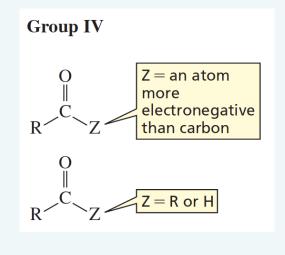
Chapter 12



Reactions of Aldehydes and Ketones More Reactions of Carboxylic Acid Derivatives

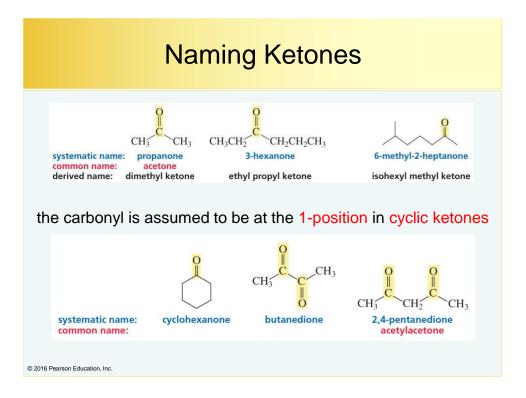
Paula Yurkanis Bruice University of California, Santa Barbara

© 2016 Pearson Education, Inc.

This chapter continues the discussion of the families of compounds in Group IV

Aldehydes and Ketones

Carbonyl compounds with hydrogen and alkyl groups


- Formaldehyde: two hydrogens
- Aldehyde: a hydrogen and an alkyl group
- · Ketone: two alkyl groups

© 2016 Pearson Education, Inc.

Some Aldehydes and Ketones found in Nature

Biologically Important Ketones

Naming Aldehydes

Aldehydes and Ketones are attacked by Nucleophiles

The partial positive charge on the carbonyl carbon causes it to be attacked by nucleophiles:

$$\begin{array}{c}
\bullet \\
R
\end{array}$$

$$\begin{array}{c}
\bullet \\
R(H)
\end{array}$$

$$\begin{array}{c}
\bullet \\
\vdots \\
Nu
\end{array}$$

Aldehydes are more reactive than Ketones

Electronic Reason:

An aldehyde has a greater partial positive charge on its carbonyl carbon than does a ketone because a hydrogen is more electron withdrawing than an an alkyl group.

© 2016 Pearson Education, Inc

Aldehydes are more reactive than Ketones

Steric Reason:

The carbonyl carbon of an aldehyde is more accessible to the nucleophile.

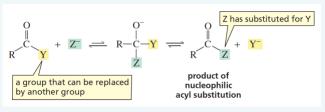
ketones with larger R groups are even less reactive

Aldehydes and Ketones are moderately reactive Carbonyl Compounds

relative reactivities of carbonyl compounds

acyl halide > acid anhydride > aldehyde > ketone > ester ~ carboxylic acid > amide > carboxylate ion

most reactive

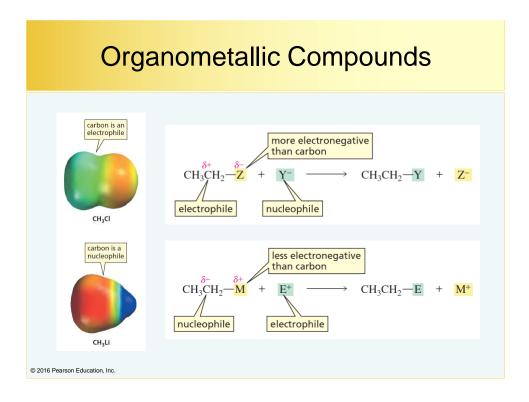

least reactive

Aldehydes and ketones are less reactive than acyl halides and acid anhydrides.

Aldehydes and ketones are more reactive than esters, carboxylic acids, amides, and carboxylate ions.

© 2016 Pearson Education, Inc

Aldehydes and Ketones react differently than do Carboxylic Acid Derivatives


In a carboxylic acid derivative, Y- can leave.

Nucleophilic acyl substitution is observed.

$$\begin{array}{c} O \\ R \\ \end{array} \begin{array}{c} O \\ R \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ R \\ \end{array} \begin{array}{c} O \\$$

In aldehydes and ketones, neither alkyl nor hydride groups can leave.

Nucleophilic addition is observed.

Organometallic Compounds: Grignard Reagents

$$CH_3CH_2Br \xrightarrow{Mg} CH_3CH_2MgBr$$
 $CH_3CH_2MgBr \text{ reacts as if it were } CH_3\dot{C}\dot{H}_2 \text{ MgBr}$

Grignard reagents react as carbanions.

They are strong bases and react vigorously with water.

Mechanism for the reaction of an Aldehyde or a Ketone with a Grignard Reagent

Grignard reagents react with aldehydes, ketones, and carboxylic acid derivatives.

Addition of dilute acid breaks up the complex.

© 2016 Pearson Education, Inc.

Grignard Reagents are used to prepare alcohols

Grignard Reagents form Carboxylic Acids by reaction with Carbon Dioxide

$$O = C = O + CH_3CH_2CH_2 - MgBr \longrightarrow CH_3CH_2CH_2 - O^-MgBr \longrightarrow CH_3CH_2CH_2 - O^-MgBr \longrightarrow CH_3CH_2CH_2 - OH$$

$$Carbon \ dioxide \ bromide \ butanoic acid$$

The carboxylic acid has one more carbon than the Grignard reagent.

© 2016 Pearson Education, Inc.

Examples of reactions with Grignard Reagents

- The numbers above and below the arrows mean the acid is not added until the Grignard reagent has reacted with the carbonyl compound.
- The product of this reaction is a racemic mixture because a compound with an asymmetric center was created from a reactant without an asymmetric center.

Esters react with Grignard Reagents to form alcohols

Acyl Chlorides react with Grignard Reagents to form alcohols

Reaction of Aldehydes and Ketones with Cyanide Ion

© 2016 Pearson Education, Inc.

© 2016 Pearson Education, Inc.

STUDENTS-HUB.com

Reactions of Cyanohydrins

OH
$$R-C-C\equiv N$$
 $\xrightarrow{HCl, H_2O}$ $\xrightarrow{A-hydroxycarboxylic}$ $\xrightarrow{A-hydroxycarboxylic}$ acid. Hydrolysis to form an α -hydroxycarboxylic acid.

OH $R-CH-C\equiv N$ $\xrightarrow{H_2}$ $\xrightarrow{R-CH-CH_2NH_2}$ Reduction to a primary amine with an OH group on the β -carbon.

Reactions of Aldehydes and Ketones with Hydride Ion 1. NaBH₄ 2. H₃O⁺ CH₃CH₂CH₂CH₂OH butanal an aldehyde a primary alcohol

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\\ \text{CH}_3\\ \text{2-pentanone}\\ \text{a ketone} \end{array} \xrightarrow{\begin{array}{c} \textbf{1. NaBH}_4\\ \textbf{2. H}_3\textbf{0}^+ \end{array}} \begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}\text{CH}_3\\ \text{2-pentanol}\\ \text{a secondary alcohol} \end{array}$$

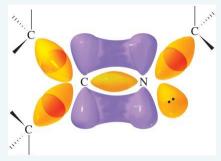
Reactions of Acyl Chlorides with Hydride Ion

Reaction of an Ester with Hydride Ion

Mechanism for the reaction of an Ester with Hydride Ion

$$\begin{array}{c} \ddot{O} : \\ \ddot{O} : \ddot{O} : \\ \ddot{O} : \ddot{O} : \ddot{\ddot{O} : } \ddot{\ddot{O} : \ddot{\ddot{O} : } \ddot{\ddot{O} : } \ddot{\ddot{O} : \ddot{\ddot{O} : } \ddot{\ddot{O} : } \ddot{\ddot{O} : \ddot{\ddot{O} : } \ddot{\ddot{O} : } \ddot{\ddot{\ddot{O} : } \ddot{\ddot{\ddot{\ddot$$

Reactions of Carboxylic Acids with Hydride Ion


© 2016 Pearson Education, Inc.

The Reactions of Amides with Hydride Ion

Aldehydes and Ketones form Imines with Primary Amines

$$\begin{array}{c} R \\ C=O \\ H \\ \text{an aldehyde} \\ \text{a primary amine} \\ \text{a primary amine} \\ \text{a race } \\ \text{acid} \\ \text{A ketone} \\ \text{a primary amine} \\ \text{a primary amine} \\ \text{a race } \\ \text{acid} \\ \text{R} \\ \text{R} \\ \text{a max} \\ \text{R} \\ \text{R} \\ \text{A max} \\$$

Bonding in an Imine

- The π bond is formed by side-to-side overlap of a p orbital of carbon with a p orbital of nitrogen.
- The π bond is perpendicular to the orange orbitals.

© 2016 Pearson Education, Inc.

Mechanism for Imine Formation

Intermediates in Imine Formation are unstable

- Imine formation is reversible because there are two protonated intermediates in the mechanism that can eliminate a group.
- Imine formation can be pushed to completion by removing water as it is formed.

Imine Hydrolysis is Irreversible

The amine is protonated in the acidic solution, so it is unable to react with the carbonyl compound.

© 2016 Pearson Education, Inc.

Reductive Amination

The unstable imine formed from ammonia is hydrogenated to an amine.

The reaction of an Aldehyde or Ketone with an alcohol

$$\begin{array}{c} O \\ \parallel \\ R \end{array} + \begin{array}{c} C \\ H(R) \end{array} + \begin{array}{c} HCI \\ CH_3OH \end{array} \begin{array}{c} OH \\ \parallel \\ OCH_3 \end{array} \\ \begin{array}{c} C \\ OCH_3 \end{array} \\ \begin{array}{c} CH_3OH, HCI \\ OCH_3 \end{array} \end{array} \begin{array}{c} OCH_3 \\ R-C-H(R) \end{array} + \begin{array}{c} H_2O \\ OCH_3 \end{array}$$
 an aldehyde or a ketone

Mechanism for the reaction of an Aldehyde or Ketone with an alcohol

Acid-Catalyzed Hydrolysis of an Acetal

© 2016 Pearson Education, Inc.

α,β-Unsaturated Aldehydes and Ketones have two Electrophilic Sites

$$\begin{array}{c} : \ddot{\text{O}} \\ \text{RCH} = \overset{\alpha}{\text{CH}} \\ \text{RCH} = \overset{\alpha}{\text{CH}} \\ \text{an } \alpha, \beta \text{-unsaturated carbonyl compound} \\ \end{array} \longleftrightarrow \begin{array}{c} \text{RCH} = \overset{\circ}{\text{CH}} \\ \text{RCH} = \overset{\circ}{\text$$

Direct addition to α,β-Unsaturated Aldehydes and Ketones

Conjugate addition to α,β-Unsaturated Aldehydes and Ketones

Weak Bases form Conjugate Addition products

$$CH_{2}=CH$$

$$CH_{3}$$

$$+ HBr$$

$$BrCH_{2}CH_{2}$$

$$CH_{3}$$

$$+ CH_{3}SH$$

$$SCH_{3}$$

© 2016 Pearson Education, Inc.

Strong Bases form Direct Addition products

Nucleophilic Addition to α,β-Unsaturated Carboxylic Acid Derivatives

Conjugate Addition Reactions in Biological Systems