example of a cursor implementation of linked lists

/* Return true if L is empty #*

int
IsEmpty(List L)
{ ,

}

return CursorSpace[L].Next == 0;

Figure 3.32 Function to test whether a linked list is
empty—cursor implementation

/* Return true if P is the last position in list L */
parameter L is unused in this implementation */

*

int

| Islast(Position P, List L)

{

PENTS-HUB.Com return CursorSpace[P].Next == Bbloadéd By: Jibreel Boriat
; _ a

}

Figure 3.33 Function to test whether P is last in a
linked list—cursor implementation

3.2. THE LIST st 61

/#* Return Position of X in.L; 0 if not found */
/¥ Uses a header node */

pPosition
Find(ElementType X, List L)
{
. Position P;
y2e1% /) P - ﬁursorSpace{ L].Nékt;
Jx 2%/ while(P &&_CursorSpace[P].Element != X)
/* 3%/ P = CursorSpace[P-].Next;
= /* 4*/ return P;
’ }

— Figure 3.34 Find routine—cursor implementa[ion

/* Delete first occurrence of X from a list */
/+ Assume use-of—a—header—node—*/

void: =
Delete(ElementType X, List L) -

{
Position P, TmpCell;

P = FindPrevious(X, L);

1F¢ 1IsLastl P; L)) /* Assumption of header use L
{ /* X is found; delete it */

TmpCell = CursorSpace[P].Next;
CursorSpace[P J.Next = CursorSpace[TmpCell].Next;

Cursorfree(TmpCell);
. }
: STUDENTS-HUB.cg)m ' _ Uploaded By: Jibreel Bornat

s Figure 3.35 Deletion routine for linked listss—cursor
implementation

performed, the cursor implementation could be significantly faster because of the

hckcﬁlncnunyxnanagmnentroudne& .
The freelist represents an interesting data structure in its own right. The ceil

that is removed from the freelist is the one that was most recently placed there by

52 CHAPTER 3/LISTS, STACKS, AND QUEUES : '
—

-

/= Insert (after legal position Py */

/ -4

/* Header iniplementation assumed */

/* Parameter L is upused in this implementation L4

void

Insert(ElementType X, List L, Position P)

{ _

Position TmpCell;
/= 1%/ TmpCell = cursorAltoc();
/5 2%/ i F(TmpCell == 0)
[3%/ FatalError("0ut of space! 1")i
= 4%/ CursorSpace[TmpCell 1.ETement = X;
§x/ CursorSpace[TipCell].Next = CursorSpace[P].Next;
Ve CursorSpace[P J.Next = TmpCel1;

}
.ﬁ__f,_ﬁg,_ﬁg__ﬁ__g___g__ﬁ__ﬁ,_ﬁf__4,_4__ﬁ4_.,_,4._ﬁ__f4_,4__g
Figure 3.36 Insertion routine for linked lists—cursor

implementation

AR virtue of free. Thus, the last cell placed on the freelist is the first cell taken off. The
data structure that also has this property is known as a stack, and is the topic of the

next section.

3.3. 'The Stack ADT

L 3.3.1. Stack Model

d deletions can be performed

" called the top. The fundamental

¥ealent to an insert, and Pop, which

#The most recently inserted element can

y use of the Top routine. A Pop or Top on

an error in the stack ADT. On the other hand,

ing a Push is an implementation error.but not an
Uploaded By: Jibreel Borpat

% known as LIFO (last in, first out) lists. The model depicte

% only that Pushes are input operations and Pops and Tops are

operations to make empty stacks and test for emptiness are piart

e, but essentially all that you can do to a stack is Push and Pop.

% 38 shows an abstract stack after several operations. The general model

the stack, and it is the only element

et) A stack is a list with the restriction that inse
in only one position, namely, the end of
operations on a stack are Push, whic
deletes the most recently inserted
be examined prior to performin
il an empty stack is generally ¢
STUDENTS-HUB.Com running out of space whe
til] ADT error.
Stacks are so
in Figure 3.37 s}
output. The

e is some element that is at the top of

that is visible.

