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Introduction

* Regression is a supervised learning task where the target variable that we are
trying to predict is continuous. Examples: predicting houses prices based on
the living area, predicting stock price based on the history of previous prices.

 When there is a single input variable (x), the method is referred to as simple
linear regression. E.g.: predicting blood pressure as a function of drug dose.

* When there are multiple input variables, literature from statistics often refers
to the method as multiple linear regression. E.g.: predicting crop yields as a
function of fertilizer and water.

* Linear regression is a model that assumes a linear relationship between the

input variables (x) and the single output variable (y). More specifically, that y
can be calculated from a linear combination of the input variables (x)
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Linear regression example with one variable

* Suppose we have a dataset giving the living areas and prices of houses.

housing prices
T T

1000

Living area (feet?) | Price (1000%s) "l
2104 400 i
1600 330 ol
2400 369
1416 232 C o
3000 540

oF

Il Il 1 1 Il Il 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
square feet

e With linear regression we would learn a function with the form
y = f(x) = wg + w;X
where y is the predicted house price, and x is the input feature (living area in

this example)
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Linear regression example with more than one variable

 Now assume that we have two features: living areas, and the number of

bedrooms
Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540

* In this case, our linear regression model will have the form
y =f(x) = wy + WX, + W, X,
where y is the predicted house price, x; is the first feature (living area), x, is

the second feature (number of bedrooms), and x = (x;,x,)" is the input features
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Linear regression

‘ [ )
20 -10 10 20 30 40 50 60
For x in IR, linear regression fits a line in For x in R?, linear regression fits a plane
a 2- dimensional space (simple linear in a 3- dimensional space (multiple linear
regression) regression)
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Linear regression

* In general, if we have d features as input x = (X, X5, ..., X4)7, then the linear
regression would have the following form

y = f(X) = wy + WX + WoX, + ...+ WXy

* The coefficients wy, ..., wy are the parameters for the model. The goal of
learning is to find the “best” values for these parameters that describe the

relationship between the input features x and the target label y based on a
set of training example (dataset).

* Once we estimated the parameters, we can use the learned model to predict
y values for new inputs.
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Response vs. Predictor Variables

N 4
4 . y )
predictors outcome
features response variable
covariates dependent variable
g vV radio newspaper sales
o [ 2301 37.8 69.2 221
© 44.5 39.3 45.1 10.4
GE) - 17.2 45.9 69.3 9.3
7)) 1515 41.3 58.5 18.5
0
(@) __180.8 10.8 58.4 12.9
c \ J

Y
p predictors
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Prediction with linear regression model

* Example: Hours studying and grades

We want to learn w, and w, such that

Predicted final grade in class =
W, + W, *(#hours you study/week)

* Assume after learning we have:
Predicted final grade in class =

59.95 + 3.17*(# hours you study/week)

* We can now use this function to predict

grades for new #hours

Ex: Someone who studies for 12 hours
Final grade = 59.95 + (3.17*12) = 97.99
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Linear regression

* In general, if we have d features as input x = (x,, X5, ..., X4)', then the linear
regression would have the following form

y = f(X) = wy + WX + WoX, + ...+ WXy

* To simplify notation, we can augment the input with an extra dimension that
has the value 1

X =(Xy, oo, Xg) 2 X=(1, X, oor ) Xg)
* We can now write the linear regression model as follows

— — - yd — %7
y = f(X) = WoXg + WiXq + WoXs + oo + WXy = D0img X W; = XTW
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Task Definition

Problem: Given a sample S = {(X;, V1), ..., (X,, ¥,,)} € R¥X R, find a linear
function

fx)=xw=3YL xw,

that best interpolates S.

Notion and notation:

 x € RYis regarded as a column vector, its transpose X' as a row vector.
e Xisann X ddata matrix (i.e. its i-th row is x."); y = (yy, ..., Vi)'
* |Inner product of x,z € R¢: (x,z)=xTz=Z§l=1 X: Z,

* Euclidean norm of a vector x € R¢: ||x|| = v/ {x, x)

9
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Task Definition

Problem: Given a sample S ={(X, V1), ..., (X,, ¥,)} € RIX R, find a vector w €
RY such that

f(x) = (x,w)

best interpolates S.

"best interpolates”: for (x, y) we measure the discrepancy between f(x) and y
by the square loss function

E(f(x), y) = (f(x) —y)?
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Linear regression solution — simple case

* Let’s first consider the solution for the simple linear regression case. l.e., the
input is only one variable x.

* Given a set of n training examples: (x,,Y4), ..., (X, Y,), we want to learn w, and
w; such that

f(x) =y = wg + w;x

* The solution is found by minimizing the sum of squared errors:

argmin Z (y; — f(x))?

Wo,W1

agnin 30 - wo - wyz?

Wo,W1
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Linear regression solution — simple case

* The solution is found by minimizing the sum of squared errors:

argmin E(yi — Wy — W1X;)?

Wo,W1

Find the derivative of the error function E w.r.t. each parameter and setitto 0

OE %)
awg (Z (v — — W1X;)?) = ?:1%0’1’ — Wp — Wy X;)?

=21 =2(y; =W —wqyX;) = 2200y 207 W + 2 ) WX
W‘O%O_-ZZ 1yl+22n1W0+22 1W1xl ewo—Zl;yl'W1 Zijllxi

Wo=Yy-WiX
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Linear regression solution — simple case

* The solution is found by minimizing the sum of squared errors:

n

argmin E(yi — Wy — W1X;)?

WoWi 733

Find the derivative of the error function E w.r.t. each parameter and setitto 0

O0E _ 0 n N _ N 0 5
ow,  ow, (Zz=1(3’i Wo — WyX;)?) = i=13y, (v; — wo — wqx;)

_vn _ n 2

=Ny —2x;(y; —wo —wyxy) = —=2X7% (yix; — wox; — wix?)
O J— Yie1 Vi Tiz1 X; 2

27fL: yiznz xi
RN X % il N _ I D i)
! nx? T X B X ! Yie,(xi—%)*
i=1"i n
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Recap - Task Definition

Problem: Given a sample S = {(x{, Y1), ..., (X, ¥,)} € RIX R, find a vector w €
RY such that

fx) = (x,w)

best interpolates S.

"best interpolates”: for (x, y) we measure the discrepancy between f(x) and y
by the square loss function
E(f(x), y) = (f(x) —y)°

Notion and notation:
X € Rdis regarded as a column vector, its transpose x' as a row vector.

* Xisann X ddata matrix (i.e. its i-th row is x;); y=(y1, ..., Yn)"
* Innerproductofx,ze R4:(x,z)=xTz = Zfl:l X; Z;

* Euclidean norm of a vector x € R9: ||x]|| = +/{x, x)
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Linear Regression — The normal equations

* Empirical risk w.r.t. the square loss function:

E[f] = = Xy (F0) - )2

= I (6, W) -y

n

== (Xw-y)T (Xw-y)

_1 _vl2
=X w -yl

1
Solve min,, ;”XW‘VHZ (known as least squares)
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Linear Regression — The normal equations

o : .1
e Convex minimization problem: min, E[w] = min,, - IX w - y||?

e Calculate the gradient:

Vo ElW] = = (& X w - y?)

ow

=aiw(%(wTXTXw—2wTXTy+yTy))
=r11(ZXTxW-2XTy)

e Setitto0: X"Xw= X'y

* And solve the linear system of equations: w = (X" X)1 X"y
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Probabilistic Interpretation of Linear Regression

* Consider real-valued target function f

* Training examples e(x;, y)

* y.isanoisy training value
yi = f(x) + €

* €;isarandom variable (noise) drawn independently for
each x;according to some Gaussian distribution with zero mean

1 _1(yi —fz(xl.))z

e 2 o
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Probabilistic Interpretation of Linear Regression

* Ourgoalis to approximate f by f’

e The maximum likelihood estimate of f’ is

fvL= arg;nax p(D|f")

= argmax [[;=, p(ei|f")

fr
n 1(y, =f1(x))*
= . 2 -
argﬁlax Hl=1me o

Maximize natural log of this instead ....
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Probabilistic Interpretation of Linear Regression

1 1(y =)’

f/ . =argmax Y~ . In
v = ATBMAX Qjy IN 7222 = 55—

fr

l (yl _f’(xi))z

2 o’

= argmax ),j-q —

fr

= arg;}laX D1 _(J’i — f’(xi))z

L= arg;nin Z?=1(3’i — f,(xi))z

Maximum Likelihood estimate f’,,, minimizes the sum of squared errors

STUDENTS-HUB.com
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Non-Linear Regression
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Non-Linear Regression

* Linear regression fits a linear model to the data.

* In real world applications, many problems are non-linear. In this case, fitting a
linear model will underfit.

Or

e Can we still use linear regression to fit a non-linear model?
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Non-Linear Regression

Goal:

» Keep the math of linear regression, but extend to more general functions

Key idea:

* You can make a non-linear function from a linear weighted sum of non-linear
basis functions
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Non-Linear Regression

Linear regression:

fx) = (x,w)

Non-linear regression:
f(x) = (z,w), where z = g(x)

In other words, create z by evaluating x against basis functions, then linearly
regress against z
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Non-Linear Regression

Example of non-linear basis functions:

e Radial basis functions

—(x —a)*
f(x)=e 2

e Arctan Functions

e Monomials

X=X, X% ..., X"
(X1,X2) =2 X1, X5, X1X3, X2, X5?
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Example: polynomial regression

example: polynomial curve fitting hypothesis space: polynomials
{Z,‘Z\il w;z' +wo : M € Nyw; € R}

e feature space embedding:

z+— (z¥, 2, ..., M)

e patterns: hyperplanes in RM

0 . loss function: square loss
unknown target function: sin(27x)

4

training data: S = {(z1,v1), ..., (z10,y10)}

e y, = sin(27mx;) + random noise
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Example: polynomial regression

0" order polynomial? 15t order polynomial? 34 order polynomial? 9t order polynomial?

- M=0 - 1}
) o
Y
o [o)
/ L

1t M=3 { 1

lessons:

= the 0" and 15t order polynomials fit badly the data (blue points)
= too simple models underfit

= the 9% order polynomial fits the best the data, but is a bad generalization
= too complex models overfit

= the 3™ order polynomial is expected to generalize the best
— model generalizing good: neither too simple nor too complex
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Radial basis functions

1.5 55 )
" exp [—(z; — a1)?/

" /\ /\ exp [—(z; )2/

it .""f.{\.:; .......... % \} /\.\ 1'°|( \ - exp :_(501: — a3) /)\_
\°?/Z?=6 ¢;2;(x] /\ /\ /’\ \ / exp ;—(l‘i — ay)?/ /\

N exp [—(z; — as5)?/A]

25 o R A

4 5 €T exp [—(T

-1.5
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Arc Tan Functions

a)
1L — - B
arctan|Az; — o
arctan[A\x; — ao)]
wo.ol; arctan|\r; — as]
z; = |arctan[Ax; — ay
Sic - arctan[\z; — as]
T x Z :
arctan|\x; — ap
C) BE

arctan|\z; — a7
m\ //
TN
B s 58

-2.5
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Non-Linear Regression

* Evaluate x against some basis functions to create the z vector

* Apply linear regression on z

f(x) = (z,w), where z = g(x)

e Solution:

w=(2"2)1Z"y
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Problems of the normal equations solution

Linear regression solution: w = (X" X)1 X"y

* |ssues:
* Inverse is costly O(d3), where d is the number of features.

* Non-invertibility of the matrix.

* The dataset could be very large.

* Solution: use iterative methods such as gradient descent.
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Gradient Descent
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Introduction

* Gradient descent (GD) is an iterative first-order optimization algorithm used
to find a local minimum of a given function.

* This method is commonly used in machine learning (ML) and deep
learning(DL) to minimize a cost/loss function (e.g. in a linear regression).

Local minima

>
o
-
(b}
-
LL
Global __—»
minimum

States -
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Gradient Descent Idea

* Have some function J (6, 6;)

e Want min J(6p,60,)

00791
* Qutline:
- Start with some 0, 04

- Keep changing 0, 61 to reduce J(6y, #1) until we hopefully end

up at a minimum
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)(6.16,)
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)(6.16,)
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ho(x) J (0o, 01)
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ho(x) J (0o, 01)

(for fixed 6, 64, this is a function of x) (function of the parameters 6, 64)
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ho(x) J (0o, 01)

(for fixed 6, 64, this is a function of x) (function of the parameters 6, 64)
700 ‘ . ‘ — 0.5
sool Ny ) | 0.4
% Tox 0.3
—~ 500
S 0.2
[
= 4007 0.1
é = 0
& 300/
3 0.1
& 200 0.2}
0.3}
100¢ « Training data
— Current hypothesis -0.47
_0.5 1 1 1 |
1000 2000 5000 4000 i000  -500 0 500 1000 1500 2000
Size (feet”) 6o

40
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



ho(x) J (0o, 01)
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ho(x) J (0o, 01)
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ho(x) J (0o, 01)
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ho(x) J (0o, 01)
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Gradient Descent Idea

* Have some function J (6, 6;)

e Want min J(6p,60,)

00791
* Qutline:
- Start with some 0, 04

- Keep changing 0, 61 toreduce J(6g,01) until we hopefully end

up at a minimum

How to change the parameters?
How to identify the minimum?
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Function Requirements

* Gradient descent algorithm does not work for all functions. There are two
specific requirements. A function has to be:

- Differentiable: If a function is differentiable it has a derivative for each

point in its domain.
- Convex: for a univariate function, this means that the line segment
connecting two function’s points lays on or above its curve

(it does not cross it).

* Gradient descent is widely used with non-convex functions. However, in this
case the answer is not optimal. Ex: training deep neural networks.
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Convex Function

e A function fis convex if for any two points x;, X, laying on the function’s curve
the following condition is true:

fxs + (1= Dxz) < Af (1) + (1= D f(x2))

where) <A <1

Convex Non-convex

20+

15

10

054

0.0 4

15 10 05 00 05 10 15 15 -10 05 00 05 10 15

* Another way to check mathematically if a univariate function is convex is to
calculate the second derivative and check if its value is always bigger than O.

d*f (x)

dx?
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What is Gradient

Intuitively it is a slope of a curve at a given point in a specified direction.

In the case of a univariate function, it is simply the first derivative at a
selected point.

In the case of a multivariate function, it is a vector of derivatives in each main
direction (along variable axes)

A gradient for a function with n parameters f(x) at a given point p is defined
as follows: Of -

E(P)
V(o) =
_:—i @)
Example:
F(x, ) = 0.5x2 + 2 VF(x,y) = lzxy] VF(10,10) = [;8]
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Gradient Descent Algorithm

Gradient Descent method steps are:

choose a starting point (initialization).
* calculate gradient at this point.

* make a scaled step in the opposite direction to the gradient (objective:
minimize).

* repeat points 2 and 3 until one of the criteria is met:
- maximum number of iterations reached

- step size is smaller than the tolerance.
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Gradient Descent Algorithm

Algorithm Gradient descent

Require: A starting point zy, a number of iterations T
a learning rate «

fort=0,...,T—1do

Define z;,1 = x; — a Vf(x,).
end for
return zr
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The learning rate a

* Itis defined as the step size taken to reach the minimum or lowest point.

* This is typically a small positive value that is evaluated and updated based on
the behavior of the cost function.

* If the learning rate is high, it results in larger steps but also leads to risks of

overshooting the minimum.

* At the same time, a low learning rate results in small step sizes, which
compromises overall efficiency but gives the advantage of more precision.

Small Learning Rate

Loss

-

STUDENTS-HUB.com

Value of weight

Large Learning Rate
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Types of Gradient Descent

e Batch gradient descent

Batch gradient descent sums the error for each point in a training set, updating
the model only after all training examples have been evaluated. This process
referred to as a training epoch.

e Stochastic gradient descent

Stochastic gradient descent (SGD) runs a training epoch for each example
within the dataset and it updates each training example's parameters one at a
time.

* Mini-batch gradient descent

Mini-batch gradient descent combines concepts from both batch gradient
descent and stochastic gradient descent. It splits the training dataset into small
batch sizes and performs updates on each of those batches. This approach
strikes a balance between the computational efficiency of batch gradient
descent and the speed of stochastic gradient descent.
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Challenges with Gradient Descent

* Local minima and saddle points

For convex problems, gradient descent can find the global minimum with ease, but as
nonconvex problems emerge, gradient descent can struggle to find the global minimum,
where the model achieves the best results.

Local Minimum Saddle Point

loss loss

value of value of
weight weight

* Vanishing and Exploding Gradients

Vanishing gradients occurs when the gradient is too small. Whereas exploding gradients
happens when the gradient is too large, creating an unstable model. In this case, the
model weights will grow too large, and they will eventually be represented as NaN.
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Practical Tip: Feature Scaling

* Gradient descent converges faster if the attributes are normalized.

* Some of the techniques that are used for normalization

°* min-max
v —-min ) ;
P 4_(newMax, — newMin,) + newMiny
max, —ming
e /-score
U, — V—Ua
OA
* Scaling
v = 2
10

55
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Solving Linear Regression with Gradient Descent

« Remember: for linear regression the model has the following form
y = f(X) = WoXo + WiXg + WXy + oo + WeXg = Do X W; = XTW

* The first step is to find the gradient vector of the error function:
Elw] =~ B (f(x) -y

J ,1

= 7wy Zia (f06) -yiP) =2 Bl 5 (Fx) - )2

n

= S () = ) 5 F0) = S7 () - v

 Starting with a random initial parameters w, we can iteratively update the
parameters using the following update rule.

n
2
A = @ = @) (fx) - v xi
=1
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Example

* Perform one iteration of gradient descent to learn a linear regression model
for the following dataset. Assume that the learning rate is 0.05 and the initial

state is w(® = (5, 3)T

 Solution:
_ _ 1 3 8
% i=1 (FO4) = yi)xio 1 0 :
VwE=1; -
B i=q (f(x;) = Yi)xil_
2[20-10)+ (U4-8)+G-1)] | 133
g[(ZO—10)-5+(14—8)°3+(5—1)'0] - 1453

0« w0 are » [J-00s[123]-[£32)
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Handling Non-Numeric Attributes

» So far, we assumed that the features are continuous (numeric). But what if
this is not the case?

* For binary attributes, we can encode them with 0 and 1.

* For categorical attributes, we can use one-hot encoding

One Hot Encoding
" Color |
Red

Green »

Blue

O O O .
OO O » O
o » o of
» O o o |

Black
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Linear Regression Using scikit-learn

e Ordinary least squares Linear Regression.

class sklearn. linear_model.LinearRegression(*, fit_intercept=True, copy X=True, n_jobs=None, positive=False)

Parameters: fit_intercept : bool, default=True

Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations
(i.e. data is expected to be centered).

copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.

n_jobs : int, default=None
The number of jobs to use for the computation. This will only provide speedup in case of sufficiently large
problems, that is if firstly n_targets > 1 and secondly X is sparse or if positive is set to True. None
means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for
more details.

positive : bool, default=False
When set to True, forces the coefficients to be positive. This option is only supported for dense arrays.

New in version 0.24.
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Linear Regression Using scikit-learn

e Ordinary least squares Linear Regression.

class sklearn. linear_model.LinearRegression(*, fit_intercept=True, copy X=True, n_jobs=None, positive=False)

Attributes: coef_ : array of shape (n_features, ) or (n_targets, n_features)
Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D),
this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of
length n_features.

rank_ : int
Rank of matrix X. Only available when X is dense.

singular_ : array of shape (min(X, y),)
Singular values of X. Only available when X is dense.

intercept_ : float or array of shape (n_targets,)
Independent term in the linear model. Set to 0.0 if fit_intercept = False.

n_features_in_ : int
Number of features seen during fit.

New in version 0.24.

feature_names_in_ : ndarray of shape (n_features_in_,)
Names of features seen during fit. Defined only when X has feature names that are all strings.

New in version 1.0.
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Linear Regression Using scikit-learn

e Ordinary least squares Linear Regression.

class sklearn. linear_model.LinearRegression(*, fit_intercept=True, copy X=True, n_jobs=None, positive=False)

Examples

>>> import numpy as np

>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 11, [1, 2], [2, 2], [2, 31])
>>#y=1%xx0+2 xx_1+ 3

>>> y = np.dot(X, np.array([1, 2])) + 3

>>> reg = LinearRegression().fit(X, y)

>>> reg.score(X, y)

1.0

>>> reg.coef_

array([1., 2.1)

>>> reg.intercept_

Sos o

>>> reg.predict(np.array([[3, 5]1))

array([16.])

Methods

fit(X, y[, sample_weight]) Fit linear model.

get_params([deep]) Get parameters for this estimator.

predict(X) Predict using the linear model.

score(X, y[, sample_weight]) Return the coefficient of determination of the prediction.
set_params(**params) Set the parameters of this estimator.
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Regression Evaluation Metrics

Regression metrics

e Most commonly used:

Zz’ (ypredz- —Yactual E ) “
n

* Mean squared error.

* Root mean squared error (RMSE) often used as well.

Zi |yp'redz- _yactuali |
n

e Mean absolute error.

e Less sensitive to outliers.

R2 — 1 L Zz’(yp’l‘edi_yactuali)2

’ R Sq ua red Z ' (:ym()(m —Yactual; )2

 Between 0 and 1, but negative if the model is worse than just predicting the mean.
* Easier to interpret (higher is better).
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