Exception Handling and
Text 1/0

https://students-hub.com

Introduction to Robust Programming

» Programs encounter errors:
» Syntax Errors: Compiler catches these.

» Logic Errors: Program runs, but output is incorrect.

» Runtime Errors (Exceptions): Program terminates abnormally (e.g., trying to open a
non-existent file).

» Exception Handling: A structured way to deal with runtime errors, preventing
crashes and allowing graceful recovery.

ENTS-HUB.com

https://students-hub.com

What is an Exception?

» An event that occurs during the execution of a program that disrupts the
normal flow of instructions.

» An object (instance of an Exception class) that is "thrown" by an abnormal
event and can be "caught” by an exception handler.

» Java's mechanism to manage “"exceptional” conditions.

ENTS-HUB.com

https://students-hub.com

Exception Hierarchy (The Throwable
Class)

>

>

>

ENTS-HUB.com

All exceptions and errors in Java are subclasses of java.lang.Throwable.

Error: Represents serious problems that applications should not try to catch (e.g.,
OutOfMemoryError, StackOverflowError). Indicate severe, often unrecoverable syste

problems.

Exception: Represents conditions that applications should catch and handle (e.g.,

|OException, SQLException).

RuntimeException (Unchecked Exceptions): Subclasses of RuntimeException. Not require
to be handled or declared (e.g., NullPointerException, ArraylndexOutOfBoundsExceptio

ArithmeticException).

Checked Exceptions: All other Exception subclasses. Must be caught or declare

https://students-hub.com

Checked vs. Unchecked Exceptions

» Checked Exceptions:
» Compiler Enforced: Must be handled or declared in the method signature.

» Occur in situations where the program can reasonably recover.

» Examples: IOException, FileNotFoundException, SQLException, ClassNotFoundException.
» Unchecked Exceptions (RuntimeException):

» No Compiler Enforcement: The compiler doesn't force handling.

» Usually indicate programming logic errors (bugs).

» Examples: NullPointerException, ArraylndexOutOfBoundsException, ArithmeticException, IllegalArgumentE

ENTS-HUB.com

https://students-hub.com

Handling Exceptions: The try-catch
Block

» The core construct for exception handling.

» try block: Contains the code that might throw an exception.

» catch block(s): Contains code to handle a specific type of exception if thrown
in the try block.

ENTS-HUB.com

https://students-hub.com

try-catch Syntax and Flow

try {
// Code that might cause an exception

System.out.println("Executing code inside try block.");

int result = 10 / 0; // This line throws ArithmeticException

System.out.println("Result: * + result); // This line will NOT be reached
} catch (ArithmeticException e) {

// This block executes if an ArithmeticException is thrown

System.out.println("Caught an ArithmeticException!”);

System.out.println("Error message: " + e.getMessage()); // / by zero

e.printStackTrace(); // Prints the stack trace

}

System.out.println("Program continues after the try-catch block.");

Explanation: If an exception occurs in try, the rest of the try block is skipped,
and control jumps to the appropriate catch block.

ENTS-HUB.com

https://students-hub.com

Multiple catch Blocks

» Atry block can have multiple catch blocks to handle different types of
exceptions.

» Order matters: Catch more specific exceptions first, then more general ones.
(If Exception is first, it will catch everything, making subsequent specific
catches unreachable).

ENTS-HUB.com

https://students-hub.com

Example: Multiple catch Blocks

import java.util.InputMismatchException; // For invalid input

import java.util.Scanner;

public class MultipleCatchExample { } catch (InputMismatchException e) {
System.out.println("Input Error: Please enter a valid

scanner.next(); // Consume the invalid input
Scanner scanner = new Scanner(System.in); } catch (ArithmeticException e) {
System.out.println("Calculation Error: Cannot divide by
try } catch (NullPointerException e) {
System.out.print("Enter an integer: "); System.out.println("Programming Error: Tried to use a nul
} catch (Exception e) { // Catches any other exception (gene
System.out.println("An unexpected error occurred: "
System.out.print("Enter a divisor: "); 1 finally {

scanner.close(); // Important: Close the scanner in finall

public static void main(String[] args) {

int num = scanner.nextint(); // Potential InputMismatchException

int divisor = scanner.nextint();

3

int result = num / divisor; // Potential ArithmeticException System.out.println("Program finished.");

String s = null; 3

System.out.println(s.length()); // Potential NullPointerException
System.out.println("Result: " + result);

ENTS-HUB.com

https://students-hub.com

The finally Block

» An optional block that always executes, regardless of whether an exception
occurred, was caught, or if a return statement was executed.

» Purpose: For cleanup code (e.g., closing files, database connections,
releasing network resources).

ENTS-HUB.com

https://students-hub.com

Example: finally Block

try {
System.out.println(“Inside try block. Value: " + value);

if (value < 0) {
throw new lllegalArgumentException(“Value cannot be negative.");
3
if (value ==0) {
return; // Exits the method
3
System.out.println("Processing value: " + (100 / value));
} catch (lllegalArgumentException e) {
System.out.println("Caught exception: " + e.getMessage());
} finally {
System.out.println("Finally block always executes.");

ENTS-HUB.com

https://students-hub.com

Declaring Exceptions: The throws
Keyword

» If a method can throw a checked exception but chooses not to handle it
internally, it must declare this using the throws keyword in its signature.

» This is a "contract” that tells calling methods: "Be aware, | might throw this
exception, and you need to handle it or declare it too."

ENTS-HUB.com

https://students-hub.com

throws Syntax and Example

import java.io.FileNotFoundException;
import java.io.File;
import java.util.Scanner;

public class ThrowsExample { public static void main(String[] args) {

// This method declares that it MIGHT throw FileNotFoundException try {

public static void processFile(String fileName) throws FileNotFoundException { processFile("data.txt"); // Caller must handle or dec

processFile("nonExistent.txt"); // This will throw FileN
File file = new File(fileName);

} catch (FileNotFoundException e) {
Scanner fileScanner = new Scanner(file); // This can throw FileNotFoundException

System.out.println("Error: File not found - * + e.getMessa
System.out.printin(“Successfully opened * + fileName); } catch (Exception e) { // General catch for other potential i

/1 ... process file content ... System.out.println("An unexpected error occurred:

fileScanner.close(); }

ENTS-HUB.com

https://students-hub.com

Throwing Exceptions: The throw
Keyword

» Used to explicitly create and throw an exception object.
» Can throw built-in exception types or custom exception types.

» Syntax:

throw new ExceptionType("Error message”);

ENTS-HUB.com

https://students-hub.com

Example: Using throw

public class GradeCalculator {
public static char calculateGrade(int score) {
if (score < 0 || score > 100) {
/1 Explicitly throwing an unchecked exception
throw new lIllegalArgumentException("Score must be between 0 and 100. Got: " + score);
3
if (score >= 90) return 'A’;
else if (score >= 80) return 'B;

else return 'F;

public static void main(String[] args) {
try {
System.out.println("Score 95: Grade " + calculateGrade(95));
System.out.println("Score 70: Grade " + calculateGrade(70));
System.out.println("Score -5: Grade " + calculateGrade(-5)); // Throws exception here
System.out.println("Score 105: Grade " + calculateGrade(105)); // This line won't be reached

1 catch (IllegalArgumentException e) {

System.out.println("Error calculating grade: " + e.getMessage());

3

System.out.println("Grade calculation complete.”);

ENTS-HUB.com

https://students-hub.com

Creating Custom Exception Classes

» Define your own specific exception types for your application’s unique error
conditions.

» Extend Exception for checked exceptions.
» Extend RuntimeException for unchecked exceptions.

» Provide meaningful constructors (typically with a message).

ENTS-HUB.com

https://students-hub.com

Example: Custom Checked Exception

/1 Custom Checked Exception: Requires caller to handle or declare
public class InsufficientFundsException extends Exception {

private double currentBalance;

private double withdrawalAmount;

public InsufficientFundsException(String message, double balance, double amount) {
super(message);
this.currentBalance = balance;

this.withdrawalAmount = amount;

public double getCurrentBalance() { return currentBalance; }

public double getWithdrawalAmount() { return withdrawalAmount; }

3

ENTS-HUB.com

https://students-hub.com

Example: Custom Checked Exception

public class BankAccount {
private double balance;
public BankAccount(double initialBalance) {
this.balance = initialBalance;
3
public void withdraw(double amount) throws InsufficientFundsException { // Declares the exception
if (amount <= 0) {
throw new IllegalArgumentException("Withdrawal amount must be positive."); // Unchecked
3
if (amount > balance) {
// Throws our custom checked exception
throw new InsufficientFundsException("Insufficient funds for withdrawal.”, balance, amount);

h

balance -= amount;

System.out.printf("Withdrew %.2f. New balance: %.2f%n", amount, balance);

3

public double getBalance() { return balance; }

ENTS-HUB.com

https://students-hub.com

Example: Custom Checked Exception

public static void main(String[] args) {

BankAccount account = new BankAccount(500.0);

try {
account.withdraw(200.0);
account.withdraw(400.0); // This will throw InsufficientFundsException
System.out.println("This line won't be printed after exception.");

} catch (InsufficientFundsException e) {
System.err.println("Caught InsufficientFundsException:”);
System.err.println(" " + e.getMessage());
System.err.printf(" Current Balance: %.2f, Attempted Withdrawal: %.2f%n",

e.getCurrentBalance(), e.getWithdrawalAmount());
} catch (IllegalArgumentException e) { // Catch the unchecked one too

System.err.println("Caught IllegalArgumentException: " + e.getMessage());

3

System.out.printf("Final balance: %.2f%n", account.getBalance());

3

ENTS-HUB.com

https://students-hub.com

try-with-resources Statement (Java 7+)

» Simplifies resource management by automatically closing resources that
implement the AutoCloseable interface.

» Eliminates the need for explicit finally blocks for resource cleanup.

ENTS-HUB.com

https://students-hub.com

try-with-resources Syntax and Example

import java.io.FileWriter;
import java.io.lOException;
import java.io.PrintWriter;
public class TryWithResourcesExample {
public static void main(String[] args) {
/1 Resources declared here will be automatically closed
try (PrintWriter writer = new PrintWriter(new FileWriter("output.txt"));
FileWriter fw = new FileWriter("another.txt")) { // Can declare multiple resources
writer.println("Hello, this is line 1.");
writer.println("This is line 2.");
fw.write("Another file's content."”);
System.out.println("Data written to files successfully.”);

} catch (IOException e) {

System.out.println("An 1/0 error occurred: " + e.getMessage());

}

// writer and fw are automatically closed here, even if an exception occurs

3

ENTS-HUB.com

https://students-hub.com

Text I/0: Reading and Writing Files

» Programs often need to interact with persistent data stored in files.

» Input/Output (1/0): The process of transferring data between a program and
an external source (like a file).

» Java provides classes in the java.io package for file I/0.

» For text files, Scanner (for reading) and PrintWriter (for writing) are
commonly used.

ENTS-HUB.com

https://students-hub.com

Writing Text to a File: PrintWriter

» PrintWriter is a convenient class for writing formatted text to a file.
» It wraps other Writer objects and handles character encoding.
» Key steps:

1. Create a File object (optional, can use filename directly).

2. Create a PrintWriter object. This constructor can throw FileNotFoundException (a
checked exception if a file cannot be opened for writing).

3. Use print(), println(), printf() methods (similar to System.out).

4. Crucial: Close the PrintWriter to flush buffered data and release file resources.
(Best done with try-with-resources).

ENTS-HUB.com

https://students-hub.com

Example: Writing to a File with
PrintWriter

String filename = "names. txt";
/1 Using try-with-resources to ensure PrintWriter is closed
try (PrintWriter output = new PrintWriter(filename)) {
System.out.println("Writing names to " + filename + "...");
output.println("Alice Wonderland 25");
output.printin("Bob The Builder 30");
output.printf("Charlie Brown %d%n", 10); // %n for platform-independent newline
output.println("Diana Prince 35");
System.out.println("Names written successfully.”);
} catch (IOException ex) { // Catching IOException as PrintWriter constructor can throw it
System.err.println("Error writing to file " + filename + ": " + ex.getMessage());

ex.printStackTrace();

ENTS-HUB.com

https://students-hub.com

Reading Text from a File: Scanner

» The Scanner class (from java.util) can parse primitive types and strings from a file.

» Key steps:

—
.

Create a File object for the file to be read.

2. Create a Scanner object, passing the File object. This constructor can throw
FileNotFoundException.

Use hasNext(), next(), nextint(), nextDouble(), nextLine(), etc., to read data.

Crucial: Close the Scanner when done. (Best done with try-with-resources).

ENTS-HUB.com

https://students-hub.com

Example: Reading from a File with
Scanner

String filename = "names.txt"; // Assume this file was created by previous example
File file = new File(filename);
// Using try-with-resources to ensure Scanner is closed
try (Scanner input = new Scanner(file)) {
System.out.println("Reading names from " + filename + ":");
while (input.hasNext()) { // Loop while there's more data
String firstName = input.next();
String lastName = input.next();
int age = input.nextint();
System.out.printf("Name: %s %s, Age: %d%n", firstName, lastName, age);
3
System.out.println("Finished reading file.");

} catch (FileNotFoundException ex) {

System.err.println("Error: File not found - " + filename);
} catch (Exception ex) { // Catch other potential issues, e.g., InputMismatchException
System.err.println("An error occurred while reading: " + ex.getMessage());

ex.printStackTrace();

ENTS-HUB.com

https://students-hub.com

The File Class

» The java.io.File class represents a file or directory path within the file system.
» It does not provide methods for reading/writing data.

» Methods for File Information/Manipulation:

» exists(): Checks if the file/directory exists.
getAbsolutePath(): Returns the absolute path.
getName(): Returns the simple name of the file/directory.
length(): Returns the size of the file in bytes.
canRead(), canWrite(), canExecute(): Check permissions.
isDirectory(), isFile(): Check type.
mkdir(), mkdirs(): Create directories.

delete(): Deletes the file or empty directory.

vV vV vV v v v vY

renameTo(File newName): Renames/moves a file.

ENTS-HUB.com

https://students-hub.com

import java.io.File;

import java.io.lOException;

public class FileClassExample {
public static void main(String[] args) throws IOException {
// Create a File object for a non-existent file for demonstration
File file = new File("testdir/mydata.txt");
System.out.println("File path: " + file.getPath());
System.out.println("Absolute path: " + file.getAbsolutePath());

System.out.println("File exists: " + file.exists()); // false initially

// Create a directory
File dir = new File("testdir”);
if (!dir.exists()) {

dir.mkdir(); // or mkdirs() for nested directories

System.out.println("Directory ‘testdir’ created: " + dir.exists());

ENTS—}UB.com

https://students-hub.com

// Create a new file within the directory
if (file.createNewtFile()) { // This method can throw IOException
System.out.println("File ‘'mydata.txt’ created: " + file.exists()); // true now

}

System.out.println
System.out.println
System.out.println
System.out.println

“File name: " + file.getName());

“Is directory: " + file.isDirectory());

“Is file: " + file.isFile());

"File size (bytes): " + file.length()); // 0 after creation

— — — p—

// Clean up: delete the file and then the directory

if (file.delete()) {
System.out.println("File ‘mydata.txt’ deleted.”);

3

if (dir.delete()) { // Directory must be empty to be deleted by delete()
System.out.println("Directory 'testdir’ deleted.”);

3
3

STUDENTS-HUB.com

https://students-hub.com

Relative vs. Absolute Paths

» Absolute Path: The full path from the root directory of the file system (e.g.,
C:\Users\John\document.txt on Windows, /home/john/document.txt on
Linux/macQS).

» Relative Path: A path defined relative to the current working directory of the
Java program.

» If you just specify "myFile.txt", Java looks in the directory where the program
is executed.

» It's good practice to specify paths carefully, especially in production
applications.

ENTS-HUB.com

https://students-hub.com

Common |/0 Exceptions

» FileNotFoundException: A checked exception thrown by FileReader, Scanner,
FilelnputStream, FileOutputStream, PrintWriter constructors when a file
cannot be opened (e.g., doesn't exist for reading, or access denied for
writing).

» |OException: A general checked exception, parent of FileNotFoundException,
covers most 1/0 errors (e.g., disk full, network connection lost).

» InputMismatchException: An unchecked exception thrown by Scanner methods
(like nextint(), nextDouble()) if the input does not match the expected type.

ENTS-HUB.com

https://students-hub.com

Best Practices for Exception Handling

» Handle Specific Exceptions First: Catch specific exception types before more general ones.

» Don't "Swallow" Exceptions: Don't catch an exception and do nothing. At a minimum, log the
error or print a message.

» Use try-with-resources for AutoCloseable: Ensures resources are always closed, even if
exceptions occur.

» Throw Early, Catch Late: Detect errors as early as possible. Handle them at a higher level
where they can be meaningfully addressed or reported.

» Provide Informative Messages: Custom exception messages and e.getMessage() or
e.printStackTrace() help in debugging.

> Drt])cument Exceptions: Use Javadoc @throws tag to document exceptions a method might
throw.

ENTS-HUB.com

https://students-hub.com

Introduction to Reading Data from the
Web

» Beyond local files: Programs often need to access data from remote sources.
» The Internet is a vast source of information (text, HTML, JSON, XML).

» Java provides classes to establish network connections and read data from
URLs.

» This process involves network /0, which inherently means checked
exceptions are common.

ENTS-HUB.com

https://students-hub.com

Key Classes for Web Data Reading

» java.net.URL: Represents a Uniform Resource Locator (a web address). Used
to create a URL object from a string.

» java.net.URLConnection: An abstract class representing a communication link
between the URL and the application. You usually work with its concrete
subclass, HttpURLConnection for HTTP/HTTPS.

» java.io.IlnputStream / java.io.Reader: Used to read data from the connected
URL.

» java.util.Scanner: A convenient tool to read and parse data from the
InputStream obtained from the URL.

ENTS-HUB.com

https://students-hub.com

Steps to Read Data from a URL

» Create a URL object: URL url = new URL("http://example.com/data.txt");

» Open a connection: url.openStream() returns an InputStream. For more control
(e.g., setting headers), use url.openConnection() which returns a URLConnection.

» Wrap the stream in a Scanner: Scanner input = new Scanner(url.openStream());
(This is the simpler way for text data).

» Read data: Use Scanner methods (hasNextLine(), nextLine(), next(), etc.).

» Close the Scanner: Crucial for resource management (best with try-with-
resources).

ENTS-HUB.com

https://students-hub.com

Example: Reading Text from a Web Page
(Simple)

Expected output (first 10 lines of Moby Dic
The Project Gutenberg eBook of Moby Dic
Whale, by Herman Melville

import java.io.lOException;
import java.net.URL;
import java.util.Scanner;
public class ReadWebPageSimple {
public static void main(String[] args) {
String urlString = "https://www.gutenberg.org/files/2701/2701-0.txt"; // Moby Dick short text
System.out.println("Attempting to read from URL: " + urlString);
try (Scanner input = new Scanner(new URL(urlString).openStream())) {
// Read and print the first 10 lines
int count = 0;
while (input.hasNextLine() && count < 10) {
System.out.println(input.nextLine());
count++;

3

System.out.println("\nSuccessfully read first 10 lines from the web.");

} catch (IOException e) { // Catches MalformedURLException and other I/0 errors
System.err.printin("Error reading from web: " + e.getMessage());

e.printStackTrace();

o3l

ENTS-HUB.com

https://students-hub.com

Handling MalformedURLEXxception

» Occurs if the string passed to the URL constructor is not a valid URL format.
» This is a checked exception, so it must be caught or declared.

» Example :

import java.net.MalformedURLException;
import java.net.URL;

public class MalformedURLExample {
public static void main(String[] args) {
String badUrl = "not-a-valid-url";

try {
URL url = new URL(badUrl);

System.out.printin("URL created successfully: " + url);

} catch (MalformedURLException e) {
System.err.printin("Error: Invalid URL format provided!”);

System.err.println("Message: " + e.getMessage());

}

System.out.println("Program finished.");

}

}

ENTS-HUB.com

https://students-hub.com

Handling Network |/0O Exceptions
(IOException)

» Network operations are prone to various issues:

» Server unavailable/down.
» No internet connection.
» Timeout.

» Invalid permissions or access issues.

» These are generally caught by IOException (or its subclasses).

ENTS-HUB.com

https://students-hub.com

Example (implicitly handled in previous
slide, but showing explicit catch):
String urlString = "http://this-domain-does-not-exist-123xyz.com/data. txt";

try (Scanner input = new Scanner(new URL(urlString).openStream())) {
while (input.hasNextLine()) {
System.out.println(input.nextLine());
3
} catch (MalformedURLException e) {
System.err.println("Caught MalformedURLException: " + e.getMessage());

} catch (UnknownHostException e) { // Specific for host not found
System.err.println("Caught UnknownHostException: Cannot resolve host ™ + e.getMessage() + *
} catch (IOException e) { // General catch for other |/0 errors

System.err.println("Caught general IOException: * + e.getMessage());
e.printStackTrace();

}

ENTS-HUB.com

https://students-hub.com

Finding a specific string in an HTML page

String urlString = "https://www.cs.armstrong.edu/liang/data/Welcome.html";
String searchString = "Welcome to Liang's Website!";
System.out.println("Searching for ™ + searchString + ™ on: " + urlString);
boolean found = false;
try (Scanner input = new Scanner(new URL(urlString).openStream())) {

while (input.hasNextLine()) {
String line = input.nextLine();
if (line.contains(searchString)) {
found = true;
System.out.println("Found the string! Line: " + line.trim());
break;

3

if (!found) { System.out.println("String ™ + searchString + ™ not found on the page.");

} catch (IOException e) {
System.err.println("Error reading HTML content: " + e.getMessage());
e.printStackTrace();

3

ENTS-HUB.com

https://students-hub.com

Best Practices for Web Data Reading

» Handle Exceptions: Always wrap web I/0 in try-catch blocks, as network
operations are inherently unreliable. Be specific (e.g., MalformedURLException,
UnknownHostException).

» Use try-with-resources: For automatic closing of InputStream and Scanner objects.

» Respect Server Policies: Don't hammer servers with requests. Implement delays if
necessary. Check robots. txt.

» Parse Carefully: Web data is often unstructured or semi-structured. For complex
parsing (HTML, JSON, XML), consider dedicated libraries (e.g., Jsoup for HTML,
Jackson/Gson for JSON).

Network Permissions: For non-local network access, your Java application might
require specific security permissions (less common in modern standalone apps, but
relevant for applets or highly restricted environments).

ENTS-HUB.com

https://students-hub.com

Conclusion

» Exception handling makes your Java applications robust and resilient to
runtime errors.

» try-catch-finally and try-with-resources are essential constructs for managing
exceptions and resources.

» Text I/0 (Scanner, PrintWriter, File) enables your programs to interact with
external data, crucial for many real-world applications.

» Mastering these concepts is fundamental for building reliable and functional
software.

ENTS-HUB.com

https://students-hub.com

	Chapter 12
	Slide 1: Exception Handling and Text I/O
	Slide 2: Introduction to Robust Programming
	Slide 3: What is an Exception?
	Slide 4: Exception Hierarchy (The Throwable Class)
	Slide 5: Checked vs. Unchecked Exceptions
	Slide 6: Handling Exceptions: The try-catch Block
	Slide 7: try-catch Syntax and Flow
	Slide 8: Multiple catch Blocks
	Slide 9: Example: Multiple catch Blocks
	Slide 10: The finally Block
	Slide 11: Example: finally Block
	Slide 12: Declaring Exceptions: The throws Keyword
	Slide 13: throws Syntax and Example
	Slide 14: Throwing Exceptions: The throw Keyword
	Slide 15: Example: Using throw
	Slide 16: Creating Custom Exception Classes
	Slide 17: Example: Custom Checked Exception
	Slide 18: Example: Custom Checked Exception
	Slide 19: Example: Custom Checked Exception
	Slide 20: try-with-resources Statement (Java 7+)
	Slide 21: try-with-resources Syntax and Example
	Slide 22: Text I/O: Reading and Writing Files
	Slide 23: Writing Text to a File: PrintWriter
	Slide 24: Example: Writing to a File with PrintWriter
	Slide 25: Reading Text from a File: Scanner
	Slide 26: Example: Reading from a File with Scanner
	Slide 27: The File Class
	Slide 28
	Slide 29
	Slide 30: Relative vs. Absolute Paths
	Slide 31: Common I/O Exceptions
	Slide 32: Best Practices for Exception Handling
	Slide 33: Introduction to Reading Data from the Web
	Slide 34: Key Classes for Web Data Reading
	Slide 35: Steps to Read Data from a URL
	Slide 36: Example: Reading Text from a Web Page (Simple)
	Slide 37: Handling MalformedURLException
	Slide 38: Handling Network I/O Exceptions (IOException)
	Slide 39: Example (implicitly handled in previous slide, but showing explicit catch):
	Slide 40: Finding a specific string in an HTML page
	Slide 41: Best Practices for Web Data Reading
	Slide 42: Conclusion

