
Memory Hierarchy Design – Cache

Memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Presentation Outline

❖Memory Hierarchy and the need for Cache Memory

❖ The Basics of Caches

❖Multilevel Caches

❖ Cache Performance and Memory Stall Cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Processor-Memory Performance Gap

❖ 1980 – No cache in microprocessor

❖ 1995 – Two-level cache on microprocessor

CPU Performance: 55% per year,

slowing down after 2004

P
e
rf

o
rm

a
n
c
e
 G

a
p

DRAM: 7% per year

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Motivation for Memory Hierarchy

❖ Programmers want unlimited amounts of memory with low

latency
 But fast memory more expensive than slower memory

❖ Solution: small fast memory + big slow memory

= Looks like a big fast memory

MC

Small & Fast

MM

Big &

Slow

Big

Fast

4
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Need for Cache Memory

❖Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

❖ Each instruction involves at least one memory access

 One memory access to fetch the instruction

 A second memory access for load and store instructions

❖ Memory bandwidth limits the instruction execution rate

❖ Cache memory can help bridge the CPU-memory gap

❖ Cache memory is small in size but fast

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Model of Memory Hierarchy

Registers

Level 1 Cache

Cycle Words/cycle Management

1 3-10 ?

1-3 1-2 ?

5-10 1 ?

30-100 0.5 ?

106-107 0.01 ?

Level 2 Cache

CPU

Chip

DRAMChips

Mechanic Disk

Compiler

Hardware

Hardware

OS

OS

6
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Typical Memory Hierarchy

❖ Registers are at the top of the hierarchy

 Typical size < 1 KB

 Access time < 0.5 ns

❖ Level 1 Cache (8 – 64 KiB)

 Access time: 1 ns

❖ L2 Cache (1 MiB – 8 MiB)

 Access time: 3 – 10 ns

❖Main Memory (8 – 32 GiB)

 Access time: 40 – 50 ns

❖ Disk Storage (> 200 GB)

 Access time: 5 – 10 ms

Microprocessor

Registers

Main Memory

Magnetic or Flash Disk

Memory Bus

I/O Bus
F

a
s

te
r

B
ig

g
e
r

L1 Cache

L2 Cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Typical Memory Hierarchy

L1 Cache: 32 – 64KB (SRAM)
Instruction / Data Cache

1 ns (2-3 cycles) access time

L2 Cache: 256KB – 1MB (SRAM)
3-10 ns (6-20 cycles) access time

L3 Cache: 8MB – 96MB (eDRAM)
10-20 ns access time

Off-chip L4 Cache (larger than L3)
20-40 ns access time

8GB – 256GB Main Memory
DRAM, 50-100 ns access time

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Principle of Locality of Reference

❖ Programs access small portion of their address space

 At any time, only a small set of instructions & data is needed

❖ Temporal Locality (in time)

 If an item is accessed, probably it will be accessed again soon

 Same loop instructions are fetched each iteration

 Same procedure may be called and executed many times

❖ Spatial Locality (in space)

 Tendency to access contiguous instructions/data in memory

 Sequential execution of Instructions

 Traversing arrays element by element

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Hierarchy Operation
❖ If an instruction or operand is required by the CPU, the levels of the

memory hierarchy are searched for the item starting with the level

closest to the CPU (Level 1 cache):

 If the item is found, it’s delivered to the CPU resulting in a cache hit

without searching lower levels.

 If the item is missing from an upper level, resulting in a cache miss, the

level just below is searched.

 For systems with several levels of cache, the search continues with

cache level 2, 3 etc.

 If all levels of cache report a miss then main memory is accessed for the

item.

▪ CPU  cache  memory: Managed by hardware.

 If the item is not found in main memory resulting in a page fault, then disk

(virtual memory), is accessed for the item.

▪ Memory  disk: Managed by the operating system with hardware support

Hit rate for level one cache = H1

Miss rate for level one cache = 1 – Hit rate = 1 - H1

L1 Cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Hierarchy: Terminology
❖ A Block: The smallest unit of information transferred between two levels.

❖ Hit: Item is found in some block in the upper level (example: Block X)

 Hit Rate: The fraction of memory access found in the upper level.

 Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

❖ Miss: Item needs to be retrieved from a block in the lower level (Block Y)

 Miss Rate = 1 - (Hit Rate)

 Miss Penalty: Time to replace a block in the upper level +

Time to deliver the missed block to the processor

❖ Hit Time << Miss Penalty

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor

Blk X

Blk Y

e.g cache

e.g main memory

A block

M

M

Miss rate for level one cache = 1 – Hit rate = 1 - H1

(Fetch/Load)

(Store)

Ideally = 1 Cycle(S)

Level 1 (L1) Cache

Typical Cache Block (or line) Size: 16-64 bytes

Hit if block is found in cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Basic Cache Concepts
❖ Cache is the first level of the memory hierarchy once the address leaves the

CPU and is searched first for the requested data.

❖ If the data requested by the CPU is present in the cache, it is retrieved from

cache and the data access is a cache hit otherwise a cache miss and data

must be read from main memory.

❖ On a cache miss a block of data must be brought in from main memory to

cache to possibly replace an existing cache block.

❖ The allowed block addresses where blocks can be mapped (placed) into

cache from main memory is determined by cache placement strategy.

❖ Locating a block of data in cache is handled by cache block identification

mechanism: Tag matching.

❖ On a cache miss choosing the cache block being removed (replaced) is

handled by the block replacement strategy in place.

❖ When a write to cache is requested, a number of main memory update

strategies exist as part of the cache write policy. Uploaded By: Jibreel BornatSTUDENTS-HUB.com

What is a Cache Memory ?

❖ Small and fast (SRAM) memory technology

 Stores the subset of instructions & data currently being accessed

❖ Used to reduce average access time to memory

❖ Caches exploit temporal locality by …

 Keeping recently accessed data closer to the processor

❖ Caches exploit spatial locality by …

 Moving blocks consisting of multiple contiguous words

❖ Goal is to achieve

 Fast speed of cache memory access

 Balance the cost of the memory system

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Cache Memories in the Datapath

I-Cache miss or D-Cache miss causes

pipeline to stall

ALU result

32

0

1

D-Cache

Address

Data_in

Data_out

32

R
D

R
d
3

D
a
ta

R
d
4

32

A
L
U

32

A
B

R
d
2

clk

5Rs

5

Rd

Rt

32

R
e
g

is
te

r
F

il
e

RA

RB

BusA

BusB

RW BusW

0

1

Ext

0

2

3

1

0

2

3

1

I-Cache

AddressP
C

Instruction
In

s
tr

u
c
ti
o

n

Imm16

Interface to L2 Cache or Main Memory

I-
C

a
c
h

e
 m

is
s

D
-C

a
c
h

e
 m

is
s

In
s
tr

u
c
ti

o
n

 B
lo

c
k

D
a
ta

 B
lo

c
k

B
lo

c
k
 A

d
d

re
s
s

B
lo

c
k
 A

d
d

re
s
s

Im
m

1

0

0

2

1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Almost Everything is a Cache !

❖ In computer architecture, almost everything is a cache!

❖ Registers: a cache on variables – software managed

❖ First-level cache: a cache on second-level cache

❖ Second-level cache: a cache on memory (or L3 cache)

❖Memory: a cache on hard disk

 Stores recent programs and their data

 Hard disk can be viewed as an extension to main memory

❖ Branch target and prediction buffer

 Cache on branch target and prediction information

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Presentation Outline

❖Memory Hierarchy and the need for Cache Memory

❖ The Basics of Caches

❖Multilevel Caches

❖ Cache Performance and Memory Stall Cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Four Basic Questions on Caches

❖ Q1: Where can a block be placed in a cache?

 Block placement

 Direct Mapped, Set Associative, Fully Associative

❖ Q2: How is a block found in a cache?

 Block identification

 Block address, tag, index

❖ Q3: Which block should be replaced on a cache miss?

 Block replacement

 FIFO, Random, LRU

❖ Q4: What happens on a write?

 Write strategy

 Write Back or Write Through cache (with Write Buffer)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Inside a Cache Memory

Processor
Cache

Memory

Main

Memory

Address

Data

Address

Data

❖ Cache Block (or Cache Line)

 Unit of data transfer between main memory and a cache

 Large block size ➔ Less tag overhead + Burst transfer from DRAM

 Typically, cache block size = 64 bytes in recent caches

Address Tag 0

Address Tag 1

Tag N – 1

Cache Block 0

Cache Block 1

Cache Block N – 1

N
C

a
c
h

e
 B

lo
c
k
s

Tags

identify

blocks in

the cache

.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Block Placement: Direct Mapped

❖ Block: unit of data transfer between cache and memory

❖ Direct Mapped Cache:

 A block can be placed in exactly one location in the cache

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1

0

1
1
1

0
0
0
0
0

0
0
0
0
1

0
0
0
1
0

0
0

0
1
1

0
0
1
0
0

0
0
1
0
1

0
0

1
1

0

0
0

1
1
1

0
1
0
0
0

0
1
0
0
1

0
1
0
1
0

0
1

0
1
1

0
1
1

0
0

0
1
1

0
1

0
1
1
1

0

0
1
1
1
1

1
0
0
0
0

1
0
0
0
1

1
0
0
1
0

1
0

0
1
1

1
0
1
0
0

1
0
1
0
1

1
0
1
1
0

1
0
1
1
1

1
1
0
0
0

1
1
0
0
1

1
1
0
1
0

1
1

0
1
1

1
1
1

0
0

1
1
1

0
1

1
1
1
1

0

1
1
1
1
1

In this example:

Cache index =

least significant 3 bits of

Block address

C
a
c
h
e

M
a
in

M
e
m

o
ry

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Direct Mapped Cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

64KB Direct Mapped Cache Example
A d d re s s (s ho w in g b it p o s ition s)

1 6 1 2 B yte

o ffs e t

V T ag D a ta

H it D a ta

1 6 32

4 K

e n tr ie s

1 6 b its 12 8 b its

M u x

3 2 3 2 3 2

2

3 2

B lo c k o f fs e tInd ex

T ag

3 1 16 1 5 4 3 2 1 04K= 212 = 4096 blocks

Each block = four words = 16 bytes

Can cache up to

232 bytes = 4 GB

of memory

Mapping Function: Cache Block frame number = (Block address) MOD (4096)

i.e. index field or 12 low bit of block address

Index field (12 bits)
Tag field (16 bits)

Word select

Block Address = 28 bits

Tag = 16 bits Index = 12 bits
Block offset

= 4 bits

Larger cache blocks take better advantage of spatial locality

and thus may result in a lower miss rate

Hit or miss?

SRAM

Tag

Matching

X

Block Offset (4 bits)

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay

Typical cache

Block or line size:

32-64 bytes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Direct-Mapped Cache

❖ A memory address is divided into

 Block address: identifies block in memory

 Block offset: to access bytes within a block

❖ A block address is further divided into

 Index: used for direct cache access

 Tag: most-significant bits of block address

Index = Block Address mod Cache Blocks

❖ Tag must be stored also inside cache

 For block identification

❖ A valid bit is also required to indicate

 Whether a cache block is valid or not

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Direct Mapped Cache – cont’d

❖ Cache hit: block is stored inside cache

 Index is used to access cache block

 Address tag is compared against stored tag

 If equal and cache block is valid then hit

 Otherwise: cache miss

❖ If number of cache blocks is 2n

 n bits are used for the cache index

❖ If number of bytes in a block is 2b

 b bits are used for the block offset

❖ If 32 bits are used for an address

 32 – n – b bits are used for the tag

❖ Cache data size = 2n+b bytes

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Mapping an Address to a Cache Block

❖ Example

 Consider a direct-mapped cache with 256 blocks

 Block size = 16 bytes

 Compute tag, index, and byte offset of address: 0x01FFF8AC

❖ Solution

 32-bit address is divided into:

▪ 4-bit byte offset field, because block size = 24 = 16 bytes

▪ 8-bit cache index, because there are 28 = 256 blocks in cache

▪ 20-bit tag field

 Byte offset = 0xC = 12 (least significant 4 bits of address)

 Cache index = 0x8A = 138 (next lower 8 bits of address)

 Tag = 0x01FFF (upper 20 bits of address)

Tag Index offset

4820

Block Address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example on Cache Placement & Misses

❖ Consider a small direct-mapped cache with 32 blocks

 Cache is initially empty, Block size = 16 bytes

 The following memory addresses (in decimal) are referenced:

1000, 1004, 1008, 2548, 2552, 2556.

 Map addresses to cache blocks and indicate whether hit or miss

❖ Solution:

 1000 = 0x3E8 cache index = 0x1E Miss (first access)

 1004 = 0x3EC cache index = 0x1E Hit

 1008 = 0x3F0 cache index = 0x1F Miss (first access)

 2548 = 0x9F4 cache index = 0x1F Miss (different tag)

 2552 = 0x9F8 cache index = 0x1F Hit

 2556 = 0x9FC cache index = 0x1F Hit

Tag Index offset

4523

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fully Associative Cache

❖ A block can be placed anywhere in cache  no indexing

❖ If m blocks exist then

 m comparators are needed to match tag

 Cache data size = m  2b bytes

m-way associative

Address

Tag offset

DataHit

= = = =

V Tag Block DataV Tag Block DataV Tag Block DataV Tag Block Data

mux

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Set-Associative Cache

❖ A set is a group of blocks that can be indexed

❖ One set = m blocks ➔ m-way set associative

❖ Set index field is k-bit long ➔ Number of Sets = 2k

❖ Set index is decoded and only one set is examined

 m tags are checked in parallel using m comparators

 If address tag matches a stored tag within set then Cache Hit

 Otherwise: Cache Miss

❖ Cache data size = m  2k+b bytes (2b bytes per block)

❖ A direct-mapped cache has one block per set (m = 1)

❖ A fully-associative cache has only one set (k = 0)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Index Field

(8 bits)

Tag

Field (22 bits)

Block Offset Field

(2 bits)

4K Four-Way Set Associative Cache:
MIPS Implementation Example

Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4 - to -1 m ultip lexo r

Hit Da ta

123891011123031 0

1024 block frames

Each block = one word

4-way set associative

1024 / 4= 28= 256 sets

Can cache up to

232 bytes = 4 GB

of memory

Block Address = 30 bits

Tag = 22 bits Index = 8 bits
Block offset

= 2 bits

Set associative cache requires parallel tag

matching and more complex hit logic which

may increase hit time

Tag Index Offset

SRAM

Hit/

Miss

Logic

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

Hit Access Time = SRAM Delay + Hit/Miss Logic Delay
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Handling a Cache Read

Processor issues address

Compare address tag against all tags stored in the indexed set

Cache Hit?

Send address to

lower-level cache

or main memory

Select

Victim

Block

Send miss

signal to

processor

Transfer Block from lower-level memory

and replace victim block with new block

NoYes

Return data

Return data

Miss Penalty

Clock Cycles

to process a

cache miss

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Replacement Policy

❖Which block to replace on a cache miss?

❖ No choice for direct-mapped cache

❖m choices for m-way set associative cache

❖ Random replacement

 Candidate block is selected randomly

 One counter for all sets (0 to m – 1): incremented on every cycle

 On a cache miss, replace block specified by counter

❖ First In First Out (FIFO) replacement

 Replace oldest block in set (Round-Robin)

 One counter per set (0 to m – 1): specifies oldest block to replace

 Counter is incremented on a cache miss

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

LRU Replacement Policy

❖ LRU: Replace Least Recently Used Block in a Set

 LRU state must be updated on every cache hit

 If m = 2, there are only 2 permutations ➔ a single LRU bit is needed

 If m = 4 then 4! = 24 permutations. If m = 8 then 8! = 40320 permutations

 Pure LRU is difficult to implement for large m

❖ Pseudo LRU Tree

 LRU approximation that requires (m – 1) LRU bits per set

On cache hit, track the MRU block

On cache miss, replace non-MRU block

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Access Stream: B, C, A, D, E

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Comparing Random, FIFO, and LRU

❖ Data cache misses per 1000 instructions

 10 SPEC2000 benchmarks on Alpha processor

 Block size = 64 bytes

 LRU outperforms FIFO and Random for a small cache

 Little difference between LRU and Random for a large cache

❖ Random is the simplest to implement: one counter for all sets

❖ Pseudo LRU Tree requires (m – 1) replacement bits per set

2-way 4-way 8-way

Size LRU Rand FIFO LRU Rand FIFO LRU Rand FIFO

16 KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4

64 KB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3

256 KB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Policy

❖Write Through

 Writes update data cache and lower-level (L2) cache

 Cache control bit: only a Valid bit is needed

 Lower-level cache always has latest data, which simplifies data coherency

 Can always discard cached data when a block is replaced

❖Write Back

 Writes update data cache only

 Two cache control bits: Valid and Modified bits are required

 Modified bit indicates that cache block ≠ memory block

 Modified cached block is written back when replaced

 Multiple writes to same cache block require only one write-back

 Uses less memory bandwidth than write-through and less energy

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Miss Policy
❖What happens on a write miss?

❖Write Allocate

 Allocate new block in data cache

 Write miss acts like a read miss, block is fetched then updated

❖Write No-Allocate

 Send data to lower-level (L2) cache

 Data cache is not modified

❖ Either write-miss policy can be combined with either write policy

❖Write back caches typically use write allocate on a write miss

 Reasoning: subsequent writes will be captured in the cache

❖Write-through caches might choose write no-allocate

 Reasoning: writes must still go to lower level memory
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Buffer

❖Write buffer is a queue that holds: address + write-data (wdata)

 Write-through: all writes are sent to lower-level cache

❖ Buffer decouples the write from the memory bus writing

 Write occurs without stalling processor, until buffer is full

❖ Problem: write buffer may hold data on a read miss

 If address is found, return data value in write buffer

 Transfer block from lower level cache and update D-cache

P
ro

c
e

s
s
o

r Write

Through

D-Cache

Lower

Level

CacheWrite

Buffer

rdata

wdata

address
address

block

wdata

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Through with Write No-Allocate

Write-Through

Write No-Allocate

Write Hit?
NoYes

Write

D-cache
Do Nothing

Queue address + wdata

into write buffer

Compare address tag against all

tags stored in the indexed set

Processor issues

address + wdata

Stall processor if

write buffer is full

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Victim Buffer

❖ Used by modified evicted blocks and their addresses

 When a modified block is replaced (evicted) in the D-cache

 Prepares a modified block to be written back to lower memory

❖ Victim buffer decouples the write back to lower memory

 Giving priority to read miss over write back to reduce miss penalty

❖ Problem: Victim buffer may hold block on a cache miss

 Solution: transfer modified block in victim buffer into data cache

P
ro

c
e

s
s
o

r

Lower

Level

Memory
Victim

BufferW
ri
te

 B
a
c
k

D
-C

a
c
h
e

rdata

wdata

address

block address

transfer block

modified block

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Back with Write Allocate

Write-Back

Write Allocate

Write Hit?
NoYes

Compare address tag against

all tags stored in the indexed set

Processor issues: address + wdata

Send block address to

lower-level (L2) cache

& lookup victim buffer.

Transfer block

into D-cache.

Select block

to replace.

If modified,

move it into

victim buffer

Write D-cache

Set M-bit

Write D-cache

Set M-bit

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Through vs. Write Back

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Unified vs. Separate Level 1 Cache
❖ Unified Level 1 Cache (Princeton Memory Architecture).

A single level 1 (L1) cache is used for both instructions and data.

❖ Separate instruction/data Level 1 caches (Harvard Memory Architecture):

The level 1 (L1) cache is split into two caches, one for instructions (instruction cache, L1

I-cache) and the other for data (data cache, L1 D-cache).

Control

Datapath

Processor

R
eg

isters

Unified

Level

One

Cache

L1

Control

Datapath

Processor

R
eg

isters

L1

I-cache

L1

D-cache

Unified Level 1 Cache

(Princeton Memory Architecture)
Separate (Split) Level 1 Caches

(Harvard Memory Architecture)

Instruction

Level 1

Cache

Data

Level 1

Cache

Most

Common

Accessed

for both

instructions

And data

Split Level 1 Cache is more preferred in pipelined CPUs

to avoid instruction fetch/Data access structural hazards

Why?

AKA Shared Cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Parallel vs. Serial Caches

❖ Tag and Data usually separate (tag is smaller & faster)

 – State bits stored along with tags

▪ Valid bit, “LRU” bit(s), …

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Presentation Outline

❖Memory Hierarchy and the need for Cache Memory

❖ The Basics of Caches

❖Multilevel Caches

❖ Cache Performance and Memory Stall Cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multilevel Caches

❖ Top level cache is kept small to

 Reduce hit time

 Reduce energy per access

❖ Add another cache level to

 Reduce the memory gap

 Reduce memory bus loading

❖Multilevel caches can help

 Reduce miss penalty

 Reduce average memory access time

❖ Large L2 cache can capture many misses in L1 caches

 Reduce the global miss rate

Unified L2 Cache

I-Cache D-Cache

Main Memory

Processor Core

Addr DataInstAddr

Addr BlockAddr Block

Addr Block

For simplicity,

L3 cache is not included

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Inclusion Policy

❖Multi-Level Cache Inclusion

 The content of the L1 cache is fully contained in the larger L2 cache

 Wastes L2 cache space, but L2 has space for additional blocks

❖Multi-Level Cache Exclusion

 The L2 cache can only have blocks that are not in the L1 cache

 Prevents wasting space

❖ Non-Inclusive Non-Exclusion (NINE)

 Multi-level inclusion and exclusion must be enforced by a protocol

 If neither is enforced then L2 cache is neither inclusive nor exclusive

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multilevel Inclusion

❖ L1 cache blocks are always present in L2 cache

 Total number of unique cache blocks = L2 cache size

❖ A miss in L1, but a hit in L2 copies block from L2 to L1

❖ A miss in L1 and L2 brings a block into L1 and L2

❖ A write in L1 causes data to be written in L1 and L2

❖Write-through policy is used from L1 to L2

❖Write-back policy is used from L2 to lower-level memory

 To reduce traffic on the memory bus

❖ A replacement (or invalidation) in L2 must be seen in L1

 A block which is evicted from L2 must also be evicted from L1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multilevel Exclusion

❖ L1 cache blocks are never found in L2 cache

 Prevents wasting space

 Total number of unique cache blocks = L1 + L2 cache size

❖ Cache miss in L1 and L2 brings the block into L1 only

❖ Cache miss in L1, but hit in L2 results in a swap of blocks

 More complex to implement

❖ Block replaced in L1 is moved into L2

 L2 cache stores L1 evicted blocks, in case needed later in L1

 L2 cache acts as a victim cache

❖Write-Back policy from L1 to L2

❖Write-Back policy from L2 to lower-level memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Non-Inclusive, Non Exclusive (NINE)

❖ L1 cache blocks may or may not be present in L2 cache

 Total number of unique cache blocks > L2 cache size, but < (L1 + L2) size

❖ Cache miss in L1 and L2 brings a block into L1 and L2

❖ A miss in L1, but a hit in L2 copies block from L2 to L1

 A block replaced in L1 can be discarded, if not modified

 If a block is replaced and modified in L1, then it must be written back to L2

❖ A block can be replaced in L2 without removing it from L1

 If L2 is inclusive, then block evicted from L2 must also be evicted from L1

❖Write-back policy between L1 and L2

 Write-through is not possible if a block exists in L1, but replaced in L2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Inclusive, Exclusive, and NINE L2 Cache
A B
C D

L1

A B X
C D Y

Inclusive L2 Exclusive L2

L1 L1

NINE L2

A B
C D

A B
C D

W X
E Z Y

W B X
C Z Y

H B
C D

L1

A B H X
C D Y

Inclusive L2 Exclusive L2

L1 L1

NINE L2

H B
C D

H B
C D

W A X
E Z Y

W B H X
C Z Y

H
C Y

L1

A H X
C D Y

Inclusive L2 Exclusive L2

L1 L1

NINE L2

H B
C Y

H B
C Y

W A X
E Z D

W H X
C Z Y

H
C D

L1

A H X
C D Y

Inclusive L2 Exclusive L2

L1 L1

NINE L2

H B
C D

H B
C D

W A X
E Z Y

W H X
C Z Y

Block B is evicted from L2 cache

L1 miss

Block H

replaces

Block A

L1 miss

Block Y

replaces

Block D

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Local and Global Miss Rates

❖ Local Miss Rate

Number of cache misses / Memory accesses to this cache

Miss RateL1 for L1 cache

Miss RateL2 for L2 cache

❖ Global Miss Rate

Number of cache misses / Memory accesses generated by processor

MissRateL1 for L1 cache (same as local)

MissRateL1  MissRateL2 for L2 cache (different from local)

Global miss rate is a better measure for L2 cache

Fraction of the total memory accesses that miss in L1 and L2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Presentation Outline

❖Memory Hierarchy and the need for Cache Memory

❖ The Basics of Caches

❖Multilevel Caches

❖ Cache Performance and Memory Stall Cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Hit Rate and Miss Rate

❖ Hit Rate = Hits / (Hits + Misses)

❖ Miss Rate = Misses / (Hits + Misses)

❖ I-Cache Miss Rate = Miss rate in the Instruction Cache

❖ D-Cache Miss Rate = Miss rate in the Data Cache

❖ Example:

Out of 1000 instructions fetched, 60 missed in the I-Cache

 25% are load-store instructions, 50 missed in the D-Cache

What are the I-cache and D-cache miss rates?

❖ I-Cache Miss Rate = 60 / 1000 = 6%

❖ D-Cache Miss Rate = 50 / (25% × 1000) = 50 / 250 = 20%
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ The processor stalls on a Cache miss

 When fetching instruction from I-Cache and Block is not present

 When loading/storing data in a D-cache and Block is not present

 When writing data in a write-though D-cache and write buffer is full

❖ Miss Penalty: clock cycles to process a cache miss

Miss Penalty is assumed equal for I-cache & D-cache

Miss Penalty is assumed equal for Load and Store

❖Memory Stall Cycles =

I-Cache Misses  Miss Penalty +

D-Cache Read Misses  Miss Penalty +

D-Cache Write Misses  Miss Penalty

Memory Stall Cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Combined Misses =

I-Cache Misses + D-Cache Read Misses + Write Misses

I-Cache Misses = I-Count × I-Cache Miss Rate

Read Misses = Load Count × D-Cache Read Miss Rate

Write Misses = Store Count × D-Cache Write Miss Rate

❖ Combined misses are often reported per 1000 instructions

❖ Memory Stall Cycles = Combined Misses × Miss Penalty

Combined Misses

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Stall Cycles Per Instruction

❖Memory Stall Cycles Per Instruction =

Combined Misses Per Instruction × Miss Penalty

Miss Penalty is assumed equal for I-cache and D-cache

Miss Penalty is assumed equal for Load and Store

❖ Combined Misses Per Instruction =

I-Cache Miss Rate +

Load Frequency × D-Cache Read Miss Rate +

Store Frequency × D-Cache Write Miss Rate

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example on Memory Stall Cycles

❖ Consider a program with the given characteristics

 20% of instructions are load and 10% are store

 I-cache miss rate is 2%

 D-cache miss rate is 5% for load, and 1% for store

 Miss penalty is 20 clock cycles for all cases (I-Cache & D-Cache)

 Compute combined misses and stall cycles per instruction

❖ Combined misses per instruction in I-Cache and D-Cache

 2% + 20%5% + 10%1% = 0.031 combined misses per instruction

 Equal to an average of 31 misses per 1000 instructions

❖Memory stall cycles per instruction

 0.031  20 (miss penalty) = 0.62 memory stall cycles per instruction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Time with Memory Stall Cycles

❖ CPIoverall = Overall CPI in the presence of cache misses

❖ CPIexecution = Execution CPI (not counting cache misses)

❖ Memory stall cycles per instruction increases the overall CPI

CPU Time =

(CPU execution cycles + Memory Stall Cycles) × Clock Cycle

CPIoverall = CPIexecution + Memory Stall Cycles per Instruction

CPU Time = I-Count × CPIoverall × Clock Cycle

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example on CPI with Memory Stalls

❖ A processor has CPIexecution = 1.5 (not counting cache misses)

 I-Cache miss rate is 2%, D-cache miss rate is 5% for load & store

 20% of instructions are loads and stores

 Cache miss penalty is 100 clock cycles for I-cache and D-cache

❖What is the impact of cache misses on the overall CPI?

❖ Answer: Memory Stall Cycles per Instruction =

CPIoverall =

CPIoverall / CPIexecution =

Processor is 3 times slower due to memory stall cycles

0.02×100 (I-Cache) + 0.2×0.05×100 (D-Cache) = 3

1.5 + 3 = 4.5 cycles per instruction

4.5 / 1.5 = 3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Average Memory Access Time

❖ Average Memory Access Time (AMAT)

AMAT = Hit time + Combined Miss rate × Miss penalty

Hit Time = time to access the I-cache or D-cache (for a hit)

Hit time is assumed to be the same for I-cache and D-cache

❖ Combined Miss Rate for Instruction Access and Data Access

Combined Miss Rate =

Memory Accesses per Instruction = 1 + %Load + %Store

Miss penalty is assumed to be the same for I-cache and D-cache

Combined Misses per Instruction

Memory Accesses per Instruction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Hierarchy Performance:
Average Memory Access Time (AMAT), Memory Stall cycles

❖ The Average Memory Access Time (AMAT): The number of cycles required to

complete an average memory access request by the CPU.

❖ Memory stall cycles per memory access: The number of stall cycles added to

CPU execution cycles for one memory access.

❖ Memory stall cycles per average memory access = (AMAT -1)

❖ For ideal memory: AMAT = 1 cycle, this results in zero memory stall cycles.

❖ Memory stall cycles per average instruction =

Number of memory accesses per instruction

x Memory stall cycles per average memory access

= (1 + fraction of loads/stores) x (AMAT -1)

Base CPI = CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Instruction

Fetch

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

AMAT Example

❖ Compute the overall average memory access time

 Hit time = 1 clock cycle in both I-Cache and D-Cache

 Miss penalty = 50 clock cycles for I-Cache and D-Cache

 I-Cache misses = 3.8 misses per 1000 instructions

 D-Cache misses = 41 misses per 1000 instructions

 Load + Store frequency = 25%

❖ Solution:

Combined Misses per Instruction =

Combined Miss rate (per access) =

Overall AMAT =

(3.8 + 41) / 1000 = 0.0448

0.0448 / (1 + 0.25) = 0.03584

1 + 0.03584 × 50 = 2.792 cycles

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Cache Performance:
Single Level L1 Princeton (Unified) Memory Architecture

CPUtime = Instruction count x CPI x Clock cycle time

CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Memory accesses per instruction x Memory stall cycles per access

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)

Cache Hit Rate = H1 Miss Rate = 1- H1

Memory stall cycles per memory access = Miss rate x Miss penalty

AMAT = 1 + Miss rate x Miss penalty

Memory accesses per instruction = (1 + fraction of loads/stores)

Miss Penalty = M = the number of stall cycles resulting from missing in cache

= Main memory access time - 1

Thus for a unified L1 cache with no stalls on a cache hit:

CPI = CPIexecution + (1 + fraction of loads/stores) x (1 - H1) x M

AMAT = 1 + (1 - H1) x M

(Ignoring Write Policy)

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

= (1- H1) x M

= 1 + (1- H1) x M

i.e No hit penalty

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Access Tree:For Unified Level 1 Cache

CPU Memory Access

L1 Miss:

% = (1- Hit rate) = (1-H1)

Access time = M + 1

Stall cycles per access = M

Stall = M x (1-H1)

L1 Hit:

% = Hit Rate = H1

Hit Access Time = 1

Stall cycles per access = 0

Stall= H1 x 0 = 0

(No Stall)

AMAT = H1 x 1 + (1 -H1) x (M+ 1) = 1 + M x (1 -H1)

Stall Cycles Per Access = AMAT - 1 = M x (1 -H1)

CPI = CPIexecution + (1 + fraction of loads/stores) x M x (1 -H1)

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

100%

or 1

H1 (1-H1)

Probability to be here

Hit TimeHit Rate Miss Rate Miss Time

(Ignoring Write Policy)

Assuming:

Ideal access on a hit

Unified

L1

AMAT = 1 + Stalls per average memory access
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Cache Performance Example
❖ Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with a

single level of cache.

❖ CPIexecution = 1.1

❖ Instruction mix: 50% arith/logic, 30% load/store, 20% control

❖ Assume a cache miss rate of 1.5% and a miss penalty of M= 50 cycles.

CPI = CPIexecution + mem stalls per instruction

Mem Stalls per instruction =

Mem accesses per instruction x Miss rate x Miss penalty

Mem accesses per instruction = 1 + 0.3 = 1.3

Mem Stalls per memory access = (1- H1) x M = 0.015 x 50 = .75 cycles

AMAT = 1 +.75 = 1.75 cycles

Mem Stalls per instruction = 1.3 x 0.015 x 50 = 0.975

CPI = 1.1 + .975 = 2.075

The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times faster Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Cache Performance Example

❖ Suppose for the previous example we double the clock rate to 400

MHz, how much faster is this machine, assuming similar miss rate,

instruction mix?

❖ Since memory speed is not changed, the miss penalty takes more

CPU cycles:

Miss penalty = M = 50 x 2 = 100 cycles.

CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05

Speedup = (CPIold x Cold)/ (CPInew x Cnew)

= 2.075 x 2 / 3.05 = 1.36

The new machine is only 1.36 times faster rather than 2

times faster due to the increased effect of cache misses.

→ CPUs with higher clock rate, have more cycles per cache miss and more

memory impact on CPI.
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ For a CPU with separate or split level one (L1) caches for

instructions and data (Harvard memory architecture) and no stalls

for cache hits:

CPUtime = Instruction count x CPI x Clock cycle time

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Instruction Fetch Miss rate x M +

Data Memory Accesses Per Instruction x Data Miss Rate x M

L1

I-cache

Instruction

Level 1

Cache

Data

Level 1

Cache
L1

D-cache

Miss rate = 1 – instruction H1Miss rate = 1 – data H1

Usually:

Data Miss Rate >> Instruction Miss Rate

Cache Performance:
Single Level L1 Harvard (Split) Memory Architecture

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Memory Access

Instruction Data

Data L1 Miss:

Access Time = M + 1

Stalls per access: M

Stalls = % data x (1 - Data H1) x M

Data L1 Hit:

Hit Access Time: = 1

Stalls = 0

Instruction L1 Hit:

Hit Access Time = 1

Stalls = 0

Instruction L1 Miss:

Access Time = M + 1

Stalls Per access = M

Stalls =%instructions x (1 - Instruction H1) x M

Stall Cycles Per Access = % Instructions x (1 - Instruction H1) x M + % data x (1 - Data H1) x M

AMAT = 1 + Stall Cycles per access

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access

CPI = CPIexecution + Stall cycles per instruction

= CPIexecution + (1 + fraction of loads/stores) x Stall Cycles per access

% data x (1 - Data H1)
% data x Data H1

% data% Instructions

%instructions

x (1 - Instruction H1)

%instructions x

Instruction H1)

1 or 100%

Assuming:

Ideal access on a hit, no stalls Assuming:

Ideal access on a hit, no stalls

(Ignoring Write Policy)

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

Split

L1

Memory Access Tree
For Separate Level 1 Caches

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Split L1 Cache Performance Example
❖ Suppose a CPU uses separate level one (L1) caches for instructions and data (Harvard

memory architecture) with different miss rates for instruction and data access:

 A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and
writes.

 CPIexecution = 1.1

 Instruction mix: 50% arith/logic, 30% load/store, 20% control

 Assume a cache miss rate of 0.5% for instruction fetch and a cache data miss rate of 6%.

 A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles for both memory reads and
writes.

❖ Find the resulting stalls per access, AMAT and CPI using this cache?

CPI = CPIexecution + mem stalls per instruction

Memory Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +

Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Memory Stall cycles per instruction = 0.5/100 x 200 + 0.3 x 6/100 x 200 = 1 + 3.6 = 4.6 cycles

Stall cycles per average memory access = 4.6/1.3 = 3.54 cycles

AMAT = 1 + 3.54 = 4.54 cycles

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7 cycles

❖ What is the miss rate of a single level unified cache that has the same performance?

4.6 = 1.3 x Miss rate x 200 which gives a miss rate of 1.8 % for an equivalent unified cache

❖ How much faster is the CPU with ideal memory?

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster

With no cache at all the CPI would have been = 1.1 + 1.3 X 200 = 261.1 cycles !! Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Memory Access

Instruction Data

Data L1 Miss:

Access Time = M + 1 = 201

Stalls per access: M = 200

Stalls = % data x (1 - Data H1) x M

= 0.01385 x 200 = 2.769 cycles

Data L1 Hit:

Hit Access Time: = 1

Stalls = 0

Instruction L1 Hit:

Hit Access Time = 1

Stalls = 0

Instruction L1 Miss:

Access Time = M + 1= 201

Stalls Per access = M = 200

Stalls = %instructions x (1 - Instruction H1) x M

= 0.003846 x 200 =0.7692 cycles

Stall Cycles Per Access = % Instructions x (1 - Instruction H1) x M + % data x (1 - Data H1) x M

= 0.7692 + 2.769 = 3.54 cycles

AMAT = 1 + Stall Cycles per access = 1 + 3.5 = 4.54 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access = 1.3 x 3.54 = 4.6 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 4.6 = 5.7

% data x (1 - Data H1)

= 0.01385 or 1.385 %

% data x Data H1

= .2169 or 21.69 %

% data = 0.231 or 23.1 %
% Instructions =

0.769 or 76.9 %

%instructions

x (1 - Instruction H1)

= 0.003846 or 0.3846 %

%instructions x

Instruction H1)

= .765 or 76.5 %

100%

Ideal access on a hit, no stalls
Ideal access on a hit, no stalls

(Ignoring Write Policy)

M = Miss Penalty = stall cycles per access resulting from missing in cache = 200 cycles

M + 1 = Miss Time = Main memory access time = 200+1 =201 cycles L1 access Time = 1 cycle

Data H1 = 0.94 or 94% 1- Data H1 = 0.06 or 6%

Instruction H1 = 0.995 or 99.5% 1- Instruction H1 = 0.005 or 0.5 %

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses = 76.9 %

% Data = Percentage or fraction of data accesses out of all memory accesses = 23.1 %

30% of all instructions executed are loads/stores, thus:

Fraction of instruction fetches out of all memory accesses = 1/ (1+0.3) = 1/1.3 = 0.769 or 76.9 %

Fraction of data accesses out of all memory accesses = 0.3/ (1+0.3) = 0.3/1.3 = 0.231 or 23.1 %

Split

L1

0.231 x 0.060.231 x 0.94

0.769 x 0.005
0.769 x 0.995

For Last Example

Memory Access Tree For Separate Level 1 Caches
Example

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Cache Write Miss Policy
❖ Since data is usually not needed immediately on a write miss

two options exist on a cache write miss:

Write Allocate:

The missed cache block is loaded into cache on a write miss followed

by write hit actions.

No-Write Allocate:

The block is modified in the lower level (lower cache level, or main

memory) and not loaded (written or updated) into cache.

While any of the above two write miss policies can be used with either write back or

write through:

• Write back caches always use write allocate to capture subsequent writes to the

block in cache.

• Write through caches usually use no-write allocate since subsequent writes still have

to go to memory.

Cache Write Miss = Block to be modified is not in cache

Allocate = Allocate or assign a cache block frame for written data

i.e A cache block frame is allocated for the block to be modified (written-to)

i.e A cache block frame is not allocated for the block to be modified (written-to)

(Bring old block to cache then update it)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU reads

or writes

to block in cache

Block to be replaced is clean

Cache Memory

1

Cache Memory

0

Set modified/dirty

bit to 1 if this is a write

Read missed block

from memory

Penalty =M

1

2CPU reads

or writes

to block in cache

Block to be replaced is dirty (modified)

Replaced (old)

block is discarded

since it’s clean

Write replaced modified

block to memory

Penalty =M

1

Read missed block

from memory

Penalty =M

2

Set modified/dirty

bit to 1 if this is a write

3

1 Write back modified block being

replaced to memory

Penalty =M

2 Read missed block

from memory

Penalty =M

Thus:

Total Miss Penalty = M + M = 2M

Miss Penalty = M

M = Miss Penalty = stall cycles per access resulting from missing in cache

(read or write miss)

D
i.e. D was = 0

i.e. D was = 1

Write Back Cache With Write Allocate: Cache
Miss Operation

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Access Tree, Unified L1

Write Through, No Write Allocate, No Write Buffer

CPU Memory Access

Read Write

L1 Write Miss:

Access Time : M + 1

Stalls per access = M

Stalls = % write x (1 - H1) x M

L1 Write Hit:

Access Time: M +1

Stalls Per access = M

Stalls =% write x (H1) x M

L1 Read Hit:

Hit Access Time = 1

Stalls = 0

L1 Read Miss:

Access Time = M + 1

Stalls Per access = M

Stalls = % reads x (1 - H1) x M

Stall Cycles Per Memory Access = % reads x (1 - H1) x M + % write x M

AMAT = 1 + % reads x (1 - H1) x M + % write x M

CPI = CPIexecution + (1 + fraction of loads/stores) x Stall Cycles per access

Stall Cycles per access = AMAT - 1

M = Miss Penalty

H1 = Level 1 Hit Rate

1- H1 = Level 1 Miss Rate

% write% reads

% reads x (1 - H1)% reads x H1 % write x (1 - H1)
% write x H1

100%

or 1

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

Assuming:

Ideal access on a read hit, no stalls

Exercise:

Create memory access tree for split level 1

Unified

L1

Instruction Fetch + Loads

Stores

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ To reduce write stalls when write though is used, a write buffer

is used to eliminate or reduce write stalls:

 Perfect write buffer: All writes are handled by write

buffer, no stalling for writes

 In this case (for unified L1 cache):

Stall Cycles Per Memory Access = % reads x (1 - H1) x M

(i.e No stalls at all for writes)

Realistic Write buffer: A percentage of write stalls are

not eliminated when the write buffer is full.

 In this case (for unified L1 cache):

Stall Cycles/Memory Access = (% reads x (1 - H1) + % write stalls not eliminated) x M

Reducing Write Stalls For Write Though Cache
Using Write Buffers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Through Cache Performance Example

❖ A CPU with CPIexecution = 1.1 Mem accesses per instruction = 1.3

❖ Uses a unified L1 Write Through, No Write Allocate, with:

 No write buffer.

 Perfect Write buffer

 A realistic write buffer that eliminates 85% of write stalls

❖ Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control

❖ Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction

% reads = 1.15/1.3 = 88.5% % writes = .15/1.3 = 11.5%

With No Write Buffer :

Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5% + 11.5%) = 8.33 cycles

CPI = 1.1 + 8.33 = 9.43

With Perfect Write Buffer (all write stalls eliminated):

Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5%) = 0.86 cycles

CPI = 1.1 + 0.86 = 1.96

With Realistic Write Buffer (eliminates 85% of write stalls)

Mem Stalls/ instruction = 1.3 x 50 x (88.5% x 1.5% + 15% x 11.5%) = 1.98 cycles

CPI = 1.1 + 1.98 = 3.08

1

2

3

1

2

3

Stall on all writes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Memory Access

L1 Miss
L1 Hit:

% = H1

Hit Access Time = 1

Stalls = 0

Stall Cycles Per Memory Access = (1-H1) x (M x % clean + 2M x % dirty)

AMAT = 1 + Stall Cycles Per Memory Access

CPI = CPIexecution + (1 + fraction of loads/stores) x Stall Cycles per access

L1 Miss, Clean

Access Time = M +1

Stalls per access = M

Stall cycles = M x (1 -H1) x % clean

L1 Miss, Dirty

Access Time = 2M +1

Stalls per access = 2M

Stall cycles = 2M x (1-H1) x % dirty

H1
(1-H1)

(1-H1) x % dirty(1 -H1) x % clean

1 or 100%

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

H1 = Level 1 Hit Rate 1- H1 = Level 1 Miss Rate

Assuming:

Ideal access on a hit, no stalls

Unified

L1

2M needed to:

- Write (back) Dirty Block

- Read new block

(2 main memory accesses needed)

One access to main memory to get needed block

Memory Access Tree Unified L1

Write Back, With Write Allocate

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Write Back Cache Performance Example

❖ A CPU with CPIexecution = 1.1 uses a unified L1 with with write back, with write
allocate, and the probability a cache block is dirty = 10%

❖ Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control

❖ Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction

Mem Stalls per instruction =

Mem accesses per instruction x Stalls per access

Mem accesses per instruction = 1 + 0.3 = 1.3

Stalls per access = (1-H1) x (M x % clean + 2M x % dirty)

Stalls per access = 1.5% x (50 x 90% + 100 x 10%) = 0.825 cycles

AMAT = 1 + stalls per access = 1 + 0.825 = 1.825 cycles

Mem Stalls per instruction = 1.3 x 0.825 = 1.07 cycles

CPI = 1.1 + 1.07 = 2.17

The ideal CPU with no misses is 2.17/1.1 = 1.97 times faster

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Memory Access

L1 Miss

L1 Hit:

% = H1 = 0.985 or 98.5%

Hit Access Time = 1

Stalls = 0

Stall Cycles Per Memory Access = M x (1-H1) x % clean + 2M x (1-H1) x % dirty)
= 0.675 + 0.15 = 0.825 cycles

AMAT = 1 + Stall Cycles Per Memory Access =1 + 0.825 = 1.825 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access = 1.3 x 0.825 = 1.07 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 1.07 = 2.17

L1 Miss, Clean

Access Time = M +1 = 51

Stalls per access = M = 50

Stall cycles = M x (1 -H1) x % clean

= 50 x 0.0135 = 0.675 cycles

L1 Miss, Dirty

Access Time = 2M +1= 101

Stalls per access = 2M = 100

Stall cycles = 2M x (1-H1) x % dirty

= 100 x 0.0015 = 0.15 cycles

2M needed to

Write Dirty Block

and Read new block

H1 = 0.985 or 98.5%

(1-H1) = 0.015 or 1.5%

(1-H1) x % dirty

= 0.015 x 0.1

= 0.0015 or 0.15%

(1 -H1) x % clean

= .015 x 0.9

= 0.0135 or 1.35%

1 or 100%

M = Miss Penalty = 50 cycles

M + 1 = Miss Time = 50 + 1 = 51 cycles L1 access Time = 1 cycle

H1 = 0.985 or 98.5% 1- H1 = 0.015 or 1.5%

Given as 1.1

Assuming:

Ideal access on a hit in L1

H1 = 98.5% T1 = 0 cycles

M = 50 cycles

L1 Misses: 10% dirty 90% clean

CPI execution = 1.1

Memory accesses per instruction = 1.3

Stalls on a hit in L1

Given Parameters:

Unified

L1

Memory Access Tree For Unified L1

Write Back, With Write Allocate Example

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Memory Access

Instruction Data

Data L1 Miss: Data L1 Hit:

Hit Access Time: = 1

Stalls = 0

Instruction L1 Hit:

Hit Access Time = 1

Stalls = 0

Instruction L1 Miss:

Access Time = M + 1

Stalls Per access = M

Stalls =

M x %instructions x (1 - Instruction H1)

% data x (1 - Data H1) % data x Data H1

% data% Instructions

%instructions

x (1 - Instruction H1)
%instructions x

Instruction H1)

1 or 100%

M = Miss Penalty = stall cycles per access resulting from missing in cache

M + 1 = Miss Time = Main memory access time

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

% Clean = Percentage or fraction of data L1 misses that are clean

% Dirty = Percentage or fraction of data L1 misses that are dirty = 1 - % Clean

Data L1 Miss, Clean

Access Time = M +1

Stalls per access = M

Stall cycles = M x % data x (1 –Data H1) x % clean

Data L1 Miss, Dirty

Access Time = 2M +1

Stalls per access = 2M

Stall cycles = 2M x % data x (1- Data H1) x % dirty

% data x (1- Data H1) x % dirty

% data x (1 –Data H1) x % clean

Exercise: Find expression for: Stall cycles per average memory access, AMAT

Assuming:

Ideal access on a hit in L1

Split

L1

Memory Access Tree Structure
For Separate Level 1 Caches, Write Back, With Write Allocate

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

2 Levels of Cache: L1, L2

CPU

L1 Cache

L2 Cache

Main Memory

Hit Rate= H1

Hit Access Time = 1 cycle (No Stall)

Stalls for hit access = T1 = 0

Local Hit Rate= H2

Stalls per hit access= T2

Hit Access Time = T2 + 1 cycles

Memory access penalty, M

(stalls per main memory access)

Access Time = M +1

Goal of multi-level Caches:

Reduce the effective miss penalty incurred by level 1 cache misses

by using additional levels of cache that capture some of these misses.

Thus hiding more main memory latency and reducing AMAT further

L2 has slower access time

than L1 (5-8 cycles typical)

But has more capacity

and higher associativity

Slower (longer access time) than L2

Ideal access on a hit in L1

L1 = Level 1 Cache

L2 = Level 2 Cache

Basic Design Rule for L1 Cache:

K.I.S.S
(e.g low degree of associatively

and capacity to keep it fast)

Assuming

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Miss Rates For Multi-Level Caches
❖ Local Miss Rate: This rate is the number of misses in a cache level

divided by the number of memory accesses to this level (i.e those memory
accesses that reach this level).

Local Hit Rate = 1 - Local Miss Rate

❖ Global Miss Rate: The number of misses in a cache level divided by the total
number of memory accesses generated by the CPU.

❖ Since level 1 receives all CPU memory accesses, for level 1:

Local Miss Rate = Global Miss Rate = 1 - H1

❖ For level 2 since it only receives those accesses missed in 1:

Local Miss Rate = Miss rateL2 = 1- H2

Global Miss Rate = Miss rateL1 x Local Miss rateL2

= (1- H1) x (1 - H2)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPUtime = IC x (CPIexecution + Mem Stall cycles per instruction) x C

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

❖ For a system with 2 levels of unified cache, assuming no
penalty when found in L1 cache:

Stall cycles per memory access =

[miss rate L1] x [Hit rate L2 x Hit time L2

+ Miss rate L2 x Memory access penalty] =

(1-H1) x H2 x T2 + (1-H1)(1-H2) x M

2-Level Cache (Both Unified) Performance
(Ignoring Write Policy)

L1 Miss, L2 Hit L1 Miss, L2 Miss:

Must Access Main Memory
H1 = L1 Hit Rate

T1 = stall cycles per L1 access hit

H2 = Local L2 Hit Rate

T2 =stall cycles per L2 access hit

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

Here we assume T1 =0

(no stall on L1 hit)

(T1 = 0)

Full Miss

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

2-Level Cache (Both Unified) Performance
Memory Access Tree (Ignoring Write Policy)

CPU Stall Cycles Per Memory Access
CPU Memory Access

L1 Miss:

% = (1-H1)

L1 Hit:

Hit Access Time = 1

Stalls= H1 x 0 = 0

(No Stall)

L1 Miss, L2 Miss:
Access Time = M +1

Stalls per access = M

Stalls= (1-H1)(1-H2) x M

L1 Miss, L2 Hit:

Hit Access Time =T2 +1

Stalls per L2 Hit = T2

Stalls =(1-H1) x H2 x T2

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

AMAT = 1 + (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

H1

(1-H1) x H2 (1-H1)(1-H2)

1 or 100%
Assuming:

Ideal access on a hit in L1

T1 = 0

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

Global Miss Rate for Level 2

Global Hit Rate

for Level 2

Unified

L2

Unified

L1

Full Miss

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Unified Two-Level Cache Example
❖ CPU with CPIexecution = 1.1 running at clock rate = 500 MHz

❖ 1.3 memory accesses per instruction.

❖ With two levels of cache (both unified)

❖ L1 hit access time = 1 cycle (no stall on a hit, T1= 0), a miss rate of 5%

❖ L2 hit access time = 3 cycles (T2= 2 stall cycles per hit) with local miss rate 40%,

❖ Memory access penalty, M = 100 cycles (stalls per access). Find CPI ...

CPI = CPIexecution + Mem Stall cycles per instruction

With No Cache, CPI = 1.1 + 1.3 x 100 = 131.1

With single L1, CPI = 1.1 + 1.3 x .05 x 100 = 7.6
Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

= 0.05 x .6 x 2 + 0.05 x 0.4 x 100

= 0.06 + 2 = 2.06 cycles

AMAT = 2.06 + 1 = 3.06 cycles

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

= 2.06 x 1.3 = 2.678 cycles

CPI = 1.1 + 2.678 = 3.778

Speedup = 7.6/3.778 = 2

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

(Ignoring Write Policy)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Access Tree For 2-Level Cache (Both Unified)
Example CPU Stall Cycles Per Memory Access

CPU Memory Access

L1 Miss:
(1-H1)= 0.05 or 5%

L1 Hit:
Hit Access Time = 1

Stalls per L1 Hit = T1 = 0

Stalls= H1 x 0 = 0

(No Stall)

L1 Miss, L2 Miss:

Access Time = M +1 = 100 + 1 =101 cycles

Stalls per access = M = 100 cycles

Stalls= (1-H1)(1-H2) x M

= 0.02 x 100 = 2 cycles

L1 Miss, L2 Hit:

Hit Access Time =T2 +1 = 3 cycles

Stalls per L2 Hit = T2 = 2 cycles

Stalls =(1-H1) x H2 x T2

= 0.03 x 2 = 0.06 cycles

Stall cycles per memory access = (1-H1) x H2 x T2 + (1-H1)(1-H2) x M

= 0.06 + 2 = 2.06 cycles

AMAT = 1 + Stall cycles per memory access = 1 + 2.06 = 3.06 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access

= 1.3 x 2.06 = 2.678 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 2.678 = 3.778

H1 = 0.95 or 95%

(1-H1) x H2

= 0.05 x 0.6

= 0.03 or 3%

(1-H1)(1-H2)

= 0.05 x 0.4

= 0.02 or 2%

1 or 100%

Ideal access on a hit in L1

T1 = 0

CPI = CPIexecution + (1 + fraction of loads and stores) x stall cycles per access

= CPIexecution + (1 + fraction of loads and stores) x (AMAT – 1)

(Ignoring Write Policy)

H1 = 95% T1 = 0 cycles

H2 = 60% T2 = 2 cycles

M = 100 cycles

CPI execution = 1.1

Memory accesses per instruction = 1.3

Stalls on a hit

Given Parameters:

Global Miss Rate for L2

Global Hit Rate for L2

Unified

L1

Unified

L2

Full Miss

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Memory Access

Instruction Data

Data L1 Miss:Data L1 Hit:Instruction L1 Hit: Instruction L1 Miss:

% data% Instructions

1 or 100%

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

For L1: T1 = Stalls per hit access to level 1

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

For L2: T2 = Stalls per access to level 2

H2 = Level 2 local hit Rate 1-H2 = Level 2 local miss rate

M = Miss Penalty = stall cycles per access resulting from missing in cache level 2

M + 1 = Miss Time = Main memory access time

L2 MissL2 Hit

(Ignoring Write Policy)

L2 MissL2 Hit

Exercise: In terms of the parameters below,

complete the memory access tree and find the expression

for stall cycles per memory access

Split

L1

Unified

L2

Memory Access Tree Structure For 2-Level Cache
(Separate Level 1 Caches, Unified Level 2)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Common Write Policy For 2-Level Cache

❖ Write Policy For Level 1 Cache:

 Usually Write through to Level 2.

 Write allocate is used to reduce level 1 read misses.

 Use write buffer to reduce write stalls to level 2.

❖ Write Policy For Level 2 Cache:

 Usually write back with write allocate is used.

▪ To minimize memory bandwidth usage.

❖ The above 2-level cache write policy results in inclusive L2 cache since
the content of L1 is also in L2

▪ Common in the majority of all CPUs with 2-levels of cache

▪ As opposed to exclusive L1, L2 (e.g AMD Athlon XP, A64)

i.e what is in L1 is not duplicated in L2

L1 L2

As if we have a single level of cache with one

portion (L1) is faster than remainder (L2)

L1

L2

(not write through to main memory just to L2)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

2-Level (Both Unified) Memory Access Tree
L1: Write Through to L2, Write Allocate, With Perfect Write Buffer

L2: Write Back with Write Allocate

CPU Memory Access

L1 Miss:
L1 Hit:

Hit Access Time = 1

Stalls Per access = 0

L1 Miss, L2 Hit:

Hit Access Time =T2 +1

Stalls per L2 Hit = T2

Stalls = (1-H1) x H2 x T2

(1-H1)(H1)

L1 Miss, L2 Miss

(1-H1) x (1-H2)

L1 Miss, L2 Miss, Clean

Access Time = M +1

Stalls per access = M

Stall cycles =

M x (1 -H1) x (1-H2) x % clean

L1 Miss, L2 Miss, Dirty

Access Time = 2M +1

Stalls per access = 2M

Stall cycles = 2M x (1-H1) x (1-H2) x % dirty

Stall cycles per memory access = (1-H1) x H2 x T2 + M x (1 -H1) x (1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty

= (1-H1) x H2 x T2 + (1 -H1) x (1-H2) x (% clean x M + % dirty x 2M)

AMAT = 1 + Stall Cycles Per Memory Access

CPI = CPIexecution + (1 + fraction of loads and stores) x Stall Cycles per access

(1-H1) x H2

1 or 100%

(1-H1) x (1-H2) x % dirty(1 -H1) x (1-H2) x % clean

Assuming:

Ideal access on a hit in L1

T1 = 0

Global Miss Rate for L2

Unified

L2

Unified

L1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ CPU with CPIexecution = 1.1 running at clock rate = 500 MHz

❖ 1.3 memory accesses per instruction. Two levels of cache (both unified)

❖ For L1 :
 Cache operates at 500 MHz (no stall on L1 Hit, T1 =0) with a miss rate of 1-H1 = 5%

 Write though to L2 with perfect write buffer with write allocate

❖ For L2:
 Hit access time = 3 cycles (T2= 2 stall cycles per hit) local miss rate 1- H2 = 40%

 Write back to main memory with write allocate

 Probability a cache block is dirty = 10%

❖ Memory access penalty, M = 100 cycles.

❖ Create memory access tree and find, stalls per memory access, AMAT, CPI.

❖ Stall cycles per memory access = (1-H1) x H2 x T2 +

(1 -H1) x (1-H2) x (% clean x M + % dirty x 2M)

= .05 x .6 x 2 + .05 x .4 x (.9 x 100 + .1 x200)

= .06 + 0.02 x 110 = .06 + 2.2 = 2.26

❖ AMAT = 2.26 + 1 = 3.26 cycles

Mem Stall cycles per instruction = Mem accesses per instruction x Stall cycles per access

= 2.26 x 1.3 = 2.938 cycles

CPI = 1.1 + 2.938 = 4.038 = 4

Two-Level (Both Unified) Cache Example With Write Policy

CPI = CPIexecution + (1 + fraction of loads and stores) x (AMAT –1) Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Access Tree For Two-Level (Both Unified) Cache Example With Write Policy
L1: Write Through to L2, Write Allocate, With Perfect Write Buffer

L2: Write Back with Write Allocate

CPU Memory Access

L1 Miss:
L1 Hit:

Hit Access Time = 1

Stalls Per access = 0

L1 Miss, L2 Hit:

Hit Access Time =T2 +1 = 3 cycles

Stalls per L2 Hit = T2 = 2 cycles

Stalls = (1-H1) x H2 x T2

= 0.03 x 2 = 0.06 cycles

(1-H1) = 0.05 or 5%
(H1) = 0.95 or 95%

L1 Miss, L2 Miss

(1-H1) x (1-H2) = 0.05 x 0.4 = 0.02 or 2%

L1 Miss, L2 Miss, Clean

Access Time = M +1 = 101 cycles

Stalls per access = M

Stall cycles = M x (1 -H1) x (1-H2) x % clean

= 100 x 0.018 = 1.8 cycles

L1 Miss, L2 Miss, Dirty

Access Time = 2M +1 = 200 + 1 = 201 cycles

Stalls per access = 2M = 200 cycles

Stall cycles = 2M x (1-H1) x (1-H2) x % dirty

= 200 x 0.002 = 0.4 cycles

Stall cycles per memory access = (1-H1) x H2 x T2 + M x (1 -H1) x (1-H2) x % clean + 2M x (1-H1) x (1-H2) x % dirty

= 0.06 + 1. 8 + 0.4 = 2.26 cycles

AMAT = 1 + Stall cycles per memory access = 1 + 2.26 = 3.26 cycles

Stall cycles per instruction = (1 + fraction of loads/stores) x Stall Cycles per access

= 1.3 x 2.26 = 2.938 cycles

CPI = CPIexecution + Stall cycles per instruction = 1.1 + 2.938 = 4.038

AMAT = 1 + Stall Cycles Per Memory Access

CPI = CPIexecution + (1 + fraction of loads and stores) x Stall Cycles per access

(1-H1) x H2

= 0.05 x 0.6

= 0.03 or 3%

1 or 100%

(1-H1) x (1-H2) x % dirty

= 0.02 x 0.1 = 0.002 or 0.2 %

(1 -H1) x (1-H2) x % clean

= 0.02 x 0.9 = 0.018 or 1.8%

H1 = 95% T1 = 0 cycles

H2 = 60% T2 = 2 cycles

M = 100 cycles

L2 Misses: 10% dirty 90% clean

CPI execution = 1.1

Memory accesses per instruction = 1.3

Stalls on a hit

Given Parameters:

Unified

L1

Unified

L2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Access Tree Structure For 2-Level Cache(Separate Level 1 Caches, Unified Level 2)
L1: Write Through to L2, Write Allocate, With Perfect Write Buffer L2: Write Back with Write Allocate

CPU Memory Access

Instruction Data

Data L1 Miss:Data L1 Hit:Instruction L1 Hit: Instruction L1 Miss:

% data% Instructions

1 or 100%

% Instructions = Percentage or fraction of instruction fetches out of all memory accesses

% Data = Percentage or fraction of data accesses out of all memory accesses

For L1: T1 = Stalls per hit access to level 1

Data H1 = Level 1 Data Hit Rate 1- Data H1 = Level 1 Data Miss Rate

Instruction H1 = Level 1 Instruction Hit Rate 1- Instruction H1 = Level 1 Instruction Miss Rate

For L2: T2 = Stalls per access to level 2

H2 = Level 2 local hit Rate 1-H2 = Level 2 local miss rate

% Clean = Percentage or fraction of data L2 misses that are clean

% Dirty = Percentage or fraction of L2 misses that are dirty = 1 - % Clean

M = Miss Penalty = stall cycles per access resulting from missing in cache level 2

M + 1 = Miss Time = Main memory access time

L2 MissL2 HitL2 MissL2 Hit

Exercise: In terms of the parameters below,

complete the memory access tree and find the expression

for stall cycles per memory access

L2 Miss DirtyL2 Miss Clean L2 Miss DirtyL2 Miss Clean

Split

L1

Unified

L2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

