
09/03/2025

1

XML

extensible Markup Language

XML

Introduction

 This Lecture Covers

 What is XML?

 Tags and Content

 Attributes

 Nesting

 Namespaces and Comments

 Indentation

 Schemas

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

2

XML

 eXtensible Markup Language

 Like HTML

 Hypertext Markup Language

 Used for creating websites

 XML can be used for any kind of structured data

Common Core license 3

Caveat

 There are entire books written about XML

 This lecture is not intended to tell you everything

 This will hopefully cover enough about XML to get you

started understanding SOAP-based web services

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

3

Tags

 Tags work like HTML

 Start tags have this format: <_____>

 End tags have this format: </_____>

 The start and end tags must match

 Tag names must only be letters, numbers, and underscores

 Example:
<artist>The Beatles</artist>

 An empty tag can also end with />
 Example:

<invitees/> is the same as <invitees></invitees>

Structure of an XML document

• The eXtensible Markup Language (XML) is a W3C recommendation for creating Special-purpose
markup languages (information format) that enable the structuring, description and interchange of
data.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

4

Content

 What goes between the tags is content

 If content has no tags:

 Treated like a string, even though it has no quotes

 You can use it for numbers and true/false

 The software will convert from a string

 If content has tags:

 Nested data

Nested Tags

 You can put tags inside of tags to create nested data

 Example:

<color>

<red>205</red>

<green>123</green>

<blue>52</blue>

</color>

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

5

Attributes

 In addition to content, tags can have attributes

 Attributes hold simple data (a string)

 Attributes are key/value pairs.

 Both are strings, but the keys do not have quotes

 This means they must be letters, numbers, and underscores
only

 No spaces or punctuation characters

 Attributes appear in the start tag

 key="value"

Attributes, continued

 In the most common designs, attributes are not used for data

 They are used to indicate that some property about the data
(metadata)

 Examples:
<fileSize unit="kB">34.6</fileSize>

<cost currency="USD">43.23</cost>

<projectedValue decimals="2" confidence="5">

23.45</projectedValue>

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

6

The first line of an XML file

 XML declaration

 Indicates that it's an XML file

 Says what version, character encoding, etc.

 XML - declaration is not a tag. It is used for the transmission of the meta-

data of a document.

 Example:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

XML Example

 Business card

John Smith

+1 (415) 555-1234 (home)

+1 (800) 555-9867 (work)

+1 (510) 555-1212 (mobile)

john@smith.com

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

7

XML Example

 Business card: xml applies description to the

data that you are working with

<BusinessCard>

<name> John Smith </name>

<phone type="home">+1 (415) 555-1234 </phone>

<phone type="work">+1 (800) 555-9867 </phone>

<phone type="mobile">+1 (510) 555-1212 </phone>

<email> john@smith.com</email>

</BusinessCard>

Example XML: Describing a song
<?xml version="1.0" encoding="UTF-8" ?>

<song>

<title>Hey Jude</title>

<artist>The Beatles</artist>

<musicians>

<musician>John Lennon</musician>

<musician>Paul McCartney</musician>

<musician>George Harrison</musician>

<musician>Ringo Starr</musician>

</musicians>

</song>

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

8

The same XML with attributes
<?xml version="1.0" encoding="UTF-8" ?>

<song title="Hey Jude" artist="The Beatles">

<musicians>

<musician name="John Lennon"/>

<musician name="Paul McCartney"/>

<musician name="George Harrison"/>

<musician name="Ringo Starr"/>

</musicians>

</song>

Namespaces

 You might have a tag name mean one thing in one

context, but something else in a different context

 For this, you use namespaces to uniquely identify them

 The tag name has a "namespace: " prefix

 Example:

<sdkbridge:onlineCourse>

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

9

Well Formedness

XML checked for well-formedness.

Most tags have to be closed – you can’t be as sloppy as with HTML.

“Empty” tags not enclosing look like this: <TAG /> or <TAG/>.

Case-sensitive.

Schema

As well as checking for well-formedness we can check whether a document is valid

against a schema : definition of the specific XML type.

There are two popular schema types in XML:

(older) DTD (Document Type Definition)

(newer) XSD (XML Schema Definition)

XSD more complex, but is XML itself – only need one parser.

In a separate text file, linked by a URI (URL or relative file location).

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

10

Schemas

 XML files can be described with a schema

 Called a XSD file (XML Schema Definition)

 Describes what the tags, attributes, and types are

 XSD files are in XML

 It’s pretty easy to figure out how they work

 They can be helpful in documenting XML

Validate XML docs against XML Schema

XML Schema

XML
(instance)

XML Schema
Validator

XML instance is

valid/invalid

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

11

Simple example

<?xml version="1.0" encoding="UTF-8"?>

<map>

<polygon id="p1">

<points>100,100 200,100 200,

200 100,000 100,100</points>

</polygon>

</map>

XSD Schema
<xsi:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.geog.leeds.ac.uk"
xmlns="http://www.geog.leeds.ac.uk"
elementFormDefault="qualified">

<xsi:element name="map">
<xsi:complexType>

<xsi:sequence>
<xsi:element name="polygon" minOccurs="0" maxOccurs="unbounded">

<xsi:complexType>
<xsi:sequence>

<xsi:element name="points" type="xsi:string"/>
</xsi:sequence>
<xsi:attribute name="id" type="xsi:ID"/>

</xsi:complexType>
</xsi:element>

</xsi:sequence>
</xsi:complexType>

</xsi:element>
</xsi:schema>

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

12

XML
Schema
for Book

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Book">

<xs:complexType>

<xs:sequence>

<xs:element name="Title" type="xs:string"/>

<xs:element name="Authors">

<xs:complexType>

<xs:sequence>

<xs:element name="Author"
type="xs:string" maxOccurs="5"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Date" type="xs:gYear"/>

<xs:element name="Publisher" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Springer"/>

<xs:enumeration value="MIT Press"/>

<xs:enumeration value="Harvard Press"/>

</xs:restriction>

</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

XSD 1.1 also provides 3 built-in datatypes, "gYear",
"gMonth" and "gDay", to cover 3 properties within a "date"
value with these rules

<sequence> indicator
means that the child
elements must appear in
the same order as they
are declared.

A complex element is
an XML element that
contains other elements
and/or attributes.

Restrictions are used
to define acceptable
values for XML elements
or attributes

Read more:
https://www.w3schools.com/x
ml/schema_intro.asp

XML
Schema
for Book

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Book">

<xs:complexType>

<xs:all>

<xs:element name="Title" type="xs:string"/>

<xs:element name="Authors">

<xs:complexType>

<xs:sequence>

<xs:element name="Author"
type="xs:string" maxOccurs="5"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Date" type="xs:gYear"/>

<xs:element name="Publisher" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Springer"/>

<xs:enumeration value="MIT Press"/>

<xs:enumeration value="Harvard Press"/>

</xs:restriction>

</xs:simpleType>

</xs:element>
</xs:all>

</xs:complexType>

</xs:element>

</xs:schema>

The <xs:all> element
is used to specify that
child elements can
appear in any order
and each child
element can occur at
most once. So, it
cannot be used when
having a repeating
element such as
<Author>, as it can
appear more than
once inside
<Authors>.

Use the following validator to test it out:
https://www.freeformatter.com/xml-validator-
xsd.html

Uploaded By: anonymousSTUDENTS-HUB.com

http://www.w3.org/2001/XMLSchema
https://www.w3schools.com/xml/schema_intro.asp
https://www.w3schools.com/xml/schema_intro.asp
http://www.w3.org/2001/XMLSchema
https://www.freeformatter.com/xml-validator-xsd.html
https://www.freeformatter.com/xml-validator-xsd.html
https://students-hub.com

09/03/2025

13

XML
Schema
for Book

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="Book">

<xs:complexType>

<xs:all>

<xs:element name="Title" type="xs:string"/>

<xs:element name="Authors" type="Authors" />

<xs:element name="Date" type="xs:gYear"/>

<xs:element name="Publisher" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Springer"/>

<xs:enumeration value="MIT Press"/>

<xs:enumeration value="Harvard Press"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

<xs:complexType name="Authors">

<xs:sequence>

<xs:element name="author" type="Author" maxOccurs="5"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Author">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

In your example, the
Authors complex type
is defined to contain a
sequence of author
elements, each of
which contains a
name element. This
complex type is then
used as the type of
the Authors element
within the Book
element declaration.

Defining a complexType allows you to specify
the structure of a complex element. Once
you have defined a complexType, you can
use it as the type of another element by
referencing its name in the type attribute of
the element declaration. This allows you to
reuse the complex type definition in multiple
places within your schema.

XML and JSON, side-by-side

Uploaded By: anonymousSTUDENTS-HUB.com

http://www.w3.org/2001/XMLSchema
https://students-hub.com

09/03/2025

14

AJAX

• Asynchronous JavaScript and XML (AJAX)
• A group of interrelated web development techniques used on the client-

side to create interactive web applications
• Web apps can fetch data from the server without refreshing the page

• AJAX is used to increase interactivity and dynamism of web pages

Multiple views and Transformation

Nice thing is that this data can be styled in lots of different ways using stylesheets.

To write these, we use the XSL (eXtensible Stylesheet Language).

This has several parts, two of which are XSLT (XSL Transformations) and XPath.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

15

XPath
Allows you to navigate around a document.

For example:

"/." : root of the document.

"@" : an attribute.

"//" : all elements like this in the XML.

/.p/h2 – all 2nd-level headers in paragraphs in the root

/.p/h2[3] – 3rd 2nd-level header in paragraphs in the root

//p/h2 – all 2nd-level headers in any paragraph.

//p/h2[@id=“titleheader”] - all 2nd-level headers in any
paragraph where id=titleheader.

Numerous build-in functions for string, boolean, and number operations.

XSLT
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method='html' version='1.0' encoding='UTF-8' indent='yes'/>

<xsl:template match="/.">
<html>

<body>
<h2>Polygons</h2>
<p>
<xsl:for-each select=“/map/polygon">

<P>
<xsl:value-of select="@id"/> :
<xsl:value-of select="points"/>

</P>
</xsl:for-each>
</p>

</body>
</html>
</xsl:template>
</xsl:stylesheet>

Converts XML to HTML.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

16

Linking to XSLT

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="map3.xsl"?>

<map

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.geog.leeds.ac.uk
map3.xsd"

>

<polygon id="p1">

<points>100,100 200,100 200,

200 100,000 100,100</points>

</polygon>

</map>

Views - Result

As XML

As HTML

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

17

Home exercises

• How we can read/update an XML document, find two types of parsers, try to implement a simple
program in Python that do the following:

1. Read and update an XML document. This document should contain a list of students, each with
their
name, ID, date of birth, and semester average.

2. Write an XSD document for the above XML document.

3. Use online validator to see how schema validation restrict the XML document data types.

4. Implements functionality in Python to input a student's ID and retrieve the respective
student's information from the XML document.

XML

Styling and other issues

Python and XML

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

18

XML Parsing

Two major choices:

Document Object Model (DOM) / Tree-based Parsing:

The whole document is read in and processed into a tree-structure that you

can then navigate around, either as a DOM (API defined by W3C) or bespoke

API.

The whole document is loaded into memory.

Stream based Parsing:

The document is read in one element at a time, and you are given the

attributes of each element.

The document is not stored in memory.

Standard library

xml library contains:

xml.etree.ElementTree :parse to tree

xml.dom :parse to DOM

xml.dom.minidom :lightweight parse to DOM

xml.sax :SAX push and pull parser

xml.parsers.expat :SAX-like push and pull parser

xml.dom.pulldom :pull in partial DOM trees

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

19

Other libraries

lxml : simple XML parsing

Can be used with SAX (http://lxml.de/sax.html) but here we'll

look at simple tree-based parsing.

Validation using lxml

Against DTD:
dtd_file = open("map1.dtd")

xml1 = open("map1.xml").read()

dtd = etree.DTD(dtd_file)

root = etree.XML(xml1)

print(dtd.validate(root))

Against XSD:
xsd_file = open("map2.xsd")

xml2 = open("map2.xml").read()

xsd = etree.XMLSchema(etree.parse(xsd_file))

root = etree.XML(xml2)

print(xsd.validate(root))

Note extra step of

parsing the XSD XML

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

20

Parsing XML using lxml

root = etree.XML(xml1) # Where xml1 is XML text

print (root.tag) # "map"

print (root[0].tag) # "polygon"

print (root[0].get("id")) # "p1"

print (root[0][0].tag) # "points"

print (root[0][0].text) # "100,100 200,100" etc.

<map>

<polygon id="p1">

<points>100,100 200,100 200,

200 100,000

100,100</points>

</polygon>

</map>

Generating XML using lxml

root = etree.XML(xml1) # Could start from

nothing

p2 = etree.Element("polygon") # Create polygon

p2.set("id", "p2"); # Set attribute

p2.append(etree.Element("points")) # Append points

p2[0].text = "100,100 100,200 200,200 200,100" # Set points text

root.append(p2) # Append polygon

print (root[1].tag) # Check

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

21

Transform XML

xsl3 = open("map3.xsl").read() # Read stylesheet

xslt_root = etree.XML(xsl3) # Parse stylesheet

transform = etree.XSLT(xslt_root) # Make transform

result_tree = transform(root) # Transform some XML

root

transformed_text = str(result_tree)

print(transformed_text)

writer = open('map3.html', 'w') # Normal writer

writer.write(transformed_text)

Note that if the XML is from a file it doesn't need the XSL is referenced in the XML, a major advantage in

applying arbitrary stylesheets.

Other libraries

dicttoxml : conversion of dicts to XML

untangle : library for converting DOMs to object models

Not distributed with Anaconda, but worth looking at.

Nice intro by Kenneth Reitz at:

http://docs.python-guide.org/en/latest/scenarios/xml/

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

09/03/2025

22

Review

 XML represents structured data

 Content is enclosed in tags

 Attributes are key/value pairs, usually with metadata

 Tags can be nested – use indentation for formatting

 Namespaces can help make tag names unique

 XSD (schema) files describe the XML structure

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

