Linear Quadratic Regulator (LQR)

LQR: is an optimal approach which is used to minimize a cost function to compute the
optimal response for the system.

Definitions:

-Negative Definite Matrix (NDM): it is a Hermitian matrix all of whose eigenvalues are
negative.

-Semi-Negative Definite Matrix (SNDM): it is a Hermitian matrix all of whose eigenvalues are
nonpositive.

-Positive Definite Matrix (PDM): it is a Hermitian matrix all of whose eigenvalues are positive.

-Semi-Positive Definite Matrix (SPDM): it is a Hermitian matrix all of whose eigenvalues are
nonnegative

Design a Regulator by using LOR:

—— Gradient descent

Min = 1.9500000000000002

Fig. 1: plot for the cost function
Consider the following system:
x = Ax + Bu

1
y=Cx

The goal of the LQR is to minimize the cost function or it is called the performance index.

] = f (xTQ@x + u" Ru)dt
0

subto:x = Ax + Bu
Where:

Q € R™™: is a positive-definite (or positive-semidefinite) and a real symmetric matrix.
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Re R™: is a positive-definite and real symmetric matrix.

The optimal solution is computed by using the following equation:

u(r) = —Kx(1) 3

u X

—N i A By ——

Fig 2: Quadratic Optimal Regulator System

Now let us solve the optimization problem. Substituting Equation (3) into Equation (1), we
obtain:

X = Ax — BKx = (A — BK)x 4

In the following derivations, we assume that the matrix (A — BK) is asymptotically stable
i.e. the eigenvalues of (A — BK) have negative real parts.

Substituting Equation (3) into Equation (2) yields:

J = f (x*Qx + x*K*RKx) dt
0

5
= f x*(Q + K*RK)xdr
0
Let us set
. d
x*(Q + K*RK)x = 0 (x*Px) 6
where P is called a co- I'state matrix and it is a positive-definite and a real
symmetric matrix.
x*(Q + K*RK)x = —Xx*Px — x*Px = —x*[(A —BK)*P + P(A — BK)]X 7

Comparing both sides of this last equation and noting that this equation must hold true for
any X, we require that:
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(A — BK)*P + P(A — BK) = —(Q + K*RK) 8

It can be proved that if (A — BK) is a asymptotically stable matrix, there exists a positive-
definite matrix P that satisfies Equation (8). While Equation (8) is called the algebraic
Riccati Equation. This Equation can be reduced to another formula which is shown in
Equation (9) and it is called the Reduced Algebraic Riccati Equation:

A*P + PA — PBR'B*P + Q = 0 9

The optimal control gain matrix K can be written as shown in Equation (10):

K =R 1B*P 10

Therefore the optimal control action can be written as shown in Equation (11):

u(t) = —Kx(¢t) = -R'B*Px(t) 11
The performance index J can be evaluated as shown in Equation (12).

J = f x*(Q + K*RK)x dt = —x*Px| = —x*(0c0)Px(c0) + x*(0)Px(0) 12
0 0

Since all eigenvalues of (A — BK) are assumed to have negative real parts, we have
x(o0) — 0. Therefore, we obtain the performance index J is given by Equation (13).

J = x*(0)Px(0) 13

Thus, the performance index J can be obtained in terms of the initial condition x(0) and P.

The design steps may be stated as follows:

1. Select the design weighting matrices Q and R.
Q: is a positive-definite (or positive-semidefinite) and a real symmetric matrix.
R: is a positive-definite and real symmetric matrix.

2. Solve Equation (9), the reduced-matrix Riccati equation, for the matrix P. If a
positive-definite matrix P exists then the system is asymptomatically stable system.

3. Substitute this matrix P into Equation (10). The resulting matrix K is the optimal
gain matrix.

4. The input control action is computed by using Equation (11).

5. To compute the performance index J is calculated by Equation (13).
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6. The closed loop eigenvalues of the system are computed by using Equation (4).
Note:

The relationship between the Q matrix and the location of eigenvalues is summarized by:
increasing the Q matrix is shifted the eigenvalues more to the lift on the s-plane and the
vice versa is correct. On the other hand, increasing the R matrix is forced the eigenvalues

to go more to the right of the s-plane and the vice versa is correct.

In Matlab use the following command:

[K, P, lamda] = lqr (A,B,Q,R);
K: gain matrix.

P: co-state matrix.

lamda: closed loop eigenvalues.

Design a Tracking System based on LOR:

There are two cases for the tracking system:

Case 1: Design of Type 1 Servo System when the Plant Has an Integrator:

|

X

Yy

y=Cx

Fig 3. Tracking system when the plant has an integrator.
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The closed loop dynamical matrix for the tracking system when the plant has an integrator

is given by:

x(1) — %(c00) = (A — BK)[x(1) — x(c0)] 14

Define

x(1) — x(o0) = e(1)
Then Equation (14 ) becomes

e = (A —BK)e 15
Therefore: the cost function is modified to Equation (16).

J= j; (e"Qe + u" Ru)dt 16

subto:x = Ax + Bu
The same procedures are used to solve the case 1 for the tracking system by LQR.

Case 2: Design of Type 1 Servo System when the Plant Has No Integrator:

, £ £ u
—»—@-»f—p—k, X B _[_—_:)x C ’

K K(—————

Fig 4. Tracking system when the plant has No integrator.

The closed loop dynamical matrix for the tracking system when the plant has an integrator

is given by:

¢ = (A — BK)e 17
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where

K=[K | k] e(r) = ["f;

£(1 :l = (n + 1)-vector

Therefore: the cost function is modified to Equation (17).

] = joo(eTQe + uT Ru)dt
0

subto:x = Ax + Bu
The same procedures are used to solve the case 2 for the tracking system by LQR.

18

Design an Observer based on LOR:

=

Full-order state observer

Fig 5. A regulator system with an integration with an observer.
e=x— X 19
The closed loop dynamical matrix for the observer is given by:

¢ =(A-K,Ce 20
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Therefore: the cost function is modified to Equation (20).

] = L (eTQe + u" Ru)dt 51

subto:x = Ax + Bu
The same procedures are used to solve the observer system by LQR.
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Consider the system shown in Figure 10-36. Assuming the control signal to be

u(r) = —Kx(r)
determine the optimal feedback gain matrix K such that the following performance index is
minimized:
J = ]m(xTQx + uz)dt
0
where

v

1 0
= 0
Q |: 0 pl (n = 0)
From Figure 10-36, we find that the state equation for the plant is

x = Ax + Bu

w-[oo) =-[1]

We shall demonstrate the use of the reduced-matrix Riccati equation in the design of the
optimal control system. Let us solve Equation (10-118), rewritten as

where

A*P + PA — PBR'B*P + Q = 0

Noting that matrix A is real and matrix Q is real symmetric, we see that matrix P is a real sym-
metric matrix. Hence, this last equation can be written as

|:0 U:H:Pu P12:| + |:P11 P12:||:0 1:|
1 0 P12 P»n P12 P 00
P P2 0i| |:P11 P12i| |:1 0:| _ |:0 0:|
- 1170 1 + =
|:P12 P22]|:1 [ ][ ] Piz P» 0 u 0 0

This equation can be simplified to

|: 0 0:| + |:0 P11:| _|: P P12P22:| + |:1 0:| _ |:0 0:|
Pu Pn2 0 pp P12Pn P%z 0 n 0 0
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from which we obtain the following three equations:
1=ph=0
Pu— Pupn =0
p+2pp = pn=0

Solving these three simultaneous equations for py,, p;», and p,,, requiring P to be positive definite,

we obtain
P=|:P11 P12i|=|:VPv+2 1 i|
Pz P 1 Vi + 2

Referring to Equation (10-117), the optimal feedback gain matrix K is obtained as
Referring to Equation (10-117), the optimal feedback gain matrix K is obtained as

K = R'B*P

11 12
= (1[0 1][;2 ﬂ
= [p P2
=[1 Va2
Thus, the optimal control signal is
u=-Kx=-x,— Vu+2nx (10-120)

Note that the control law given by Equation (10-120) yields an optimal result for any initial state
under the given performance index. Figure 10-37 is the block diagram for this system.
Since the characteristic equation is

SI-—A+BK/=s"+Vu+2s+1=0
if u = 1, the two closed-loop poles are located at
s = —0.866 + j0.5, s =—0.866 —j0.5

These correspond to the desired closed-loop poles when p = 1.
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EXAMPLE 10-4 Design a type 1 servo system when the plant transfer function has an integrator. Assume that the
plant transfer function is given by

The reference input r is a step function and the required steady state error is equal to zero.

x = Ax + Bu
y=Cx + Du
where
0O 1 0 0
A=|0 0 1], B=10 C=[1 0 0], D = [0]
0 -2 -3 1

Let us determine the state-feedback gain matrix K, where
K=[k k Fks
such that the following performance index is minimized:

J = / (x'Qx + u'Ru)dt
0

where

1 0 0
Q=[0 1 0|,R=10

0 0 1

0
b) Compute the performance index J if x(0) = [ 0 l
0.1

c¢) Compute the closed loop dynamic matrix for the tracking system.

s 0 O 0 1 0 s —1 0
|sT—A|l=(l0 s 0|—]0 O 1|{=[0 s -1
0 0 s 0 -2 -3 0 2 s+3

|sI —Al=s3+ 3s2+2s=s(s?+3s+5)

sy =0,s,=—1,53 = —2soitiscase |
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X ky | X =Ax+ Bu )y =Cx
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x3

ks |

First: solve the reduced Riccati equation

Py P, DP;
SoletP =[P, P, Ps
b3 Ps P
A*P + PA —PBR'B*P + Q =0
0 0 O01[Pr Dbz D3 p1 P2 P30 1 0
1 0 —=2||P2 P+ DPs|+|P2 Ps Ps||O O 1
0 1 -—-31lP3 Ps Ps Ps Ps Dell0 -2 -3
P1 P2 P3][0] ¢ P1 D2 D3 1 0 O 0 0 O
—|P2 Ps Ds OE[O 0 1]|p2 ps+ Ps|{+|0 1 O|=[0 0 O
Ps DPs DPelll Ps Ps DPs 0 0 1 0 0 O
Consequently:

P3
= ——:O
a 10
(p3ps)
b=p, —2ps — io =0
(p3ps)
c=p, —3p3 — ioﬁ 0

Ps
d=—E—4p5+2p2+1=0

(Psps)
€= ps+py=3ps = 2pg — = =0

2

Ps
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= (P2 Ps Ps 10.0206  15.1278 4.7065
P; Ps P 3.1623 4.7065 1.6880

Py P p3][ 7.8129  10.0206 3.1623

= |sI — P| = s® — 24.63s% + 24.35s — 3.948=0

s, = 0.2037
s, = 0.8209
s; = 23.6041

Second, compute the gain matrix (K)

) L 7.8129 10.0206 3.1623
K=R"7B'P=_[0o o 1] 10.0206 15.1278 4.7065
3.1623 4.7065 1.6880

K =[0.3162 0.4707 0.1688]

Third, compute the control action u(t)

X
u(t) = —Kx=-[0.3162 0.4707 0.1688] [xl]
X3
u(t) = —0.3162x; + 0.4707x, + 0.1688x3
b) The performance index is computed by
J = x*(0)Px(0)

7.8129  10.0206 3.1623]r10
J=1[0 0 0.1]| 10.0206 15.1278 4.7065 IO] =0.0169
3.1623 47065 1.68801%0.1

c) The closed loop eigenvalues of the system are computed by using Equation

¢ = (A — BK)e

s 0 O 0 1 0
[0 s Ol - [0 0 1 l +
0 0 s 0 -2 =3

|s — A+ BK| =s3 + 3.17s% + 2.47s + 0.316=0

|sl — A + BK| =

0
0][0.3162 0.4707 0.1688]‘
1
s, = —0.1587
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s, = —2.0268

s; = —0.9834
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