
Abstract Classes and

Interfaces

STUDENTS-HUB.com

https://students-hub.com

 Abstraction: Focusing on the "what" rather than the "how." Hiding

implementation details and showing only essential features.

 In OOP, abstraction is achieved through:

 Abstract Classes: Partially implemented classes.

 Interfaces: Pure contracts defining behavior.

 Both are crucial for designing flexible, extensible, and maintainable systems.

STUDENTS-HUB.com

https://students-hub.com

What are Abstract Classes?

 A class that cannot be instantiated directly (you cannot create an object of an

abstract class).

 Designed to be a superclass from which other classes will inherit.

 Can contain a mix of abstract methods (no implementation) and concrete

methods (with implementation).

 Declared with the abstract keyword.

STUDENTS-HUB.com

https://students-hub.com

Why Use Abstract Classes?

 Provide a common base: Define a common interface and some shared

implementation for a family of related classes.

 Enforce implementation: Ensure that subclasses provide concrete

implementations for certain methods defined in the abstract superclass

(abstract methods).

 Model partial concepts: Represent concepts that are not fully concrete on

their own (e.g., a Shape is an idea, but a Circle or Rectangle is a concrete

shape).

STUDENTS-HUB.com

https://students-hub.com

Abstract Class Syntax
public abstract class ClassName { // Declared as abstract

// Data fields (can be concrete or final)

private String name;

// Constructors (can have them, but not inherited)

public ClassName(String name) {

this.name = name;

}

// Concrete method (with implementation)

public String getName() {

return name;

}

// Abstract method (no implementation, ends with semicolon)

public abstract double getArea(); // Must be implemented by concrete subclasses

// Another abstract method

public abstract void printInfo();

}

STUDENTS-HUB.com

https://students-hub.com

Abstract Methods

 A method declared without an implementation (no method body, ends with a

semicolon).

 Must be declared in an abstract class.

 Any concrete (non-abstract) subclass of an abstract class must provide an

implementation for all inherited abstract methods, or it too must be declared

abstract.

STUDENTS-HUB.com

https://students-hub.com

Example: GeometricObject Abstract Class

// GeometricObject.java

public abstract class GeometricObject {

private String color = "white";

private boolean filled;

private java.util.Date dateCreated;

protected GeometricObject() { // Constructor

dateCreated = new java.util.Date();

}

protected GeometricObject(String color, boolean
filled) { // Overloaded constructor

this(); // Call no-arg constructor

this.color = color;

this.filled = filled;

}

public String getColor() { return color; }

public void setColor(String color) { this.color = color; }

public boolean isFilled() { return filled; }

public void setFilled(boolean filled) { this.filled = filled; }

public java.util.Date getDateCreated() { return dateCreated; }

@Override

public String toString() {

return "created on " + dateCreated + "\ncolor: " + color + "
and filled: " + filled;

}

// Abstract methods: must be implemented by concrete
subclasses

public abstract double getArea();

public abstract double getPerimeter();

}

STUDENTS-HUB.com

https://students-hub.com

Concrete Subclass of an Abstract Class

 A non-abstract class that extends an abstract class.

 Must provide concrete implementations for all abstract methods inherited

from its abstract superclass.

 Can define its own specific data fields, constructors, and methods.

STUDENTS-HUB.com

https://students-hub.com

Example: Circle Subclass of

GeometricObject

// Circle.java

public class Circle extends GeometricObject {

private double radius;

public Circle() { } // No-arg constructor

public Circle(double radius) {

this.radius = radius;

}

public Circle(double radius, String color, boolean filled) {

super(color, filled); // Call superclass constructor

this.radius = radius;

}

public double getRadius() { return radius; }

public void setRadius(double radius) { this.radius = radius; }

// Implement ALL abstract methods from GeometricObject

@Override

public double getArea() {

return Math.PI * radius * radius;

}

@Override

public double getPerimeter() {

return 2 * Math.PI * radius;

}

}

STUDENTS-HUB.com

https://students-hub.com

Abstract Class and Polymorphism

 You cannot instantiate an abstract class directly: GeometricObject obj = new

GeometricObject(); (Compile error).

 However, you can declare a reference variable of an abstract class type.

 This variable can then refer to an object of any concrete subclass. This is

polymorphism in action!

STUDENTS-HUB.com

https://students-hub.com

Example: Polymorphism with Abstract

Classes
public class TestGeometricObject {

public static void main(String[] args) {

// GeometricObject obj = new GeometricObject(); // COMPILE ERROR: Cannot instantiate abstract class

GeometricObject circle = new Circle(5.0); // Polymorphic assignment

GeometricObject rectangle = new Rectangle(4.0, 6.0, "blue", true); // Assuming Rectangle class exists

System.out.println("Circle Area: " + circle.getArea());

System.out.println("Circle Color: " + circle.getColor());

System.out.println("Rectangle Perimeter: " + rectangle.getPerimeter());

System.out.println("Rectangle is filled? " + rectangle.isFilled());

// You can pass abstract class types to methods

displayObject(circle);

displayObject(rectangle);

}

STUDENTS-HUB.com

https://students-hub.com

Example: Polymorphism with Abstract

Classes

public static void displayObject(GeometricObject obj) {

System.out.println("\n--- Object Info ---");

System.out.println("Area: " + obj.getArea());

System.out.println("Perimeter: " + obj.getPerimeter());

System.out.println(obj.toString()); // Calls overridden toString() if available, or GeometricObject's

}

}

STUDENTS-HUB.com

https://students-hub.com

What are Interfaces?

 A contract that defines a set of behaviors (methods) that a class can agree to

implement.

 Represents a "can-do" or "has-a-capability" relationship (e.g., a Car is a

Vehicle, but it can Drive and can Brake).

 Interfaces provide pure abstraction (before Java 8, only abstract methods and

public static final constants were allowed).

 Declared with the interface keyword.

STUDENTS-HUB.com

https://students-hub.com

Why Use Interfaces?

 Achieve multiple inheritance of type: A class can implement multiple

interfaces, allowing it to have multiple "types" or capabilities. (Java does not

support multiple inheritance of implementation from classes).

 Define common behavior for unrelated classes: Classes that don't share a

common superclass can still implement the same interface.

 Decouple design: Separate the definition of an API from its implementation.

 Support callbacks and plugging new modules.

STUDENTS-HUB.com

https://students-hub.com

Interface Syntax (Pre-Java 8)

public interface InterfaceName {

// Constants (implicitly public static final)

int DEFAULT_VALUE = 10;

String DEFAULT_MESSAGE = "Hello";

// Abstract methods (implicitly public abstract)

void doSomething();

int calculate(int x, int y);

}

 Before Java 8, all interface methods were implicitly public abstract.

 All data fields were implicitly public static final.

STUDENTS-HUB.com

https://students-hub.com

Interfaces: Abstract Methods (Pre-Java 8

Syntax)

 Methods in an interface without a body.

 They are by default public abstract. You can omit these keywords.

 Any class that implements an interface must provide concrete

implementations for all of its abstract methods.

 Example:

public interface Edible {

/** Describe how to eat */

String howToEat(); // Implicitly public abstract

}

STUDENTS-HUB.com

https://students-hub.com

Interfaces: Constants

 Variables declared in an interface are implicitly public static final.

 They are constants accessible using the interface name.

 Example :

public interface Measurable {

double PI = 3.14159; // Implicitly public static final double PI

int MAX_VALUE = 100; // Implicitly public static final int MAX_VALUE

double getMeasure();

}

STUDENTS-HUB.com

https://students-hub.com

Interfaces: Default Methods (Java 8+)

 Allow you to add new methods to an interface without breaking existing classes
that implement that interface.

 Have a default implementation, which can be overridden by implementing classes.

 Declared with the default keyword.

 Example :
public interface Flyable {

void fly(); // Abstract method

default void takeOff() { // Default method

System.out.println("Taking off default way."); }

default void land() { // Another default method

System.out.println("Landing default way."); }

}

STUDENTS-HUB.com

https://students-hub.com

Interfaces: Static Methods (Java 8+) and

Private Methods (Java 9+)

 Static Methods (Java 8+):

 Can be defined in interfaces.

 Belong to the interface itself, not to implementing objects.

 Called directly on the interface: InterfaceName.staticMethod().

 Cannot be overridden by implementing classes.

 Private Methods (Java 9+):

 Can be used to break down complex default or static methods into smaller,

reusable parts within the interface.

 Not accessible outside the interface.

STUDENTS-HUB.com

https://students-hub.com

Example :
public interface Calculator {

int add(int a, int b);

static int multiply(int a, int b) { // Static method

return a * b;

}

default void printSum(int a, int b) { // Default method using private helper

int sum = add(a, b);

log("Sum calculated: " + sum); // Calls private method

}

private void log(String message) { // Private method (Java 9+)

System.out.println("[Calculator Log]: " + message);

}

}

STUDENTS-HUB.com

https://students-hub.com

Implementing an Interface (implements

keyword)

 A class uses the implements keyword to indicate that it provides concrete

implementations for the methods defined in an interface.

 Syntax: class ClassName implements InterfaceName1, InterfaceName2 { ... }

 A class can implement multiple interfaces.

STUDENTS-HUB.com

https://students-hub.com

Example: Chicken implementing Edible
// Chicken.java

public class Chicken extends Animal implements Edible { // Assuming Animal class

@Override

public String howToEat() { return "Fry it"; } // Other Chicken specific methods and properties

}

// And an example of another class using it:

class TestEdible {

public static void main(String[] args) {

Object[] objects = {new Chicken(), new Tiger(), new Apple()}; // Tiger, Apple also assuming exists

for (int i = 0; i < objects.length; i++) {

if (objects[i] instanceof Edible) { System.out.println(((Edible)objects[i]).howToEat()); }

if (objects[i] instanceof Animal) { System.out.println(((Animal)objects[i]).sound());
// Assuming Animal has sound()

} } } }

STUDENTS-HUB.com

https://students-hub.com

Interface and Polymorphism

 You cannot instantiate an interface: Edible e = new Edible(); (Compile error).

 However, you can declare an interface reference variable.

 This variable can refer to any object of a class that implements that

interface.

 This allows you to treat diverse objects uniformly based on their shared

capabilities.

STUDENTS-HUB.com

https://students-hub.com

Example: Polymorphism with Interfaces
// TestPolymorphicInterface.java

public class TestPolymorphicInterface {

public static void main(String[] args) {

// Assume Circle implements Comparable (as it does in Liang's book)

Comparable<Circle> c1 = new Circle(5.0);

Comparable<Circle> c2 = new Circle(3.0);

// You can compare objects through the Comparable interface

int comparison = c1.compareTo((Circle) c2); // Casting c2 to Circle for compareTo

if (comparison > 0) {

System.out.println("Circle 1 is larger than Circle 2.");

} else if (comparison < 0) {

System.out.println("Circle 1 is smaller than Circle 2.");

} else {

System.out.println("Circle 1 is equal to Circle 2.");

}

STUDENTS-HUB.com

https://students-hub.com

Example: Polymorphism with Interfaces

// Another example with the Flyable interface

Flyable bird = new Bird(); // Assuming Bird implements Flyable

Flyable plane = new Airplane(); // Assuming Airplane implements Flyable

bird.fly();

bird.takeOff(); // Calls default method

plane.fly();

plane.takeOff(); // Calls default method

// Calculator static method

System.out.println("2 * 3 = " + Calculator.multiply(2, 3));

}

}

STUDENTS-HUB.com

https://students-hub.com

Abstract Classes vs. Interfaces: Key

Differences (Part 1)

Feature Abstract Class Interface

Type of Inheritance "Is-a" relationship (strong hierarchy) "Can-do" relationship (capability)

Multiple Inheritance No (Java classes can only extend one class) Yes (a class can implement multiple

interfaces)

Constructors Can have constructors (used by subclasses via

super())

Cannot have constructors (no state to

initialize)

Data Fields Can have any type of data field (private,

protected, public, static, final)

Only public static final fields

(constants)

Methods Can have abstract and concrete methods Can have abstract, default, static,

and private methods

Access Modifiers Can have public, protected, private, default

(package-private) members

All abstract, default, static methods

are implicitly public (private methods

are private)

Implementation Provides partial implementation Provides no implementation (pre-Java

8), or default/static implementations

(Java 8+)

STUDENTS-HUB.com

https://students-hub.com

When to Use Which? (Design Principles)
Use an Abstract Class when:

 You have a strong "is-a" hierarchy and want to share common implementation details

among related subclasses.

 You need to provide a base for subclasses but the base class itself isn't a complete

concept.

 You need to define abstract methods that subclasses must implement, but also want to

provide common concrete methods or state (instance variables).

 You want to control access modifiers for inherited members (private, protected).

STUDENTS-HUB.com

https://students-hub.com

When to Use Which? (Continued)

Use an Interface when:

 You want to define a contract for behavior that multiple, potentially
unrelated classes can adhere to. (e.g., Comparable, Runnable, Serializable).

 You need to achieve polymorphic behavior across classes that don't share a
common class hierarchy.

 You want to separate what a class does from how it does it.

 You are designing a system where new capabilities might be "plugged in"
easily.

STUDENTS-HUB.com

https://students-hub.com

Example: The Comparable Interface
 A built-in Java interface (java.lang.Comparable<T>).

 Defines the compareTo(T o) method.

 Classes that implement Comparable can be sorted naturally (e.g., using Collections.sort() or Arrays.sort()).

Example :
// Assuming Circle implements Comparable<Circle>

public class Circle extends GeometricObject implements Comparable<Circle> {

// ... (previous Circle class code) ...

@Override

public int compareTo(Circle other) {

if (this.radius > other.radius) {

return 1;

} else if (this.radius < other.radius) {

return -1;

} else {

return 0;

} } }

STUDENTS-HUB.com

https://students-hub.com

Example: Arrays.sort() with Comparable

import java.util.Arrays;

public class TestComparableCircle {

public static void main(String[] args) {

Circle[] circles = { new Circle(3.5),new Circle(1.2),new Circle(4.0),new Circle(2.8) };

System.out.println("Circles before sorting:");

for (Circle c : circles) {
System.out.printf("Radius: %.1f%n", c.getRadius()); }

Arrays.sort(circles); // Requires Circle to implement Comparable

System.out.println("\nCircles after sorting by radius:");

for (Circle c : circles) {
System.out.printf("Radius: %.1f%n", c.getRadius());

}

}

}

/* Expected Output:

Circles before sorting:

Radius: 3.5

Radius: 1.2

Radius: 4.0

Radius: 2.8

Circles after sorting by radius:

Radius: 1.2

Radius: 2.8

Radius: 3.5

Radius: 4.0

*/
STUDENTS-HUB.com

https://students-hub.com

Design Considerations

 Flexibility: Interfaces often lead to more flexible designs, as classes can

implement multiple behaviors.

 Extensibility: Easier to add new implementations without modifying existing

code.

 Loose Coupling: Code depends on an abstract type (interface or abstract

class) rather than specific concrete implementations.

 Liskov Substitution Principle: Objects of a superclass should be replaceable

with objects of its subclasses without breaking the application. Abstract

classes and interfaces support this.

STUDENTS-HUB.com

https://students-hub.com

Conclusion & Key Takeaways

 Abstraction is key: Hide complexity, expose essentials.

 Abstract Classes: Provide a base for related "is-a" objects, allowing shared
implementation and enforced abstract methods.

 Interfaces: Define contracts for "can-do" capabilities, enabling multiple type
inheritance and loose coupling.

 Polymorphism: Both abstract classes and interfaces are fundamental for
achieving polymorphism, allowing uniform handling of diverse objects.

 Mastering Chapter 13 is crucial for designing robust, adaptable, and
maintainable object-oriented systems in Java.

STUDENTS-HUB.com

https://students-hub.com

	chapter 13
	Slide 1: Abstract Classes and Interfaces
	Slide 2
	Slide 3: What are Abstract Classes?
	Slide 4: Why Use Abstract Classes?
	Slide 5: Abstract Class Syntax
	Slide 6: Abstract Methods
	Slide 7: Example: GeometricObject Abstract Class
	Slide 8: Concrete Subclass of an Abstract Class
	Slide 9: Example: Circle Subclass of GeometricObject
	Slide 10: Abstract Class and Polymorphism
	Slide 11: Example: Polymorphism with Abstract Classes
	Slide 12: Example: Polymorphism with Abstract Classes
	Slide 13: What are Interfaces?
	Slide 14: Why Use Interfaces?
	Slide 15: Interface Syntax (Pre-Java 8)
	Slide 16: Interfaces: Abstract Methods (Pre-Java 8 Syntax)
	Slide 17: Interfaces: Constants
	Slide 18: Interfaces: Default Methods (Java 8+)
	Slide 19: Interfaces: Static Methods (Java 8+) and Private Methods (Java 9+)
	Slide 20: Example :
	Slide 21: Implementing an Interface (implements keyword)
	Slide 22: Example: Chicken implementing Edible
	Slide 23: Interface and Polymorphism
	Slide 24: Example: Polymorphism with Interfaces
	Slide 25: Example: Polymorphism with Interfaces
	Slide 26: Abstract Classes vs. Interfaces: Key Differences (Part 1)
	Slide 27: When to Use Which? (Design Principles)
	Slide 28: When to Use Which? (Continued)
	Slide 29: Example: The Comparable Interface
	Slide 30: Example: Arrays.sort() with Comparable
	Slide 31: Design Considerations
	Slide 32: Conclusion & Key Takeaways

