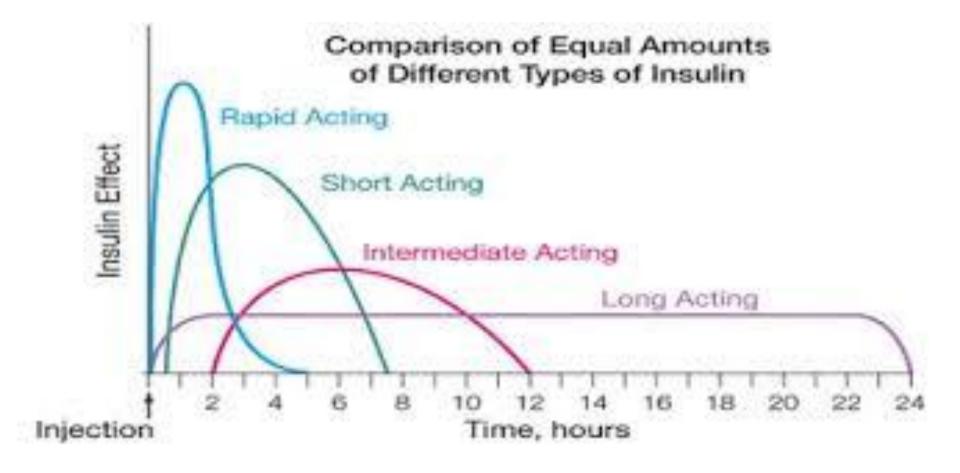
## Type I Diabetes Mellitus

Insulin Dependent

Management of Diabetes Mellitus
Type I

## Type I Diabetes

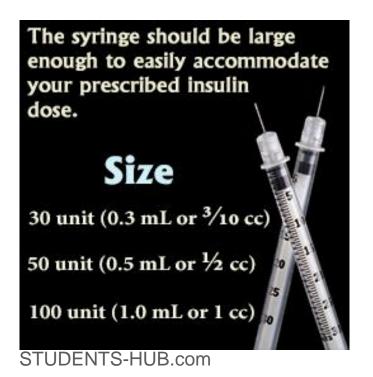

- Autoimmune disease
- Autoimmune destruction of the beta cells of the islets of Langerhans which are the regions of the pancreas that contain its endocrine cells (i.e., hormone-producing cells).
- Blood glucose level management:
  - ✓ Diet management
  - +
  - ✓ Insulin injections

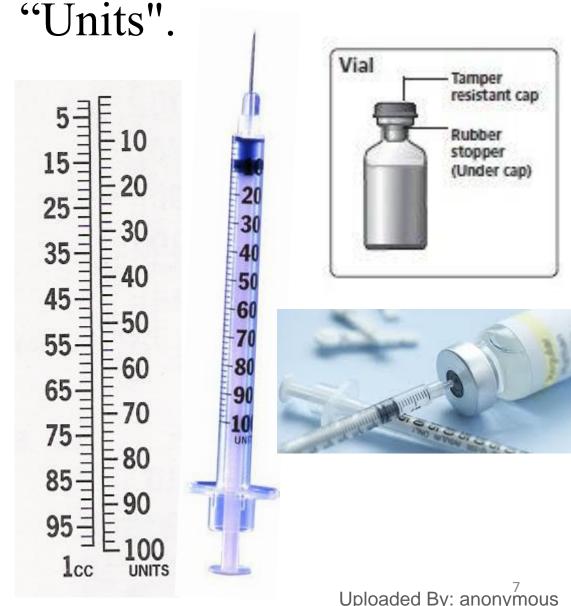
## Insulin Preparations

| Type of Insulin                             | Onset of Action                                  | Peak of<br>Action            | Duration of Action | Examples<br>Brand Names                                           |
|---------------------------------------------|--------------------------------------------------|------------------------------|--------------------|-------------------------------------------------------------------|
| 1) Rapid-acting                             | • 15 min after injection                         | 0.5-2.5 hrs. after injection | 3-5 hrs.           | <ul> <li>Humalog         (lispro); ultra         rapid</li> </ul> |
|                                             | <ul><li>20 min<br/>after<br/>injection</li></ul> | 1-3 hrs. after injection     | 3-5 hrs.           | <ul><li>NovoLog<br/>(aspart); rapid</li></ul>                     |
| 2) Regular Short-acting                     | Within 30 minutes of                             | 1-3 hrs. after injection     | 6-8 hrs.           | 1. Humulin R                                                      |
| Used in Palestine; given ½ hour before meal | injection                                        | J                            |                    | 2. Novolin R                                                      |

## Insulin Preparations Cont'd.

| Type of Insulin                                                  | Onset of<br>Action          | Peak of<br>Action         | Duration of<br>Action | Examples<br>Brand Names                          |
|------------------------------------------------------------------|-----------------------------|---------------------------|-----------------------|--------------------------------------------------|
| 3) NPH: Neutral Protamine Hagedor n insulin; Intermediate-acting | 2 hours following injection | 4-12 hrs. after injection | 18-26 hrs.            | <ol> <li>Humulin N</li> <li>Novolin N</li> </ol> |
| 4) Long-acting Peak-less                                         | 70 minutes                  | None                      | 24 hrs.               | Lantus (glargine) Aventis                        |





## Insulin Preparations Cont'd.

| Type of Insulin                                                                                                              | Onset of Action                               | Peak of Action                                                                     | Duration of Action     | Examples                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intermediate / and short-acting (regular) mixtures  Used in Palestine together with regular short acting ½ hour before lunch | <ul><li>reflect a</li><li>integrate</li></ul> | peak, and duration ese mixtures would composite of the ermediate-actinging insulin | ıld:<br>:-<br>+ short- | <ol> <li>Humulin N 70/30</li> <li>Novolin N 70/30</li> <li>Humulin 50/50</li> <li>Mixture is:         <ul> <li>Intermediate-acting +</li> <li>Short-acting</li> </ul> </li> <li>Either 70/30 Or 50/50</li> </ol> |

## Insulin Syringes are Marked in Insulin

Insulin syringes come in several sizes to match insulin strength and dosage.





## Insulin Pens: Some can be Refilled, Others are Disposable





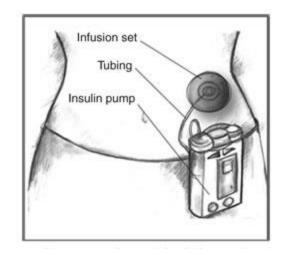
Insulin Penfill

Press to Inject

## Insulin Pumps

- Insulin pumps are small computerized devices that deliver insulin
- Pumps can be programmed:
  - 1) To release measured small continuous doses of slow acting insulin to cover basal needs (basal), with
  - 2) A rapid acting bolus dose close to mealtime to control the rise in blood glucose after a meal,
- Doses are delivered through a flexible plastic tube called a catheter.
- With the aid of a small needle, the catheter is inserted through the skin into the fatty tissue and is taped in place.

STUDENTS-HUB.com Uploaded By: anonymous

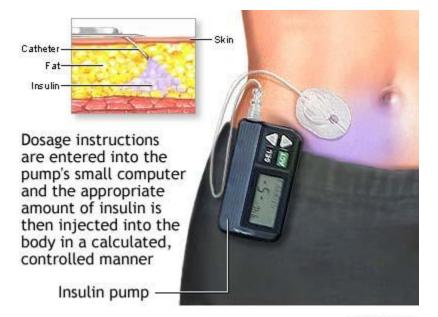

## Insulin Pump Cont'd.

• The insulin pump is not an artificial pancreas (because one still has to monitor his/her blood glucose level),

Pumps can help some people achieve better control,

 Many people prefer this continuous system of insulin delivery over injections.

## Insulin Pump (Computerized Device)






An insulin pump can be worn discretely under clothing as it administers insulin to the diabetic



@ ADAM, Inc.



@ ADAM, Inc.

#### Insulin pumps deliver:

- slow-acting and rapid- insulin
- 24 hours a day
- through a catheter placed under the skin.

## Types of Insulin Pumps

There are several models on the market separated the pumps into 4 categories:

- 1) Pumps that incorporate or work with a Blood Glucose Monitor (BGM) and offer Continuous Glucose Monitoring (CGM),
- 2) Pumps with just CGM capability,
- 3) Pumps with just a BGM, and
- 4) Standalone pumps: no BGM or CGM.

### Insulin Doses

- Insulin doses are separated into:
  - 1. Basal dose to cover 24 hour basal needs,
  - 2. Bolus doses to cover the carbohydrate intake in each meal or snack,
  - 3. Correction dose or supplemental dose to treat high blood glucose levels.

# Basal Insulin Replacement (Dose)

- To replace insulin in the fasting state:
  - Between meals
  - Overnight
- $\approx 40\text{-}50\%$  (  $\approx 45\%$ ) of the total daily insulin dose (TDID).

Usually is constant from day to day.

# Bolus Insulin Replacement (Dose)

• Is for:

- Carbohydrate intake coverage (food), and
- High blood sugar correction.

• Makes up the other 50-60% (  $\approx$  55%) of the total daily insulin dose (TDID)

### (Bolus Dose) Cont'd. Carbohydrate Intake Coverage Dose

Is to cover CHO intake at a meal.

 Is calculated based on the amount of CHO eaten at a meal divided by the insulin/CHO ratio.

- Insulin/CHO ratio represents:
  - > # grams of CHO covered or disposed of by 1 unit of insulin.

### Insulin/CHO Ratio

- Generally
  - ➤ 1 unit of insulin will dispose of 12-15 grams of carbohydrate.
    - ✓ Range can vary from 4-30 grams or more of carbohydrate depending on an individual's sensitivity to insulin
    - ✓ Insulin sensitivity can vary:
      - o From person to person,
      - According to the time of day, and
      - Is affected by physical activity, and
      - o Stress.

## Carbohydrate Intake Coverage Dose Cont'd.

Example: 60 grams of CHO in a meal:

- ➤ Your Insulin/CHO ratio is for example 1:12
- $\triangleright$  CHO insulin dose = 60 g ÷ 12 = 5 units

You will need 5 units of insulin to cover the carbohydrate you eat at the meal.

### High Blood Sugar Correction Dose

#### Generally:

- ➤ 1 unit of insulin is needed to drop the blood glucose by 45 mg/dl.
- ➤ So the correction dose is 1 unit of insulin for every 45 mg/dl of blood glucose above the target level.
- ❖ Correction dose can range from 30-100 mg/dl or more, depending on individual insulin sensitivity, and other circumstances.

Uploaded By: anonymous

## Correction Insulin Dose Cont'd.

#### Example

- Your actual pre-meal blood sugar is:
  - > 210 mg/dl.
- Pre-meal blood sugar target is:
  - ➤ 120 mg/dl.
- Difference is:
  - > 90 mg/dl
- Correction insulin dose is:
  - > 90/45 = 2 units

### Total Mealtime Dose

- Total meal insulin dose =
  - > CHO intake insulin dose, +
  - ➤ High blood sugar correction dose

### Example:

- > CHO coverage dose (5 units)
- > + high sugar correction dose (2 units)
- > total meal dose (7 units)
- The TOTAL MEALTIME INSULIN DOSE is 7 units of insulin.

## Total Daily Insulin Requirement Total Daily Insulin Dose (TDID)

General calculation:

Total Daily Insulin Requirement (in units of insulin) =

 $\triangleright$  0.55 x Weight in kilograms

Or

➤ Weight in Pounds ÷ 4

# Total Daily Insulin Dose (TDID) Cont'd.

### Example:

- Weight: 73 kg
  - $\gt$  73 kg x 0.55 = 40 unit of insulin/day
- Weight: 160 lb.
  - $\gt$  160/4 = 40 units of insulin/day
- ✓ Insulin dose may be ↑ or ↓ depending on body's reaction whether resistant or sensitive to insulin.

\* Individual needs are best assessed by physician.

Uploaded By: anonymous

### Basal Insulin Dose

40-50% (  $\approx 45\%$ ) of TDID (Total Daily Insulin Dose)

For someone whose weight is 160 lbs.

- TDID = 160 lbs.  $\div 4 = 40$  units.
- TDID = 73 kg x 0.55 = 40 unit.

- Basal insulin dose (if we use the 45% level) =
  - $\gt$  45% of TDID (40 units) = 18 units
  - > 40 18 = 22 units to cover meals and correction dose.

### Insulin/CHO Ratio

Rule of 500: used to calculate Insulin/CHO ratio

```
• 500 ÷ TDID (Total Daily Insulin Dose) = grams of CHO covered by 1 unit of insulin = insulin/CHO ratio
```

- Carbohydrate coverage ratio =
  - $\gt 500 \div \text{TDID} (40 \text{ units}) =$
  - ➤ 1unit insulin / 12.5 g CHO

The Insulin/CHO ratio may vary during the day.

## High Blood Sugar Correction Factor

Rule of "1800": used to calculate correction factor

Correction Factor =

• 1800 ÷ TDID (Total Daily Insulin Dose) = the drop in blood glucose that occurs by using by 1 unit of insulin.

Correction Factor =  $1800 \div \text{TDID}$  (40 units) = 1 unit of insulin will reduce the blood sugar level by 45 mg/dl.

## High Blood Sugar Correction Factor Cont'd.

Rule of "1800":

Another example,

If the TDID = 60 units of insulin, then correction factor would be:

 $1800 \div 60 \text{ units} = 30 = 1 \text{ unit of insulin will reduce the blood sugar level by 30 mg/dl.}$