
Chapter 7
Sort

Data Structures And
Algorithms in Java

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

COMP242

Instructor: Murad Njoum
Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

• Merge Sort
• Quick Sort
• insertion sort
• Shell sort
• External Sort

• Selection
• Bubble
• Radix/Bucket
• Heap Sort

Chapter 7
Sort

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Selection sort

Selection sort is a simple and efficient sorting algorithm that works by repeatedly selecting the
smallest (or largest) element from the unsorted portion of the list and moving it to the sorted portion
of the list.

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

void sort(int arr[])
{

int n = arr.length;

// One by one move boundary of unsorted subarray
for (int i = 0; i < n-1; i++)
{

// Find the minimum element in unsorted array
int min_idx = i;
for (int j = i+1; j < n; j++)

if (arr[j] < arr[min_idx])
min_idx = j;

// Swap the found minimum element with the first
// element
int temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;

}
} Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Complexity Analysis of Selection Sort
Time Complexity: The time complexity of Selection Sort is O(N2) as there are two
nested loops:
•One loop to select an element of Array one by one = O(N)
•Another loop to compare that element with every other Array element = O(N)
•Therefore overall complexity = O(N) * O(N) = O(N*N) = O(N2)
Auxiliary Space: O(1) as the only extra memory used is for temporary variables
while swapping two values in Array. The selection sort never makes more than
O(N) swaps and can be useful when memory writing is costly.
Advantages of Selection Sort Algorithm
•Simple and easy to understand.
•Works well with small datasets.
Disadvantages of the Selection Sort Algorithm
•Selection sort has a time complexity of O(n^2) in the worst and average case.
•Does not work well on large datasets.
•Does not preserve the relative order of items with equal keys which means it is
not stable.

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Instructor: Murad Njoum

Divide and conquer algorithms (Merge Algorithm)
The basic idea behind merge sort is this: it tends to be a lot easier to sort two smaller, sorted lists rather than
sorting a single large, unsorted one.

It’s useful when data set is huge (in Terabytes) and memory is low (in Gega bytes)

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Instructor: Murad Njoum
Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Instructor: Murad Njoum
Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Instructor: Murad Njoum
Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Example 1

Instructor: Murad Njoum
Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Instructor: Murad Njoum

Example 2

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Algorithm
/* low is for left index and high is right
index of the sub-array of array to be
sorted */
void mergeSort(int low, int high)
{

if (low < high)
{

int mid = (low +high)/2;

// Sort first and second halves
mergeSort(low, mid);
mergeSort(mid +1, high);

merge(low, mid, high);
}

}
Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Algorithm (Time Complixity)
/* low is for left index and high is right
index of the sub-array of array to be
sorted */
void mergeSort(int low, int high)
{

if (low < high)
{

int mid = (low +high)/2;

// Sort first and second halves
mergeSort(low, mid);
mergeSort(mid +1, high);

merge(low, mid, high);
}

}

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

void merge(int low, int mid, int high)
{

int i, j, k;
i=low; //for Another Array copied
j=low;

k=mid+1;

while (j < =mid && k < =high)
{

if (A[j] <= A[k])
{

B[i] = A[j];
j++;

}
else
{

B[i] = A[k];
k++;

}
i++;

}

if(j < =mid) // copy all remines
elements to Array

{
for(k=j; k<=mid;k++, i++)

B[i] = A[k];
}

else{ // copy all remines elements to
Array

for(j=k; j<=high;j++,i++)
B[i] = A[j];

}
}

/* Copy the remaining elements of B[],
back to A[]*/

for(i=low; j<=high; i++)
A[i] = B[i];

}

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

QuickSort

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It
picks an element as pivot and partitions the given array around the
picked pivot. There are many different versions of quickSort that pick
pivot in different ways.

• Always pick first element as pivot.
• Always pick last element as pivot
• Pick a random element as pivot.
• Pick median as pivot.

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Quick Sort

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

For instance, with input 8, 1, 4, 9, 6, 3, 5, 2, 7, 0 the left element is 8, the right element is 0, and the center (in position (left +
right)/2)
element is 6. Thus, the pivot would be v = 6.

Median of :
8, 1, 4, 9, 6, 3, 5, 2, 7, 0

center = (left + right)/2)
=[0+9]/2=4 , median is

Is left(8) > center (6) , swap them

6, 1, 4, 9, 8, 3, 5, 2, 7, 0

Is left(6) > right (0) , swap them

0, 1, 4, 9, 8, 3, 5, 2, 7, 6

Is center(8) > right (6) , swap them
0, 1, 4, 9, 6, 3, 5, 2, 7, 8

0, 1, 4, 9, 8, 3, 5, 2, 7, 6

A[p ... r]

1st swap

2nd swap

left rightcenter

3rd swap

left rightcenter

Last swap

Result

ji

8 1 4 9 6 3 5 2 7 0

8 1 4 9 6 3 5 2 7 0

6 1 4 9 8 3 5 2 7 0

0 1 4 9 8 3 5 2 7 6

0 1 4 9 6 3 5 2 7 8

0 1 4 9 7 3 5 2 6 8

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

void Q_sort(int A[], int left, int right)
{
int i, j, pivot;
if (left < right)
{
pivot = median3(A, left, right);

i = left;
j = right -1;

for(;;) //while(i<j) omit else, break
{

while(A[i] < pivot){++i;}
while(A[j] > pivot){--j;}

if (i < j)
exchange (A, i , j);

else
break;

}
exchange(A, i, right); //swap occur between i and pivot
Q_sort(A, left, i-1);
Q_sort(A, i+1, right);//i not included because index i is the pivot,(all elements in indexes

are less or more than pivot) }
}

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

int median3(int A[], int left, int right)
{

int center = (left + right)/2;
if (A[left] > A[center])

exchange(A, left, center);
if (A[left] > A[right])

exchange(A, left, right);
if (A[center] > A[right])

exchange(A, center, right); //rearrange elements

exchange(A, center, right); //swap median pivat with most right
elements in array
return A[right]; //return the pivot
}

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Analysis of QuickSort
Time taken by QuickSort in general can be written as following.
T(n) = T(k) + T(n-k-1) + (n)
The first two terms are for two recursive calls, the last term is for the partition process.
k is the number of elements which are smaller than pivot.
The time taken by QuickSort depends upon the input array and partition strategy.
Following are three cases.

Worst Case: The worst case occurs when the partition process always picks
greatest or smallest element as pivot. If we consider above partition strategy
where last element is always picked as pivot, the worst case would occur when the array
is already sorted in increasing or decreasing order. Following is recurrence for worst case.
T(n) = T(0) + T(n-1) +(n) which is equivalent to T(n) = T(n-1) + (n)

The solution of above recurrence is O(n2).

Best Case: The best case occurs when the partition process always picks the middle element as
pivot. Following is recurrence for best case.
T(n) = 2T(n/2) + (n)
The solution of above recurrence is O(nLogn).

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Insertion Sort: Insertion sort is a simple sorting algorithm that works the way we sort playing cards in our hands.

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

5 4 10 1 6 2 Solution in class At board

temp

Exercise:

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)
{

int i, temp, j;
for (i = 1; i < n; i++) {

temp = arr[i];
j = i - 1;

/* Move elements of arr[0..i-1], that are greater than key, to one
position ahead of their current position */

while (j >= 0 && arr[j] > temp) {
arr[j + 1] = arr[j];
j --;

}
arr[j + 1] = temp;

}
}

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Boundary Cases: Insertion sort takes maximum time if elements
are sorted in reverse order. And it takes minimum time (O(n))
when elements are already sorted.

Auxiliary Space: O(1)

Time Complexity: O(n2)

Uses:
v Insertion sort is used when number of elements is small.
v It can also be helpful when the input array is almost sorted,
v only a few elements are misplaced in a complete big array.

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Instructor: Murad Njoum

Shell Sort

Shell Sort is mainly a variation of Insertion Sort.

In insertion sort, we move elements only one position ahead. Many movements are
involved when an element has to be moved far ahead.

The idea of shell Sort is to allow the exchange of far items. In shell Sort, we make the
array h-sorted for a significant value of h.

We keep reducing the value of h until it becomes 1. An array is said to be h-sorted if all
sub-lists of every h’th element are sorted.

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

http://en.wikipedia.org/wiki/Shellsort
http://quiz.geeksforgeeks.org/insertion-sort/

15 19 23 29 31 7 9 5 2

Shell Sort: Solution in class At board23 29 15 19 31 7 9 5 2

Suppose we have an array like this

It’s case of insertion sort ?

How many shifts we need to move 7 to correct postion?
5 shifts

What if we move 7 to first position in just one
movement.

This is called

shell techniques:

We use distincit elemenst, not near elements

efficenciy of algoritm depends on gap

gap =5 ,3,1, it could be any gap,
we use gap=n/2

23 29 15 19 31 7 9 5 2
0 1 2 3 4 5 6 7 8

i j

compare a[i] ,a[j] , if (a[i]>a[j]) , then swap
i++, j++

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Shell Sort:
Solution in class At board23 29 15 19 31 7 9 5 2

23 29 15 19 31 7 9 5 2

i j
23 29 15 19 31 7 9 5 2

i j

No swap

swap

23 7 15 19 31 29 9 5 2

i j
after that increment i,j

23 7 15 19 31 29 9 5 2

i j

23 7 9 19 31 29 15 5 2

23 7 9 19 31 29 15 5 2

23 7 9 5 31 29 15 19 2

23 7 9 5 31 29 15 19 2

23 7 9 5 2 29 15 19 31

We have to look backword also, in
same as gap value(4)

2 7 9 5 23 29 15 19 31

After Complete Phase One
2 7 9 5 23 29 15 19 31

i
Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Shell Sort:
Solution in class At board

2 5 9 7 15 19 23 29 31

i j
2 7 9 5 23 29 15 19 31

i j

No swap

swap

2 5 9 7 23 29 15 19 31

i j
after that increment i,j

2 5 9 7 23 29 15 19 31

i j

2 5 9 7 23 29 15 19 31

2 5 9 7 23 29 15 19 31

2 5 9 7 15 29 23 19 31

2 5 9 7 15 29 23 19 31

2 5 9 7 15 19 23 29 31

2 7 9 5 23 29 15 19 31

After Complete Phase two

Gap= 4/2=2

2 5 9 7 15 19 23 29 31

2 5 9 7 15 19 23 29 31

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Shell Sort:
Solution in class At board

i j
2 5 9 7 15 19 23 29 31

i j

No swap

swap

2 5 9 7 15 19 23 29 31

i j
after that increment i,j

2 5 7 9 15 19 23 29 31

i j

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 9 7 15 19 23 29 31

After Complete Phase three

Gap= 2/2=1

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

No swap

Gap= 1/2=0 ,stop

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

40

Shell sort
void Shellsort(ElementType A[], int N)
{

int i, j, Increment;
ElementType Tmp;

for(gap = N / 2; gap > 0; gap /= 2)
for(j = gap ; j < N; j++)
{

Tmp ;
for(i = j- gap; i >=0 ;i -= gap) //test backword

if(A[i]< A[i + gap]) //test for swap
{temp = A[i + gap];
A[i + gap]=A[i];
A[i] = Tmp;
}

else
break;

}
}

Time Complexity: Time complexity of above implementation of shellsort is
O(n2). In the above implementation gap is reduce by half in every iteration.
There are many other ways to reduce gap which lead to better time complexity.

0 1 2 3 4 5 6 7 8

gap=4
j=4, i = 4-4=0 ===>break

23 29 15 19 31 7 9 5 2

i j

j=5, i = 5-4=1, ==>swap
i=i-gap=1-4=-3 , condition is false

...

j=8,i=8-4=4......if it true then swap
i=i-gap=4-4=0 ...if it true then swap

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Suppose we have 5 GB of data using only 1 GB of RAM , what is
the best sorting algoritm could you use?

Solution in class At board (We will Back later)

External Sorting

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

• Used when the data to be sorted is so large that we
cannot use the computer’s internal storage (main
memory) to store it

• We use secondary storage devices to store the data
• The secondary storage devices we discuss here are

tape drives. Any other storage device such as disk
arrays, etc. can be used

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Two-way Sorting Algorithm: Sort
Phase

Algorithm:
I.Sort Phase

1. Read M records from one pair of tape drives. Initially, all the records are
present only on one tape drive

2. Sort the M records in the computer’s internal storage. If M is small (< 10)
use insertion sort. For larger values of M use quick sort.

3. Write the M sorted records into the other pair of tape drives (i.e., the pair
which does not contain the input records). While writing the records,
alternate between the two tape drives of that pair.

4. Repeat steps 1-3 until the end of input

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

1. Read 1 GB of the data in main memory and sort by using quicksort.
2. Write the sorted data to disk.

3. Repeat steps 1 and 2 until all of the data is in sorted 1 GB chunks (there are 10 GB / 1 GB =
10 chunks), which now need to be merged into one single output file.

4. Read the first 90 MB of each sorted chunk (of 1 GB) into input buffers in main memory and
allocate the remaining 100 MB for an output buffer.
(For better performance, we can take the output buffer larger and the input buffers slightly
smaller.)

5. Perform a 10-way merge and store the result in the output buffer.

6. Whenever the output buffer fills, write it to the final sorted file and empty it.
Whenever any of the 90 MB input buffers empty, fill it with the next 90 MB of its associated 1
GB sorted chunk until no more data from the chunk is available.

Example 2 For sorting 10 GB of data using only 1 GB of RAM:

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

46
Instructor : Murad Njoum

Uploaded By: Baha JaghoobSTUDENTS-HUB.com

47Instructor : Murad Njoum Uploaded By: Baha JaghoobSTUDENTS-HUB.com

