

Bacterial Genome Replication and Expression

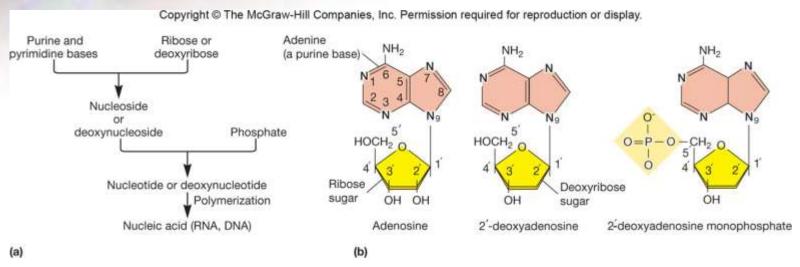
Terminology and Concepts

Genome

- all DNA present in a cell or virus
 - Bacteria and Archaea generally have one set (haploid – 1N)
 - eukaryotes have two sets (diploid 2N)

Genotype

specific set of genes an organism possesses


Phenotype

collection of observable characteristics

DNA and RNA Structure

- The nucleic acids, DNA and RNA, are polymers of nucleotides
 - linked together by phosphodiester bonds
- DNA and RNA differ in
 - -the nitrogenous bases they contain
 - -the sugars they contain
 - whether they are single or double stranded

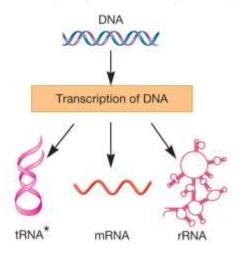
DNA Structure

- Polymer of nucleotides
 - bases are adenine, guanine, cytosine, and thymine
 - sugar is deoxyribose
 - phosphate is esterified(مُجَمع) to sugar carbon
- Sugar phosphate backbone
 - covalent bonds between the 3'-hydroxyl of one sugar and a 5'-phosphate attached to an adjacent sugar

DNA Structure – Two Complementary Strands

- Molecule is double stranded helix
- Base pairing
 - adenine (purine) and thymine (pyrimidine)
 pair by 2 hydrogen bonds
 - guanine (purine) and cytosine (pyrimidine)
 pair by 3 hydrogen bonds
- Major and minor grooves form when the 2 strands twist around each other

RNA Structure


- Polymer of nucleotides
 - contains the bases adenine, guanine, cytosine, and uracil
 - -sugar is ribose
 - phosphodiester bonds
- Most RNA molecules are single stranded; some are double stranded

RNA Structure

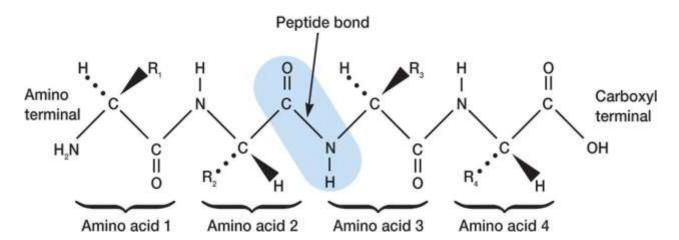
- Three different types which may differ from each other in function, site of synthesis, and in structure
 - messenger RNA (mRNA)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- ribosomal RNA (rRNA)
- transfer RNA (tRNA)

Protein Structure

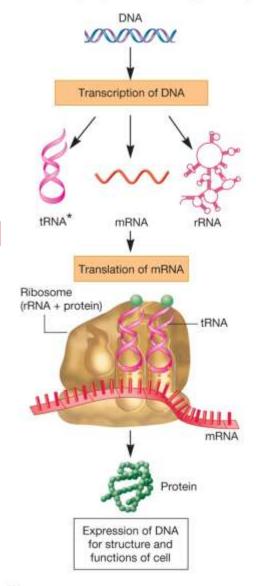
- Polymers of amino acids linked by peptide bonds
 - amino acids have central carbon


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Side chain

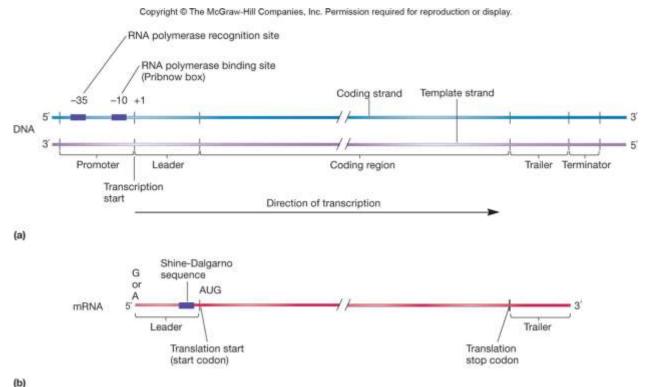
side chain

 amino acids can be polar, non-polar, or charged depending on side chain


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9

Gene Structure


- Gene
 - the basic unit of genetic information
 - also defined as the nucleic acid sequence that codes for a polypeptide, tRNA or rRNA
 - linear sequence of nucleotides with a fixed start point and end point
 - codons are found in mRNA and code for single amino acids

^{*}The sizes of RNA are enlarged to show details.

Protein-Coding Genes - 1

- Template strand of DNA directs RNA synthesis
 - is read in the 3' to 5' direction
- Complementary DNA strand
 - is coding strand, same nucleotide sequence as mRNA (except in thymine)

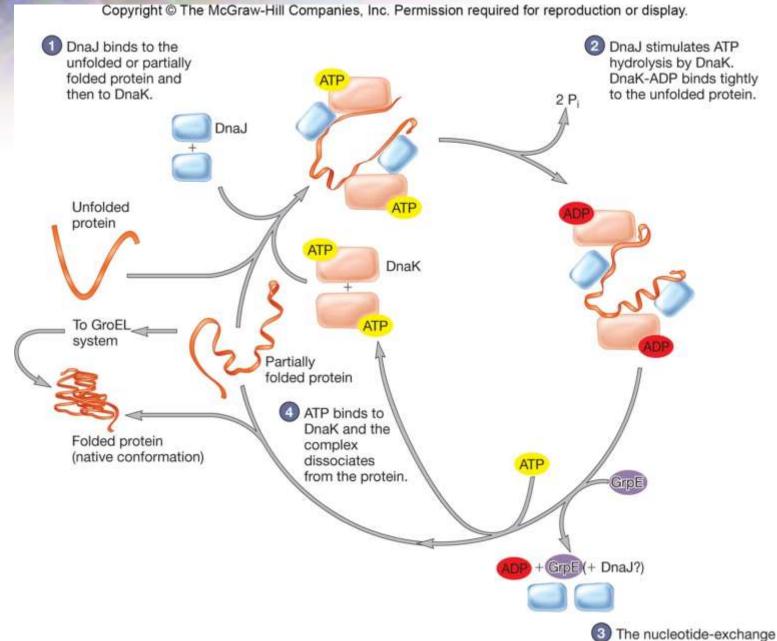
Protein-Coding Genes - 2

- Promoter is located at the start of the gene
 - is the recognition/binding site for RNA polymerase
 - -functions to orient polymerase
- Leader sequence is transcribed into mRNA but is not translated into amino acids
 - Shine-Dalgarno sequence important for initiation of translation

Protein-Coding Genes - 3

- Begins with DNA sequence 3'-TAC-5'
 - produces codon AUG
 - codes for N-formylmethionine, a modified amino acid used to initiate protein synthesis in bacteria
 - coding region ends with a stop codon
 - immediately followed by the trailer sequence which contains a terminator sequence used to stop transcription

tRNA and rRNA Genes


- DNA sequences that code for tRNA and rRNA are considered genes
 - genes coding for tRNA may code for more than a single tRNA molecule or type of tRNA
 - genes coding for rRNA are transcribed as single, large precursor
 - Spacers (الفواصل) between the coding regions of both are removed after transcription, some by the use of special ribonucleases called ribozymes

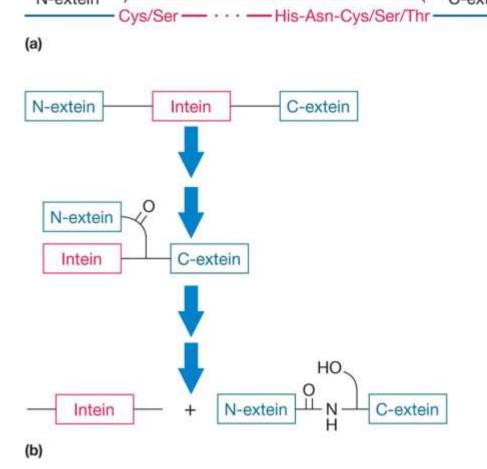
Protein Maturation and Secretion

- Protein function depends on 3-D shape
- Occurs as post translational event
 - -requires folding
 - -association with other proteins
 - delivered to proper subcellular or extracellular site

Protein Folding and Molecular Chaperones

- Molecular chaperones
 - proteins that aid the folding of nascent polypeptides
 - -protect cells from thermal damage
 - e.g., heat-shock proteins
 - aid in transport of proteins across membranes

Protein Splicing


Removal of partCopyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

N-extein

of polypeptide before folding

Inteins – removed portion

Exteins –
 portions that
 remain in protein

Intein

C-extein

Protein Translocation and Secretion in *Bacteria* - 1

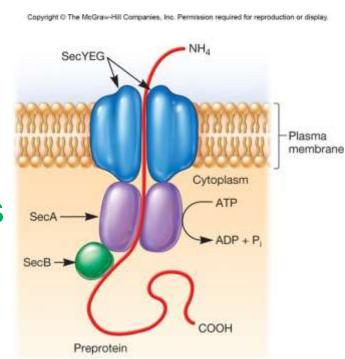
- Numerous protein secretion pathways have been identified
 - –some reside(یُقیم) in all 3 domains
 - -some unique to Bacteria and Archaea
 - -some unique to gram-negative cells

Protein Translocation and Secretion in *Bacteria* - 2

Translocation

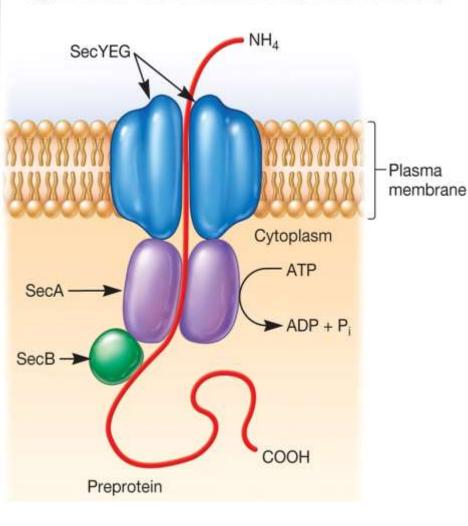
- movement of proteins from cytoplasm to plasma membrane or periplasmic space
 - include transport proteins, ETC proteins, proteins involved in chemotaxis and cell wall synthesis, enzymes

Secretion


- movement of proteins from the cytoplasm to external environment
 - hydrolytic enzymes for nutrient break down

Common Translocation and Secretion Systems

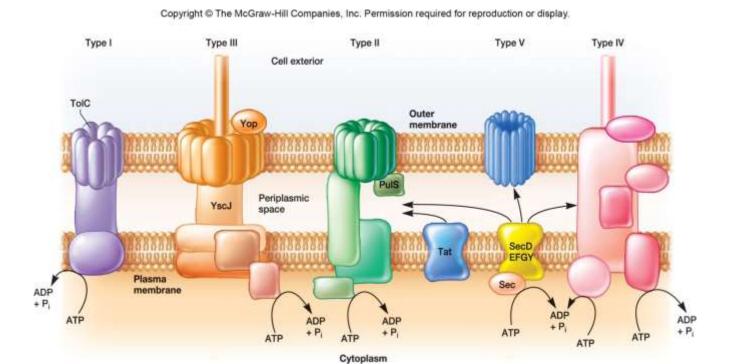
- Sec-dependent pathway
 - the major pathway for all bacteria for transporting proteins across the plasma membrane
- Gram-negative bacteria
 - -may use Sec system
 - -also must cross the outer membrane using Types I, II, III, IV, V systems
- All pathways require energy


- Also called general secretion pathway
 - highly conserved in all domains
- Translocates proteins from cytoplasm across or into plasma membrane
- Secreted proteins synthesized as preproteins having aminoterminal signal peptide
 - signal peptide delays protein folding

Sec-Dependent Pathway

Sec-Dependent Pathway

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



- secY, secE, and secG form a channel in the membrane
- secA translocates
 preprotein through the
 plasma membrane
- When preprotein emerges
 from(یخرج من) plasma
 membrane a signal
 peptidase removes the

Other Protein Secretion Pathways

Type I secretion systems

- related to ABC transport systems
- Gram-positive/Gram-negative bacteria, and Archaea
- Secretion of toxins, proteases, other proteins

24

Tat System

- Protein translocation system in Bacteria and some archaea
- Moves across plasma membrane
- Tat pathway translocated folded proteins with "twin" arginine residues in their signal sequence
- Works with Type II secretion system

Other Protein Secretion Pathways

- Type IV secretion system
 - -secrete proteins
 - –secrete DNA from donor to recipient bacterium during conjugation
 - found in both Gram-positive and Gram- negative

Protein Secretion in Gram-Negative Bacteria

- Six proteins secretion systems identified
- Types I and IV also in Gram-positives
- Types II, III, and V are unique to Gram-negatives

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

most secrete virulence factors

Cytoplasm

Gram-Negative Bacteria Secretion Systems

- Types I and III are sec independent
 - forms injectisomes
 - transports virulence factors and other proteins
- Type V are sec-dependent
 - autotransporters transport themselves out
- Type VI are similar to bacteriophage genome injection systems