1 <u>BIBO</u> Stability (Boundary Infut Boundary Thursday, April 29, 2021 12:01 PM Input Output Stability of LTI Systems Stability Theorem (BIBO Stability). A LTI system with proper rational transfer matrix $\mathbf{G}(\mathbf{s}) = [\mathbf{G}_{ii}(\mathbf{s})]$ is BIBO stable if and only if every pole of every entry $G_{ij}(s)$ of G(s) has negative real part. * This type of stability study to Stability of the System under the effect of input (ul) Stable U(t BIBO stability unstable ×= [] x + []]u t l z J * []]u t study to BIBO y= [1 0]x Stubility G1(5) C (SJ-A) B + D $(SI - A)' = \begin{bmatrix} S - 2 & J \\ J & S \end{bmatrix} = \begin{bmatrix} J \\ J & S \end{bmatrix} = \begin{bmatrix} J \\ S^{2} - 2S \end{bmatrix}$ $C(SI-A) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} S-2 & 1 \\ D & D \end{bmatrix} = \begin{bmatrix} S-2 & 1 \\ D & D \end{bmatrix}$ $LX2 \qquad LX2 \qquad$ STUDENTS-HUB.com

Uploaded By: anonymous

2 Thursday, April 29, 2021 irsday, April 29, 2021 12.01 FIN $C(SI-A) \in \begin{bmatrix} S-2 \\ D \end{bmatrix}$ $C(SI - A)^{T}B = \begin{bmatrix} S - 2 \\ D \end{bmatrix}$: $S_1 = -0.4$ $S_2 = 2.4$ 52-25-1:0. Lense & BIBO Stabilit $\frac{1}{(5+10)} = \frac{1}{(5+10)} = \frac{1}$ $\int_{12}^{12} g_{11} < g_{2}$ $\int_{212}^{12} g_{12} = -1$ -2 Based no hut the Szs is Jzz=-3 unstable intreserver A BIBOStability. STUDENTS-HUB.com

Uploaded By: anonymous

Input Output Stability of LTI Systems

Theorem (BIBO Stability). A LTI system with proper rational transfer matrix $G(s) = [G_{ij}(s)]$ is BIBO stable if and only if every pole of every entry $G_{ij}(s)$ of G(s) has negative real part.

BIBO stability of state equations. When the system is represented by state equations $\lambda_{15} - 2$ $\lambda_{25} - 3$

 $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) + Du(t)

 $\lambda_{u} = -2 + 3)$ the BIBO stability will depend on the eigenvalues of the matrix A, sice every pole of G(s) is an eigenvalue of A. Stable

Input Output Stability of LTI Systems

Note that not every eigenvalue of A is a pole of G(s), since there may be pole-zero cancellations while computing G(s). Thus, a state equation may be BIBO stable even when some eigenvalues of A do not have negative real part.

Input Output Stability of LTI Systems

Note that not every eigenvalue of A is a pole of G(s), since there may be pole-zero cancellations while computing G(s). Thus, a state equation may be BIBO stable even when some eigenvalues of A do not have negative real part. **Example.** Although the system

$$\dot{\mathbf{x}}(\mathbf{t}) = \begin{bmatrix} -1 & 10\\ 0 & 1 \end{bmatrix} \mathbf{x}(\mathbf{t}) + \begin{bmatrix} -2\\ 0 \end{bmatrix} \mathbf{u}(\mathbf{t})$$
$$\mathbf{y}(\mathbf{t}) = \begin{bmatrix} -2 & 3 \end{bmatrix} \mathbf{x}(\mathbf{t}) - 2\mathbf{u}(\mathbf{t})$$

has one eigenvalue with positive real part $\lambda = 1$, it is BIBO stable, since its transfer function

$$G(s) = C(sI - A)^{-1}B + D = \frac{2(1 - s)}{(s + 1)}$$

has a single pole at s = -1.

STUDENTS-HUB.com

4 Thursday, April 29, 2021 Enternal Stubility Lyapunov Stability × = A X+BU , LTI y=CX+DU Study the Stability under 5351 tu offect & IC XO. when U(+)=0 Such=0 (AI-A)=0 unstable Internal Stability mistable $\dot{x} = Ax Zu(u=0)$ W ~ 2= 0.1 Z1=X Z2=X Ex: Study the BIBOStability and th lyponar Staroility $\dot{\mathbf{x}}(\mathbf{t}) = \begin{vmatrix} -1 & 10 \\ 0 & 1 \end{vmatrix} \mathbf{x}(\mathbf{t}) + \begin{vmatrix} -2 \\ 0 \end{vmatrix} \mathbf{u}(\mathbf{t})$ $\mathbf{y}(\mathbf{t}) = \begin{bmatrix} -2 & 3 \end{bmatrix} \mathbf{x}(\mathbf{t}) - 2\mathbf{u}(\mathbf{t})$ x internal stability $|\lambda\Gamma - A| = |\nabla + | - |0|$ 1 unstable Uploaded By: anonymous STUDENTS-HUB.com

Thursday, April 29, 2021 12:39 PM Kinter Sense & BIBO Stability $\dot{\mathbf{x}}(\mathbf{t}) = \begin{vmatrix} -1 & 10 \\ 0 & 1 \end{vmatrix} \mathbf{x}(\mathbf{t}) + \begin{bmatrix} -2 \\ 0 \end{bmatrix} \mathbf{u}(\mathbf{t})$ $\mathbf{y}(\mathbf{t}) = \begin{vmatrix} -2 & 3 \end{vmatrix} \mathbf{x}(\mathbf{t}) - 2\mathbf{u}(\mathbf{t})$ $\begin{bmatrix} SI-A \end{bmatrix} = \begin{bmatrix} S+1 & -10 \\ 0 & S-1 \end{bmatrix}$ (SI-A) = 5-1 to 1o 5+1 $5^{2}-1$ $C(s^{1}-A) = [-2 3] = \frac{s-1}{D}$ <u>o</u> <u>5+1</u> $= \left[\frac{-2(s-1)}{s} \right]$ (35-17 $C(SI_A)^{-1}B = \begin{bmatrix} -2(s-1) & (3s-17) \\ D & D \end{bmatrix}$ $= +4(s-1) = 4(s-1)^{-1}$ $s^{2}-1 = 4(s-1)^{-1}$ S=-1 (Stuble) in tusanse Uploaded By: anonymous STUDENTS-HUB.com