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Introduction

• Regression is a supervised learning task where the target variable that we are 
trying to predict is continuous. Examples: predicting houses prices based on 
the living area, predicting stock price based on the history of previous prices.

• When there is a single input variable (x), the method is referred to as simple 
linear regression. E.g.: predicting blood pressure as a function of drug dose.

• When there are multiple input variables, literature from statistics often refers 
to the method as multiple linear regression. E.g.: predicting crop yields as a 
function of fertilizer and water.

• Linear regression is a model that assumes a linear relationship between the 
input variables (x) and the single output variable (y). More specifically, that y 
can be calculated from a linear combination of the input variables (x)
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Linear regression example with one variable

• Suppose we have a dataset giving the living areas and prices of houses.

• With linear regression we would learn a function with the form 
y = f(x) = w0 + w1x 

where y is the predicted house price, and x is the input feature (living area in

this example)
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Linear regression example with more than one variable

• Now assume that we have two features: living areas, and the number of 
bedrooms

• In this case, our linear regression model will have the form 
y = f(x) = w0 + w1x1 + w2 x2

where y is the predicted house price, x1 is the first feature (living area), x2 is

the second feature (number of bedrooms), and x = (x1,x2)T is the input features
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Linear regression
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For x in ℝ, linear regression fits a line in 
a 2- dimensional space (simple linear 
regression)

For x in ℝ2, linear regression fits a plane 
in a 3- dimensional space (multiple linear 
regression)
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Linear regression

• In general, if we have d features as input x = (x1, x2, …, xd)T, then the linear
regression would have the following form

y = f(x) = w0 + w1x1 + w2x2 + … + wdxd

• The coefficients w0, …, wd are the parameters for the model. The goal of
learning is to find the ”best” values for these parameters that describe the
relationship between the input features x and the target label y based on a
set of training example (dataset).

• Once we estimated the parameters, we can use the learned model to predict
y values for new inputs.
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Response vs. Predictor Variables
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Prediction with linear regression model

• Example: Hours studying and grades
We want to learn w0 and w1 such that
Predicted final grade in class = 
w0 + w1*(#hours you study/week)

• Assume after learning we have: 
Predicted final grade in class =  
59.95 + 3.17*(# hours you study/week)

• We can now use this function to predict
grades for new #hours
Ex: Someone who studies for 12 hours
Final grade = 59.95 + (3.17*12) = 97.99
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Final grade in course = 59.95 + 3.17 * study
R-Square = 0.88
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Linear regression

• In general, if we have d features as input x = (x1, x2, …, xd)T, then the linear 
regression would have the following form

y = f(x) = w0 + w1x1 + w2x2 + … + wdxd

• To simplify notation, we can augment the input with an extra dimension that 
has the value 1

x = (x1, … , xd)  à x = (1, x1, … , xd)

• We can now write the linear regression model as follows

y = f(x) = w0x0 + w1x1 + w2x2 + … + wdxd = ∑!"#$ xi wi = xT𝒘
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Task Definition

Problem: Given a sample S = {(x1 , y1 ), …, (xn , yn)} ⊆ ℝd× ℝ, find a linear 
function 

𝑓 𝒙 = xT𝒘 = ∑!"#$ xi wi

that best interpolates S.

Notion and notation:

• x ∈ ℝd is regarded as a column vector, its transpose xT as a row vector.

• X is an n × d data matrix (i.e. its i-th row is xi
T);  y = (y1, …, yn)T

• Inner product of x, z ∈ ℝd : 𝒙 , 𝒛 = xT 𝒛 = ∑!"#$ xi zi

• Euclidean norm of a vector x ∈ ℝd : 𝒙 = 𝒙 , 𝒙
9
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Task Definition

Problem: Given a sample S = {(x1 , y1 ), …, (xn , yn)} ⊆ ℝd× ℝ, find a vector w ∈
ℝd  such that  

𝑓 𝒙 = 𝒙 ,𝒘

best interpolates S.

"best interpolates”: for (x, y) we measure the discrepancy between f(x) and y 
by the square loss function 

E(f(x), y) = (f(x) – y)2
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Linear regression solution – simple case 

• Let’s first consider the solution for the simple linear regression case. I.e., the 
input is only one variable x.

• Given a set of n training examples: (x1,y1), … , (xn,yn), we want to learn w0 and 
w1 such that

f(x) = y = w0 + w1x

• The solution is found by minimizing the sum of squared errors:

argmin
%!,%"

2
!"#

'

𝑦𝑖 − 𝑓 𝑥𝑖 2

argmin
%!,%"

2
!"#

'

𝑦𝑖 − 𝑤( − 𝑤#𝑥! 2
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Linear regression solution – simple case 

• The solution is found by minimizing the sum of squared errors:

argmin
%!,%"

2
!"#

'

𝑦𝑖 − 𝑤( − 𝑤#𝑥! 2

Find the derivative of the error function E w.r.t. each parameter and set it to 0

)*
)%!

= )
)%!

(∑!"#' 𝑦𝑖 − 𝑤( − 𝑤#𝑥! 2)  =  ∑!"#' )
)%!

𝑦𝑖 − 𝑤( − 𝑤#𝑥! 2

= ∑!"#' −2 𝑦𝑖 − 𝑤( − 𝑤#𝑥! =  -2 ∑!"#' 𝑦𝑖 + 2 ∑!"#' 𝑤( + 2 ∑!"#' 𝑤#𝑥!

)*
)%!

= 0 à 0 = -2 ∑!"#' 𝑦𝑖 + 2 ∑!"#' 𝑤( + 2 ∑!"#' 𝑤#𝑥! à𝒘𝟎 = ∑𝒊$𝟏
𝒏 𝒚𝒊
𝒏

- 𝒘𝟏
∑𝒊$𝟏
𝒏 𝒙𝒊
𝒏

𝒘𝟎 =  8𝒚 - 𝒘𝟏8𝒙
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Linear regression solution – simple case 

• The solution is found by minimizing the sum of squared errors:

argmin
%!,%"

2
!"#

'

𝑦𝑖 − 𝑤( − 𝑤#𝑥! 2

Find the derivative of the error function E w.r.t. each parameter and set it to 0

)*
)%"

= )
)%"

(∑!"#' 𝑦𝑖 − 𝑤( − 𝑤#𝑥! 2)  =  ∑!"#' )
)%"

𝑦𝑖 − 𝑤( − 𝑤#𝑥! 2

= ∑!"#' −2𝑥! 𝑦𝑖 − 𝑤( − 𝑤#𝑥! = −2∑!"#' 𝑦!𝑥! − 𝑤(𝑥! − 𝑤#𝑥!1

)*
)%"

= 0 à 0 = ∑!"#' 𝑦!𝑥! −
∑'$"
( 2"
'

− 𝑤#
∑'$"
( 3"
'

𝑥! − 𝑤#𝑥!1

à 𝑤# = 
∑'$"
( 2'3' 4

∑'$"
( *! ∑'$"

( +!
(

∑'$"
( 3'

, 4
∑'$"
( +! ∑'$"

( +!
(

à 𝑤# = 
∑'$"
( (3'4 6𝒙)(2'4 6𝒚)
∑'$"
( (3'4 6𝒙)#
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Recap - Task Definition

Problem: Given a sample S = {(x1 , y1 ), …, (xn , yn)} ⊆ ℝd× ℝ, find a vector w ∈
ℝd  such that  

𝑓 𝒙 = 𝒙 ,𝒘
best interpolates S.

"best interpolates”: for (x, y) we measure the discrepancy between f(x) and y 
by the square loss function 

E(f(x), y) = (f(x) – y)2

Notion and notation:
• x ∈ ℝd is regarded as a column vector, its transpose xT as a row vector.

• X is an n × d data matrix (i.e. its i-th row is xi
T);  y = (y1, …, yn)T

• Inner product of x, z ∈ ℝd : 𝒙 , 𝒛 = xT𝒛 = ∑#$%& xi zi

• Euclidean norm of a vector x ∈ ℝd : 𝒙 = 𝒙 , 𝒙
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Linear Regression – The normal equations

• Empirical risk w.r.t. the square loss function:

E[f] = #
8
∑9"#8 (f(xi) - yi)2

= #
8
∑9"#8 ( xi, 𝐰 - yi)2

= #
8

(X w - y)T (X w - y)

= #
8

X w − y 2

Solve  minw
#
8

X w − y 2 (known as least squares)
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Linear Regression – The normal equations

• Convex minimization problem: minw E[w] = minw
#
8

X w − y 2

• Calculate the gradient:

∇w E[w] = )
)𝐰

(#
8

X w − y 2 )

= )
)𝐰

( #
8

(wT XT X w – 2 wT XT y + yTy) )

= #
8

(2 XT X w - 2 XT y )

• Set it to 0: XT X w = XT y 

• And solve the linear system of equations: w = (XT X)-1 XT y
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Probabilistic Interpretation of Linear Regression

• Consider real-valued target function f

• Training examples ei(xi, yi)

• yi is a noisy training value
yi = f(xi) + 𝜖𝑖

• 𝜖𝑖 is a random variable (noise) drawn independently for 
each xi according to some Gaussian distribution with zero mean

p(yi | f) = #
1;<#

𝑒4
"
,
*!-. +!

"

/"
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Probabilistic Interpretation of Linear Regression

• Our goal is to approximate f by f’

• The maximum likelihood estimate of f’ is 

f’ML = argmax
=>

𝑝(𝐷|𝑓>)

= argmax
=>

∏!"#
' 𝑝(𝑒𝑖|𝑓>)

= argmax
=>

∏!"#
' #

1;<#
𝑒4

"
,
*!-.0 +!

"

/"

Maximize natural log of this instead ….
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Probabilistic Interpretation of Linear Regression

f’ML = argmax
=>

∑!"#' 𝑙𝑛 #
1;<#

− #
1
2" 4=> 3" #

<#

= argmax
=>

∑!"#' − #
1
2" 4=> 3"

#

<#

= argmax
=>

∑!"#' − 𝑦𝑖 − 𝑓′ 𝑥𝑖 2

f’ML = argm𝑖𝑛
=>

∑!"#' 𝑦𝑖 − 𝑓′ 𝑥𝑖 2

Maximum Likelihood estimate f’ML minimizes the sum of squared errors
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Non-Linear Regression
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Non-Linear Regression 

• Linear regression fits a linear model to the data.

• In real world applications, many problems are non-linear. In this case, fitting a 
linear model will underfit.

• Can we still use linear regression to fit a non-linear model?
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Non-Linear Regression 

Goal:

• Keep the math of linear regression, but extend to more general functions

Key idea:

• You can make a non-linear function from a linear weighted sum of non-linear 
basis functions 
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Non-Linear Regression 

Linear regression:

𝑓 𝒙 = 𝒙 ,𝒘

Non-linear regression:

𝑓 𝒙 = 𝒛 ,𝒘 , where z = g(x)

In other words, create z by evaluating x against basis functions, then linearly 
regress against z
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Non-Linear Regression 

Example of non-linear basis functions:

• Radial basis functions

f(x) = 𝑒
- + -1 "

2

• Arctan Functions

• Monomials

x à x, x2, …, xm

(x1,x2) à x1, x2, x1x2, x1
2, x2

2
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Example: polynomial regression
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Example: polynomial regression
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Radial basis functions
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Arc Tan Functions
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Non-Linear Regression 

• Evaluate x against some basis functions to create the z vector

• Apply linear regression on z

𝑓 𝒙 = 𝒛 ,𝒘 , where z = g(x)

• Solution:

w = (ZT Z)-1 ZT y
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Problems of the normal equations solution 

Linear regression solution: w = (XT X)-1 XT y

• Issues:
• Inverse is costly 𝑂(d3), where d is the number of features.

• Non-invertibility of the matrix.

• The dataset could be very large.

• Solution: use iterative methods such as gradient descent.
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Gradient Descent
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Introduction

• Gradient descent (GD) is an iterative first-order optimization algorithm used 
to find a local minimum of a given function. 

• This method is commonly used in machine learning (ML) and deep 
learning(DL) to minimize a cost/loss function (e.g. in a linear regression). 
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Gradient Descent Idea

• Have some function 

• Want 

• Outline:

- Start with some

- Keep changing                 to reduce                     until we hopefully end  

up at a minimum
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(for fixed           , this is a function of x) (function of the parameters            )
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Gradient Descent Idea

• Have some function 

• Want 

• Outline:

- Start with some

- Keep changing to reduce                     until we hopefully end  

up at a minimum
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How to change the parameters?
How to identify the minimum?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Function Requirements

• Gradient descent algorithm does not work for all functions. There are two 
specific requirements. A function has to be:

- Differentiable: If a function is differentiable it has a derivative for each 

point in its domain.

- Convex: for a univariate function, this means that the line segment 

connecting two function’s points lays on or above its curve 
(it does not cross it). 

• Gradient descent is widely used with non-convex functions. However, in this 
case the answer is not optimal. Ex: training deep neural networks.
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Convex Function

• A function f is convex if for any two points x₁, x₂ laying on the function’s curve 
the following condition is true:

𝑓 𝜆𝑥# + 1 − 𝜆 𝑥1 ≤ 𝜆𝑓(𝑥#) + 1 − 𝜆 𝑓(𝑥1))

where 0 ≤ λ ≤ 1

• Another way to check mathematically if a univariate function is convex is to 
calculate the second derivative and check if its value is always bigger than 0.

𝑑'𝑓(𝑥)
𝑑𝑥' > 0
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What is Gradient

• Intuitively it is a slope of a curve at a given point in a specified direction.

• In the case of a univariate function, it is simply the first derivative at a 
selected point. 

• In the case of a multivariate function, it is a vector of derivatives in each main 
direction (along variable axes)

• A gradient for a function with n parameters f(x) at a given point p is defined 
as follows:

∇𝑓(𝑝) =

𝜕𝑓
𝜕𝑥!

(𝑝)

⋮

𝜕𝑓
𝜕𝑥"

(𝑝)

• Example:

𝑓 𝑥, 𝑦 = 0.5𝑥1 + 𝑦1 ∇𝑓(𝑥, 𝑦) =
𝑥
2𝑦 ∇𝑓(10,10) = 10

20
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Gradient Descent Algorithm

Gradient Descent method steps are:

• choose a starting point (initialization).

• calculate gradient at this point.

• make a scaled step in the opposite direction to the gradient (objective: 
minimize).

• repeat points 2 and 3 until one of the criteria is met:
- maximum number of iterations reached

- step size is smaller than the tolerance.
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Gradient Descent Algorithm
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a learning rate 𝛼
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The learning rate 𝛼

• It is defined as the step size taken to reach the minimum or lowest point.

• This is typically a small positive value that is evaluated and updated based on 
the behavior of the cost function.

• If the learning rate is high, it results in larger steps but also leads to risks of 
overshooting the minimum.

• At the same time, a low learning rate results in small step sizes, which 
compromises overall efficiency but gives the advantage of more precision.
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Types of Gradient Descent

• Batch gradient descent
Batch gradient descent sums the error for each point in a training set, updating 
the model only after all training examples have been evaluated. This process 
referred to as a training epoch.

• Stochastic gradient descent
Stochastic gradient descent (SGD) runs a training epoch for each example 
within the dataset and it updates each training example's parameters one at a 
time.

• Mini-batch gradient descent
Mini-batch gradient descent combines concepts from both batch gradient 
descent and stochastic gradient descent. It splits the training dataset into small 
batch sizes and performs updates on each of those batches. This approach 
strikes a balance between the computational efficiency of batch gradient 
descent and the speed of stochastic gradient descent.
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Challenges with Gradient Descent

• Local minima and saddle points
For convex problems, gradient descent can find the global minimum with ease, but as 
nonconvex problems emerge, gradient descent can struggle to find the global minimum, 
where the model achieves the best results.

• Vanishing and Exploding Gradients
Vanishing gradients occurs when the gradient is too small. Whereas exploding gradients 
happens when the gradient is too large, creating an unstable model. In this case, the 
model weights will grow too large, and they will eventually be represented as NaN.
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Practical Tip: Feature Scaling

• Gradient descent converges faster if the attributes are normalized.

• Some of the techniques that are used for normalization

• min-max

𝑣> = ? 4@!'3
@A33 4@!'3

(𝑛𝑒𝑤𝑀𝑎𝑥B − 𝑛𝑒𝑤𝑀𝑖𝑛B) + 𝑛𝑒𝑤𝑀𝑖𝑛B

• Z-score
𝑣> = ? 4C3

<3

• Scaling
𝑣> = ?

#(4
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Solving Linear Regression with Gradient Descent

• Remember: for linear regression the model has the following form

y = f(x) = w0x0 + w1x1 + w2x2 + … + wdxd = ∑#$%& xi wi = xT𝒘

• The first step is to find the gradient vector of the error function:

E[w] = %
(
∑)$%( (f(xi) - yi)2

∇w Ej = *
*wj

(%
(
∑)$%( (f(xi) - yi)2) = %

(
∑)$%( *

*wj
(f(xi) − yi)2

= '
(
∑)$%( (f(xi) − yi)

*
*wj

f(xi) = '
+
∑#$%+ (f(xi) − yi)xij

• Starting with a random initial parameters S𝒘, we can iteratively update the 
parameters using the following update rule.

3𝑤#
(-.%) = 3𝑤#

(-) − 𝛼
2
n:
#$%

+

(f(xi) − yi) xij
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Example

• Perform one iteration of gradient descent to learn a linear regression model 
for the following dataset. Assume that the learning rate is 0.05 and the initial 
state is S𝒘(() = (5, 3)T

• Solution: 

∇w E = 
1
'
∑!"#' (f(xi) − yi)xi0

1
'
∑!"#' (f(xi) − yi)xi1

=

1
D
[ 20 − 10 + 14 − 8 + (5 − 1 )]

1
D
[ 20 − 10 X 5 + 14 − 8 X 3 + (5 − 1 ) X 0]

= 13.3
45.3

S𝒘(#) =  S𝒘(() - 𝛼 ∇w E =   53 - 0.05 13.345.3 = 4.3350.735
57

x0 x1 y

1 5 10

1 3 8

1 0 1
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Handling Non-Numeric Attributes

• So far,  we assumed that the features are continuous (numeric). But what if 
this is not the case?

• For binary attributes, we can encode them with 0 and 1.

• For categorical attributes, we can use one-hot encoding
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Linear Regression Using scikit-learn

• Ordinary least squares Linear Regression.
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Linear Regression Using scikit-learn

• Ordinary least squares Linear Regression.
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Linear Regression Using scikit-learn

• Ordinary least squares Linear Regression.
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Regression Evaluation Metrics

Regression metrics

• Most commonly used:

• Mean squared error.

• Root mean squared error (RMSE) often used as well.

• Mean absolute error.

• Less sensitive to outliers.

• R squared

• Between 0 and 1, but negative if the model is worse than just predicting the mean.
• Easier to interpret (higher is better).
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