
Exception Handling and

Text I/O

STUDENTS-HUB.com

https://students-hub.com

Introduction to Robust Programming

 Programs encounter errors:

 Syntax Errors: Compiler catches these.

 Logic Errors: Program runs, but output is incorrect.

 Runtime Errors (Exceptions): Program terminates abnormally (e.g., trying to open a

non-existent file).

 Exception Handling: A structured way to deal with runtime errors, preventing

crashes and allowing graceful recovery.

STUDENTS-HUB.com

https://students-hub.com

What is an Exception?

 An event that occurs during the execution of a program that disrupts the

normal flow of instructions.

 An object (instance of an Exception class) that is "thrown" by an abnormal

event and can be "caught" by an exception handler.

 Java's mechanism to manage "exceptional" conditions.

STUDENTS-HUB.com

https://students-hub.com

Exception Hierarchy (The Throwable

Class)

 All exceptions and errors in Java are subclasses of java.lang.Throwable.

 Error: Represents serious problems that applications should not try to catch (e.g.,

OutOfMemoryError, StackOverflowError). Indicate severe, often unrecoverable system

problems.

 Exception: Represents conditions that applications should catch and handle (e.g.,

IOException, SQLException).

 RuntimeException (Unchecked Exceptions): Subclasses of RuntimeException. Not required

to be handled or declared (e.g., NullPointerException, ArrayIndexOutOfBoundsException,

ArithmeticException).

 Checked Exceptions: All other Exception subclasses. Must be caught or declared.
STUDENTS-HUB.com

https://students-hub.com

Checked vs. Unchecked Exceptions

 Checked Exceptions:

 Compiler Enforced: Must be handled or declared in the method signature.

 Occur in situations where the program can reasonably recover.

 Examples: IOException, FileNotFoundException, SQLException, ClassNotFoundException.

 Unchecked Exceptions (RuntimeException):

 No Compiler Enforcement: The compiler doesn't force handling.

 Usually indicate programming logic errors (bugs).

 Examples: NullPointerException, ArrayIndexOutOfBoundsException, ArithmeticException, IllegalArgumentException.

STUDENTS-HUB.com

https://students-hub.com

Handling Exceptions: The try-catch

Block

 The core construct for exception handling.

 try block: Contains the code that might throw an exception.

 catch block(s): Contains code to handle a specific type of exception if thrown

in the try block.

STUDENTS-HUB.com

https://students-hub.com

try-catch Syntax and Flow

try {

// Code that might cause an exception

System.out.println("Executing code inside try block.");

int result = 10 / 0; // This line throws ArithmeticException

System.out.println("Result: " + result); // This line will NOT be reached

} catch (ArithmeticException e) {

// This block executes if an ArithmeticException is thrown

System.out.println("Caught an ArithmeticException!");

System.out.println("Error message: " + e.getMessage()); // / by zero

e.printStackTrace(); // Prints the stack trace

}

System.out.println("Program continues after the try-catch block.");

Explanation: If an exception occurs in try, the rest of the try block is skipped,

and control jumps to the appropriate catch block.

STUDENTS-HUB.com

https://students-hub.com

Multiple catch Blocks

 A try block can have multiple catch blocks to handle different types of

exceptions.

 Order matters: Catch more specific exceptions first, then more general ones.

(If Exception is first, it will catch everything, making subsequent specific

catches unreachable).

STUDENTS-HUB.com

https://students-hub.com

Example: Multiple catch Blocks

import java.util.InputMismatchException; // For invalid input

import java.util.Scanner;

public class MultipleCatchExample {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 try {

 System.out.print("Enter an integer: ");

 int num = scanner.nextInt(); // Potential InputMismatchException

 System.out.print("Enter a divisor: ");

 int divisor = scanner.nextInt();

 int result = num / divisor; // Potential ArithmeticException

 String s = null;

 System.out.println(s.length()); // Potential NullPointerException

 System.out.println("Result: " + result);

 } catch (InputMismatchException e) {

 System.out.println("Input Error: Please enter a valid integer.");

 scanner.next(); // Consume the invalid input

 } catch (ArithmeticException e) {

 System.out.println("Calculation Error: Cannot divide by zero.");

 } catch (NullPointerException e) {

 System.out.println("Programming Error: Tried to use a null reference.");

 } catch (Exception e) { // Catches any other exception (general catch-all)

 System.out.println("An unexpected error occurred: " + e.getMessage());

 } finally {

 scanner.close(); // Important: Close the scanner in finally

 }

 System.out.println("Program finished.");

 }

}

STUDENTS-HUB.com

https://students-hub.com

The finally Block

 An optional block that always executes, regardless of whether an exception

occurred, was caught, or if a return statement was executed.

 Purpose: For cleanup code (e.g., closing files, database connections,

releasing network resources).

STUDENTS-HUB.com

https://students-hub.com

Example: finally Block
try {

 System.out.println("Inside try block. Value: " + value);

 if (value < 0) {

 throw new IllegalArgumentException("Value cannot be negative.");

 }

 if (value == 0) {

 return; // Exits the method

 }

 System.out.println("Processing value: " + (100 / value));

 } catch (IllegalArgumentException e) {

 System.out.println("Caught exception: " + e.getMessage());

 } finally {

 System.out.println("Finally block always executes.");

 }

STUDENTS-HUB.com

https://students-hub.com

Declaring Exceptions: The throws

Keyword

 If a method can throw a checked exception but chooses not to handle it

internally, it must declare this using the throws keyword in its signature.

 This is a "contract" that tells calling methods: "Be aware, I might throw this

exception, and you need to handle it or declare it too."

STUDENTS-HUB.com

https://students-hub.com

throws Syntax and Example

import java.io.FileNotFoundException;

import java.io.File;

import java.util.Scanner;

public class ThrowsExample {

 // This method declares that it MIGHT throw FileNotFoundException

 public static void processFile(String fileName) throws FileNotFoundException {

 File file = new File(fileName);

 Scanner fileScanner = new Scanner(file); // This can throw FileNotFoundException

 System.out.println("Successfully opened " + fileName);

 // ... process file content ...

 fileScanner.close();

 }

public static void main(String[] args) {

 try {

 processFile("data.txt"); // Caller must handle or declare

 processFile("nonExistent.txt"); // This will throw FileNotFoundException

 } catch (FileNotFoundException e) {

 System.out.println("Error: File not found - " + e.getMessage());

 } catch (Exception e) { // General catch for other potential issues

 System.out.println("An unexpected error occurred: " + e.getMessage());

 }

 }

}

STUDENTS-HUB.com

https://students-hub.com

Throwing Exceptions: The throw

Keyword

 Used to explicitly create and throw an exception object.

 Can throw built-in exception types or custom exception types.

 Syntax:

throw new ExceptionType("Error message");

STUDENTS-HUB.com

https://students-hub.com

Example: Using throw
public class GradeCalculator {

 public static char calculateGrade(int score) {

 if (score < 0 || score > 100) {

 // Explicitly throwing an unchecked exception

 throw new IllegalArgumentException("Score must be between 0 and 100. Got: " + score);

 }

 if (score >= 90) return 'A';

 else if (score >= 80) return 'B';

 else return 'F';

 }

 public static void main(String[] args) {

 try {

 System.out.println("Score 95: Grade " + calculateGrade(95));

 System.out.println("Score 70: Grade " + calculateGrade(70));

 System.out.println("Score -5: Grade " + calculateGrade(-5)); // Throws exception here

 System.out.println("Score 105: Grade " + calculateGrade(105)); // This line won't be reached

 } catch (IllegalArgumentException e) {

 System.out.println("Error calculating grade: " + e.getMessage());

 }

 System.out.println("Grade calculation complete.");

 }

}

STUDENTS-HUB.com

https://students-hub.com

Creating Custom Exception Classes

 Define your own specific exception types for your application's unique error

conditions.

 Extend Exception for checked exceptions.

 Extend RuntimeException for unchecked exceptions.

 Provide meaningful constructors (typically with a message).

STUDENTS-HUB.com

https://students-hub.com

Example: Custom Checked Exception

// Custom Checked Exception: Requires caller to handle or declare

public class InsufficientFundsException extends Exception {

 private double currentBalance;

 private double withdrawalAmount;

 public InsufficientFundsException(String message, double balance, double amount) {

 super(message);

 this.currentBalance = balance;

 this.withdrawalAmount = amount;

 }

 public double getCurrentBalance() { return currentBalance; }

 public double getWithdrawalAmount() { return withdrawalAmount; }

}

STUDENTS-HUB.com

https://students-hub.com

Example: Custom Checked Exception
public class BankAccount {

 private double balance;

 public BankAccount(double initialBalance) {

 this.balance = initialBalance;

 }

 public void withdraw(double amount) throws InsufficientFundsException { // Declares the exception

 if (amount <= 0) {

 throw new IllegalArgumentException("Withdrawal amount must be positive."); // Unchecked

 }

 if (amount > balance) {

 // Throws our custom checked exception

 throw new InsufficientFundsException("Insufficient funds for withdrawal.", balance, amount);

 }

 balance -= amount;

 System.out.printf("Withdrew %.2f. New balance: %.2f%n", amount, balance);

 }

 public double getBalance() { return balance; }

STUDENTS-HUB.com

https://students-hub.com

Example: Custom Checked Exception

public static void main(String[] args) {

 BankAccount account = new BankAccount(500.0);

 try {

 account.withdraw(200.0);

 account.withdraw(400.0); // This will throw InsufficientFundsException

 System.out.println("This line won't be printed after exception.");

 } catch (InsufficientFundsException e) {

 System.err.println("Caught InsufficientFundsException:");

 System.err.println(" " + e.getMessage());

 System.err.printf(" Current Balance: %.2f, Attempted Withdrawal: %.2f%n",

 e.getCurrentBalance(), e.getWithdrawalAmount());

 } catch (IllegalArgumentException e) { // Catch the unchecked one too

 System.err.println("Caught IllegalArgumentException: " + e.getMessage());

 }

 System.out.printf("Final balance: %.2f%n", account.getBalance());

 }

}

STUDENTS-HUB.com

https://students-hub.com

try-with-resources Statement (Java 7+)

 Simplifies resource management by automatically closing resources that

implement the AutoCloseable interface.

 Eliminates the need for explicit finally blocks for resource cleanup.

STUDENTS-HUB.com

https://students-hub.com

try-with-resources Syntax and Example
import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

public class TryWithResourcesExample {

 public static void main(String[] args) {

 // Resources declared here will be automatically closed

 try (PrintWriter writer = new PrintWriter(new FileWriter("output.txt"));

 FileWriter fw = new FileWriter("another.txt")) { // Can declare multiple resources

 writer.println("Hello, this is line 1.");

 writer.println("This is line 2.");

 fw.write("Another file's content.");

 System.out.println("Data written to files successfully.");

 } catch (IOException e) {

 System.out.println("An I/O error occurred: " + e.getMessage());

 }

 // writer and fw are automatically closed here, even if an exception occurs

 }

}

STUDENTS-HUB.com

https://students-hub.com

Text I/O: Reading and Writing Files

 Programs often need to interact with persistent data stored in files.

 Input/Output (I/O): The process of transferring data between a program and

an external source (like a file).

 Java provides classes in the java.io package for file I/O.

 For text files, Scanner (for reading) and PrintWriter (for writing) are

commonly used.

STUDENTS-HUB.com

https://students-hub.com

Writing Text to a File: PrintWriter

 PrintWriter is a convenient class for writing formatted text to a file.

 It wraps other Writer objects and handles character encoding.

 Key steps:

1. Create a File object (optional, can use filename directly).

2. Create a PrintWriter object. This constructor can throw FileNotFoundException (a

checked exception if a file cannot be opened for writing).

3. Use print(), println(), printf() methods (similar to System.out).

4. Crucial: Close the PrintWriter to flush buffered data and release file resources.

(Best done with try-with-resources).

STUDENTS-HUB.com

https://students-hub.com

Example: Writing to a File with

PrintWriter
String filename = "names.txt";

 // Using try-with-resources to ensure PrintWriter is closed

 try (PrintWriter output = new PrintWriter(filename)) {

 System.out.println("Writing names to " + filename + "...");

 output.println("Alice Wonderland 25");

 output.println("Bob The Builder 30");

 output.printf("Charlie Brown %d%n", 10); // %n for platform-independent newline

 output.println("Diana Prince 35");

 System.out.println("Names written successfully.");

 } catch (IOException ex) { // Catching IOException as PrintWriter constructor can throw it

 System.err.println("Error writing to file " + filename + ": " + ex.getMessage());

 ex.printStackTrace();

 }

STUDENTS-HUB.com

https://students-hub.com

Reading Text from a File: Scanner

 The Scanner class (from java.util) can parse primitive types and strings from a file.

 Key steps:

1. Create a File object for the file to be read.

2. Create a Scanner object, passing the File object. This constructor can throw
FileNotFoundException.

3. Use hasNext(), next(), nextInt(), nextDouble(), nextLine(), etc., to read data.

4. Crucial: Close the Scanner when done. (Best done with try-with-resources).

STUDENTS-HUB.com

https://students-hub.com

Example: Reading from a File with

Scanner
String filename = "names.txt"; // Assume this file was created by previous example

 File file = new File(filename);

 // Using try-with-resources to ensure Scanner is closed

 try (Scanner input = new Scanner(file)) {

 System.out.println("Reading names from " + filename + ":");

 while (input.hasNext()) { // Loop while there's more data

 String firstName = input.next();

 String lastName = input.next();

 int age = input.nextInt();

 System.out.printf("Name: %s %s, Age: %d%n", firstName, lastName, age);

 }

 System.out.println("Finished reading file.");

 } catch (FileNotFoundException ex) {

 System.err.println("Error: File not found - " + filename);

 } catch (Exception ex) { // Catch other potential issues, e.g., InputMismatchException

 System.err.println("An error occurred while reading: " + ex.getMessage());

 ex.printStackTrace();

 }

STUDENTS-HUB.com

https://students-hub.com

The File Class

 The java.io.File class represents a file or directory path within the file system.

 It does not provide methods for reading/writing data.

 Methods for File Information/Manipulation:

 exists(): Checks if the file/directory exists.

 getAbsolutePath(): Returns the absolute path.

 getName(): Returns the simple name of the file/directory.

 length(): Returns the size of the file in bytes.

 canRead(), canWrite(), canExecute(): Check permissions.

 isDirectory(), isFile(): Check type.

 mkdir(), mkdirs(): Create directories.

 delete(): Deletes the file or empty directory.

 renameTo(File newName): Renames/moves a file.

STUDENTS-HUB.com

https://students-hub.com

import java.io.File;

import java.io.IOException;

public class FileClassExample {

 public static void main(String[] args) throws IOException {

 // Create a File object for a non-existent file for demonstration

 File file = new File("testdir/mydata.txt");

 System.out.println("File path: " + file.getPath());

 System.out.println("Absolute path: " + file.getAbsolutePath());

 System.out.println("File exists: " + file.exists()); // false initially

 // Create a directory

 File dir = new File("testdir");

 if (!dir.exists()) {

 dir.mkdir(); // or mkdirs() for nested directories

 System.out.println("Directory 'testdir' created: " + dir.exists());

 }STUDENTS-HUB.com

https://students-hub.com

// Create a new file within the directory

 if (file.createNewFile()) { // This method can throw IOException

 System.out.println("File 'mydata.txt' created: " + file.exists()); // true now

 }

 System.out.println("File name: " + file.getName());

 System.out.println("Is directory: " + file.isDirectory());

 System.out.println("Is file: " + file.isFile());

 System.out.println("File size (bytes): " + file.length()); // 0 after creation

 // Clean up: delete the file and then the directory

 if (file.delete()) {

 System.out.println("File 'mydata.txt' deleted.");

 }

 if (dir.delete()) { // Directory must be empty to be deleted by delete()

 System.out.println("Directory 'testdir' deleted.");

 }

 }

}

STUDENTS-HUB.com

https://students-hub.com

Relative vs. Absolute Paths

 Absolute Path: The full path from the root directory of the file system (e.g.,

C:\Users\John\document.txt on Windows, /home/john/document.txt on

Linux/macOS).

 Relative Path: A path defined relative to the current working directory of the

Java program.

 If you just specify "myFile.txt", Java looks in the directory where the program

is executed.

 It's good practice to specify paths carefully, especially in production

applications.

STUDENTS-HUB.com

https://students-hub.com

Common I/O Exceptions

 FileNotFoundException: A checked exception thrown by FileReader, Scanner,

FileInputStream, FileOutputStream, PrintWriter constructors when a file

cannot be opened (e.g., doesn't exist for reading, or access denied for

writing).

 IOException: A general checked exception, parent of FileNotFoundException,

covers most I/O errors (e.g., disk full, network connection lost).

 InputMismatchException: An unchecked exception thrown by Scanner methods

(like nextInt(), nextDouble()) if the input does not match the expected type.

STUDENTS-HUB.com

https://students-hub.com

Best Practices for Exception Handling

 Handle Specific Exceptions First: Catch specific exception types before more general ones.

 Don't "Swallow" Exceptions: Don't catch an exception and do nothing. At a minimum, log the
error or print a message.

 Use try-with-resources for AutoCloseable: Ensures resources are always closed, even if
exceptions occur.

 Throw Early, Catch Late: Detect errors as early as possible. Handle them at a higher level
where they can be meaningfully addressed or reported.

 Provide Informative Messages: Custom exception messages and e.getMessage() or
e.printStackTrace() help in debugging.

 Document Exceptions: Use Javadoc @throws tag to document exceptions a method might
throw.

STUDENTS-HUB.com

https://students-hub.com

Introduction to Reading Data from the

Web

 Beyond local files: Programs often need to access data from remote sources.

 The Internet is a vast source of information (text, HTML, JSON, XML).

 Java provides classes to establish network connections and read data from

URLs.

 This process involves network I/O, which inherently means checked

exceptions are common.

STUDENTS-HUB.com

https://students-hub.com

Key Classes for Web Data Reading

 java.net.URL: Represents a Uniform Resource Locator (a web address). Used

to create a URL object from a string.

 java.net.URLConnection: An abstract class representing a communication link

between the URL and the application. You usually work with its concrete

subclass, HttpURLConnection for HTTP/HTTPS.

 java.io.InputStream / java.io.Reader: Used to read data from the connected

URL.

 java.util.Scanner: A convenient tool to read and parse data from the

InputStream obtained from the URL.

STUDENTS-HUB.com

https://students-hub.com

Steps to Read Data from a URL

 Create a URL object: URL url = new URL("http://example.com/data.txt");

 Open a connection: url.openStream() returns an InputStream. For more control
(e.g., setting headers), use url.openConnection() which returns a URLConnection.

 Wrap the stream in a Scanner: Scanner input = new Scanner(url.openStream());
(This is the simpler way for text data).

 Read data: Use Scanner methods (hasNextLine(), nextLine(), next(), etc.).

 Close the Scanner: Crucial for resource management (best with try-with-
resources).

STUDENTS-HUB.com

https://students-hub.com

Example: Reading Text from a Web Page

(Simple)

import java.io.IOException;

import java.net.URL;

import java.util.Scanner;

public class ReadWebPageSimple {

 public static void main(String[] args) {

 String urlString = "https://www.gutenberg.org/files/2701/2701-0.txt"; // Moby Dick short text

 System.out.println("Attempting to read from URL: " + urlString);

 try (Scanner input = new Scanner(new URL(urlString).openStream())) {

 // Read and print the first 10 lines

 int count = 0;

 while (input.hasNextLine() && count < 10) {

 System.out.println(input.nextLine());

 count++;

 }

 System.out.println("\nSuccessfully read first 10 lines from the web.");

 } catch (IOException e) { // Catches MalformedURLException and other I/O errors

 System.err.println("Error reading from web: " + e.getMessage());

 e.printStackTrace();

 } } }

Expected output (first 10 lines of Moby Dick text file):

The Project Gutenberg eBook of Moby Dick; or The

Whale, by Herman Melville

STUDENTS-HUB.com

https://students-hub.com

Handling MalformedURLException
 Occurs if the string passed to the URL constructor is not a valid URL format.

 This is a checked exception, so it must be caught or declared.

 Example :

import java.net.MalformedURLException;

import java.net.URL;

public class MalformedURLExample {

 public static void main(String[] args) {

 String badUrl = "not-a-valid-url";

 try {

 URL url = new URL(badUrl);

 System.out.println("URL created successfully: " + url);

 } catch (MalformedURLException e) {

 System.err.println("Error: Invalid URL format provided!");

 System.err.println("Message: " + e.getMessage());

 }

 System.out.println("Program finished.");

 }

}

STUDENTS-HUB.com

https://students-hub.com

Handling Network I/O Exceptions

(IOException)

 Network operations are prone to various issues:

 Server unavailable/down.

 No internet connection.

 Timeout.

 Invalid permissions or access issues.

 These are generally caught by IOException (or its subclasses).

STUDENTS-HUB.com

https://students-hub.com

Example (implicitly handled in previous

slide, but showing explicit catch):
String urlString = "http://this-domain-does-not-exist-123xyz.com/data.txt";

 try (Scanner input = new Scanner(new URL(urlString).openStream())) {

 while (input.hasNextLine()) {

 System.out.println(input.nextLine());

 }

 } catch (MalformedURLException e) {

 System.err.println("Caught MalformedURLException: " + e.getMessage());

 } catch (UnknownHostException e) { // Specific for host not found

 System.err.println("Caught UnknownHostException: Cannot resolve host '" + e.getMessage() + "'");

 } catch (IOException e) { // General catch for other I/O errors

 System.err.println("Caught general IOException: " + e.getMessage());

 e.printStackTrace();

 }

STUDENTS-HUB.com

https://students-hub.com

Finding a specific string in an HTML page

String urlString = "https://www.cs.armstrong.edu/liang/data/Welcome.html";

 String searchString = "Welcome to Liang's Website!";

 System.out.println("Searching for '" + searchString + "' on: " + urlString);

 boolean found = false;

 try (Scanner input = new Scanner(new URL(urlString).openStream())) {

 while (input.hasNextLine()) {

 String line = input.nextLine();

 if (line.contains(searchString)) {

 found = true;

 System.out.println("Found the string! Line: " + line.trim());

 break;

 }}

 if (!found) { System.out.println("String '" + searchString + "' not found on the page."); }

 } catch (IOException e) {

 System.err.println("Error reading HTML content: " + e.getMessage());

 e.printStackTrace();

 }

STUDENTS-HUB.com

https://students-hub.com

Best Practices for Web Data Reading

 Handle Exceptions: Always wrap web I/O in try-catch blocks, as network
operations are inherently unreliable. Be specific (e.g., MalformedURLException,
UnknownHostException).

 Use try-with-resources: For automatic closing of InputStream and Scanner objects.

 Respect Server Policies: Don't hammer servers with requests. Implement delays if
necessary. Check robots.txt.

 Parse Carefully: Web data is often unstructured or semi-structured. For complex
parsing (HTML, JSON, XML), consider dedicated libraries (e.g., Jsoup for HTML,
Jackson/Gson for JSON).

 Network Permissions: For non-local network access, your Java application might
require specific security permissions (less common in modern standalone apps, but
relevant for applets or highly restricted environments).

STUDENTS-HUB.com

https://students-hub.com

Conclusion
 Exception handling makes your Java applications robust and resilient to

runtime errors.

 try-catch-finally and try-with-resources are essential constructs for managing

exceptions and resources.

 Text I/O (Scanner, PrintWriter, File) enables your programs to interact with

external data, crucial for many real-world applications.

 Mastering these concepts is fundamental for building reliable and functional

software.

STUDENTS-HUB.com

https://students-hub.com

	Chapter 12
	Slide 1: Exception Handling and Text I/O
	Slide 2: Introduction to Robust Programming
	Slide 3: What is an Exception?
	Slide 4: Exception Hierarchy (The Throwable Class)
	Slide 5: Checked vs. Unchecked Exceptions
	Slide 6: Handling Exceptions: The try-catch Block
	Slide 7: try-catch Syntax and Flow
	Slide 8: Multiple catch Blocks
	Slide 9: Example: Multiple catch Blocks
	Slide 10: The finally Block
	Slide 11: Example: finally Block
	Slide 12: Declaring Exceptions: The throws Keyword
	Slide 13: throws Syntax and Example
	Slide 14: Throwing Exceptions: The throw Keyword
	Slide 15: Example: Using throw
	Slide 16: Creating Custom Exception Classes
	Slide 17: Example: Custom Checked Exception
	Slide 18: Example: Custom Checked Exception
	Slide 19: Example: Custom Checked Exception
	Slide 20: try-with-resources Statement (Java 7+)
	Slide 21: try-with-resources Syntax and Example
	Slide 22: Text I/O: Reading and Writing Files
	Slide 23: Writing Text to a File: PrintWriter
	Slide 24: Example: Writing to a File with PrintWriter
	Slide 25: Reading Text from a File: Scanner
	Slide 26: Example: Reading from a File with Scanner
	Slide 27: The File Class
	Slide 28
	Slide 29
	Slide 30: Relative vs. Absolute Paths
	Slide 31: Common I/O Exceptions
	Slide 32: Best Practices for Exception Handling
	Slide 33: Introduction to Reading Data from the Web
	Slide 34: Key Classes for Web Data Reading
	Slide 35: Steps to Read Data from a URL
	Slide 36: Example: Reading Text from a Web Page (Simple)
	Slide 37: Handling MalformedURLException
	Slide 38: Handling Network I/O Exceptions (IOException)
	Slide 39: Example (implicitly handled in previous slide, but showing explicit catch):
	Slide 40: Finding a specific string in an HTML page
	Slide 41: Best Practices for Web Data Reading
	Slide 42: Conclusion

