Charater = 8=
Discrete Fourier Transform (DFT).
* We discussed representation of sequences and LTI systems in terms of fourier transform and 2-transform. We can convert convolution in time-domain to multiplication in frequency domain and 2-domain.
* Implementing DT systems by computing Fourier transform of two sequences and Multiplying them together and then Find Inverse Fourier transform is Hard to Imagine, because FT is Combinous function of W. Which means, we have to compute infinite number of Engrancies.
* In this Chapter, We Introduce DFT for a finite-duration seguence.
* DFT is related to P Discrete-time Fourier transform = DFT is samples of DT Fourier transform or more generally samples of Z-transform. That requires to impose restrictions on the samples.
* DFT has some properities same as DT-FT and some one different.
* We relate DFT to Discrete Faurier Sovies (DF5).
> $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$
STUDENTS-HUB.com

Discrete Fourier Series (DFS)
SE(n): periodic sep. with period N.
$\tilde{z}_{\omega} = \tilde{z}_{\omega} $
Same- os in Continous-time Somain. related complex exp.
(1) (1) (1) (2) (1) (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
* how many distinct havemanically complex exponentials j 2 T nk j 2 T nk j 2 n N E
we know periodic =1.
=) also peníodic in (k).
* In DT Somain, as we vary sinuspids in Proquency, we see some Values again in Internal 0 -> 27.
* It means, in forming DFS, once we use complex exponentials for
K between o and N-1, we use all complex exponentials with this fundamental freque we have and if we keep going with
K, We jud coo Same complex expansion over any over again
$\tilde{x}(n) = \frac{1}{N} \sum_{k=1}^{\infty} \tilde{x}(k) e^{n}$ (analysis equation)
(plays same role of 1 in DT.FT.
$ \sum_{k=0}^{N-1} (n) = \frac{1}{N} \sum_{k=0}^{N-1} (k) e^{-\frac{1}{N}} (alled analysis equalion) $ As a primarily also factor $k = 0$ (plays same role of $\frac{1}{2\pi}$ in DT. FT There coeff. ane $(-\frac{1}{N})(k) = \sum_{k=0}^{N-1} (n) e^{-\frac{1}{N}} (k) = \sum_{k=0}^{N-1} (n) e^{-\frac{1}{N}} (n) e^{-$

* We said there are finite number of complex exponentials (distinct
Colflicients) between Oaw (N-1), We see all ones
=) So, then are Finde distinct Fourier Series Coefficients.
Fact: $-j^2\pi n(k+\nu) = -j^2\pi nk$
$\tilde{X}(k+N) = \tilde{X}(k) = \tilde{X}(k+2N)+\cdots$ 50, it is periodic seg. \Rightarrow 50, we use coeff. of one periode.
50, it is periodic seg. => 50, we use coeff. of one periode.
X(k) periodicink of period N Z(N) N N N N N N
X => There is duality between time-domain and free domain
$W_{N} \stackrel{\triangle}{=} \stackrel{j \stackrel{2}{=} V}{e^{N}}$
$\mathcal{Z}(n) = \frac{1}{N} \underbrace{\mathcal{Z}(k)}_{N} \underbrace{\mathcal{X}(k)}_{N}$
X(K) = 5 x w WN
DES proporities:
χ Shifting $\tilde{Z}(n+m) \stackrel{\text{Dfs}}{=} W_N \tilde{X}(k)$ $W_N^{ln} \tilde{Z}(n) \stackrel{\text{Dfs}}{=} \tilde{\chi}(k+L)$
* Symmetry: 52 (n) real
$ \widetilde{X}(k) = \widetilde{X}_{R}(k) + J \widetilde{X}_{I}(k) $ $ \widetilde{X}_{Q}(k) = X_{Q}(-k) (\text{even}) $
$ \widetilde{X}_{R}(\kappa) = X_{R}(-\kappa) (evan) $ $ \widetilde{X}_{R}(\kappa) = \widetilde{X}_{R}(\kappa - \kappa) Periodic $
STUDENTS-HUB.com Uploaded By: Malak Obaid

 $\ddot{X}_{I}(\mathbf{k}) = -\ddot{X}_{I}(\mathbf{k})$ (odd) $= -\ddot{X}(N-\mathbf{k})$ (X(k)) -> ever (function of k) &X(k) -> odd funding of k. * Convolution properity 5, (n) 6 X1 (k) $\widetilde{\mathcal{X}}_{2}(n) \longleftrightarrow \widetilde{X}_{2}(k)$ $\widetilde{\mathcal{X}}_{3}(n) \longleftrightarrow \widetilde{X}_{3}(k) = \widetilde{X}_{1}(k) \widetilde{X}_{2}(k)$ What is periodic sq. zegn) Whose DFS is X3(k)? Tig(n) = Sig(m) Tig(n-m) (Convolution) X One difference from DT-fourier transform and Z-transform that sum from 0 to N-1 and not -00 - +00. (only over one period). * Dual property $\widetilde{X}_{y}(n) = \widetilde{X}_{1}(n) \widetilde{X}_{2}(n)$ $\tilde{X}_{4}(k) = \sqrt{\tilde{X}_{1}(L)\tilde{X}_{2}(k-L)}$ * periodic Convolution Example: (impulse Train) SION= TN, pointeger. $\widetilde{\mathcal{Z}}(n) = \widetilde{\mathcal{Z}} \mathcal{Z}(n-rN) = [0, \text{ otherwise}]$

since sich = Sa) for o (N-1) DFS well. X(k) X(K) = \(\sum_{N} = \sum_{N} = 1 \) for all K. $\tilde{z}(n) = \frac{2}{5}\delta(n-r_N) = \frac{1}{N} \frac{1}{5} \frac{1}{N} \frac{1}{N} = \frac{1}{N} \frac{1}{5} \frac{1}{N} \frac{1}{N} \frac{1}{N}$ * so, periodic Impulse train , represented in terms of sum of complex exponentials, when, all complex exp. have the same magnitude and phase, and all all odd to unity at Integer multiple of N and to zero for all Other Integers. Example: Duality $\tilde{\chi}(k) = \tilde{\Xi} N \tilde{S}(k-rN)$ DES Coeff. Impulse train y(w = 1 = NS(k) 1/m = 1 for all n. comparing this result with result of previous example) X(x) = NSE(x) and y(n)=X(n)

key result =) analysis - Synthesis DFS pair =) basis for DFT.

Discrete Fourier Transform

>c(n) = 0, n <0, n > N-1

Finite length N

 $\frac{1}{2}$ $\frac{1}$

= x(n modulo N)

= >c ((n))N

e.g for N= 7

((25J)7 = 4

((-16))7 = 5

In Matlab - mod ().

se(n) = se(n) Ru(n)

X(k) = DFS coeff of \$2(n).

$$\frac{DFS}{X'(k)} = \sum_{N=0}^{N-1} \frac{X'(k)}{X'(k)} \frac{W_N}{W_N}$$

$$\frac{X'(k)}{X'(k)} = \sum_{N=0}^{N-1} \frac{X'(k)}{X'(k)} \frac{W_N}{W_N}$$

$$\frac{X''(k)}{X''(k)} = \sum_{N=0}^{N-1} \frac{X''(k)}{X''(k)} \frac{W_N}{W_N}$$

DFT $\leftarrow X(k) = \sum_{n=0}^{\infty} x(n) W_{n}^{nk}$ 1-11 (1110) (50 × 10 -1 finde 6 o otherwise $X(k) = \hat{X}(k) R_N(k)$ $\hat{X}(k) = X((k))_N$ periodically repeated X(k)X(K) = [= x(n) Wn 7 Rn(k) $ze(n) = \left[\frac{1}{N} \sum_{k=1}^{N} X(k) W_{N}^{nk} \right] R_{N}(n)$ $X(Z) = \sum_{N=0}^{N-1} \times (N) Z^{N-13}$ S_{0} , X(R) = X(Z) $Z = W_{N}^{-1}$, K = 0, 1, 2, ..., N-1* X(k) samples of 2 transform on unit-circle because equally spaced in angle. 6.9 N=8 Sampling K(e) (DFT) is sampling K(e) N equally spaced samples by $\frac{2\pi}{N}$ (0-27) multiplying by * Ry(n) -> means that we take these samples only one round. calker than running around unit circle again and again.

Properities of DFT
* Focus on difference between proporties of DFT and FT and Z-transform)
>Enifting. >E(n) (DFT) X(k) >E(n) (DFT) X(k) -> poriodic extension of X(k) (DFT).
Zi(N) = Z(n+m) DES X(k) WN
(n) (k) (k) (k)
extract one period of shifted periodic squ. Zi(n).
* Shifting finite-length seq. is different than shifting portodic seq. because finite-length seq. is zoro outside of Interval [0, N-1] 50, by shifting , x(n) can be no longer zoro's outside [0, N-1],
Thorefor we use circular shifting for sain and not linear shifting.
2(n)
Z(N)
Se (n+2) 1 1 1 1 1 1 1 1 2 1 1
2((n+2)) Ru(n) * Circular shift of 2c(n) in [0, N-13 by two samples.
mulity > C((n+m)) RN(n) EDFT > WN X(K) Ln x(n) EDFT > X((k+L)) RN(k)

STUDENTS-HUB.com

9

* circular shift: >= ((n-m)), o < n < N-1 <> WN X(k) ><((n-u)/ = x((n+2)) Z((n-1))6 = × ((n+51)6 Dell-n//N = Dell N-n)/N (9) X((n-1)) = X((n+5))6 x ((n-4)) = x ((n+2)) 6.

* Symmetry Properity

DFS \approx (n) real $\tilde{X}_{R}(k) = \tilde{X}_{R}(N-k)$ $\tilde{X}_{I}(k) = -\tilde{X}_{I}(N-k)$

DFT Z(n) real

Example:

* Detality

If N-point DFT of length N sep. x(n) is X(k), then the N-point DFT of length-N sep. X(n) is given by N x((-k))N

X(n) (DFT) Nx((-kDN, OCKEN-1

* Convolution Property (Circular Convolution).
23(n) (Dff) /1(k). X2(k)
we know:
$\gamma_{c(n)} \stackrel{\text{SFS}}{\rightleftharpoons} \chi_{c(k)} \Lambda_{2}(k)$
23(n) = 23(n) RN(n)
$\chi_3(n) = \left\{ \sum_{m=0}^{N-1} \widetilde{\chi}_1(m) \widetilde{\chi}_2(n-m) \right\} \mathcal{R}_N(n)$
= \(\sum_{m=0}^{N-1} \times_{\text{(m)}} \tim
0.141
X3(n) = X(n) N X2(n) 4 N-point Circular Convolution
> ho -> you
Hum Multiply them and then take Inverse DFT => corresponds to circular
Convolution.
Circular Conv.
Robots the Higher and ADD
* linear Convolution
we flip one seg. and we shift it toward the other, then Multiply and ADD

$\chi_3(n) \circ \chi_1(n) \otimes \chi_2(n)$
$= \left\{ \sum_{m=0}^{N-1} \times_{2}(m) \widetilde{\times}_{2}(n-m) \right\} R_{N}(n)$
$ \frac{2}{2} \sum_{m=0}^{N-1} \chi_{1(m)} \chi_{2} ((n-m)) N \left\{ R_{N(n)} \right\} $
y(n) = z(n) (N) h(n) = h(n) (N) z(n)
* N-point Circular Convolution can be written in matrix form:
$\begin{cases} y(0) \\ y(1) \\ h(1) \\ h(2) \\ h(3) $
Circulant Matrix
elements in each you are obtained by Circularly rotating the elements of previous you to the right by 1.
Determine 4-point Circular convolution of two longth -4 sequences se(n) and h(n).
$xe(n) = 2 + 2 + 0 + 3$, $hen = 22 + 13$, $0 \le n \le 3$.
26(a) 7 9 h.(a)
$y(n) = x(n) \bigoplus h(n) = \sum_{m=0}^{\infty} x(m) h((n-m)) \mu (n < n < 3)$
y(a) = 2 secon hall-moly

The Circularly time reversed sage h ((-m))y is
h((-m))y = 2 how how how how 3 = 2 = 1 = 3
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
· Med
y(1) 5 \(\int \text{2000}\) h((1-m))y
* harmy is obtained by circularly shift ham to right by one sample. Name of hammy = { ham has had had = {2221}
ha-my = 2 has has has hard = {22 2 13
50, Y=(1) = x(0)h(1) + x(1)h(0) + x(2)h(1) + x(2)h(3) = 7
y=(2) = ×(0) h(2) + ×(1) h(1) + ×(2) h(6) + ×(2) h(6) = 6
y=(3)= x(0) h(3) + x(1) h(1) + x(2) h(1) + x(2) h(0) = 5
Circular conv. Linear conv.
*graphical representation of Circular conv. has
h(1) h(2) h(3) h(4) h(4) h(5)
STUDENTS-HUB.com (a) Uploaded By: Malak Obaid

* Circularly time-reversed and shifted sep. h(n-m).

* Circular Convolution Using Mathebol

* Tabular Method for computing Circular Conv.

yens = gens (hen)

Find your = g(w) A hand.

(4)4 15/4 (16 pm 3 9(2) 96) 200 9(3) 960) na hos has h.(n) na) 96) has gashes gashas gashas gos has gashas gas han gas has Circular go has gashas gas has gashas shift 960 has gwhas g(2) has g(3) has 4- lines to left n: 2_ 3 gans: 960) 941 9 (2) 942 hes hes 90 (2) n(n): g (a) has g (s) has g (s) has gashas gw hou g(1) has goo has g (2) has gas has gashes gashes go has gashas gashas gos has gw h(3) yew: \$ (1) yc(2) y.(2) gin: him) i

· ·
* Circular Convolution Properity
proof X(K)H(K)
Sed you = xcm (han)
Sed yens = xens (hen) Sed yens = xens (hen) Y(k) = Ey(n) Who = E Exem hun hun mily Who N=0 N=0 N=0 N=0 N=0 N=0 N=0 N=
they interchanging order of Sum's and substitute n-m=l+Nr which lead to v lindeger with of LCN1
$y(k) = \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} h((n-m))_{N} W_{N}$
$= \sum_{N=1}^{N-1} \sum_{k(L)} \sum_{N=1}^{k(L+m+Nr)} \sum_{k(L)} \sum_{N=1}^{k(L+m+Nr)} \sum_{k(L)} \sum_{N=1}^{k(L+m+Nr)} \sum_{k(L)} \sum_{n=1}^{k(L+m+Nr)} \sum_{k(L)} \sum_{n=1}^{k(L+m+Nr)} \sum_{$
= 5 secon) (E h(L) Wy W
= (Szecm) had n (HCW) = X (K) 1-1(th)
If we let $V = UMVN$
r=m+LN, L is Integer Choosen to make m+CN annuber between a an N-1

* This means: that we can form circular conv. between x and zer by linear convolution of x and x2 and then convolve result with Impulse train, and then extract one period. or sts a linear conv. (XIXX2) + a liasing. (repeat it over) ×3(41) = >(10) * ×2(11) X3(n) 5 X1(n) M >22(n) $2e_3(n) = \left(\sum_{n=0}^{\infty} \hat{z}_3(n+rN)\right) R_{N}(n)$ 1 34(m) = xr(m) Do x (m Direct) by doing x (lw x K2(n))

4 aliasing. 761(N) * 201(N) 24(11) * 22(11) * Pu(11) * Taking 2N-Point Je 1 1 1 1 1 1 2 1 2 N 2 Ca) & Per (n) Z1(11) (21) X2(11)

(9)

Uploaded By: Malak Obaid

STUDENTS-HUB.com

take length of circular conv. Long enough LN+M-I] = This referred to Padding With zeros. · overlap-Add Method (sectioning) - linear conv. · overlap-save Method (circular conv.). overlap-ADD: Sectioning long Seg. Into Short Segments x(n) = \(\int \times \ =) We know Convolution of Sum = Sum of Convolutions. suppose hand is of length - M linear conv. house xilos -> length LAM+1 Then , we add result together. 2 h(n) * x(i(n) -> Then will be overlap. L 22 See this example on slide).

DFT computation: DFT: X(k) = E zeco Why , 0 < k < N-1 IDFT (Invesse DFT): Sc(n) = N = X (k) WN . 0 < N < N-1 N-point DFT of De(n) is X (W=1. Ex: yens= {0, otherwer => / (k) = WM * Matrix Relation X(K) = 5 xcm WN, 0 < K < N-1 X = DNX X = [X(0) X(1) X(2) ... X(N-1)]^T 26 -> Vector of N input Samples. $x = [x(0) \times (1) \times (2) \dots \times (NA)]^T$ DN -> NXN DFT Matrix $DV = \begin{cases} 1 & W_{N}^{1} & W_{N}^{2} & -- & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W_{N}^{3} & -- & W_{N}^{2(N-1)} \\ 1 & W_{N}^{2} & W_{N}^{3} & -- & W_{N}^{3} \\ 1 & W_{N}^{2} & W_{N}^{3} & -- & W_{N}^{3} \end{cases}$

Likewise IDFT Com be expressed in Matrix Form:

DN is NXN IDFT Metrix.

$$D_{N} = \frac{1}{N} \quad W_{N}^{-1} \quad W_{N}^{-2} \quad W_{N}^{-1} \quad W_{N}^{-1}$$

*DFT computation in Matlab.

- PPECX), PPECX,N), iffE(X,M)
- DFTmtx(N) -> compute NXN PFT Matrix (Du).
 - To compute Du 3 conj (dftuntx (N))/N

Example: gon=[12013

$$h(n) = \begin{cases} 2 & 2 & 1 & 1 \\ 3 & 0 & 6 \\ 6 & 6 \end{cases}$$

$$\frac{1}{3\pi k} = \frac{1}{3\pi k} \frac{1}$$

Therefore,

$$G(0) = 1 + 2 + 1 = 4$$

 $G(1) = 1 - j2 + j = 1 - j$
 $G(2) = 1 - 2 - 1 = -2$
 $G(3) = 1 + j2 - j = 1 + j$

The above DFT Can also be computed using matrix relation.

$$\begin{cases}
G(0) \\
G(1) \\
G(2)
\end{cases} = D_{4} \begin{cases}
g(0) \\
g(1) \\
g(2)
\end{cases} = \begin{bmatrix}
1 & -1 & 1 & -1 \\
1 & -1 & 1 & -1
\end{bmatrix} = \begin{bmatrix}
4 \\
1 & -1 \\
-2 \\
1 & 4
\end{bmatrix}$$

The second s

likewise DFT of h(n) is:

* Applying 4-point IDFT to the Product G(k) H(K) = /c(k)

y we arrive at the desired circular convolution result:

$$\begin{cases}
y_{c(0)} \\
y_{c(1)} \\
y_{c(2)}
\end{cases} = \begin{cases}
1 & 1 & 1 & 1 \\
1 & 1 & -1 \\
0 & 0
\end{cases}$$

$$\begin{cases}
y_{c(2)} \\
y_{c(2)}
\end{cases} = \begin{cases}
1 & 1 & 1 & -1 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
y_{c(2)} \\
y_{c(2)}
\end{cases} = \begin{cases}
1 & 1 & 1 & -1 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
y_{c(2)} \\
y_{c(2)}
\end{cases} = \begin{cases}
1 & 1 & 1 & -1 \\
0 & 0 & 0
\end{cases}$$

STUDENTS-HUB.com

Uploaded By: Malak Obaid