9 g&
iV,»/" ’4 t "‘»r c
BIRZEIT UNIVERSITY

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

CompP242 —
Data Structures And
Algorithms in Java

Ch%p'rer' 7

% OptimalSort

Instructor: Murad Njoum
STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Chcst’p'rer 7

Selection
Bubble

Radix/Bucket
Heap Sort

Merge Sort
Quick Sort
Insertion sort
Shell sort
External Sort

STUDENTS-H a Jaghoob

Selection sort

Selection sort is a simple and efficient sorting algorithm that works by repeatedly selecting the
smallest (or largest) element from the unsorted portion of the list and moving it to the sorted portion

of the list.
i Swapping Elements 1
64(25112 |22 | 11

A A

—)

Position to hold Min element
Min element

Swapping
v vV

11 25|12 |22 |64

already sorted [

Min element

Position to hold
next min element

[—— Min element
v

11

12

22

25 |64

Hence no swap

already sorted

Position to hold

next min element

Swapping
v vy

11 112 |125|22 |64

already sorted |

STUDENTS-HUB.com

Min element

Position to hold
next min element

11

12

22|25 |64

Sorted array

Uploaded By: Baha Jaghoob

void sort(int arr[])

{

int n = arr.length;

// One by one move boundary of unsorted subarray
for (int 1 = 0; i < n-1; i++)
{

// Find the minimum element in unsorted array

int min_idx = i;

for (int j = i+1l; j < n; j++)

if (ar‘r‘[j]-ar‘r‘[min_idx])
min_idx = j;

// Swap the found minimum element with the first
// element
int temp = arr[min_idx];
arr[min_idx] = arr[i];
arr[i] = temp;
}
STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Complexity Analysis of Selection Sort

Time Complexity: The time complexity of Selection Sort is-as there are two
nested loops:

*One loop to select an element of Array one by one = O(N)

Another loop to compare that element with every other Array element = O(N)
*Therefore overall complexity = O(N) * O(N) = O(N*N) = O(N?

Auiary Space: Iille e I
while swapping two values in Array. The selection sort never makes more than
O(N) swaps and can be useful when memory writing is costly.

Advantages of Selection Sort Algorithm

*Simple and easy to understand.
*Works well with small datasets.

Disadvantages of the Selection Sort Algorithm
*Selection sort has a time comilexiti of _

*Does not preserve the relative order of items _which means it is

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Divide and conquer algorithms (Merge Algorithm)

The basic idea behind merge sort is this: it tends to be a lot easier to sort two smaller, sorted lists rather than
sorting a single large, unsorted one.

It’s useful when data set is huge (in Terabytes) and memory is low (in Gega bytes)

| H e usk

i M(nsfezwg o‘f—ma smy& -t's"?SMC& &SA s wu s

o (..... “wnsovted sublist
. I13: . . [TILL sk

e conld esg S
ot W@% _____

OO+ I = [T m

o 5 % G m\egd\/{zd QLS& Wi 8 ¢ Instructor: Murad Njoum
STUDENTS-HUB.com i FoeR SRRSO R Uploaded By: Baha Jaghoob

. T’A J‘V‘&Q anof cm aﬁ?ﬂrﬁn ik m o&vlo@q -
o ynww:m% orsios A iball,
P by bulbigdoom o prblom ko ondllen
o poily, the .

Instructor: Murad Njoum
STUDENTS-HUB.com Uploaded By: Baha Jaghoob

................
. . . .
.....

Instructor: Murad Njoum
STUDENTS-HUB.com Uploaded By: Baha Jaghoob

E & o oW B o d \/MQ;SW&&

| .'.’.U'DDEBS_D.:“*:"

Instructor: Murad Njoum
STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Example 1

Merge Sort

STUDENTS-HUB.com

o

23 4.7 9111624

Instructor: Murad Njoum

Uploaded By: Baha Jaghoob

Step 1:
Split sub-lists in

two untilyou "

reach pair of
values.

Step 3:
Sort/swap pair
of values if
needed.

Step 4:

Merge and sort
sub-lists and
repeat process
till you merge to
the full list.

Example 2

STUDENTS-HUB.com

38127 (43|39 (82

10

38 43| 3 10
IR B N
38 27 43 3 9 82 10
27 |38 343 9182 10
3127|3843 9110 |82
3(9(10|27|38|43 |82

Instructor: Murad Njoum

Uploaded By: Baha Jaghoob

/ \ Algorithm

/* low is for left index and high is right
index of the sub-array of array to be
sorted */
void mergeSort(int low, int high)
{

if (low < high)

{

\ / int mid = (low +high)/2;

// Sort first and second halves
5 3 7 10 & & mergeSort(low, mid);
mergeSort(mid +1, high);

mergesort([5, 3, 7, 1, 0, 8, 5]) merge(low, mid, high);

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Algorithm (Time Complixity)

/* low is for left index and high is right
index of the sub-array of array to be
sorted */

void mergeSort(int low, int high)
{
if (low < high)
{
int mid = (low +high)/2;

// Sort first and second halves
mergeSort(low, mid);

mergeSort(mid +1, high);

merge(low, mid, high);

STUDENTS-HUB.com

-> Analysis of Merge Sort

a n=1
T(n) =

2T(n/2)+Cn n>1
T(n/2) = 2T(n/4) + Cn/2
T(n) =2{2T(0/4) + Cn/2] + Cn

= 2> T(n/4) + 2Cn
T(n) =2° T(/2% + 3Cn

T(n) = 2° T@/2*) + KCn
Let 2=n->k=logn
T(n) =KT(1) + Cnlogn

T(n) = O (n log n)

Uploaded By: Baha Jaghoob

void merge(int low, int mid, int high)
{
inti,j, k;
i=low; //for Another Array copied
j=low;
k=mid+1;

while (j < =mid && k < =high)
{
if (A[j] <= A[K])
{
B[i] = A[j];
j++;
}
else

{
B[i] = A[k];
k++;
}
i++;
}
STUDENTS-HUB.com

if(j < =mid) // copy all remines
elements to Array

{

for(k=j; k<=mid;k++, i++)

B[i] = A[k];

}
else{ // copy all remines elements to
Array

for(j=k; j<=high;j++,i++)

B[i] = A[j];

}

/* Copy the remaining elements of B[],
back to A[]*/
for(i=low; j<=high; i++)
Ali] = B[i];

-

/

Uploaded By: Baha Jaghoob

QuickSort

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It
picks an element as pivot and partitions the given array around the
picked pivot. There are many different versions of quickSort that pick
pivot in different ways.

Always pick first element as pivot.
Always pick last element as pivot
Pick a random element as pivot.
Pick median as pivot.

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Quicksort

Fastest known sorting algorithm in practice
Caveats: not stable
Vulnerable to certain attacks

Average case complexity > O(N log N)

Worst-case complexity = O(N?)

Rarely happens, if coded correctly

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Quick Sort

Quicksort example

- SXcHcys
3 @ ®
@92 ®
DaPE?D © @ o
DO®H®E &
DB D E

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Picking the Pivot

How would you pick one?

Strategy 1: Pick the first elementin S

Works only if input is random

What if input S is sorted, or even mostly sorted?
All the remaining elements would go into either S1 or s2!
Terrible performance!

Why worry about sorted input?
Remember - Quicksort is recursive, so sub-problems could be sorted
Plus mostly sorted input is quite frequent

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Picking the Pivot (contd.)

Strategy 2: Pick the pivot randomly

Would usually work well, even for mostly sorted
iInput

Unless the random number generator is not
quite random!

Plus random number generation is an
expensive operation

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Picking the Pivot (contd.)

Strategy 3: Median-of-three Partitioning

[deally, the pivot should be the median of input array S
Median = element in the middle of the sorted sequence

Would divide the input into two almost equal partitions
Unfortunately, its hard to calculate median quickly, without sorting first!

So find the approximate median

Pivot = median of the left-most, right-most and center element of the
array S

Solves the problem of sorted input

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Picking the Pivot (contd.)

Example: Median-of-three Partitioning
Letinputs = {6, 1, 4, 9, 0, 3, 5, 2, 7, 8}
left=0and S[left] = 6
right=9and S[right] = 8
center = (left+right)/2 = 4 and S[center] = 0

Pivot
= Median of S[1left], S[right], and S[center]

= median of 6, 8, and O
= S[left] = 6

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Partitioning Algorithm

Original input: s = {6, 1, 4, 9, 0, 3, 5, 2, 7, 8}

Get the pivot out of the way by swapping it with the last element

8149035276
pivot
Have two ‘iterators’ — i and 1

i starts at first element and moves forward
J starts at last element and moves backwards

8/1 49035 2|76
i j pivot

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Partitioning Algorithm (contd.)
While (i < j)
Move i to the right till we find a number greater than pivot
Viove 9 to the left till we find a number smaller than pivot
If (i < j) swap(S[il, S[3])

(The effect is to push larger elements to the right and smaller
elements to the left)

Swap the pivot with S[i]

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Partitioning Algorithm lllustrated

iand j
have crossed

i j pivot

8/1 49035 2[7]6

M i 3 pivot

Y 8l1 49035[2]7'6

i J pivot

SWaP (511 4 9 0 3 5(8/7 6

. J pivot

MOV€ 2 1 4090 3[5l8 7 6

i J pivot

WP 5 1 4als]o 3(9ls 76

move i pivot

4 5 0/3/9/8 7 6

swapslil 51 4 5 0[3]6]8 7 9
with pivot TT
pivot

STUDENTS-HUB.com

Uploaded By: Baha Jaghoob

For instance, with input 8,1, 4,9, 6, 3,5, 2, 7, 0 the left element is 8, the right element is 0, and the center (in position (/eft +

right)/2)

element is 6. Thus, the pivot would be v =6.

Median of :
81,496,3,5,2,7,0

STUDENTS-HUB.com

center = (left + right)/2)
=[0+9]/2=4 , median is

Is left(8) > center (6) , swap them

6,1,4,9,8,3,5,2,7,0

Is left(6) > right (0) , swap them
0,1,4,9,8,3,52,7,6

Is center(8) > right (6) , swap them
0,1,4,9,6,3,52,7,8

0,14,09.8,3,5,2,7,6

Alp... 1]
4 A
811141916 |3 |5|2|7]0
T T T
left center right
Istswap —-—
811141916 |3 |5|2|7]0
\—/
2nd swap

/’/\.

6

1

4

9

3rd swap

0

I
left

Last swap

0

Result

0

3

5121618

T
Upleaded By: Baha Jaghoob

void Q sort(int A[], int left, int right)

{

int |, _j, inOt; Unsorted Arra

if (left < right) ’

{ :

pivot = median3(A, left, right); { 35J(33}{42V1o]\ 1a || 19][27J| uhae}(:n |
i = left; \ ’ /
J = right -1;

for(;;) //while(i<j) omit else, break

{

while(Afi] < pivot){++i;}
while(A[j] > pivot){--j;}
if (i <j)
exchange (A, i, j);
else
break;

}

exchange(A, i, right); //swap occur between i and pivot
Q _sort(A, left, i-1);

Q_sort(A, i+1, right);//i not included because index i is the pivot,(all elements in indexes
are less or more than pivot) }

}
STUDENTS-HUB.com Uploaded By: Baha Jaghoob

int median3(int A[], int left, int right)
{
int center = (left + right)/2;

if (A[left] > A[center])

exchange(A, left, center);
if (Afleft] > A[right])

exchange(A, left, right);
if (A[center] > A[right])

exchange(A, center, right); //rearrange elements

exchange(A, center, right); //swap median pivat with most right
elements in array
return Afright]; //return the pivot

}

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Analysis of QuickSort

Time taken by QuickSort in general can be written as following.

T(n) = T(k) + T(n-k-1) + (n)

The first two terms are for two recursive calls, the last term is for the partition process.
k is the number of elements which are smaller than pivot.

The time taken by QuickSort depends upon the input array and partition strategy.
Following are three cases.

Worst Case: The worst case occurs when the partition process always picks

greatest or smallest element as pivot. If we consider above partition strategy

where last element is always picked as pivot, the worst case would occur when the array
is already sorted in increasing or decreasing order. Following is recurrence for worst case.
T(n) = T(@®) + T(n-1) +(n) which is equivalent to T(n) = T(n-1) + (n)

The solution of above recurrence is 0(n2).

Best Case: The best case occurs when the partition process always picks the middle element as
pivot. Following is recurrence for best case.

T(n) = 2T(n/2) + (n)

The solution of above recurrence is | O(nLogn).

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

—> Analysis of Quick Sort
e Worst case Analysis
Tm)=T@ +T(n-i-1)+Cn
T(n) = T(n-1) + Cn n>]

T(n-1) = T(n-2) + C(n-1)
T(n-2) = T(n-3) + C(n-2)

T2) =T1)+C2)

T =T +CZi= O(n®)

STUDENTS-HUB.com

e Best case Analysis

T(n) =2 T(0/2) + Cn

T(n) = O(n Iog n)

Uploaded By: Baha Jaghoob

e Average case Analysis

T(n) =T() + T(n-i-1) + Cn
n-1

Average T(i)=1/n OZ TG)
J=

n-1

| T)/n+1 =C X 1/i
T(n) =2/0 [ET()] +Cn i=1
J_

n-1 1
nT() =2 [ET()] + Cn? oo ® T(n) = (n+1) CFIZ 1/i

n-2 '
@) T@) =2 [ETG)]+Ca-1p @ T(n) = O(n log n)
L

(1)-(@)

nT(@m) - (n-1) T(n-1) =2 T(n-1) +2Cn - C

nT(n) = 2T(n-1) + (n-1) T(n-1) + 2Cn

nT() = (n+1)T(n-1) + 2Cn I/n(n+1)
Tm)/(n+1) = T(n-1)/n + 2C(n+1)

T@-1)n =T@-2)/(n-1) + 2C/n

STUDENTS-HUB.Com Uploaded By: Baha Jaghoob

Insertion Sort: Insertion sort is a simple sorting algorithm that works the way we sort playing cards in our hands.

Insertion Sort

12 59| 85

C 85| 12| 59 | 45 | 72 | 51
C 85| 59| 45| 72| 51
12| 85| 59| 45 | 72 | 51

C 12 85| 45| 72 | 51
12| 59| 85 | 45 | 72 | 51

12 | 59 85| 72 | 51

72 | 51

Assume 85 is a
sorted list of
1st item

85>12 , shift
it to the right

so insert 12
in that place

85>59 , shift
it to the right

12<59, so
insert 59 in
that place

85>45 , shift
it to the right

59>45 | shift
it to the right

J/

-

MBI EREAI

12| 45| 59 | 85 | 72 | 51
12| 45 | 59 | 85 | 51
12| 45| 59 | 72 | 85 | 51
12| 45| 59 | 72 85
12| 45| 59 72 | 85
12 | 45 59| 72 | 85
12| 45| 51 | 59 [72 | 85

12<45, so
insert 45 in
that place

85>72 , shift
it to the right

59<72, so
insert 72 in
that place

85>51 , shift
it to the right

72>51 , shift
it to the right

59>51 , shift
it to the right

45<51, so
insert 51 in
that place

S HHDHENTS B GO mm———HHO@Eel By: Baha Jaghoob

Exercise:

/E———

Solution in class At board

temp

Uploaded By: Baha Jaghoob

/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)
{
inti, temp, j;
for(i=1;i<n;i++){
temp = arrli];
j=i-1;

/* Move elements of arr[0..i-1], that are greater than key, to one
position ahead of their current position */
while (j >= 0 && arr|[j] > temp) {
arr[j + 1] = arrl[j];
-
}

arr[j + 1] = temp;

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Time Complexity: O(n2)

Auxiliary Space: O(1)

Boundary Cases: Insertion sort takes maximum time if elements
are sorted in reverse order. And it takes minimum time (O(n))

Uses:
% |nsertion sort is used when number of elements is small.

< It can also be helpful when the input array is almost sorted,

% only a few elements are misplaced in a complete big array.

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Shell Sort

is mainly a variation of

In insertion sort, we move elements only one position ahead. Many movements are
involved when an element has to be moved far ahead.

The idea of shell Sort is to allow the exchange of far items. In shell Sort, we make the
array h-sorted for a significant value of h.

We keep reducing the value of h until it becomes 1. An array is said to be h-sorted if all
sub-lists of every h’th element are sorted.

Instructor: Murad Njoum
STUDENTS-HUB.com Uploaded By: Baha Jaghoob

http://en.wikipedia.org/wiki/Shellsort
http://quiz.geeksforgeeks.org/insertion-sort/

Shell Sort: 5359 145 19 31 7 o

Suppose we have an array like this

15 19 23 29 31 |7 9 5 2

\

It's case of insertion sort ?

How many shifts we need to move 7 to correct postion?
5 shifts

shell techniques:

What if we move 7 to first position in just one
movement.

msiscared GAP/INCrement

We use distincit elemenst, not near elements

STUDENTS-HUB.com

Solution in class At board

efficenciy of algoritm depends on gap

gap =5,3,1, it could be any gap,
we use gap=n/2

0o 1 2 3 4 5 6 7 8
23 15 19 31 T 9 5 2
A A M A A
| J

compare a[i] ,a[j] , if (a[i]>alj]) , then swap
i++, j++

Uploaded By: Baha Jaghoob

Shell Sort:
--------- Solution in class At board

/ -------\

No swap

| J

swap

i J

after that increment i,

STUDENTS-HUB.COm

ﬁ-------i

ﬁ---?----

We have to look backword also, in
same as gap value(4)

2 7 9 5 23 20 15 19 31
After Complete Phase One

--------!/

Uploaded By: Baha Jaghoob

Shell Sort: Gap: 4/2=2

/ -------\

No swap

| J swap

| j

after that increment i,

STUDENTS-HUB.COm

Solution in class At board

After Complete Phase two

\--------

Uploaded By: Baha Jaghoob

Shell Sort: Gap: 2/2=1
Solution in class At board

/ -------\ ﬁ-’\-----i

o swap 2 5 7 9 15 19 23 29 31
5-------- 2 5 7 9 15 19 23 29 31
i j Noswap 2 5 7 9 15 19 23 20 31
2 5 9 7 15 19 23 29 31 R —
(. 2 5 7 9 15 19 23 29 31

i J swap
after that increment i After Complete Phase three

UT

i J Gap= 1/2=0 ,stop
STUDENTS-HUB.Com Uploaded By: Baha Jaghoob

Shell sort

void Shellsort(ElementType A[], int N)

{
‘Er;t b1, '”;remint‘_ 0o 1 2 3 4 5 6 7 8
ementlype Tmp; 23 20 15 19 31 7 9 5 2
for(gap=N/2;gap>0; gap /=2) T JT
for(j=gap;j<N;j++) |
{
Tmp ; gap=4
for(i=j- gap;i>=0;i-=gap) //test backword j=4, i = 4-4=0 ===>break
if(A[i]<A[i + gap]) //test for swap j=5, i = 5-4=1, ==>swap
{temp=A[i+gap]; i=i-gap=1-4=-3 , condition is false
Al i+ gap]=Ali];
Ali]=Tmp;
} j=8,i=8-4=4......if it true then swap
else i=i-gap=4-4=0 ...if it true then swap
break; Time Complexity: Time complexity of above implementation of shellsort is
i 0(n?) In the above implementation gap is reduce by half in every iteration.
} There are many other ways to reduce gap which lead to better time complexity.

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Suppose we have 5 GB of data using only 1 GB of RAM , what is
the best sorting algoritm could you use?

External Sorting

Solution in class At board (We will Back later)

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

External Sorting

* Used when the data to be sorted is so large that we
cannot use the computer’s internal storage (main

memory) to store it
* We use secondary storage devices to store the data

* The secondary storage devices we discuss here are
tape drives. Any other storage device such as disk
arrays, etc. can be used

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Two-way Sorting Algorithm: Sort
Phase

Algorithm:
|.Sort Phase

1. Read M records from one pair of tape drives. Initially, all the records are
present only on one tape drive

2. Sort the M records in the computer’s internal storage. If M is small (< 10)
use insertion sort. For larger values of M use quick sort.

3. Write the M sorted records into the other pair of tape drives (i.e., the pair
which does not contain the input records). \While writing the records,
alternate between the two tape drives of that pair.

4, Repeat steps 1-3 until the end of input

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Example 2 For sorting 10 GB of data using only 1 GB of RAM:

1. Read 1 GB of the data in main memory and sort by using quicksort.
2. Write the sorted data to disk.

3. Repeat steps 1 and 2 until all of the data is in sorted 1 GB chunks (there are 10 GB/ 1 GB =
10 chunks), which now need to be merged into one single output file.

4. Read the first 90 MB of each sorted chunk (of 1 GB) into input buffers in main memory and
allocate the remaining 100 MB for an output buffer.

(For better performance, we can take the output buffer larger and the input buffers slightly
smaller.)

5. Perform a 10-way merge and store the result in the output buffer.
6. Whenever the output buffer fills, write it to the final sorted file and empty it.

Whenever any of the 90 MB input buffers empty, fill it with the next 90 MB of its associated 1
GB sorted chunk until no more data from the chunk is available.

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

FleA —— FileB — FileA ——> FileB ——> FileA
6

O Vv |IHEs W IN|-

STUDENTS-HUB.com Uploaded By: Baha Jaghoob

Time Complexity Space Complexity
Sorting Algorithms
Best Case Average Case Worst Case Worst Case
Bubble Sort O(n) 0(n"2) 0(n*2) 0(1)
Selection Sort 0(n*2) 0(n"2) 0(n*2) 0(1)
Insertion Sort O(n) 0(n*2) 0(n*2) 0(1)
Merge Sort O(nlogn) O(nlogn) O(nlogn) 0o(n)
Quick Sort O(nlogn) O(nlogn) 0(n*2) o(n)
Heap Sort O(nlogn) O(nlogn) O(nlogn) 0(1)
Counting Sort O(n + k) O(n + k) O(n + k) 0O(k)
Radix Sort O(nk) 0O(nk) O(nk) O(n + k)

Bucket Sort O(n + k) O(n + k) 0(n*2) O(n)

Instructor : Murad Njoum

S\FU-D-ENI&HUB.CCHQ

STUDENTS-HUB.com Instructor : Murad Njoum Uploaded By: Baha JagHoob

