truncated cone, has a linear taper y = cx as shown in cross section in Figure 5.2.1(b), the
moment of inertia of a cross section with respect to an axis perpendicular to the xy-plane is

I =1, where r =y and y = cx. Hence we can write I(x) = I(x/b)*, where I, =1(b) = in
(ch)*. Substituting /(x) into the differential equation in (24), we see that the deflection in

this case is determined from the BVP

dy
S

+Ay=0, va) =0, wb) =0,

=
-

dx

where A = Pb%EI,. Use the results of Problem 33 to find the critical loads P, for the

tapered column. Use an appropriate identity to express the buckling modes y, (x) as a single
function.

(b) Use a CAS to plot the graph of the first buckling mode y,(x) corresponding to the Euler load

Pywhenb=11and a=1.

B

FIGURE 5.2.1 Tapered column in Problem 34

3S.

36.

Discussion Problems

Discuss how you would define a regular singular point for the linear third-order differential
equation

n

azy(x)y" +ay(x)y" +a;(x)y" +ap(x)y = 0.

Each of the differential equations

3.,

xy"+y=0 and x»"+@Bx—-1)' +y=0

has an irregular singular point atx = 0. Determine whether the method of Frobenius yields a
series solution of each differential equation about x = 0. Discuss and explain your findings.

We have seen that x = 0 is a regular singular point of any Cauchy—Euler equationax®y"” + bxy’ +

cy = 0. Are the indicial equation (14) for a Cauchy—Euler equation and its auxiliary equatior
related? Discuss.

5.3 Special Functions

ES_IILIthSOI_:dII\IIQFlg?H L"lj}ée two differential equations
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A 4y + 62 — 2y 40D (1)
i P = S L i Tl 2)

occur frequently in advanced studies in applied mathematics, physics, and engineering. They are
called Bessel’s equation of order v and Legendre’s equation of order n, respectively. Naturally,
solutions of (1) are called Bessel functions and solutions of (2) are called Legendre functions.
When we solve (1) we shall assume that v > 0, whereas in (2) we shall consider only the case when v
i1s a nonnegative integer. Since we shall seek series solutions of each equation aboutx = 0, we
observe that the origin is a regular singular point of Bessel’s equation but is an ordinary point of
Legendre’s equation.

5.3.1 Bessel Functions

] The Solution Because x = 0 is a regular singular point of Bessel’s equation, we know that there
exists at least one solution of the form, - =_ ..+ Substituting the last expression into (1) then
gives

[~ =) 0 oo
D A L S e Tl I zi'.,(ﬁ' +riin+ r— Dx" 4+ EL",,,[H + rx"t 4+ E_rﬂx"”*: - ;FE(.,.H‘”
e =10

R=10 n=0 n=0

=cylri—r+r— 70

+ _1"'2_:‘_.7[(.” + R +r—1+(n+r—7]x"+ .1"”2:',,.1"‘”
n=1 A=0
= ¢ylr® — »ix" + .x"'ze;',,[fn + 1) = 2" + .rfzcﬂ.r””. {3)
=1 r=0

2

From (3) we see that the indicial equation is 7> — v? = 0 so that the indicial roots are r; = v and r, = —

v. When r; = v, (3) becomes

L= ] (=~
.x“'E(',JHfH + 2v)x" + .1"'2(',,.*(’”‘
=1 =10

) (=]
x*1 (1 + 2v)ex + EC',‘H{H 4+ Qp)x™ + E{',,.r””
L R=2 rR=10 ]

L. i ) ] v

k=n—-12 k=n

= x"1(1 + e + D[k + 2k + 2 + 20)ge, + c]x" 72| = 0.
k=0

Therefore, by the usual argument we can write (1 + 2v)c; = 0 and
k+20k+24+ 2040+, =0

or

. [l'_i:

k=0,1.2,.... (4)

Li+2

Pk DK+ 24+ )

The choice ¢; =0 in (4) implies c3=c5=c7;=...=0,so for k=0, 2, 4, ... we find, after letting k + 2
_SJUREN] S-HUR.com Uploaded By: anonymous
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Cap—2

Can = _m .
Thus
R fll:l
BT LW
B ¢y _ Ciy
4T TR0+ P20+ 02+ )
- = ) = -
T RAG A P31 Ao+ ) A

(=g

T = i 0., B {6)
2201 + X2 + ) (n 4+ )

Coy =

It 1s standard practice to choose ¢, to be a specific value—namely,

l
2T+ v)’

L‘._-|

where (1 +v) is the gamma function. See Appendix Il Since this latter function possesses the
convenient property (1 + a) = ar(a), we can reduce the indicated product in the denominator of (6)
to one term. For example,

Ml +v+ 1)=(1 4201 + 1)
Nl +2+4+2)=24+24+2)=(24+ )1 + 0101 4+ v

Hence we can write (6) as

o 16 13 (-1

MErp )]l + )2 + w) - (n + 9 + ) 22T + » + n)

o

n T

1 Bessel Functions of the First Kind The series solution y = 5= ., >+ is usually denoted by J (x):

(—1y
C.0) = SE Iiil‘ : .!Z! ’ (7)

If v > 0, the series converges at least on the interval [0, ). Also, for the second exponent r, = —v we

obtain, in exactly the same manner,

8)

The functionsJ,(x) andJ_(x) are called Bessel functions of the first kind of order v and —v,
respectively. Depending on the value of v, (8) may contain negative powers of x and hence converge
on the interval (0, o0).*

Now some care must be taken in writing the general solution of (1). Whenv = 0, it is apparent that
(7) and (8) are the same. Ifv> 0 and r; —r, =v — (—v) = 2v is not a positive integer, it follows from
Case I of Section 5.2 thatJ(x) and J_,(x) are linearly independent solutions of (1) on (0, o), and so

the general solution on the interval isy =cJ,(x) +c,J_,(x). But we also know from Case II o
STUDENTS-HUB.com Uploaded By: anonymous
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Section 5.2 that whenr; —r, = 2v is a positive integer, a second series solution of (1) may exist. In
this second case we distinguish two possibilities. Whenv =m = positive integer, J_, (x) defined by
(8) and J,(x) are not linearly independent solutions. It can be shown thatJ_,, is a constant multiple of
J,, (see Property (i) on page 277). In addition, »; — r, = 2v can be a positive integer when v 1s half an
odd positive integer. It can be shown in this latter event that J,(x) and J_,(x) are linearly independent.
In other words, the general solution of (1) on (0, o) is

y = J (x) + ¢ J_(x). » # integer. {9)

The graphs of y = Jy(x) (blue) and y = J;(x) (red) are given in FIGURE 5.3.1.

1

0.8E
0.6F E
04F £

UE £ —~ >£1

~02 \ﬂ, E
—04E : - E
0 2 4 6 8

FIGURE 5.3.1 Bessel functions of the first kind forn =0, 1, 2, 3, 4

*When we replace x by [x|, the series given in (7) and (8) converge for 0 < [x| < co.

EXAMPLE 1| General Solution: v Not an Integer

By identifying v* =1 and v =1 we can see from (9) that the general solution of the equation x2" +xy'

+(x? = 1)y =0 0n (0, o) is y = ¢;J} 5(x) + coJ_; p(x). )

1 Bessel Functions of the Second Kind If v # integer, the function defined by the linear combination

cos vt (x) — J_(x)

Ftrr= (10)

sin zw
and the functionJ,(x) are linearly independent solutions of (1). Thus another form of the general
solution of (1) isy =cJ,(x) +¢c,Y,(x), provided v # integer. As v — m, m an integer, (10) has the

indeterminate form 0/0. However, it can be shown by L’Hopital’s rule that (im
Moreover, the function

Y.(x) €xists.

—H

Yo(x) = lim ¥ (x)
]

"

and J,(x) are linearly independent solutions of x%y” + xy" + (x*> — m?)y = 0. Hence for any value of v

the general solution of (1) on the interval (0, o) can be written as
¥y = ol (x) + oY (x). {11)

Y, (x) is called the Bessel function of the second kind of order v. FIGURE 5.3.2shows the graphs
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of Yy(x) (blue) and y(x) (red).

||||
-

: ﬁ//

FIGURE 5.3.2 Bessel functions of the second kind for n =0, 1, 2, 3, 4

EXAMPLE 2| General Solution: v an Integer

By identifying v =9 and v = 3 we see from (11) that the general solution of the equation x%" + x)’ +
(x? —9)y =0 on (0, o) is y = c;J5(x) + ¢, Y3(x). =

[] DEs Solvable in Terms of Bessel Functions Sometimes it is possible to transform a differential
equation into equation (1) by means of a change of variable. We can then express the solution of the
original equation in terms of Bessel functions. For example, if we let# = ax, o> 0, in

2+ xy + (@2 =2y =0, (12)
then by the Chain Rule,

I 2 Fgn | 12
dy  dy di dy l dy d ( ay '\ dt Ay
=i anl, == = — =
ax dt dx ar ax” dt \dx/ dx dt*

Accordingly (12) becomes

FEN . dS i dv d*y dv
|— a-—— + a—+{1‘—?1‘;_ﬂ' or !'—+!T+{!"—I H_ﬁ
\ o dt- e dt dt* it

The last equation 1s Bessel’s equation of order v with solutiony = ¢;J,(¢) + ¢,Y,(¢). By resubstituting
¢t = ox in the last expression we find that the general solution of (12) on the interval (0, o) 1s

¥ = o laex) + oo ¥ (ax). (13)

Equation (12), called the parametric Bessel equation of order v, and its general solution (13) are
very important in the study of certain boundary-value problems involving partial differential
equations that are expressed in cylindrical coordinates.

Another equation that bears a resemblance to (1) is the modified Bessel equation of order v,

4+ ay — () vy =0 (14)

This DE can be solved in the manner just illustrated for (12). This time if we lets = ix, where i = —

1, then (14) becomes

dy dy
r-—+r—+{r — 1={]I.
Fri dt

Sinté) BRI biis-lof e ClaSE DE areJ (1) and Y, (), complex-valued \dpliaime bByquation Y1) Usre
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J(ix) and Y, (ix). A real-valued solution, called the modified Bessel function of the first kind of
order v, 1s defined in terms of J, (ix):

L(x) = i™%7 (ix). (15)

See Problem 21 in Exercises 5.3. Analogous to (10), the modified Bessel function of the second
kind of order v # integer is defined to be

a d_,(x) — L(x)
k) =———7———; {16)

2 51N v

and for integral v =n,

K, (x) = lim K, {x).
w—F

0 2 4 B 3

FIGURE 5.3.3 Modified Bessel function of the first kind forn =0, 1, 2, 3, 4

Because /, and K|, are linearly independent on the interval (0, o) for any value of v, the general
solution of (14) is

y = ol (x) + K, (x). (17)

— [ Ll
LA = LR b3 LA La

=

dx

FIGURE 5.3.4 Modified Bessel function of the second kind for n =0, 1, 2, 3, 4

The graphs of /y(x) (blue) and /;(x) (red) are given in FIGURE 5.3.3and the graphs K(x) (blue)
and K;(x) (red) are shown in FIGURE 5.3.4 Unlike the Bessel functions of the first and second

kinds, the graphs of the modified Bessel functions of the first kind and second kind are not oscillatory.
Moreover, the graphs in Figures 5.3.3 and 5.3.4 illustrate the fact that the modified Bessel functions
[,(x)and K, (x),n=0, 1, 2, ... have no real zeros in the interval (0, ). Also, note that K, (x) — o as
x — 07

Proceeding as we did in (12) and (13), we see that the general solution of the parametric form of
the modified Bessel equation of order v

STUDENTS-HUB.com X2y + xy' — (&2 +v2) y =0 Uploaded By: anonymous



on the interval (0, ) is
¥ =il (o) + ¢y K (o).

Yet another equation, important because many differential equations fit into its form by appropriate
choices of the parameters, is

]_' A e 2
1+|J:-H 2, @ “Ja—u p=0. (18)

e
X"

Although we shall not supply the details, the general solution of (18),
v = x*[e(bx®) + ;¥ (bx)], (19)

can be found by means of a change in both the independent and the dependent variables:
2= b, ylx) = (E_) w(z). If p 1s not an integer, then Y, in (19) can be replaced byJ

\ 7

EXAMPLE 3| Using (18)

Find the general solution of x)” + 3y" + 9y =0 on (0, x).

Solution By writing the given DE as

~”

4

v+ =y 4 E\- =0
: X x-
we can make the following identifications with (18):
1-2a=3,b%c*=9,2c-2=-1, and a?-p>c*=0.

The first and third equations implya = —1 and ¢ =1. With these values the second and fourth
equations are satisfied by takingh = 6 and p = 2. From (19) we find that the general solution of the

given DE on the interval (0, ) is y = x™![c,J5(6x?) + ¢, V5(6x12)]. =

EXAMPLE 4| The Aging Spring Revisited

Recall that in Section 3.8 we saw that one mathernatical model for the free undamped motion of a

mass on an aging spring is given by mx"” + ke %x = 0, a > 0. We are now 1n a position to find the
general solution of the equation. It is left as a problem to show that the change of variables

- |

2 |k —an transforms the differential equation of the aging spring into

§F= ;\. EE

The last equation is recognized as (1) withv = 0 and where the symbols x and s play the roles of y
and x, respectively. The general solution of the new equation isx =cJy(s) +c,Y(s). If we

resubstitute s, then the general solution of mx” + ke %x = 0 is seen to be

— el (2 'Ili , odl2
\ F ) + ok (xa Nom QJpIoaded By: anonymous
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See Problems 33 and 43 in Exercises 5.3. =

The other model discussed in Section 5.1 of a spring whose characteristics change with time was
mx" + ktx = 0. By dividing through by m we see that the equation x” + (k/m)tx = 0 is Airy’s equation,
y" + a%xy = 0. See Example 2 in Section 5.1. The general solution of Airy’s differential equation car
also be written in terms of Bessel functions. See Problems 34, 35, and 44 in Exercises 5.3.

[] Properties We list below a few of the more useful properties of Bessel functions of the first and
second kinds of order m, m =0, 1, 2, ...:

(i) *-'f—r.u':-ﬂ = (— ]Jmﬂ'rr.u[-]'-':' (i1) Jr.u':_-’-',] =({—1 :"l'r:u"pu(.'l":l
00 m=0 ; :
(i) Jp(0) = { (iv) lim ¥,(x) = —cx.
l, m=10 P

Note that Property (i7) indicates thatJ (x) is an even function if m 1s an even integer and an odd
function i1f m 1s an odd integer. The graphs of Yy(x) and Y;(x) in Figure 5.3.2 illustrate Property (iv):
Y, (x) is unbounded at the origin. This last fact is not obvious from (10). The solutions of the Besse]
equation of order 0 can be obtained using the solutions y(x) in (21) and y,(x) in (22) of Section 5.2.
It can be shown that (21) of Section 5.2 1s y{(x) = Jy(x), whereas (22) of that section 1s

= (=1 l I Fx 2
Valx) = Jylx) Inx — E e (] o e e 5 i_) L%) .

k=1 i
The Bessel function of the second kind of order 0, ¥(x), 1s then defined to be the linear combination
. "} .
Yolx) = =(y — In2) y(x) + —y,(x) forx = 0- That is,
m o

|- 2B E (L DA
wp (kY 2 e I

k=1

2 X
Yolx) = ;Juk.\f] ¥ + lnE

where y = 0.57721566 ... is Euler’s constant. Because of the presence of the logarithmic term, it is
apparent that Y,(x) 1s discontinuous at x = 0.

] Numerical Values The first five nonnegative zeros of Jy(x), J;(x), ¥,(x), and Y (x) are given in
Table 5.3.1. Some additional functional values of these four functions are given in Table 5.3.2.

TABLE 5.3.1 Zeros of Jy,, J;, ¥, and ¥,

 Jolx) Jyx) Folx) Y |
24048 (0,000 (,8934 2.1971
5.5201 38317 3.9577 5.4297
56537 T.0156 T.0861 8.5960
11.7915 10,1735 10,2223 11.7492

[ 149309 13,3237 133611 14.8974 |

TABLE 5.3.2 Numerical Values of J,, J;, Y, and y,
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X ‘.IF[][.J.'-J u‘r]{.\':' };D{.'l']' }J|[.ﬂ
0 10000 0.0000 — =
1 (.7652 04401 0.0883 —0.7812
2 0.2239 05767 0.5104 =0, 1070
3 —0.2601 0.3391 0.3769 0.3247
4 —0.3971 — 00660 —0.016% 01.3979
5 —L1778 —0.3276 —0.3085 0.1479
6 0.1506 —0.2767 —.2882 —0.1750
7 (. 3001 —0.0047 —0.0259 —0.3027
8 01717 0.2346 0.2235 —0.1581
9 — (L0903 02453 0.249% 01043
10 —0.2459 00435 0.0557 0.2490
11 —0.1712 —0.176E —.1&688 01637
12 0.0477 —0223 —1.2252 —0.0571
13 0.2065 — 00703 —0.0782 —0.2101
14 01711 0.1334 0.1272 —0. 1666
15 —0.0142 02051 0.2055 00211

[] Differential Recurrence Relation Recurrence formulas that relate Bessel functions of different
orders are important in theory and in applications. In the next example we derive a differential
recurrence relation.

EXAMPLES 5

Derivation Using the Series Definition

Derive the formula xJ' (x) = vJ,(x) —xJ,; {(x).

Solution It follows from (7) that

o (—1)'"2n + v) (1)‘"+1
I (x) = — =
o E all'(ll + v+ m) V2

n=i

o (—1" S e & (—1V"n Sl bk
- (—) y2S (2
Tl + » +n)\2 = nal(l +v+n)\2

- {1y T
% T cl 2
vt (x) + x RE — DI + v+ n) (f)
L] vy g
k=n—-1

o |:‘_]'|t (.]'. 2k+v+ ]
B e = 0,060 = x4y (0).

The result in Example 5 can be written in an alternative form. Dividingx)’ (x) — v/ (x) = —=xJ,1(x)

by x gives

Jix) — %J’,,{_\'J = —J 4 (x)

This last expression is recognized as a linear first-order differential equation inJ (x). Multiplying

both sides of the equality by the integrating factor x™V then yields
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It can be shown in a similar manner that

@l

See Problem 27 in Exercises 5.3. The differential recurrence relations (20) and (21) are also valic
for the Bessel function of the second kind Y, (x). Observe that when v = 0 it follows from (20) that

Jim = —Jx)  and  ¥ix) = —Y,(x). (22)
An application of these results is given in Problem 43 in Exercises 5.3.

] Bessel Functions of Half-Integral Order When the orderv is half an odd integer, that is,
+1 +2 +3  Bessel functions of the first and second kinds can be expressed in terms of the

elementary functions sinx, cos x, and powers of x. To see this let’s consider the case when v = 1.
From (7) we have

In view of the properties the gamma function, r(1 + o) = ar(a) and the fact that 1) = /7 the values of
r(1 +1+n)forn=0,n=1,n=2,and n= 3 are, respectively,

p See Appendix IL

TR=Ta+h =it =1Ve
T =KL+ =D =5V

TR VEE R
_ =y i ?-5.! i 7.6-5! *3!

Ta+bem =S

B 22.!+1n|

In general,

Hence,

The infinite series in the last line is the Maclaurin series for sin x, and so we have shown that

e B w

We leave it as an exercise to show that
STUDENTS-HUB.com Uploaded By: anonymous
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s ]

- COS . (24)

RN

See Problems 31 and 32 in Exercises 5.3.
If n is an integer, then the order v =n +1 is half an odd integer. Because cos(n + 1)n = 0 and sin(n

+1)n = cos nt = (—1)", we see from (10) that
Yor128) = (= 1" Yy ymy0). (25)

For n = 0 and n = —1 1n the last formula, we get, in turn, ¥} ,(x) =—J_; (x) and Y ;»(x) =J;(x). In
view of (23) and (24) these results are the same as

Yiplx) = —,\ - COS X {26)

and

1!’_|_,-_?f.1"| = "\".

sin x. 127)

X

[] Spherical Bessel Functions Bessel functions of half-integral order are used to define two more
important functions:

| ) I
Julx) = \-.-'.“’_VJ"H"QH] and yulx) = \."_t Ype1a(x). {28)

The functionj,(x) is called the spherical Bessel function of the first kind and y,(x) is the spherical

Bessel function of the second kind. For example, by using (23) and (26) we see that for n = 0 the
expressions in (28) become

[ 2 2ln X

. { T e R S
Jolx) = 3| —Jipix) = [ —+/—sinx =
N 2x Vo'V ax x
and
I_ I_ SR,

) | ar Y. ) [ S Cos X
VolX) = A 7= DiplX) = —af [~ Co8x — — ]
-0 Voax 2 N 2x N 7x X

.1:
1
05t
0 i

051
o
-1.5}
2t
=257

-3

FIGURE 5.3.5 Spherical Bessel functions j(x) and yy(x)

The graphs ofj,(x) and y,(x) for n > 0 are very similar to those given in Figures 5.3.1 and 5.3.2, that

is, both functions are oscillatory, and y,(x) becomes unbounded as x — 0". The graphs ofj,(x) (blue)
amd MR EPaR R GOMFIGURE 5.3.5. See Problems 39 and 40 i B}eR¢Els&t B'g: anonymous
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Spherical Bessel functions arise in the solution of a special partial differential equation expressed
in spherical coordinates. See Problems 41 and 42 in Exercises 5.3 and Problem 14 in Exercises 14.3.

5.3.2 Legendre Functions

1 The Solution Since x = 0 is an ordinary point of Legendre’s equation (2), we substitute the series
y=33, c.x*, shift summation indices, and combine series to get

=1

(132" 20 + n(n + Dy =[n(n + Dy + 2c3] + [(n — 1)(n +2)e; + 6eslr

+ E[[J' + 2(j + Dejia + (n — D+ j + Dglad =0,

i=12

which implies that
nin+ l)cg + 2¢, =0
(n—1)in+ 2)c; +6c3=0
G+ + Do+l —=Dn+j+ D=0
or
nin + 1)
Cwimm=s =5 kg

& a4

(n— 1in + 2)
03 = — C

(n—pn+j+1)
(2D + 1)

B

i=23.4,.... (29)

Letting j take on the values 2, 3, 4, ..., recurrence relation (29) yields

o GESERRAER). . GEE 2Nl L)
i 4.3 AT 4! i
n— 3in +4) in — 3 — Liin + 2n + 4
< 5.4 - 51 i
_  n=Hn+3  m—BHE - 2nn+ Dn+ e+ 5) .
BT pes i 6! H
in—5in + 6) (n — 3 — 3n — e+ 2)n + 4in + 6)
GTTT 7.6 i 7! e

and so on. Thus for at least [x| <1 we obtain two linearly independent power series solutions:
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wlx) = X X

a1y o 0 (e Dol a3
= ,r_"l..l ]_ — + e
2 2! 4!

(n — 4n — 2in(n + 1)n + 3}n + 5) —‘
= e

{30)

X + X

3! ' 3!

m—1r+2), —-3Na-1n+DH+4) ,
Yalx) =y x — ‘

in—3)n —3in— 1in+ 2)n+4)in+6) .
- = x4

Notice that if  is an even integer, the first series terminates, whereas y,(x) 1s an infinite series. For
example, if n = 4, then

45 o 0 224457 | PORTE:: .
yilx) = ¢y| 1 — x4+ =gl 1 — 10x? + ﬂ-;, x|

Similarly, whenn 1s an odd integer, the series for y,(x) terminates with x”,; that is, when n is a

nonnegative integer, we obtain an nth-degree polynomial solution of Legendre’s equation.
Since we know that a constant multiple of a solution of Legendre’s equation is also a solution, it is
traditional to choose specific values for ¢, or c¢;, depending on whether # is an even or odd positive

integer, respectively. For n = 0 we choose ¢y =1, and forn=2,4,6, ...,

1-:3--(n—1)

e — 1y
{D—f ]'I 2‘4_””

whereas for n =1 we choose ¢y =1,and forn=3,5,7, ...,

1 ymR= 12

{"] e {_

For example, when n =4 we have

-3 jio:
]4 1 — 10x= + 3

yylx) = (=1)¥? x| = E(_‘l‘_‘u'* — 302 + 3.

[ ]

[] Legendre Polynomials These specific nth-degree polynomial solutions are called Legendre
polynomials and are denoted by P, (x). From the series for y;(x) and y,(x) and from the above choices

of ¢y and ¢ we find that the first several Legendre polynomials are
Pyx)= 1, Pigy=x

Pyx) = =32 — 1), Py(x) = = (55" — 3) 31)
Pyx)= %{35}‘4 —30x% + 3), Pix) = %{6315 — 70x* + 15x).

Remember, Py(x), Pi(x), P5(x), P3(x), ..., are, in turn, particular solutions of the differential equations
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n=0 (1—-2"—2x'=0
n=1 (1-XW—-—20'+2y=0
n=2 (1—-xXW—-—2x¢'+6y=0 (32)

n=% (12w — 20 + D,

.1'\

FIGURE 5.3.6 Legendre polynomials forn =0, 1, 2, 3,4, 5

The graphs, on the interval [— 1, 1], of the six Legendre polynomials in (31) are given in FIGURE
5.3.6.

[1Properties You are encouraged to verify the following properties for the Legendre polynomials in
31):
B X=n=1=1FF &

(in P(1)=1 Gy P(—1) =(—11
() Py =0, nodd (v) P.(O) =0, neven.

Property (i) indicates, as is apparent in Figure 5.3.6, that P, (x) is an even or odd function according
to whether 7 is even or odd.

] Recurrence Relation Recurrence relations that relate Legendre polynomials of different degrees
are also important in some aspects of their applications. We state, without proof, the following three-
term recurrence relation

(k + 1Py y(x) — (2k + 1)xPyix) + kPy_\(x) = 0, (33)

which is valid for k =1, 2, 3, .... In (31) we listed the first six Legendre polynomials. If, say, we
wish to find Pg(x), we can use (33) with £ = 5. This relation expresses Pg(x) in terms of the known
P4(x) and Ps(x). See Problem 49 in Exercises 5.3.

Another formula, although not a recurrence relation, can generate the Legendre polynomials by
differentiation. Rodrigues’ formula for these polynomials is

Pﬂ{x}=;dﬂ e I =01 200 (34)

2nax
See Problem 53 in Exercises 5.3.
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Remarks

Although we have assumed that the parameter #» in Legendre’s differential equation
(1 =x2)y" —2xy' +n(n+1)y=0

represented a nonnegative integer, in a more general setting # can represent any real number. If # is
not a nonnegative integer, then both Legendre functions y(x) and y,(x) given in (30) are infinite

series convergent on the open interval (—1, 1) and divergent (unbounded) atx = = 1. Ifn is a
nonnegative integer, then as we have just seen one of the Legendre functions in (30) is a polynomial
and the other is an infinite series convergent for —1 <x < 1. You should be aware of the fact that
Legendre’s equation possesses solutions that are bounded on the closed interval [—1, 1] only in the
case whenn =0, 1, 2, ... More to the point, the only Legendre functions that are bounded on the
closed interval [-1, 1] are the Legendre polynomials P, (x) or constant multiples of these

polynomials. See Problem 51 in Exercises 5.3 and Problem 24 in Chapter 5 in Review.

5.3 || Exercises| Answers to selected odd-numbered problems begin on page ANS-12.

5.3.1| Bessel Functions

In Problems 1-6, use (1) to find the general solution of the given differential equation on (0, ).
L x%" +xy'+ (x> -1y =0

" +xy'+ (x> =1)y=0

4x%y" + dxy' + (4x* —25)y =0

16x%y" + 16xy' + (16 2— 1)y =0

xy"+y'+xy=0

i

| S &P

Lrat+(x=2)v=0
In Problems 7—10, use (12) to find the general solution of the given differential equation on the
interval (0, o).
7. X" +xy + (9x2—4)y =0
8. x%" +xy' +(36x%— Ny =0
9. x%" +xy' +(25x% - 1)y =0
10. x&H" +xy'+ (2x2—64)y=0
In Problems 11 and 12, use the indicated change of variable to find the general solution of the given
differential equation on the interval (0, ).
11. x%" +2xy" + a2x%y = 0; y = x "u(x)

12. Xy 4 (@ — P+ Dy =00 y = Vxulx)

I%%{?HERPT&T%@’B‘%% Igr% 8) to find the general solution of the g“(ﬁ%|8§ é%ﬁéa&:eé]nu%trl]cg/r%n oglugle
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interval (0, ).

13. xy"+2y'+4y=0

14. xy" +3y'+xy=0

15. xy" -y +xy=0

16. xy" —5y"+xy=0

17. X" +x*-2)y=0

18. 4xH" +(16x*+1)y=0

19. xp" +3y'+x%=0

20. 9%+ 9"+ (x6—36)y=0

21. Use the series in (7) to verify that /,(x) = i7"/, (ix) 1s a real function.

22. Assume that b in equation (18) can be pure imaginary; that is, b =i, § > 0, i> = —1. Use this
assumption to express the general solution of the given differential equation in terms of the
modified Bessel functions /,, and K.

(a) " - =0
(b) xp"+y' —Tx%y =0
In Problems 23-26, first use (18) to express the general solution of the given differential equation ir

terms of Bessel functions. Then use (23) and (24) to express the general solution in terms of
elementary functions.

23. y"+y=0

24, x*" +4xy' + (x> +2)y=0

25. 16x%" +32x)" + (x* = 12)y =0

26. 4x%" —4xy'+ (16x*+3)y =0

27. (a) Proceed as in Example 5 to show that

va(x) =—vJ (x) +x J;l(x)°

[Hint: Write 2n +v=2(n+v) —v.]
(b) Use the result in part (a) to derive (21).

28. Use the formula obtained in Example 5 along with part (a) of Problem 27 to derive the
recurrence relation

2v ']n (x) :x']v + l(x) +x‘]v—1(x)°

In Problems 29 and 30, use (20) or (21) to obtain the given result.

29. | rly(rydr = xJy(x)
20
30. Jo(x) =J_4(x) =—J(x)

31. (a) Proceed as on pages 279280 to derive the elementary form of J_;,(x) given in (24).
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32.

33.

34.

35S.

36.

37.

38.

(b) Usev =-1 along with (23) and (24) in the recurrence relation in Problem 28 to express.J_
3(X) In terms of sin x, cos x, and powers of x.

(¢) Use a graphing utility to plot the graph of J_35(x).

(a) Use the recurrence relation in Problem 28 to express.J;5(x), J55(x), and J7»(x) in terms of
sin x, cos x, and powers of x.

(b) Use a graphing utility to plot the graphs of J5/5(x), J5/5(x), and J75(x) 1n the same coordinate
plane.

Use the change of variables "zi\;E .~ t0 show that the differential equation of the aging
ey

spring mx" + ke™®%x = 0, a > 0, becomes

X i dx L2 T
sT— 4 s— 4+ sy =10
ds* ds

Show that y = yV2,(2472) 18 @ solution of Airy’s differential equation y" + oczxy =0,x >0,
whenever w is a solution of Bessel’s equation of order 1; that is, 2w + W' + (12 — Hw=0,t>
0. [Hint: After differentiating, substituting, and simplifying, then let ; = 24,37 |
(a) Use the result of Problem 34 to express the general solution of Airy’s differential equation

for x > 0 in terms of Bessel functions.
(b) Verify the results in part (a) using (18).
Use Table 5.3.1 to find the first three positive eigenvalues and corresponding eigenfunctions of
the boundary-value problem

"y yxy =0,
¥(x), ¥'(x) bounded as x — 07, y(2) = 0.

[Hint: By identifying y = o, the DE is the parametric Bessel equation of order zero.]

(a) Use (18) to show that the general solution of the differential equationxy” + Ay = 0 on the
interval (0, o) is

¥y = o, Va(2VAx) + ¢, VY, (2VAx).

(b) Verify by direct substitution that , — +/7y,(24/%) 1s a particular solution of the DE in the case
A=1.

(a) Use (15) and (7) to show that

—_—

II q
I in(x) = 4 /—sinh x.
N mx

(b) Use (15) and (8) to show that

—_—
i |
| &

I_\p(x) = 4 [—coshx.
' ‘H,l X

ST EDSE Pr6YdPecidys K, ,(x) in terms of elementary functions.UPl0aded By: anonymous



39.

40.

41.

42.

43.

44.

45.

(a) Use the first formula in (28) to find the spherical Bessel functions j;(x), j,(x), and j;(x).

(b) Use a graphing utility to plot the graphs ofj(x), j,(x) andj;(x) in the same coordinate
plane.

(a) Use the second formula in (28) to find the spherical Bessel functions y(x), y,(x), and y5(x).

(b) Use a graphing utility to plot the graphs ofy,(x), y,(x) and y;(x) in the same coordinate
plane.
If n is an integer, use the substitution R(x) = (oxx) "2 Z(x) to show that the differential equation

, d°R iR .
i [ax* —nin + 1)]JR=0  (35)
dx~* dx

becomes

L5 - 7 -
=4t x—+ [N —m+ ]2 =0 (36)
dx- ax

(a) InProblem41, find the general solution of the DE in (36) on the interval (0, o).

(b) Use part (a) to find the general solution of the DE in (35) on the interval (0, ).

(¢) Use part (b) to express the general solution of (35) in terms of the spherical Bessel
functions of the first and second kind defined in (28).

Computer Lab Assignments

(a) Use the general solution given in Example 4 to solve the I[VP
4x" + e Ol =0, x(0) = 1, x'(0) = — 1.

Also useJ'y(x) = —Ji(x) and Yo(x) = — Y;(x) along with Table 5.3.1 or a CAS to evaluate
coefficients.

(b) Use a CAS to graph the solution obtained in part (a) for 0 <7 <o,
(a) Use the general solution obtained in Problem 35 to solve the VP

4x" +tx=0,x(0.1)=1,x'(0.1) =— 1.

Use a CAS to evaluate coefficients.
(b) Use a CAS to graph the solution obtained in part (a) for 0 < ¢ < 200.

Column Bending Under Its Own Weight A uniform thin column of length L, positioned
vertically with one end embedded in the ground, will deflect, or bend away, from the vertical
under the influence of its own weight when its length or height exceeds a certain critical value. It
can be shown that the angular deflection 0(x) of the column from the vertical at a point P(x) is a
solution of the boundary-value problem

Efﬁ + 6giL —x)@ =0, #0)=0, 8(L)y=10,

dx”

STwiherplA Bs-Noimgiomodulus, 7 is the cross-sectional moment omma‘m@dgye sonstantiongar



density, and x 1s the distance along the column measured from its base. See FIGURE 5.3.7.

The column will bend only for those values of L for which the boundary-value problem has a
nontrivial solution.

(a) Restate the boundary-value problem by making the change of variables ¢t = L —x. Then use
the results of a problem earlier in this exercise set to express the general solution of the
differential equation in terms of Bessel functions.

(b) Use the general solution found in part (a) to find a solution of the BVP and an equation thar
defines the critical length L; that is, the smallest value of L for which the column will start
to bend.

x=0 | | Ground

FIGURE 5.3.7 Column in Problem 45

46.

47.

STURE

(¢) With the aid of a CAS, find the critical lengthZ of a solid steel rod of radius » = 0.05 in.,
8g=0.28 A1b/in., E=2.6 x 107 Ib/in.2, A= m?, and [ = 1 wr*.
Buckling of a Thin Vertical Column In Example 4 of Section 3.9 we saw that when a constan

vertical compressive force, or load, P was applied to a thin column of uniform cross section and
hinged at both ends, the deflection y(x) 1s a solution of the BVP:

I!r: i
EJ’; b _P-l — ﬂ, "I.“::“ =1, 'l”r_fl =l
axs

(a) If the bending stiffness factor £/ is proportional to x, then EI(x) = kx, where k is a constant
of proportionality. If EI(L) = kL = M 1s the maximum stiffness factor, then £ = M/L and so
El(x) = Mx/L. Use the information in Problem 37 to find a solution of

xdy

MEﬁ +Pyv=0 vih=10, wL)=10

ax”
if it is known that \ /7y (2+/i7) 18 not zero at x = 0.
(b) Use Table 5.3.1 to find the Euler load P, for the column.

(¢) Use a CAS to graph the first buckling modey;(x) corresponding to the Euler load P;. For
simplicity assume thatc; =1 and L = 1.

Pendulum of Varying Length For the simple pendulum described on page 187 of Section 3.11,
suppose that the rod holding the mass m at one end is replaced by a flexible wire or string and

that ttll\h_v%irﬁ 1 strunr% over a pulley at the point of support O in F]I e 3.11.3. In this manner,
i

tiof ih a vertical plane, the mass m can be raisgcp c?grlglg%%rgé/ I%%Qﬁ‘éfru%lij&s,



the length /(#) of the pendulum varies with time. Under the same assumptions leading to equation
(6) in Section 3.11, it can be shown* that the differential equation for the displacement angle 0 is
now

10"+ 210"+ g sin® = 0.

(a) If/ increases at a constant rate v and 1f /(0) = /,, show that a linearization of the foregoing

(b)

(©)

(d)

(e)

DE is
(ly + v)@" + 2v8" + g8 = 0. (37}
Make the change of variables x = (/, + v#)/v and show that (37) becomes
228t 0

dx?  xdx
Use part (b) and (18) to express the general solution of equation (37) in terms of Bessel
functions.
Use the general solution obtained in part (c) to solve the initial-value problem consisting of
equation (37) and the initial conditions 0(0) = 0, 0'(0) = 0. [Hints: To simplify calculations
use a further change of variable , — E\Vm — 2 ‘a":lirm' Also, recall (20) holds for both

J1(u) and y(u). Finally, the identity

)
T Yo(w)=J,00Y (u) = ——

U

will be helpful.]
Use a CAS to graph the solution 0(¢) of the IVP in part (d) when /, = 1 ft, 0, = L radian, and

v = L ft/s. Experiment with the graph using different time intervals such as [O, 10], [0, 30],
and so on.

(f) What do the graphs indicate about the displacement angle 0(¢) as the length / of the wire

5.3.2

48.

(2)

increases with time?

Legendre Functions

Use the explicit solutions y;(x) and y,(x) of Legendre’s equation given in (30) and the
appropriate choice of ¢j and ¢; to find the Legendre polynomials Pg(x) and P-(x).

(b) Write the differential equations for which Pg(x) and P,(x) are particular solutions.

49.

Us

e the recurrence relation (33) and Py(x) = 1, Pj(x) =x, to generate the next six Legendre

polynomials.

*See Mathematical Methods in Physical Sciences Mary Boas, John Wiley & Sons, 1966; Also sec
the article by Borelli, Coleman, and Hobson in Mathematics Magazine, vol. 58, no. 2, March 1985.
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50. Show that the differential equation

-

{."-_'I-' -
R + umﬂﬁ + n(n + 1)(sin@)y =0

sin @

can be transformed into Legendre’s equation by means of the substitution x = cos 0.
51. Find the first three positive values of A for which the problem

(1 -x)y" —2xy" +hy =0,
(0) =0, ¥(x), y'(x) bounded on [-1, 1]

has nontrivial solutions.
52. The differential equation

(1 —x*n" — 2xv' + |nln + 1) —

m"

|y =0,
=

is known as the associated Legendre equation. Whenm = 0 this equation reduces to
Legendre’s equation (2). A solution of the associated equation is

]

d
{-':i.' m P'i[']'-]*

Px) = (L ™y™

where P, (x),n=0, 1, 2, ... are the Legendre polynomials given in (31). The solutions pry) for m = 0,
1,2, ..., are called associated Legendre functions.

(a) Find the associated Legendre functions po(y). pYix)., Plix), Pix), Px) , PLx). Px), and P3(x).-

(b) What can you say about pm,, when m is an even nonnegative integer?

(c) What can you say about pn,, when m is an nonnegative integer and m > n?

(d) Verify that , — piiy) satisfies the associated Legendre equation whenn =1 and m = 1.

= Computer Lab Assignments

53. For purposes of this problem, ignore the list of Legendre polynomials given on page 282 and the
graphs given in Figure 5.3.6. Use Rodrigues’ formula (34) to generate the Legendre polynomials
Pi(x), Py(x), ..., P7(x). Use a CAS to carry out the differentiations and simplifications.

54. Use a CAS to graph P(x), P(x), ..., P7(x) on the closed interval [ 1, 1].

55. Use a root-finding application to find the zeros of Pi(x), P5(x), ..., P7(x). If the Legendre

polynomials are built-in functions of your CAS, find the zeros of Legendre polynomials of highe:
degree. Form a conjecture about the location of the zeros of any Legendre polynomial P, (x), and

then investigate to see whether it is true.

5 ||Chapter in Review| Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1 and 2, answer true or false without referring back to the text.
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