CHAPTER 8

More About

Estimation

8.1 Bayesian Estimation

In Chapter 6 we introduced point and interval estimation for
various parameters. In Chapter 7 we observed how such inferences
should be based upon sufficient statistics for the parameters if they
exist. In this chapter we introduce other concepts related to estimation
and begin this by considering Bayesian estimates, which are also based
upon sufficient statistics if the latter exist.

In introducing the interesting and sometimes controversial
Bayesian method of estimation, the student should constantly keep
in mind that making statistical inferences from the data does not
strictly follow a mathematical approach. Clearly, up to now, we have
had to construct models before we have been able to make such
inferences. These models are subjective, and the resulting inference
depends greatly on the model selected. For illustration, two statis-
ticians could very well select different models for exactly the same
situation and make different inferences with exactly the same data.
Most statisticians would use some type of model diagnostics to see if
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364 More About Estimation [Ch. 8

the models seem to be reasonable ones, but we must still recognize
that there can be differences among statisticians’ inferences.

We shall now describe the Bayesian approach to the problem of
estimation. This approach takes into account any prior knowledge of
the experiment that the statistician has and it is one application of a
principle of statistical inference that may be called Bayesian statistics.
Consider a random variable X that has a distribution of probability
that depends upon the symbol 8, where 6 is an element of a well-defined
set Q). For example, if the symbol 0 is the mean of a normal distribution,
Q may be the real line. We have previously looked upon 6 as being some
constant, although an unknown constant. Let us now introduce a
random variable ® that has a distribution of probability over the set
Q; and, just as we look upon x as a possible value of the random
variable X, we now look upon @ as a possible value of the random
variable ©. Thus the distribution of X depends upon 6, an experimental
value of the random variable ®. We shall denote the p.d.f. of © by #(8)
and we take A#(6) = 0 when 0 is not an element of 2. Moreover, we now
denote the p.d.f. of X by f(x]0) since we think of it as a conditional p.d.f.
of X, given © = 0.

Say X, X,,..., X, is a random sample from this conditional
distribution of X. Thus we can write the joint conditional p.d.f. of
X, X5 ..., X, given ©® =6, as

S(x)|0)/(x,]0) - - - f(x,10).
Thus the joint p.d.f. of X, X,,..., X, and @ is
g(xy, X2, - - ., Xq, 0) = f(x,10)f(x,10) - - - f(x,|6)A(6).

If ® is a random variable of the continuous type, the joint rﬁarginal
pd.f. of X\, X,, ..., X, is given by

gi(xy, X2, -0 ., Xp) =J g(xy, X3, . .., X,, 0) db.

If ® is a random variable of the discrete type, integration would be
replaced by summation. In either case the conditional p.d.f. of ®, given
X‘=x|,...,X,,=x,,,iS '
— g(xla X2y - vy Xns 0)
gl(xl’ > TR xn)
_ Sx:110)f(x2l6) - - - f1x:16)2(0)
g1(X1, X35+ -+ 5 Xy) .

This relationship is another form of Bayes’ formula.

k(elxl, X2 e vy xﬂ)
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Sec. 8.1] Bayesian Estimation 365

Example 1. Let X, X,,..., X, be a random sample from a Poisson
distribution with mean 6, where @ is the observed value of a random variable
© having a gamma distribution with known parameters « and f. Thus

G-t e[ gz-e-"F
g(x,,...,x,,0)=[ xf! xf! ][ l“(a;ﬂ"]’

provided thatx;=0,1,2,3,...,i=1,2,...,nand 0 < @ < o0, and is equal
to zero elsewhere. Then

oﬂxi*l»c—le-—(n-kl/m
gl(xls---sxn)": x.!---x,,! r(a)ﬁa a0
0

l"(z::x,-+a)

T x! X T@F + 1B
Finally, the conditional p.d.f. of ©, given X, =x,,..., X, =x,, is
__g(x.,.. .,x.,O)

gl(xh ) xn)
O+ a—1,—0M5/(nB + 1]

k(Olx,, ..., x,)

I"(Zx,- + a)[ﬁ/(nﬂ + 1)EFi+e

provided that 0 < 6 < oo, and is equal to zero elsewhere. This conditional
p.df. is one of the gamma type with parameters «* =X x;+ a and

B* = B/(nf + 1).

In Example 1 it is extremely convenient to notice that it is not really
necessary to determine g,(x,, ..., x,) to find k(0]x,, ..., x,). If we
divide

S(x,10)f(x,10) - - - f(x,|0)h(6) ,
by gi(x,, . . ., x,), we must get the product of a factor, which depends
upon x,, . .., x, but does not depend upon 0, say c(x,, . . ., x,), and
Grxi+a—1,=0/plnf +1)]
That is,
k(elxl’ LI ) xn) = c(xl’ s e vy xn)OEXi+a_le—6MI(“ﬁ+ ms

provided that 0 <f<o0 and x,=0,1,2,..., i=12,...,n
However, c(x,, ..., x,) must be that “constant’” needed to make
k@\x,, ..., x,) a p.d.f., namely

c(xXy,..., %)= ! .

' F(Z x; + a!) [B/(nB + 1)JF>i*e
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366 More About Estimation [Ch. 8

Accordingly, Bayesian statisticians frequently write that
k(@x,, .. ., x,) is proportional to
g(xla X2y oo ny Xpy 9);

that is,
k(@lxy, . . ., x,) o¢ f(x,10) - - - fx,|0)A(0).

Note that in the right-hand member of this expression all factors
involving constants and x, . . ., x, alone (not ) can be dropped. For
illustration, in solving the problem presented in Example 1, the
Bayesian statistician would simply write

KBlx, . ., %,) oc BFe-0ge— 108
or, equivalently,
k(O|x,, . .., x,) oc G5+~ 1=O/Blnp+N]

0 <08 < o0 and is equal to zero elsewhere. Clearly, k(0|x,, ..., x,)
must be a gamma p.d.f. with parameters a* =X x;+a and
p* = B/(nf + 1).

There is another observation that can be made at this point.
Suppose that there exists a sufficient statistic Y = u(X,, . . ., X,) for the
parameter so that -

f(X||0) te ﬂxnle) = g[u(xla .. ’xp)IB]H(xla LA !xn)’
where now g(y|0) is the p.d.f. of Y, given ® = 6. Then we note that

kO)x,, ..., x,) oc glu(x,, ..., x,)|00h(6)

because the factor H(x,, . . ., x,) that does not depend upon 6 can be
dropped. Thus, if a sufficient statistic Y for the parameter exists, we can
begin with the p.d.f. of Y if we wish and write

k(6ly) o g(¥10)h(0),

where now k(0]y) is the conditional p.d.f. of @, given the sufficient
statistic Y = y. The following discussion assumes that a sufficient
statistic Y does exist; but more generally, we could replace Y by
X, Xa, ..., X, in what follows. Also, we now use g,(y) to be the
marginal p.d.f. of Y; that is, in the continuous case,

&) = J g(y16)h(0) db.
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Sec. 8.1} Bayesian Estimation 367

In Bayesian statistics, the p.d.f. #(0) is called the prior p.d.f.
of ©®, and the conditional p.d.f. k(f|y) is called the posterior
p-d.f. of ®. This is because () is the p.d.f. of @ prior to the observation
of Y, whereas k(0] y) is the p.d.f. of ® after the observation of Y has been
made. In many instances, A(f) is not known; yet the choice of h(0)
affects the p.d.f. k(0|y). In these instances the statistician takes into
account all prior knowledge of the experiment and assigns the prior
p.d.f. A(6). This, of course, injects the problem of personal or subjective
probability (see the Remark, Section 1.1).

Suppose that we want a point estimate of 8. From the Bayesian
viewpoint, this really amounts to selecting a decision function 4, so that
o(yp) is a predicted value of # (an experimental value of the random
variable ®) when both the computed value y and the conditional p.d.f.
k(fly) are known. Now, in general, how would we predict an
experimental value of any random variable, say W, if we want our
prediction to be ‘‘reasonably close” to the value to be observed? Many
statisticians would predict the mean, E(W), of the distribution of W;
others would predict a median (perhaps unique) of the distribution of
W; some would predict a mode (perhaps unique) of the distribution of
W; and some would have other predictions. However, it seems
desirable that the choice of the decision function should depend upon
the loss function Z[0, 6(y)]. One way in which this dependence upon
the loss function can be reflected is to select the decision function é in
such a way that the conditional expectation of the loss is a minimum.
A Bayes’ solution is a decision function é that minimizes

E{Z[O, (Y = y} = j £16, 5(y))k(0]y).4,

14
if ® is a random variable of the continuous type. The usual

modification of the right-hand member of this equation is made for
random variables of the discrete type. If, for example, the loss function
is given by Z[6, 5(y)] = [0 — ()], the Bayes’ solution is given by
6(y) = E(O|y), the mean of the conditional distribution of ®, given
Y = y. This follows from the fact that E[(W — b)), if it exists, is
a minimum when b= E(W). If the loss function is given by
Z[0, 6(y)] =160 — 4(y)|, then a median of the conditional distribution
of ©, given Y = y, is the Bayes’ solution. This follows from the fact
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368 More About Estimation [Ch. 8

that E(W — b|), if it exists, is a minimum when b is equal to any median
of the distribution of W.

The conditional expectation of the loss, given Y = y, defines a
random variable that is a function of the statistic Y. The expected value
of that function of Y, in the notation of this section, is given by

J {f Z16, 4(y)1k(6ly) dﬁ}g; (») dy

=J {J Z10, 6(»)]g(»16) dy}h(ﬂ) do,
in the continuous case. The integral within the braces in the latter
expression is, for every given 8e€€Q, the risk function R(0, 9);

accordingly, the latter expression is the mean value of the risk, or the
expected risk. Because a Bayes’ solution minimizes

J Z10, 6(»)lk(6ly) d6

for every y for which g,(y) > 0, it is evident that a Bayes’ solution 4(y)
minimizes this mean value of the risk. We now give an illustrative
-example.

Example 2. let X, X,,...,X, denote a random sample from a
distribution that is (1, 8),0 < 6 < 1. We sesk a decision function 4 thatis a

Bayes’ solution. The sufficient statistic ¥ = ) X/, and Y is b(n, 6). That is, the
1
conditional p.d.f. of Y, given ©® = 8, is

g(y|6)=(;)9)'(l_e)n—y’ y=0a l,...,n,

=0 elsewhere.
We take the prior p.d.f. of the random variable © to be

I'la+p)
F@)r'(B)

=0 elsewhere.

h(6) =

-1 =6y, 0<f<l,

where a and § are assigned positive constants. Thus the conditional p.d.f. of
O, given Y = y, is, at points of positive probability density,

k(0ly) oc (1 — Oy 22— '(1 — 6y, 0<f<l.
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Sec. 8.1] Bayesian Estimation 369

That is,

—_ r(n+a+ﬁ) +y—-1 — +n—y—
k(0y) = TG+ )T + B_y)@" (1 -6y !, 0<b<l,

andy =0, 1, ..., n We take the loss function to be Z[0, 5(y)] = [0 — 6(y)]*
Because Y is a random variable of the discrete type, whereas @ is of the
continuous type, we have for the expected risk,

1 " /
J { Y0 é(y)iz(;)e’(l - 9)""}h(9) do

n 1
=2 U [0 — 8(»)I*(6]y) dﬂ}gn(y)-
0

y=0

The Bayes’ solution 4(y) is the mean of the conditional distribution of ©, given
Y =y. Thus

1
o(y) = J. 0k(6ly) d6
0

__ Tnta+p ‘
Fa+ I+ p-y ),

__*ty
a+B+n
This decision function é(y) minimizes

1
J [0 — o(»)Pk(0ly) db
0

fory=20,1,...,nand, accordingly, it minimizes the expected risk. It is very
instructive to note that this Bayes’ solution can be written as

3 ‘n y a+ p o
5(y)_(a+ﬁ+n)"+(a+ﬂ+n)a+ﬂ

which is a weighted average of the maximum likelihood estimate y/n of # and
the mean a/(x + B) of the prior p.d.f. of the parameter. Moreover, the
respective weights are n/(a + f + n)and (a + B)/(« + B + n). Thus we see that
a and f should be selected so that not only is a/(x + f) the desired prior mean,
but the sum « + B indicates the worth of the prior opinion, relative to a sample
of size n. That is, if we want our prior opinion to have as much weight as a
sample size of 20, we would take a + f = 20. Soiif our prior mean is J; we have
that o« and J are selected so that & = 15 and f = 5.

Example 3. Suppose that Y = X, the sufficient statistic, is the mean of a
random sample of size n that arises from the normal distribution N(6, ¢?),
where o? is known. Then g(y|f) is N(@, 6%/n). Further suppose that we

61 — 6y "= df
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370 More About Estimation [Ch. 8

are able to éssign prior knowledge to 6 through a prior p.d.f. A(6) that is
N(6,, 02). Then we have that

— 02 (6—6,)?
k(Oly) -0 ( ) ] _

1 1
\/ﬂa/\/; 20, exp[ 2(d*/n) 205

If we eliminate all constant factors (including factors involving y only), we
have

(a2 + d[n)f* — 2(yal + Boa'z/n)B:I

k(ely) ac exp [_ 2(0'2/’1)0'2
0

This can be simplified, by completing the square, to read (after eliminating
factors not involving 6)

(9 _ yo, + 900'2/”)2
75+ a’/n

2(0?/n)a;
L (a2 + &*/n) i

That is, the posterior p.d.f. of the parameter is obviously normal with mean

yoy + Gya?/n _ o a’/n 0
@+aln  \oi+ ol/n)y + (aﬁ + oz/n) 0

and variance (¢*/n)a} /(a2 + a?/n). If the square-error loss function is used, this
posterior mean is the Bayes’ solution. Again, notethat it is a weighted average
of the maximum likelihood estimate y = x and the prior mean 6,. Observe here
and in Example 2 that the Bayes’ solution gets closer to the maximum
likelihood estimate as n increases. Thus the Bayesian procedures permit the
decision maker to enter his or her prior opinions into the solution in a very
formal way such that the influences of these prior notions will be less and less
as n increases.

k(6]y) o exp

In Bayesian statistics all the information is contained in the
posterior p.d.f. k(0]y). In Examples 2 and 3 we found Bayesian point
estimates using the square-error loss function. It should be noted that
if Z[6(y), 0] = |6(y) — 6], the absolute value of the error, then the
Bayes’ solution would be the median of the posterior distribution of
the parameter, which is given by k(8|y). Hence the Bayes’ solution
changes, as it should, with different loss functions. ,

If an interval estimate of 0 is desired, we can now find two functions
u(y) and v(y) so that the conditional probability

uy)
Priu(y) <® <o(p)Y =y] = J k(61y) 4f,
y)

is large, say 0.95. The experimental values of X, X,..., X,, say
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Sec. 8.11 Bayesian Estimation 3N

X1, X3, - . - » Xy, Provide us with an experimental value of Y, say y. Then
the interval u(y) to v(y) is an interval estimate of 8 in the sense that the
conditional probability of ® belonging to that interval is equal to 0.95.
For illustration, in Example 3 where the posterior p.d.f. of the
parameter was normal, the interval, whose end points are found by
taking the mean of that distribution and adding and subtracting 1.96
of its standard deviation,

o3 + 6y0° Yn)al
y o 020 /n +1.96 (za /n)go
oy + o*/n oy + o’/n
serves as an interval estimate for @ with posterior probability of 0.95.

EXERCISES
;

8.1. LetX|, X5, ..., X,bearandom sample from a distribution thatis (1, 6).
Let the prior p.d.f. of ® be a beta one with parameters a and f. Show that

the posterior p.d.f. k(0)x,, x;, . . ., x,) is exactly the same as k(6| y) given in
Example 2.

8.2. Let X}, X3, ..., X, denote a random sample from a distribution that is
N(0, 6%), — 0 < 0 < 0, where ¢? is a given positive number. Let Y = X,
the mean of the random sample. Take the loss function to be
Z[0, 6(y)] = |0 — 6(»)|. If O is an observed value of the random variable @

 that is N(u, ), where 7> > 0 and p are known numbers, find the Bayes’
solution é(y) for a point estimate of 6.

83. LetX,, X5,..., X,denotea random sample from a Poisson distribution
with mean 0, 0 <f<w.Let Y= Z X; and take the loss function to be

20, 6(y)] = [0 0(»)]>. Let 6 be an observed value of the random variable
©. If © has the p.d.f. k() = e ¥ /T (a)p*, 0 < 0 < o0, zero elsewhere,
where « > 0, f > 0 are known numbers, find the Bayes’ solution é(y) for
a point estimate of 6.

8.4. Let Y, be the nth order statistic of a random sample of size n from a
distribution with p.d.f. f(x]0) = 1/6, 0 < x < 6, zero elsewhere. Take the
loss function to be Z[0, (y,)] = [0 — 6(y,)*. Let 0 be an observed value of
the random variable ®, which has p.d.f. k() = po?/0f*', a < 8 < o0, zero
elsewhere, with a > 0, 8 > 0. Find the Bayes’ solution é(y,) for a point
estimate of 6.

8.5. Let Y, and Y, be statistics that have a trinomial distribution with
parameters n, 0,, and 6,. Here 6, and 0, are observed values of the random
variables @, and ®,, which have a Dirichlet distribution with known
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372 More About Estimation |[Ch. 8

parameters a,, a,, and o, (see Example 1, Section 4.5). Show that the
conditional distribution of @, and ©, is Dirichlet and determine the
conditional means E(®,|y,, y,) and E(®,|y,, y,).

8.6. Let X be N(0, 1/6). Assume that the unknown @ is a value of a random
variable ® which has a gamma distribution with parameters o = r/2 and
B =2/r, where r is a positive integer. Show that X has a marginal
t-distribution with r degrees of freedom. This procedure is called
compounding, and it may be used by a Bayesian statistician as a way of first
presenting the r-distribution, as well as other distributions.

8.7. Let X have a Poisson distribution with parameter . Assume that the
unknown @ is a value of a random variable © that has a gamma distribution
with parameters @ = r and B = (1 — p)/p, where r is a positive integer and
0 < p < 1. Show, by the procedure of compounding, that X has a marginal
distribution which is negative binomial, a distribution that was introduced
earlier (Section 3.1) under very different assumptions.

8.8. In Example 2 let n = 30, « = 10, and § = 5 so that (y) = (10 + y)/45 is
the Bayes’ estimate of 0.
(@) If Y has the binomial distribution b(30, ), compute the risk
E{[6 — 3(1P}.
(b) Determine those values of 0 for which the risk of part (a) is less than
0(1 — 6)/30, the risk associated with the maximum likelihood estimator
Y/n of 0.

8.9. Let Y, be the largest order statistic of a sample of size n = 4 from a
distribution with uniform p.d.f. f(x; 6) = 1/0, 0 < x < 0, zero elsewhere. If
the prior p.d.f. of the parameter is g(6) = 2/6°, 1 < 8 < w0, zero elsewhere,
find the Bayesian estimator 4(Y,) of 6, based upon the sufficient statistic Y,,
using the loss function [6(y,) — 6.

8.10. Consider arandom sample X,, X, ..., X, from the Weibull distribution
with p.d.f. f(x; 0, 7) = 0x* e %', 0 < x < 00, where 0 < 8, 0 < 7, zero
elsewhere.

(a) If 7 is known, find the m.l.e. of 6.

(b) If the parameter 0 has a prior gamma p.d.f. g(6) with parameters « and
p* = 1/, show that the compound distribution is a Burr type with p.d.f.
h(x) = atfox*~'/(x* + B)**!, 0 < x < o0, zero elsewhere.

(c) If, in the Burr distribution, = and f are known, find the m.l.e. of a based
on a random sample of size n.

8.2 Fisher Information and the Rﬁo—Cramér Inequality

Let X be a random variable with p.d.f. f(x; 0), 0 € Q, where the
parameter space €} is an interval. We consider only special cases,
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Sec. 8.2| Fisher Information and the Rao—Cramér Inequality 373

sometimes called regular cases, of probability density functions as we
wish to differentiate under an integral (summation) sign. In particular,
this means that the parameter § does not appear in endpoints of the
interval in which f(x; 0) > 0.

With these assumptions, we have (in the continuous case, but the
discrete case can be handled in a similar manner) that

Jm f(x; 0)dx = 1

and, by taking the derivative with respect to 0,
* 9f(x; 0)
a0

dx =0. 1)
The latter expression can be rewritten as
9f(x; 0)
v 80
L Sx0

fx;0)dx=0

or, equivalently,

) Jm —-——-——a In /(x; 6) flx;0)dx=0.

00

If we differentiate again, it follows that

T [Infix;0) d In f(x; 0) of(x; 0)
.[ [ P T

] dcx=0. (2)

We rewrite the second term of the left-hand member of this equation

as
df(x; 0)
“ dlnfix;0) 00 . ~ © 3 In f(x; 0) 2 |
,[__oo a0 f(x; 0) f(x, 0) dx = J:w I:'——aa—] f(x, 9) dx.

This is called Fisher information and is denoted by (). That is,

© . 0 2
1) =J [il—“—é—g‘—-—)-] fix; 0) d;

but, from Equation (2), we see that /(f) can be computed from

91 ;0
©KO) = —J -—"6{9(—2"——)f(x; 9) dx.

-0
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374 -« More About Estimation [Ch. 8

Sometimes, one expression is easier to compute than the other, but
often we prefer the second expression.

Remark. Note that the information is the weighted mean of either

Al fix, O . @ In f(x; 6)
o | ° Fr

where the weights are given by the p.d.f f{x; 8). That is, the greater these
derivatives on the average, the more information that we get about 6. Clearly,
if they were equal to zero [so that 8 would not be in In f{x; )], there would
be zero information about 6. As we study more and more statistics, we learn
to recognize that the functlon

31n fix; 0)
N 60 .
is a very important one. For example, it played a major role in finding the m.Le.
6 by solving
7 dln fix; 6)
=0
,;1 o0
for 0.
Example 1. Let X be N(0, 6%, where — o0 < 0 < o0 and ¢ is known. Then
—0)?
ﬂx;@): 1 exp _(x ) )’ —CD<X<OO,,
Ve L 20’
where — o0 <0< o0, and
—0”
In f(x; 6)= _-21- In (2na?)— (x2 E r
Thus
01n fix; 0)_x—0
0 o
and

#infix;0) -1
P P
Clearly, E[(X —6)*/6*]= — E[—1/6%]=1/¢°. That is, in this case, it does not
matter much which way we:compute /(0), as

B dln X; 6)]7 : _ .a’lnj(X;B)
1(9)_5{[—-————60 ]} or K= E‘[maoz :l
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Sec. 8.2) Fisher Information and the Rao—Cramér Inequality 375

because each is very easy. Of course, the information is greater with smaller
values of a2

Example 2. Let X be binomial b(1, 8). Thus
~Inf; ) =xnf8+( —x)In(1 —0),
dnflx;0) x 1—x

o e —

@ 8 1-6°
and
Flnfix0) x l1-x
02 6 (1-0)7
Clearly, ‘ ) ‘
-X. 1-Xx7 -
0)= —E LT
© [02 (»1—-0)1]
8 1—0 1 1. 1
et et 16 oa—09

which is larger for 6 values close to zero or 1.

Suppose that X, X,,...,X, is a random sample from a
distribution having p.d.f. f(x; ). Thus the likelihood function (the joint
pdf.of X;, X;,...,X,)is

L(6) = f(x,; 0)f(xy; 0) - - - f(x,; 6).
Of course, |
InL@) =1n f(x,;60)+ In f(x5;0) + - - - + In f(x,; 0)
and
0 1n L(6) _0Inf(x;;0)  dln f(xy; 0) d1n f(x,; 6)
® -~ a8 T a8 Tt T o

It seems reasonable to define the Fisher information in the random

sample as
2
L©O)=E {[a lnaf)‘(o_)] } .

Note if we square Equation (3), we obtain cross-product terms like

d In f(X;; ) In f(X;; 6) L
MIYCLIVE) R

. 3)
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which from the independence of X; and X; equals

d1n f(X; 0)] [ 9 In f1X;; 6)
2E| ——— ———|=0.
[ 00 El— 00
The fact that this product equals zero follows immediately from
Equation (1). Hence we have the result that
e f[2InfX; 0
L@ =)>) E|———| ;-
® i§| {[ a0
However, each term of this summation equals /(6), and hence
1,(0) = ni(0).
That is, the Fisher information in a random sample of size n is n times
the Fisher information in one observation. So, in the two examples of
this section, the Fisher information in a random sample of size n is n/¢”
in Example 1 and n/[6(1 — )] in Example 2.
We can now prove a very important inequality involving the
variance of an estimator, say Y = u(X}, X3, . . ., X,), of 8, which can
be biased. Suppose that

E(Y) = Hu(X,, X>, . . ., X,)] = k(9).
That is, in the continuous case,

k(e) = | e N u(x,, R xn)f(xl; 0) T ‘f(xn; 0) dxl .' "' dxn;
([ e 1 o0
k(0)—ﬂ_w ‘—mu(x,,x,,...,x,,) _;f(x,-;ﬂ) =0 ]

x f(x1; 0) -+ - f(xy; 0) dx, -+ - dx,

p o0 uo "'"al “0
= ”.J~ u(xth,...,x,,) ;—p.g(éx—)jl

X f(x150) - - f(x,; 0) dx, - - - dx,. 4)
Define the random variable Z by Z = 3" [34n f(X;; 6)/36]. In accord-
|

Y- —

ance with Equation (1) we have E(Z) =Y E0 In f(X;; 6)/26] = 0.
|

Moreover, Z is the sum of n independent random variables each with
mean zero and consequently with variance E{[0 In f(X; 6)/06]}. Hence
the variance of Z is the sum of the n variances,

a2
6% =nE [(er%%x’—m) ] = I(0) = nI(6).
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Because ¥ = u(X,, .. ., X,)and Z = ¥ [3 In f(X;; 8/06], Equation (4)
, | - ;

shows that E(YZ) = k’(f). Recall that

E(YZ) = K(Y)E(Z) + poyoy,

where p is the correlation coefficient of Y and Z. Since E(Y) = k(f) and
E(Z) =0, we have

k(0
k'(f) =k(0) -0+ poyo, or p= ©
OyCz
Now p? < 1. Hence
L4C)g K@) O
— < < 03
At - T 27
If we replace 0% by its value, we have ,
- ’ 2 . ’ 2
o> k' (9)] _[k0)]

e[(2mfOGONT @)
" 26

This inequality is known as the Rao—-Cramér inequality.
If Y=u(X,,X,,...,X,) is an unbiased estimator of 6, so that
k(6) = 6, then the Rao—Cramér inequality becomes, since k'(0) = 1,

oy 2 1(0)

Note that in Examples 1 and 2 of this section 1/n(0) equals ¢°/n and
0(1 — @)/n, respectively. In each case, the unbiased estimator, X, of 0,
which is based upon the sufficient statistic for 6, has a variance that is
equal to this Rao—Cramér lower bound of 1/nl(6).

We now make the following definitions.

Defimition 1. Let Y be an unbiased estimator of a parameter 6 in
such a case of point estimation. The statistic Y is called an efficient
estimator of 0 if and only if the variance of Y attains the Rao—Cramér
lower bound.

Definition 2. In cases in which we can differentiate w1th respect to
a parameter under an integral or summation symbol, the ratio of the
Rao-Cramér lower bound to the actual variance of any unbiased
estimation of a parameter is called the efficiency of that statistic.

Example 3. Let X,; X,, ..., X, denote a random sample from a Poisson
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distribution that has the mean 0 > 0. It is known that X is an m.Le. of 6;
we shall show that it is also an efficient estimator of 8. We have

dln fix;0) @
- J» Y '
9 ao(xlnﬂ 0 —Inx!)
_X l_x—G
I

Accordingly,

[alnf(x;o)’ EX—0? ¢ 0 1

The Rao-Cramér lower bound in this case is 1/[n(1/6)] = 6/n. But 0/n is the
variance of X. Hence X is an efficient estimator of 6.

Example 4. Let S? denote the variance of a random sample of size n > 1
from a distribution that is N(u, 0), 0 < 6 < oo, where u is known. We know
that E[nS?/(n — 1)] = 6. Whatis the efficiency of the estimator nS?/(n — 1)? We

have
(x—u? In(2zH)
In f(x; 0) = — % 2
Alnfx;0) (x—p? 1
0 200 20

and -

& In f(x; 6) (x—=u? 1

—w " F W
Accordingly, '

L[Fhaxo)_o 1 _ 1
06 TP 20 200
Thus the Rao—Cramér lower bound is 20’/}:. Now nS?/0 is xi(n — 1), so the
variance of nS%/0 is 2(n — 1). Accordingly, the variance of nS*/(n — 1) is
2(n — 1)[0*/(n — 1)}] = 26*/(n — 1). Thus the efficiency of the estimator
nS*/(n — 1) is (n — 1)/n. With g known, what is the efficient estimator of the
variance? '

Example 5. LetX,, X, . .., X,denotea random sample of sizen > 2 from
a distribution with p.d.f. '

f(:0) =0 '=exp@inx—Inx+1nf), O<x<l,
=0 elsewhere,

It is easy to verify that the Rao—Cramér lower bound is &/n. Let
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Y, = —In X,. We shall indicate that each ¥; has a gamma distribution. The
associated transform y; = —In x;, with inverse x; = ¢7*, is one-to-one and
the transformation maps the space {x;:0<x;<1} onto the space
{yi:0 <y < o0}. Wehave |J| = e - Thus ¥, has a gamma dlStl’lbuthl‘l with

a=1landf=1/0.Let Z = —Z In X Then Z has agamma dlstnbution with

a=nand g = 1/6. Accordmgly, we have E2Z) = ozﬂ = n/G. This suggests that
we compute the expectation of 1/Z to see if we can find an unbiased estimator
of 6. A simple integration shows that E(1/Z) = §/(n.— 1). Hence (n — 1)/Z is
an unbiased estimator of 8. With n > 2, the variance of (n — 1)/Z exists and
is found to be 6%/(n. — 2), so that the efficiency of (n — 1)/Z is (n — 2)/n. This
efficiency tends to 1 as n increases. In such an instance, the estlmator is said
to be asymptotically efficient.

The concept of joint efficient estimators of several parameters has
been developed along with the associated concept of joint efficiency of
several estimators. But limitations of space prevent their inclusion in
this book.

EXERCISES

8.11. Prove that X, the mean of a random sample of size n from a
distribution that is N(0, a-z) —o0 < 8 < o0, is, for every known ¢*> > 0, an
efficient estimator of 6.

8.12. Show that the mean X of a random sample of size » from a distribution
which is b(1, 8), 0 < 8 < 1, is an efficient estimator of 6.

8.13. Given f(x;0) =1/0, 0 < x < 0, zero elsewhere, with 6 > 0, formally
~ compute the reciprocal of

d In f(X; 0)
=75}

Compare this with the variance of (n 4 1)Y,/n, where Y, is the largest item
of a random sample of size # from this distribution. Comment.

8.14. Given the p.d.f.

1
10)=— o= , —w<f<oo.
fx; 6) R | 0 <X <o w<f<aw
Show that the Rao—Cramér lower bound is 2/n, where n is the size of a
random sample from this Cauchy distribution.

8.15. Let X have a gamma distribution with x =4 and =8 > 0.
(a)' Find the Fisher information /(6). ;
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(b) If X}, X,, ..., X,is arandom sample from this distribution, show that
the m.l.e. of @ is an efficient estimator of 6.

8.16. Let X be N(0,0),0 < @ < 0.
(a) Find the Fisher information 1(6).
(b) If X, X,, . .., X, is a random sample from this distribution, show that
the m.l.e. of 8 is an efficient estimator of 6.

8.3 Limiting Distributions of Maximum Likelihood Estimators

We use the notation and assumptions of Section 8.2 as much as
possible here. In particular, f(x; 0) is the p.d.f., (@) is the Fisher
information, and the likelihood function is

L(8) = f(x:; 0)f(x3; 0) - - - f(x,; ).
Also, we can differentiate under the integral (summation) sign, so that .

Oln L) &0 lnf(X,, 6)
TER T

Z =

has mean zero and variance n/(6). In addition, we want to be able to
find the maximum likelihood estimator § by solving

dlln L(9)]

=0.
00
That is,
d[ln L(0)] _o
0

where now, with # in this expression, L(6) =f(X;; ) - - f(X,; 0).
We can approximate the left-hand member of this latter equation by
a linear function found from the first two terms of a Taylor’s series
expanded about 6, namely

lin L(6)] in L©)] _
e TO-0—7m =0

When L(B) f(Xl ’ 0)_/(X2, 0) f(Xrn 0)
Obviously, this approximation is good enough only if f is close to
6, and an adequate mathematical proof involves certain regularity
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_conditions, all of which we have not given here. But a heuristic
argument can be made by solving for § — @ to obtain

dln L(6)]
G_og__ 00 ___ Z
Flin LO)]  [in LB)]
et e

Let us rewrite this equation as

6—6  Z//n@) M

17 LOl],
/W‘ e /()

Since Z is the sum of the i.i.d. random variables
dIn X;; 6)

00 ’

each with mean zero and variance /(6), the numerator of the right-hand

member of Equation (1) is limiting N(0, 1).by the central limit theorem.
Moreover, the mean

i=1,2,...,n,

& =8 In f(X; 0)
2o

X |-

converges in probability to its expected value, namely /(). So the
denominator of the right-hand member of Equation (1) converges in
probability 1. Thus, by Slutsky’s theorem given in Section 5.5, the
right-hand member of Equation (1) is limiting N(O, 1). Hence the
left-hand member also has this limiting standard normal distribution.
That means that we can say that § has an approximate normal
distribution with mean 6 and variance 1/n/(6).

The preceding result means that in a regular case of estimation and
in some limiting sense, the m.l.e. #is unbiased and its variance achieves
the Rao—Cramér lower bound. That is, the m.Le. § is asymptotically
efficient. :

Example 1. In Exercise 8.14 we examined the Rao—Cramér lower bound
of the variance of an unbias¢d estimator of 6, the median of a certain Cauchy
distribution. We now know that the m.l.e. § of 8 has an approximate normal
distribution with mean 8 and variance equal to the lower bound of 2/n. Hence,
once we compute §, we can say, for illustration, that § + 1.96\/2_/}1 provides
an approximate 95 percent confidence interval for 6.
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To determine §, there are many numerical methods that can be .
used. In the Cauchy case, one of the easiest is given by the following:

_0ln L(B) Z": 2(x;,— 6)

00 A1+ (x— 0
In the denominator of the right-hand member, we use a preliminary
estimate of @ that is not influenced too much by extreme observations.

For illustration, the sample median, say §,, is very good one while the
sample mean x would be a poor choice. This provides weights

2
w_“ 14 (x = 0,)

so that we can solve

0

i=1,2,...,n,

n P Y wax;
0= zl wiy)(x;—0) toget 0, = 5w .

Now 6, can be used to obtain new weights and §,:
o b) - 0‘ Z Wi X;
Wi = ) = .
2 '|‘(-’Ci"'0‘|)2 ? ZW.‘Z

This iterative process can be continued until adequate convergence is
obtained; that is, at some step k, 8, will be close enough to 6 to be used

as the m.l.e.
Example 2. Suppose that the random sample arises from a distribution
with p.d.f. ’
flx; 0) = 0x° 1, O<x<l, 0eQ={0:0<6<w},

zero elsewhere. We have
Inf(x;0) =In6+ (@ —1)Inx,

dInflx;0) 1
a0 0

+ Inx,

and
Finfx;0) 1
02 9
Since E(—1/6%) = —1/6°, the lower bound of the variance of every unbiased
estimator of 6 is #%*n. Moreover, the maximum likelihood estimator
6 = —n/In TI"_, X, has an approximate normal distribution with mean 6 and

variance #/n. Thus, in a limiting sense, § is‘the unbiased minimum variance
estimator of @; that is, § is asymptotically efficient.
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Example 3. The m.l.e. for 0 in

] et ~
f(x,6)=—-x—'—, x=0,1,2..., 0eQ={0:0<0 < 0},

is § = X, the mean of a random sample. Now
In fix; 0) =xIn 6-0—1Inx!

and

olln f(x; 6)]
00

x i fi 0] x
—9—1 and Py =g

Thus

and 0 = X hasan approximate normal distribution with mean 6 and standard
deviation ./6/n. That is, Y = (X — 6)/,/6/n has a limiting standard normal
distribution. The problem in practice is how best to estimate the standard
deviation in the denominator of Y. Clearly, we might use X for 9 there, but
does that create too much dependence between the numerator and
denominator? If so, this requires a very large sample size for (X — 8)/./X/n
to have an approximate normal distribution. It might be better to approximate
1(6) by

1 & follnfixs ON° 12 (x 2_52
T

iml i=1 \X

Thus nl(6) is approximated by ns*/x* and we can say that
J/n(X — 6)
X/S
is approximately N(0, 1). We do not know exactly which of these two

solutions, or others like simply using s/ﬁ in the denominator, is best.
Fortunately, however, if the Poisson model is correct, usually

\/@ A

Nn ﬂ s ﬁ

If this is not true, we should check the Poisson assumption, which requires,
among other things, that u = ¢°. Hence, for illustration, either

4 1.96\/3‘3 or ¥4 196X o 196
n ns Jn
serves as an approximate 95 percent confidence interval for 6. In situations

like this, we recommend that a person try all three because they should be in
substantial agreement. If not, check the Poisson assumption.
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The fact that the m.Le. § has an approximate normal distribution
with mean 6 and variance 1/nl(f) suggests that 8 (really a sequence
6,,6,,6,,...,0,, ...)convergesin probability to 6. Of course, 6, can
be biased; say E(f, — 6) = b,(6), where b,(6) is the bias. However, b,(6)
equals zero in the limit. Moreover, if we assume that the variances exist
and

li_l.n [var (6,)] = li_{n [BIL(B{I’

then the limit of the variances is obviously zero. Hence, from
Chebyshev’s inequality, we have

62

Prlf,— 0 =€l <

However,
lim E[(d, — 6)%] = lim [b?(8) + var (§,)] =0 -
and thus

limPr[l6,— 6| =¢]=0
for each fixed € > 0. Any estimator, not just maximum likelihood
estimators, that enjoys this property is said to be a consistent estimator
of 8. As illustrations, we note that all the unbiased estimators based
upon the complete sufficient statistics in Chapter 7 and all the
estimators in Sections 8.1 and 8.2 are consistent ones.

We close this section by considering the extension of these limiting
distributions to maximum likelihood estimators of two or more
parameters. For convenience, we restrict ourselves to the regular case
involving two parameters, but the extension to more than two is
obvious once the reader understands multivariate normal distributions
(Section 4.10).

Suppose that the random sample X,, X,, ..., X, arises from a
distribution with p.d.f. f(x; 8,, 8,), (8,, 6;) e Q, in which regularity
conditions exist. Without describing these conditions in any detail, let
us simply say that the space of X where f(x; 8,,8,) > 0 does not
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involve 6, and 0,, and we are able to differentiate under the integral
(summation) signs. The information matrix of the sample is equal to

I,=nx
£ dlnf(X;0,0,)7 £ dIn f(X; 0, 0;) 0In f(X; 6,, 6,)
a6, s a0, 26, ’
p{2InfiX; 6,,6,) 6 InfiX; 0, 6) L[ AX; 6,007
aG| 002 602
[0 In f(X;0,,0,)] (& Inf1X; 0,,0,)]
E E
, i o } | 00,60, |
T p[E A 6,607 L [EnfX; 6, 6,)]
| 06,00, | i 06’
One can immediately see the similarity of this to the one-parameter
case.

If , and 0, are maximum likelihood estimators of 6, and 6,, then
d, and #, have an approximate bivariate normal distribution with
means 6, and 6, and variance—covariance matrix I;'. That is, the

approximate variances and covariances are found, respectively, in the
matrix

I & var(ﬂ,) cov(g.,gz)
" “\cov(d,,0,) var(d,) |

An illustration will help us understand this result that has simply been
given to the reader to accept without any mathematical derivation.

Example 4. Let the random sample X,, X,, ..., X, arise from N(8,, 0,).

Then
In fx; 6, 6;) = —L In 2n6y) — == i :
2 20,
dln f(x;8,,6,) x—8,
20, 9, °
d1n f(x; 0,,8,) _ _L N (x — 0,)?
00, 26, 20
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@ infix; 8,,0,) ~1

7 6, ’
#In f(x;0,,6,) —(x—8,)
a6, 80, #
?lnf(x;0,,0,) 1 -(x—0)
8 26 6

If we take the expected value of these three second partial derivatives and
multiply by — n, we obtain the information matrix of the sample, namely,

n
- 0
= |9
0o L

Hence the approximate variance-covariance matrix of the maximum
likelihood estimators f;, = X and 6, = $* is

% 0

- _
L= . 2
n

It is not surprising that the covariance equals zero as we know that Xand
§? are independent. In addition, we know that

.= 0
var (X) =

2
n

var (8% = var [(%) (%)] . (%) o= 1

since n$%/6, is y(n — 1). While var (S?) # 263/n, it is true that
205 2n—1)6
m S

and

for large n.

EXERCISES

817. Let X}, X,,..., X, be a random sample from each of the following
distributions. In each case, find the m.le. 4, var (§), 1/nK(@), where I(0) is
the Fisher information of a single observation X, and compare var (§) and
1/ni(6).

(@) 1,0),0<0< 1.
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(b) N, 1), —0 <8 < 0.
(©) N@O,0),0 <8 < oo.
(d) Gamma (x=.5,=10),0 <0 < c0.

8.18. Referring to Exercise 8.17 and using the fact that § has an approximate

NI0, 1/nl(0)], in eadh case construct an approximate 95 percent confidence
interval for 6.

8.19. Let (X,Y),(X;,Y,),...,(X,,Y,) be a random sample from a
bivariate normal distribution with unknown means 8, and 0, and with
known variances and correlation coefficient, o3, 63, and p, respectively. Find
the maximum likelihood estimators , and §; of 8, and 6, and their approxi-
mate variance—covariance matrix. In this case, does the latter provide the
exact variances and covariance?

820. Let (X},Y)),(X,,Y,),...,(X,,Y,) be a random sample from a
bivariate normal distribution with means equal to zero and variances 8, and
8,, respectively, and known correlation coefficient p. Find the maximum
likelihood estimators 6, and @, of 0, and 0, and their approximate
variance-covariance matrix.

8.4 Robust M-Estimation
In Example 1 of Section 8.3 we found the m.l.e. of the center 6 of

the Cauchy distribution with p.d.f.

1
all + (x — 6)?]°

where — o0 < 6 < oo. The logarithm of the likelihood function of a
random sample X, X5, . . ., X, from this distribution is

Sx; 8) =

—0 < X < 00,

L@ = —nlnn— 3 In[l + (o — 6.

=1

‘To maximize, we differentiated In L(8) to obtain

dinL(®) 2 2x,—0)

))

=y = = _—o.
do i=1 1 +(x|¥‘0)2

The solution of this equation cannot be found in closed form, but the
equation can be solved by some iterative process. There, to do this, we
used the weight function

2

wox = 00 = +(x — )
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where 6, is some preliminary estimator of 6, like the sample median.
Note that values of x for which |x — §,| is relatively large do not have
much weight. That is, in finding the maximum likelihood estimator of
0, the outlying values are downweighted greatly.

The generalization of this special case is described as follows. Let
X\, X3, ..., X, be a random sample from a distribution with a p.d.f.
of the form f(x — ), where 6 is a location parameter such that
— 00 < 0 < . Thus

in L@ = $ Inftxi— 0= - 3 p(x,— ),

i=-]
where p(x) = —In f(x), and

dnLO) _ &f—0_ &,
do B _igl f(x;—0) - igl Fx = 0) ‘_

where p’(x) = ¥(x). For the Cauchy distribution, we have that these
functions are

p(x)=In=n+ In(1 + x?),

and
2x
Hx) = 1+
In addition, we define a weight function as
W 165
wx) =—~,

which equals 2/(1 + x?) in the Cauchy case.

To appreciate how outlying observations are handled in estimating
a center § of different models progressing from a fairly light-tailed
distribution like the normal to a very heavy-tailed distribution like the
Cauchy, it is an easy exercise (Exercise 8.21) to show that standard
normal distribution, with p.d.f. ¢(x), has

p(x) = 5 In m+ L, W =x, wi) =1

That is, in estimating the center 6 in g(x — ) each value of x has the
weight 1 to yield the estimator § = X.
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Also, the double exponential distribution, with p.d.f.
fo)=3eM,  —o0<x<w,

has, provided that x # 0,
sign(x) 1

x Ixl

p(x)=In2+|x, W(x)=sign(x), w(x)=
Here § = median (X;) because in solving

S ¥x—6)= Y sign(x—0)=0

i=1 i=1

we need as many positive values of x; — 8 as negative values. The
weights in the double exponential case are of the order 1/|x — 0|, while
those in the Cauchy case are 2/[1 + (x — 6)?]. That is, in estimating the
center, outliers are downweighted more severely in a Cauchy situation,
as the tails of the distribution are heavier than those of the double
exponential distribution. On the other hand, extreme values from the
double exponential distribution are dowriweighted more than those
under normal assumptions in arriving at an estimate of thé center 6.

Thus we suspect that the m.l.e. associated with one of these three
distributions would not necessarily be a good estimator in another
situation. This is true; for example, X is a very poor estimator of the
median of a Cauchy distribution, as the variance of X does not even
exist if the sample arises from a Cauchy distribution. Intuitively, X is
not a good estimator with the Cauchy distribution, because the very
small or very large values (outliers) that can arise from thatdistribution
influence the mean X of the sample too much.

An estimator that is fairly good (small variance, say) for a wide
variety of distributions (not necessarily the best for any one of them)
is called a robust estimator. Also estimators associated with the
solution of the equation

o T W(x— 6) =0

i=1

are frequently called robust M-estimators (denoted by ) because they
can be thought of as maximum likelihood estimators. So in finding a
robust M-estimator we must select a ¥ function which will provide-an
estimator that is good for each distribution in the collection under
consideration. For certain theoretical reasons that we cannot explain
at this level, Huber suggested a ¥ function that is a combination of

STUDENTS-HUB.com Uploaded By: anonymous



390 ) More About Estimation [Ch, 8

those associated with the normal and double exponential distributions,
¥Y(x) = —k, x< —k
- x, _k S X S k’
=k, k < x,
with weight w(x) = 1, |x| < k, and k/|x|, provided that & < |x|. In
Exercise 8.23 the reader is asked to find the p.d.f. f(x) so that the
M-estimator associated with this W function is the m.lLe. of the

location parameter @ in the p.d.f. f(x — 0).
With Huber’s ¥ function, another problem arises. Note that if we

double (for illustration) each X, X, . . . , X,,, estimators such as X and
median (X;) also double. This is not at all true with the solutlon of the
equation

Z Y(x;—0) =

where the ¥ function is that of Huber One way to avmd thlS difficulty
is to solve another, but similar, equation instead,

x;— 0 :
x50 ®

where d is a robust estimate of the scale. A popular d to use is

‘median |x; — median (x;)|
0.6745

The divisor 0.6745 is inserted in the definition of 4 because then d is
a consistent estimate of ¢ and thus is about equal to o, if the sample
arises from a normal distribution. That is, ¢ can be approximated by
d under normal assumptions.

That scheme of selecting d also prov1des us with a clue for select-
ing k. For if the sample actually arises from a normal distribution, we
would want most of the values x,, x,, . . ., x, to satisfy the inequality

X — 6
d

x;— 0 x;,— 0
o550

d=

<

because then
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That is, for illustration, if all the values satisfy this inequality, then
Equation (1) becomes

Se(a)- %

This has the solution x, which of course is most desirable with normal
distributions. Since d approximates o, popular values of &k to use are
1.5 and 2.0, because with those selections most normal variables would
satisfy the desired inequality.

Again an iterative process must usually be used to solve Equation
(1). One such scheme, Newton’s method, is described. Let 6, be a first
estimate of 6, such as #, = median (x;). Approximate the left-hand
member of Equation (1) by the first two terms of Taylor’s expansion
about 6, to obtain

approximately. The solution of this provides a second estimate of 0,

d 2 \F(x’i ; é")

£ (=38

which is called the one-step M-estimate of 0. If we use 6, in place of
6,, we obtain 0,, the two-step M-estimate of §. This process can
continue to obtain any desired degree of accuracy. With Huber’s ¥
function, the denominator of the second term,

z ,xi—éo
£ (*7)

is particularly easy to compute because ¥'(x) =1, —k < x < k, and
zero elsewhere: Thus that denominator simply counts the number of
X1, X2, . - . , X, Such that |x; — 0,)/d < k. )

Say that the scale parameter ¢ is known (here o is not necessarily
the standard deviation for it does not exist for a distribution like the
Cauchy). Two terms of Taylor’s expansion of

zy(x 5) .

b
I

6, =0, + —
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about 0 provides the approximation

N e O R

This can be rewritten

X, —0
') ‘P(—-a )
f—6=
re(2)
For the asymmetric ¥ functions that we ‘have considered
()]
ag

provided that X has a symmetric distribution about 6. Clearly,

]

Thus Equation (2) can be rewritten as

Jn6—0)
Je[ () et O
=559

Clearly, by the central limit theorem, the numerator of the right-
hand member of Equation (3) has a limiting standardized normal
distribution, while the denominator converges in probability to 1. Thus
the left-hand member has a limiting distribution that is N(0, 1). In
application we must approximate the denominator of the left-hand
member. So we say that the robust M-estimator § has an approximate
normal distribution with mean 6 and vanance

G
e
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where §, is the (last) k-step estimator of 8. Of course, § is approximated
by 0,; and an approximate 95 percent confidence interval for 8 is
given by 6, — 1.96\/1; to, + 1.96ﬁ.

EXERCISES

8.21. Verify that the functions p(x), ¥(x), and w(x) given in the text for the
normal and double exponential distributions are correct.

8.22. Compute the one-step M-estimate 6, using Huber’s ¥ with k = 1.5 if
- n =7 and the seven observations are 2.1, 5.2, 2:3, 1.4, 2.2,2.3, and 1.6. Here
take §, = 2.2, the median of the sample. Compare &, with X.

8.23. Letthep.d.f. f(x) besuch.that the M-estimator associated with Huber’s
¥ function is a maximum likelihood estimator of the location parameter
in f(x — 0). Show that f(x) is of the form ce~*'*), where p,(x) = x¥/2,|x| < k
and p,(x) = k|x| — k%2, k < |x].

8.24. Plot the ¥ functions associated with the normal, double exponential,
and Cauchy distributions in addition to that of Huber. Why is the
M-estimator associated with the ¥ function of the Cauchy distribution
called a redescendmg M-estimator?

8.25. Use the data in Exercise 8.22 to find the one-step redescendlng M-
estimator d, associated with W(x) = sin (x/1.5), |x| < 1.5n, zero elsewhere.
This was first proposed by D. F. Andrews. Compare this to x and the
one-step M-estimator of Exercise 8.22. [It should be noted that there is no
p.d.f. f{x) that could be associated with this W(x) because W¥(x) = 0 if
|x| > 1.57.]

ADDITIONAL EXERCISES

8.26. LetX,, X;, ..., X, bearandom sample from a gamma distribution with
a=2and f=1/6,0<6 < o0.
(a) Find the m.le., , of 6. Is § unbiased?
(b) What is the approximating distribution of §?
(c) If the prior distribution of the parameter is exponential with mean 2,
determine the Bayes’ estimator associated with a square-error loss
function.

8.27. If X, X,, ..., X, is a random sample from a distribution with p.d.f.
S(x; 0) = 36%(x + 0)™, 0 < x < o0, zero elsewhere, where 0 < 6, show that
Y = 2X is an unbiased estimator of § and determine its efficiency.

8.28. Let X, X,, ..., X, be a random sample from a distribution with p.d.f.

fix; 8) = —2

(a + x) —5» 0 < x < o0, zero elsewhere, where 0 < 6.
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(a) Find the m.le., 0, of 8 and argue that it is a complete sufficient
statistic for 8. Is § unbiased?

(b) If § is adjusted so that it is an unbiased estimator of 8, what is a lower
bound for the variance of this unbiased estimator?

8.29. If X,, X,, ..., X, is arandom sample from N(8, 1), find a lower bound
for the variance of an estimator of k(8) = 2. Determine an unbiased
minimum variance estimator of #* and then compute its efficiency.

8.30. Suppose that we want to estimate the middle, 8, of a symmetric
distribution using a robust eéstimator because we believe that the tails of this
distribution are much thicker than those of a normal distribution. A
t-distribution with 3 degrees of freedom with center at 9 (not at zero) is
such a distribution, so we decide to use the m.l.e., §, associated with that

-+ distribution as our robust estimator. Evaluate @ for the five observations:
10.1,20.7,11.3, 12.5, 6.0. Here we assume that the spread parameter is equal
to 1.

8.31. Consider the normal distribution N(0, §). With a random sample
X., Xy, ..., X, we want to estlmate the standard devnatlon \/5 Find the

constant ¢ so that ¥ = ¢ Z |X;| is an unbiased estlmator of \/l_i and
determine its efficiency. /=1
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CHAPTER 9 .

Theory of
Statistical Tests

9.1 Certain Best Tests

In Chapter 6 we introduced many concepts associated with tests of
statistical hypotheses. In this chapter we consider some methods of
constructing good statistical tests, beginning with testing a simple
hypothesis H, against a simple alternative hypothesis H,. Thus, in all
instances, the parameter space is a set that consists of exactly two
points. Under this restriction, we shall do three things:

1. Define a best test for testing H, against H,.
2. Prove a theorem that provides a method of determining a best test.
3. Give two examples.

Before we define a best test, one important observation should
be made. Certainly, a test specifies a critical region; but it can also be
said that a choice of a critical region defines a test. For instance, if
one is given the critical region C = {(x,, X, x3) : X3 + x3 + x3 > 1}, the
test is determined: Three random variables X,, X;, X; are to be
considered; if the observed values are x,, x,, x;, accept H, if

395
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