
Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Matlab Primer #1 – A Fast Start
SECTION I: Matlab and the Image Processing Toolbox

Using this Primer effectively
If you are already an experienced user of Matlab, most of the material in these two
primers will be familiar to you. You can either work rapidly through them or skip them
entirely and proceed direct to Chapter 1 of the book where we specifically discuss the
fundamentals of how images are defined and handled within the Matlab + Image
Processing Toolbox environment.

If you are new to Matlab, working through the two primers will quickly get you up to
speed on the basics. In this primer (part 1), we will aim to achieve the following:-

• Explain the advantages of using Matlab + the Image Processing Toolbox as a
means for practical exploration of image processing.

• Advise on installation, useful sources of information and describe the basic
Matlab interface.

• Describe and manage the Matlab workspace.
• How to write Matlab M files – scripts and functions.
• How to obtain basic graphics output.
• How to build Matlab expressions.

Why use Matlab ?

Readers unfamiliar with Matlab are likely to ask why we should prefer it to the large
number of other scientific computation and visualisation languages and packages which
are now available. There are a number of reasons which together make Matlab the right
choice for this book.

1. Quick-to-learn: Matlab is easy to learn. As you will hopefully see, the learning curve
for Matlab is shallow. In our experience, you can learn and start doing really useful
things more quickly than with any other language.

2. Easy-to-use: Matlab is easy to use. It is both an interactive environment for high-
performance technical computation, graphical display and animation (thus offering
nearly all the benefits of specialist “packages”) and also a high-level programming
language (providing the necessary flexibility for the user to develop his own
applications).

3. Integrated environment: Matlab and its associated toolboxes (collections of
specialist functions) form a completely integrated environment. In other words, you
can develop complex software applications which may involve complex calculation,
graphical display and input and interface to external hardware and never have to
move outside the Matlab environment.

www.fundipbook.com – Matlab Primer #1 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

4. Platform independent: Matlab code and programs run exactly the same on any
computer. Thus you need have no concerns about the portability of Matlab code.
Matlab is currently available for all main PC operating systems.

5. Scientific standard: Outside the world of computer science per se (part of whose
mission should be to make programming easier), Matlab is emerging as the standard
in scientific and technical computation. The huge growth in the number of Matlab
users in Universities, research institutions/organisations and companies since its
inception in 1984 is ample testimony.

6. Rapid Development: The ease of use and shallow learning curve for Matlab itself
and functionality within Matlab that may be new to you for any given task make it an
ideal rapid development (and prototyping) environment. In many organizations it is
used both for initial prototyping and/or mathematical verification of implementations
that will ultimately be developed in an application-level development language such
as C/C++/Java/Ada.

The Matlab Image Processing Toolbox

The Image Processing Toolbox is exactly what its name suggests – a toolbox of specially
written functions, seamlessly integrated with Matlab, to perform many of the low and
high level procedures which are required time and again whenever tasks of image
processing are undertaken. The reason for our choice of Matlab + Image Processing
Toolbox may be highlighted by considering two extreme approaches to learning practical,
digital image processing.

The “low-level” approach requires the user to write relatively detailed code to perform
even basic tasks. This can certainly lead to understanding if one is tenacious enough to
stay the course but, overall progress in learning the concepts is slowed and at least as
much is learned about the intricacies of the programming language as the actual image
processing. At the other “high-level” extreme, is the push-button or package solution.
One solves a relatively complex problem (e.g. deblurring a noisy image or segmenting an
object from its background) by drawing on all the expertise of an expert who has
packaged the solution into a single click of a button. The result may be quite good but
there is no real dialogue. No real understanding emerges and it is often not clear how to
slightly modify or extend the procedure to a solve similar but subtly different problem.

As far as the practical implementation of image processing goes, Matlab + Image
Processing Toolbox is the time-honoured middle way. You can concentrate on the
issues, avoid unnecessary programming tasks but you can’t get away with not
understanding what you are doing. For the more advanced reader/user, there is the further
motivation that all the solutions and corresponding code which you may develop are
entirely portable to the broader Matlab environment, will run on any machine and, if
desired, can be automatically converted to industry standard application development
languages such as ANSI C (see Matlab Mex Compiler).

www.fundipbook.com – Matlab Primer #1 2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

What Matlab will be covered ?

Many good and comprehensive books now exist on the Matlab language. Although
fundamentally simple and easy to use, Matlab has many powerful features and extras
which we do not and cannot hope to cover in this fast-start introduction. Here, our aim is
to give you the essentials that you need to get up and running and sufficient material is
covered here to enable you (if you are diligent) to tackle the examples and exercises with
confidence. However, the motivated reader is certainly strongly encouraged to broaden
their knowledge by referring to other books specifically on the Matlab language as well
as the comprehensive documentation set which is provided when you purchase Matlab
(either in paper or electronic form).

SECTION II: Matlab Basics

Summary of Section Contents
Practicalities. Understanding the workspace. The 20 most essential commands in Matlab.
Arrays and indexing. Reading, writing and saving data. Data types. Operators. Flow
control. M files – functions and scripts. Key concepts in Matlab. Further references.

Practicalities – Installing the Matlab Software

Individual Licenses: For an individual purchasing a standalone license, the installation
of Matlab is very simple. You will receive a CD and a personal license password or key.
Insert the CD-ROM into your computer drive to start the install wizard, enter your
password/key and follow the remaining very simple instructions. Alternatively you may
prefer to download the software from the Mathworks web-site. The procedure is similar -
with the addition that you must invoke the install wizard yourself once the software is
downloaded. Refer to the Mathworks web-site (www.mathworks.com) for details.

Multi-user Licenses: Research Institutions, companies, Universities and other
organizations whose employees and students use Matlab often have multi-user licenses.
This type of license works by installing Matlab on a networked server, enabling a number
of users to simultaneously run Matlab. The system administrator is then the person
usually responsible for installing the software. Although installation is usually trouble-
free, Mathworks provide an installation guide which forms part of the on-line
documentation provided when you purchase Matlab and to which you may refer.
If you have difficulties in installing Matlab, you should email support@mathworks.com
outlining the nature of your problem.

Getting help: As a legitimate user of Matlab you are entitled to avail yourself of the
technical support which is provided by The Mathworks (the developers and suppliers of
Matlab). You should email support@mathworks.com and can expect a response to any
meaningful technical query (from the very simple to the complex) about the use and
scope of Matlab. Within reasonable limits, you may also receive good advice on how best
to achieve a technical goal or aim using Matlab. Don’t be afraid to use this service when
you need it – it is their job to provide this service and they are enthusiasts.

www.fundipbook.com – Matlab Primer #1 3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

mailto:support@mathworks.com
mailto:support@mathworks.com
http://www.mathworks.com/

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Upgrades and bug-fixes: Matlab is constantly being developed and refined. Current
license holders may receive new releases of the product depending on the license type
and arrangement. Upgrades and bug-fixes to the software are usually available first from
the web-site (www.mathworks.com). Refer to the instructions contained therein.

Launching Matlab

Let us assume that you have successfully installed Matlab. Launching Matlab is simple.
You simply double click on the program icon and the Matlab command window appears
or alternatively type matlab at the command prompt in unix/linux based operating
systems.

The Matlab Command window - Finding your way around

When you start Matlab, you should get a window looking something looking like the
frame below. The style and layout of the drop-down menus is largely standard. Figure 1.1
indicates in general terms the basic usage and the specific purpose of the utilities
provided by the menus.

Figure 1.1 : The basic start-up work-space for Matlab

We assume that you have started Matlab – the command window is on the screen before
you and Matlab is ready to receive input (as above). Before we start exploring Matlab, we
first want to tie up two simple but important practical issues which often cause confusion
and frustration for beginners. These concern :–
i) the working directory (i.e. the directory or folder in which you are running Matlab
ii) Matlab’s search path.

www.fundipbook.com – Matlab Primer #1 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

http://www.mathworks.com/

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

The Working Directory

When you start Matlab it runs under a default directory/folder which is determined at the
time of installation. Issue the command pwd (“present working directory”) to find out
what your default working directory/folder is –

As you work through the following pages, you will want to save Matlab programs and
data that you have created.. It is best to save your files and data in your own, specially
created and named folder.

Change the current working directory to the one of your choice to which you have write
permission. Consider the example below. Typing pwd at the prompt on our computer :–

Matlab responds by showing that the default working directory on my computer is
e:\MATLAB6p1\work. To change this to my own chosen directory
e:/chris/my_matlabstuff, we use the command cd (change directory).

Matlab confirms that the present working directory is e:/chris/my_matlabstuff. Please
note that the directories in this example are of a Microsoft Windows operating system
form and are more likely to be of the form /home/chris or /usr/local/matlab on unix/linux
operating systems.

The Matlab Search Path

When you type a Matlab command at the prompt and press return, Matlab searches
within a certain set of folders/directories to see if it can recognise the given command.
The specific folders which are searched in this way are determined by the search path.
The default search path comprises a limited number of directories (or folders) in which
Matlab has organized its own built-in M files and the present working directory.

www.fundipbook.com – Matlab Primer #1 5

>> pwd

ans =

e:\MATLAB6p1\work

>> cd e:/chris/my_matlabstuff

ans =

e:/chris/my_matlabstuff

>> pwd %Show present working directory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Typing the Matlab function path will show the current Matlab search path on your
computer. Try typing :–

Sooner or later, you will want Matlab to recognize commands (or more precisely
functions1) that are not contained within the default search path. The search path can be
displayed and modified in several ways. You can add directories to the existing search
path using the command addpath with suitable arguments supplied. If, for example, you
want Matlab to recognize files that you have written and which reside in the directory
c:/chris/my_matlabstuff you should type :–

You can also achieve this by typing –

which brings up the appropriate path browser for you to select the paths you wish to add.

You can add new directories to the search path at any time during a Matlab session. It can
occasionally get tedious to add the necessary folders to your search path every time you
start a Matlab session To avoid this, you can add selected folders to the search path for an
indefinite period of time by editing the Matlab startup file

The Matlab Startup File
When Matlab starts up, it executes a script file called startup.m. By creating and/or
editing this file and adding the appropriate paths to Matlab’s search path using addpath
as indicated above, you can effectively avoid having to set the path each time you start
Matlab. On Microsoft Windows this file resides in the Matlab startup directory (My
Documents\MATLAB,or Documents\MATLAB depending on OS version) or within the
directory from which Matlab is started on unix/linux OS platforms. For the following
practical session we strongly suggest that you create a folder of your choice to contain
your Matlab work and set the search path to include this folder.

1 “Commands” are really primitive functions. We will discuss functions and M files shortly but the
distinction need not concern us here.

www.fundipbook.com – Matlab Primer #1 6

>> path

>> addpath(‘c:/chris/my_matlabstuff’) ;

>>editpath

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Getting started - The Matlab workspace

The first and simplest way to use Matlab is to enter commands at the Matlab prompt
(usually one at a time) and allow Matlab to respond accordingly. Enter the following
sequence of Matlab commands :–

Matlab responds by assigning the given matrices to the variables A and B and variable C
was set equal to their sum. Note that in each case, Matlab prints the result of the
operation on the screen. The variables A,B and C now exist in the Matlab workspace.

Typing the command whos at the Matlab prompt shows what variables currently exist in
the workspace :–

We can use the quantities A,B and C in subsequent calculations or operations. Enter the
following (including the semi-colon) :–

This time you will notice that Matlab does not print the results to the screen. The semi-
colon after the command suppresses the output. If you omit the semi-colon in the two
lines above, both D and all the pixel values of the image I (all 65536 of them!) will print
to the screen.

www.fundipbook.com – Matlab Primer #1 7

>> D=A*B-C ; %D = matrix product of A and B with C subtracted
>>I=imread(‘cameraman.tif’) ; %Read in tif image and assign to variable I

What’s Happening
>> A=[1 2; 3 4] %define the 2 x 2 matrix A
>> B=[2 1; 0 1] %Define the 2 x 2 matrix B
>> C=A+B %Let C be the addition of the two matrices

>> whos

 Name Size Bytes Class

 A 2x2 32 double array
 B 2x2 32 double array
 C 2x2 32 double array

Grand total is 12 elements using 96 bytes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

The variables D and I now also exist in the workspace.

Saving, clearing and loading Data

The easiest way to save the results of a Matlab session is to use the save command :–

The save command will save all the variables we created above in a file called
mysession1.mat inside the folder/directory in which you are currently running Matlab.
The .mat extension on the saved file indicates that this is a Matlab data file.

You may wish to clear certain variables from the workspace –

This will show that only I (the image) now remains in the workspace – A,B,C and D have
all vanished. Note also that we can type multiple commands on a single line provided
they are separated by a semi-colon. The semi colon effectively indicates to the Matlab
interpreter that a given command has been entered. Typing clear with no specific
variables named will clear all variables from the workspace.

We see that all the variables have been erased and the workspace is now empty.
We have saved the results of our short Matlab session up to now in the file
mysession1.mat. How then can we restore these results to the workspace ? We achieve
this via the Matlab function load. Try -

www.fundipbook.com – Matlab Primer #1 8

>> save mysession1

>> whos
 Name Size Bytes Class

 A 2x2 32 double array
 B 2x2 32 double array
 C 2x2 32 double array
 D 2x2 32 double array
 I 256x256 65536 uint8 array

>> clear A B C D; whos

>> clear; whos

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

The variables A,B,C,D and I now exist again in the workspace.

M files – scripts and functions

Typing directly into the command window is a useful way to get familiar with Matlab
and is ideal for trying out relatively simple sequences of commands. Using Matlab in this
way is somewhat similar to having a very advanced desktop calculator – you don’t need
to write “real programs” but just issue simple commands and you get the response back
immediately. However, as you develop longer and more complex procedures, the
limitations of this approach become evident and you will want to save long sequences of
Matlab commands for future use – i.e. the next step up is to write programs. Matlab
programs are called “m-files” and there are two basic kinds – scripts and functions.

Matlab Script Files
The simplest form of Matlab program is a so-called script file. A script file is a text file
containing a sequence of valid Matlab commands. The following example defines the
recipe for how to write and execute (i.e. run) a script file. Try it out.

Creating and running a Matlab Script file
• In the Matlab command window, left-click the file drop-down menu and select

New – Blank M-file.
• The Matlab text editor appears.
• We type a sequence of Matlab commands :–

• We save the text file using the drop-down menu on the text editor (file – save as).
Save this file (into a folder which is on your current Matlab search path) with the
name add_image.m.

• To run this file, type the name of the script file at the Matlab prompt and press
return -

www.fundipbook.com – Matlab Primer #1 9

>> load mysession1; whos

What’s Happening
clear; %First clear workspace of all variables
A=imread('cameraman.tif'); %Read in first tif format image
B=imread('circuit.tif'); %Read in second tif format image
imshow(A); pause(3); %Display 1st image, wait 3 seconds
imshow(B); pause(3); %Display 2nd image, wait 3 seconds
B = imresize(B, size(A)); % resize image B to the size of A
C=imadd(A,B); imshow(C); %Display 8-bit sum

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

You will find that the individual images are first displayed for 3 seconds each followed
by their 8-bit truncated sum image shown below :-

We make two general comments :–

• Anything written on a line to the right of a % symbol is not interpreted as
commands by Matlab. In other words, anything to the right is a comment which is
inserted simply for explanatory purposes and to make the program
comprehensible for the program user. You can edit the script you just created and
include the comment lines in your script, if you wish.

• All variables which are declared/created when a script file is executed exist in the
Matlab workspace when execution is complete. (Type whos to confirm that the
variables A,B and C all exist in the workspace)

Matlab Function Files
The second kind of m-file is the Matlab function. Functions are also sequences of Matlab
commands but differ from scripts in an important way. The key difference between
scripts and functions is that when a function is executed only the declared output
arguments are returned to the workspace. Any other variables created within the function
vanish when Matlab returns to the workspace.
The simplest way to think of a function is as a computational routine which requires
certain input arguments (i.e.data/variables) to produce required output arguments. In the
traditional programming language sense this is a sub-routine. Thus, we require from the
function that it return the output quantities we require, given the necessary input.
Intermediate quantities which might need to be generated to achieve this aim are of no
ultimate interest.

www.fundipbook.com – Matlab Primer #1 10

>>add_image

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Creating and running a Matlab function file
Function m files are created using the text editor in exactly the same way as scripts. Try
creating the model example function below.

• Select file - New – Blank M-file from the drop-down menu in the Matlab
command window. (alternatively select file - New – Function M-file for a pre-
defined function declaration layout for you to edit)

• The Matlab text editor appears.
• We must declare the function on the first line. This declaration is what

distinguishes a script from a function. The function declaration requires that you
specify the output and input arguments by chosen names. The required syntax is
shown below.

function C=sub_img(A,B);

%function C=sub_img(A,B);
%This function accepts as legal input two images of similar size A and B
%The output is the difference image C=A-B interpreted as 8-bit (0-255) data
%The image is also displayed in the default figure window

if size(A) ~= size(B)
disp(‘Images are not the same size’)
return;
else
C=imsub(A,B); imshow(C); %Display 8-bit difference image

end

Note the following:
• After the function declaration on line 1, we have a sequence of comment lines

beginning with a %. Strictly, these are optional but highly recommended as a
means of describing the basic purpose of the function and the required input and
output arguments.

• After the comments, appears a sequence of Matlab commands.

We save the text file using the drop-down menu on the text editor (file – save as). You
should choose a name for the function file which exactly matches the declared function
name in the first line of the file. For the example above, use sub_img.m.

To run this file and see what it does, type the following at the Matlab prompt -

www.fundipbook.com – Matlab Primer #1 11

Output
arguments

Input
arguments

Must declare function !

First comment line

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

You should see displayed the truncated 8-bit difference image of A and B. The Matlab
response to whos shows that variables A,B and D exist in the workspace.

Getting help on Matlab functions

It is possible to get help on any Matlab function or operator simply by typing help
“function_name”. For example, to get help on how to use Matlab’s general purpose
function for reading images into the workspace imread, we type

The (in this case) rather lengthy response, shows the variety of permissible syntaxes for
using the function and the acceptable image formats.

You can make good use of the help facility for your own functions in exactly the same
way. Try typing -

Matlab responds by printing to the screen the first unbroken block of comment lines
starting with the first comment line (%) that appears within the file :-

As you become more familiar with Matlab and start writing your own specialized
functions, it is good to get into the habit of documenting the use of your functions in this
way. This is a very useful way of reminding yourself and other users of the basic purpose
of functions (both Matlab’s and your own) and the required input/output syntax.

www.fundipbook.com – Matlab Primer #1 12

 What’s Happening
>> clear; % clear workspace
>> A=imread('cameraman.tif'); B=imread('ic.tif'); %Read in images
>> D=sub_img(A,B); %Execute function
>> whos %Display variables

function C=subims(A,B);
This function accepts as legal input two images of similar size A and B
The output is the difference image C=A-B interpreted as 8-bit (0-255) data
The image is also displayed in the default figure window

>> help imread

>> help sub_img

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Saving and printing graphics

After getting to grips with the basics, one of the earliest things you are likely to want to
do is to save and print graphics output such as graphs and images. Run your script file
add_image.m again (>> add_image) to create the figure window containing the
truncated 8-bit addition of the images of the cameraman and the integrated circuit.

To print a hard copy of the figure, select the print option from the Command Window
menu (file – print). This will invoke the default printer for your system.

To save the figure window to disk on your computer, you have two options –
• Select the export option (file – export) on the command window menu. You are

prompted for the type of format in which you would like to save the graphic and the
folder/directory in which you want it saved.

• You use the Matlab print function with the specified options. print allows you to
save an image or graph in a very large number of standard formats. Type

For example, typing :-

saves the displayed figure (Figure 1 specified as -f1) to the current working directory as a
JPEG format image file with name integcamera.jpg. An alternative is the Matlab imwrite
(>> doc imwrite) to write image variables from the workspace directly to an output image
file (without surrounding image border).

You may view the many possible formats for saving Matlab graphics output by using the
online help facility (>> help print).

So far in this first section, we have shown you some of the basic Matlab commands that
you need to manage the workspace. These commands (plus some other useful ones) are
summarised in the table below. For a more detailed explanation, just use the help function
(>> help “function name”) at the command window.

www.fundipbook.com – Matlab Primer #1 13

>> print –f1 -djpeg 'integcamera.jpg'

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

The 20 Most Useful Basic Matlab Commands

Command/function Purpose
whos Shows the variables existing in the workspace
save Saves current variables to disk
load Retrieves saved variables and loads them into Matlab
clear Clear variables from workspace
; (semi-colon) Suppresses printing to screen
help Help on syntax and use of specific Matlab functions
path Sets and shows the Matlab directory search path
pwd Displays the present working directory (pwd)
diary Saves your Matlab session to a text file
more on/off Turn Matlab scrolling on/off to one page at a time
print Print the current active figure to a file
input Prompt user for input.
lookfor Search for
Pause Pauses program execution for specified time
drawnow Forces matlab to display graphics as they are created
keyboard Returns control from file to the command window
type Display the contents of an M file on the screen
quit Quit Matlab

SECTION III: Building Basic Expressions in Matlab

Expressions in Matlab employ a combination of variables, operators, numbers and
functions. For example, in the following expression :-

x and y are variables, .* and ./ are operators, pi and 2 are numbers and sin is a function
(N.B. pi is a special case of a built in numerical constant in Matlab).

Implicit Vectorization
If you type the expression above at the prompt, you will immediately notice an
interesting and important feature of Matlab. The variable x is a 10 element vector

containing the integers from 1 to 10 inclusive. When we write)
2

sin(
x

y
π= as in the

example above, Matlab evaluates the expression at each value of the input vector x,
producing an output vector also of 10 elements. This is sometimes called implicit

www.fundipbook.com – Matlab Primer #1 14

>> x=1:10, y=sin(pi.*x./2)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

vectorization. The nice thing about implicit vectorisation is that it helps to avoid
ungainly loops and allows us to write more compact, intuitive expressions2.

Try out the following examples :–

A summary description follows of the way in which Matlab defines and deals with
variables, operators, numbers and functions.

Variables

Matlab does not require type declarations or dimension statements (as are common
requirements of other high level programming languages). In this sense we can describe
Matlab as a loosely typed programming environment/language. When a new variable
name is encountered, the appropriate storage space required is automatically allocated.

Further, the required storage for the variable can be dynamically altered. Try the
following :-

Variable names must begin with a letter and may extend to a maximum of 31
alphanumeric characters. N.B. Matlab is case sensitive – B and b refer to different
variables.

2 If you’ve programmed before in Fortran, Pascal or C/C++, you’ll immediately recognise the difference.

www.fundipbook.com – Matlab Primer #1 15

>>x=0:pi/30:pi %Make 30 element vector x from 0-pi

>>y=cos(x).^2; plot(x,y) %Sample cos^2x at given values and plot
%Generate x2cos and graph function

>>clear; %Clear workspace
>>A=[1 0; 0 1] %Storage for the 2x2 array A is automatically created

>>A(3,:) = [5 6] %A third row is added to A – dynamic allocation occurs

>>A=[1 2; 3 4], B=[0 1; –1 0] %Create 2 x 2 matrices A and B
>>A-B %Subtract matrix B from A. ans=[1 1; 4 4]
>>A.^2 %Square each element of A. and=[1 4; 9 16]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Operators

Expressions may employ any of the familiar arithmetic and precedence operators
summarized in the table below :–

Operator Description
+ Addition
- Subtraction
./ Division (scalar)
.* Multiplication (scalar)
.^ Power (scalar)
‘ Complex conjugate transpose
() Specify evaluation order
/ Division (matrix)
* Multiplication (matrix)
^ Power (matrix)

We build expressions using these operators in the usual way :–

Matrix and scalar operators
In part two of this primer, we will see that Matlab (derived from Matrix Laboratory) is
particularly powerful for dealing with matrices.

www.fundipbook.com – Matlab Primer #1 16

Warning !
It is particularly important to be aware from the outset of the difference
between the scalar operations for division, multiplication and power
exponentiation (./ .* .^) which include a dot before the conventional symbol
and and their matrix counterparts (/ * ^) which do not !

>>x=0:10, y=exp(-sqrt(x))
>>A=[1 2; 3 4], B=[0 1; –1 0], C=[2 1; 2 1];
>>(A-B)-(B+C) %ans=[-1 –1; –1 3]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

Try out the following commands and carefully digest the difference between them :–

Numbers
Numbers can be expressed using conventional decimal notation or scientific notation.
Matlab handles complex numbers naturally without any need for special declarations.
Some examples of legal numbers in Matlab are ;–

0.003 -67 17.56789 (standard decimal)
3.55e+7 -1.23e-6 (scientific notation)
6+3i -0.142857j 3e+5j (complex notation)

Note that Matlab will interpret i or j as the imaginary quantity 1− when written beside
a number with no operator between them (e.g. 3i means 3 1−). If an operator appears
between them (e.g. 3.*i), this will be interpreted as the corresponding complex quantity
provided i is not a variable with a preassigned value. For example ;-

Functions
Matlab provides a large number of standard, elementary mathematical functions (for
example exp, sqrt, log, sin etc). For a complete list of the elementary functions provided
type :–

at the Matlab prompt. As we discussed earlier, functions do not have to be elementary
like sin or log. Matlab provides many high level functions and you will soon learn to
write your own.
Building Expressions
Matlab expressions are built by combining variables, operators, numbers and functions in
a logically consistent way. Here are just a few simple examples of legitimate Matlab
expressions :–

www.fundipbook.com – Matlab Primer #1 17

>>z1=3+4i, z2=5+12.*j %z1 and z2 are complex

>>j=1:5, z3=3+4j, y=3+4.*j %z3 complex, y is real vector

>> help elfun

>>A=[1 2; 3 4], B=[0 1; –1 0], C=[2 1; 2 1];
>>A.^2 %Each element of A is squared. ans=[1 4; 9 16]
>>A*A %Matrix multiplication of A and A. ans=[7 10; 15 22]
>>A^2 %Matrix multiplication implied. ans=[7 10 15 22]
>>A.*B %Element by element multiplication. ans=[0 2; 3 0]
>>A*B %Matrix multiplication. Ans=[2 1; 4 3]
>>A./C %Matrix Division

%Division of corresponding elements. ans=[0.5 2 1.5 4]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon & Toby Breckon

In the next part of this primer, we will take a more detailed look at the Matlab language
and explore the key programming constructs.

www.fundipbook.com – Matlab Primer #1 18

>>clear;
>>theta=pi./4;
>>z=exp(i.*th) %ans=0.7071 + 0.7071i
>>wz=z+z.^-1 %ans=1.4142
>>imag(wz) %ans=0
>>1+(log(sin(theta)) –sin(log(theta))).^i %ans=0.9735 - 0.0341I

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

	SECTION I: Matlab and the Image Processing Toolbox
	Using this Primer effectively
	What Matlab will be covered ?
	SECTION II: Matlab Basics

	Practicalities – Installing the Matlab Software
	Launching Matlab
	Getting started - The Matlab workspace
	Saving, clearing and loading Data

	M files – scripts and functions
	Numbers
	Functions
	Building Expressions

