ENCS5341
Machine Learning and Data Science

Kernels and SVM

Based on slides prepared by Tamas Horvath
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Support Vector Machine
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Linear separation

* Consider the following linearly separable binary classification problem. Which line is a better separator?
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Linear separation

* For alinearly separable data there are infinitely many separating hyperplanes.

 Which one to chose
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Noise tolerating linear separation

noisy examples: suppose some amount of noise (p) has been added to each
example
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Choose the hyperplane with the largest margin

hyperplane with maximum margin (v):
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Arguments for maximum margin hyperplane

e Robust against noise.

* Excellent predictive performance in practice.
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1. Hard Margin Support Vector Machines
(Boser, Guyon, and Vapnik, 1992)
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Point Hyperplane Distance

hyperplane for f(Z) = (W, ) + b =0

Fact 1. « is orthogonal to the hyperplane, as for any ¥, ©> on the hyperplane:
0= f(Z2) — f(Z1) = (W, T2) + b — ({(W,71) + b) = (W, T2 — T1)

Fact 2. signed distance of a point 7 from the hyperplane:

d = (= #-2,
|||

= (@, &) — (@, 5L))

1]
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Example: distance from a hyperplane

e f(x)=x1+x,—3

 Signed distance of the point (0,0) from f is

g - f©) _ -3
laol ~ vz

 Signed distance of the point (3,3) from f is

g FG3) _ 3
laol ~ V2
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The Maximum Margin Hyperplane

hyperplane (w, ¥) + b = 0: scale w and b such that | («, 2’)+b| = 1 of all points
on the dashed hyperplanes

= margin:

prediction of the class of an unseen instance #: sign((w, Z) + b)
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Support Vector Machines: Hard Margin Constraint

optimization problem for S = {(#1,y1),...,(Zn,yn)} C RY x {+1, -1} such
that S is linearly separable:

2
max Tl
ah ]
subject to | (W, @) +b| >1 fori=1,...,n

remark: hard margin constraints: all data points are classified correctly

problem: objective function is non-convex
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Support Vector Machines: Hard Margin Constraint

non-convex optimization problem:

2
max T
@b 1]
subject to | (w,Z;) +b>1 fori=1,...,n

equivalent formulation (maximizing = is the same as minimizing 7 ||[|?):

1

: L2
o il
st. —(y((@, ) +b)—1)<0 fori=1,...,n

= quadratic programming problem (i.e., quadratic objective function with lin-
ear inequality constraints)

— could be solved by off-the-shelf programs, still we take its dual in
order to arrive at a kernel method
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Remark

optimization problem:

N T
iy 570
s.b. 4i((W, ;) +b) =120,
b= L;uunli

corresponds to the regularized empirical risk minimization:

mm—ZV (&), v:) + A||@)|?

w,b N

0 ify-f(¥)>+1

loss function: V(f(7),y) =
. (f(@),) {OO N

e regularization parameter: any 0 < A < oo results in the same solution
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Dual Optimization Problem

solve:

ZO&L — == Z ;05 Y Y5 xzax]>

1,7=1

S.t. Zaiyi = (0 and
=1
(87 >0 iZl,...,n

n
maximum margin hyperplane: (w’ = 5 yiai:ﬁ;) :
=1
n
T = Zyi&i <fz,f> <+ b
b=—2 (;}182{1 (Z Yi Oy 3727373 ) + i?il} (Z Yi Oy <xzax3>>>
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Dual Form: Remark

maximum margin hyperplane: f(Z) = Enj ;i {Z;, )+ b

optimization theory: the dual complementary conditions guarantee that

o (y; ((W, &) +b) —1) =0

= only the points on the margin hyperplanes are active in the prediction (i.e.,
a > 0); all other points are inactive («; = 0)

— points on the margin hyperplanes: support vectors

= sparse kernel method because after training, a significant proportion of
the data can be discarded; only the support vectors must be kept
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Dual Form: Remark

support vectors
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2. Soft Margin Support Vector Machines
(Cortes and Vapnik, 1995)
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Soft Margin SVM

What to do if the data is not linearly separable?

idea: allow violations, but penalize them

violation types:

(i) training examples within the margin region, but on the correct side-_.

(missclassification)
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Soft Margin SVM

hard margin constraints are relaxed to soft margin constraints:

&;. slack variables:

e ¢ = 0: correct classification

7’

7’

e 0 < ¢ < 1: lies inside the margin, but on the correct side , -
P \

e £ > 1: lies on the wrong side
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—— Hinge Loss
Binomial Deviance

Squared Error
—— Class Huber

Soft Margin SVM: Optimization Problem o

optimization problem with C' > 0:

1 o |
C -+ ||| "
min  C &+ 5[] N
n =1 o
st w((@&) +b)21-& &20 i=1..,n S
-3 -2 -1 0 1 2 3
remarks: yf

e regularized empirical risk minimization with the hinge loss function

V(f(ib’),y) — maX(Oa 1 — yzf(w))

— finourcase: f(¥) = (W, Z) + b
— C > 0 plays the role of the regularization parameter A (C' = 1/))

e > & is an upper bound on the number of misclassified points
=1
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Soft Margin SVM: Dual Form

dual can be obtained in a way similar to the case of hard margins:

n n
1 — —
max E QU — 2 E ;0 YiYj (Tiy Tj)
-
i=1

1,j=1

st. 0<o; <C and Zaiyiz(), = Lwg:sll
5=

remark 1: quadratic programming problem
remark 2: almost the same as for hard margin SVM

difference: instead of 0 < «; (hard margin) we have the box constraints:
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Soft Margin SVM: Interpretation of the Solution

o; = 0: Z; IS inactive, i.e., does not contribute to the decision function

e typically this is the case for a large proportion of the training data
(sparsity)

a; > 0: for soft margin SVM three types of support vectors:

e data points on the margin
e data points within the margin

e data points on the wrong side of the boundary
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The Kernel Trick
(Aronszajn, 1964)
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Learning in Feature Space

learning in input space: difficult if the input-output relationship is nonlinear

common strategy in ML: using some appropriate function

®:RY— RP
transform your data (in R9) into another space (R”), called the feature
space, in which the relationship becomes linear 1.5
AZU
0.5}
J
% >
s
—0.5¢
g =10 0.0 1.0 2.0
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Example: XOR

1
z = (m) p(z) = | x2
= T17T2
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Example: 1D to 2D

Data can become linearly separable in higher-dimensional space.

A Features: (x,x2)

Features: (x)

%0 0 09

00—0-00— -~ - —>

A Features: (x,x2)

hyperplane

- loo-0-00—|

Y0.000
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Example: 2D to 3D

Left: Features (x,y) Right: Features (x,y, x*+y?)
8
0‘80
:a‘o .
: Eoo :o' = o o ! |
¢ N : B e
- » 1 ® N o] 5 E o/l ) 2 ¢
% ®e | = TT@%&@ 2 ;
o0 o o ! *
® :~ ® o S )
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Challenges of learning non-linear relationships

* How to choose the transformation such that the relation become linear?
* The transformation increases the features dimension, which increases the computation cost

The Kernel Trick solves both problems
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The Kernel Trick
Def.: a kernel is a function X x X — R such that for all z,y € X,

k(z,y) = (®(z), (y))

for some function ® mapping X to an inner product feature space ‘H

kernel trick: substitute all occurrences of (-, -) by a kernel £ with

k(z,y) = (®(2), ®(y))

where @ is the underlying function mapping the input space into the fea-
ture space

crucial point: ® does not have to be calculated; it can be even unknown!
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The Kernel Trick
example: let &k : X x X — R with X C R? be defined by
k(Z,7) = (z,7)° forall Z,57 e X

claim: % is a kernel corresponding to the feature map ® : R? — R defined by

d
,7=1

proof: (®(Z), 2(y)) = <(xi$j)§{j:17 (yiyj)fcil,j:1>

d
= Z LiT;iYiY;j

hi—=1

®: 72— (225) for all Z € R?
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Properties of Kernels

let £: X x X — R be a kernel function with k(z,y) = (®(z), ®(y)) for some &

and let
k(z,y)

k(z,z)\/k(y,v)

a(z,y) = 7

then

k(z,y)
VE, z)\/k(y, y)
(®(z), P(y))
V(®(z), ®(x))/(®(y), ®(y))
(®(z), ‘I’(y))>

= normalized kernels: cosine similarity in the feature space
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Construction of Kernel Functions
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Kernel Construction

we present some basis kernel functions, as well as show rules for constructing
more complex kernels from simple ones

proof techniques used to show these results:

e construct the underlying feature map ® corresponding to the kernel

e or use Mercer’s characterization theorem (will not be discussed in this course)
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Kernel Construction

Prop. k(xz,y) = f(x)f(y)is a kernel over X x X for all functions f : X — R

proof: let  : X — R be defined by

G:x— f(x)forallz e X

g.e.d.

STUDENTS-HUB.com Uploaded By: Jibreef Bornat



Kernel Construction

Prop. Let k1, ko be kernels over X x X. Then for all a, 8 > 0,

k(z,y) = aki(z,y) + Bka(z,y)

IS a kernel.
Prop. Let k1, ko be kernels over X x X. Then
k<x7 y) = kl ([B, y)k'g(l', y)
IS a kernel.
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Kernel Construction

Prop. Let k1 be a kernel over X x X and p be a polynomial with positive
coefficients. Then

k(z,y) = plki(z, y))

is a kernel.
Prop. Let k1 : X x X — R be a kernel. Then
k(z,y) = )

IS a kernel.
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Kernel Construction

Prop. The function & : R? x R? — R defined by

o27)  exp (NE =13 R
T, y) =exp | — 52 forall 7,7 € R

is a kernel for any d and for any o € R™. It is called the Gaussian or the
radial basis function (RBF) kernel.
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Common Kernel Functions

common kernel functions over R? x R¢:

linear kernel: k(Z,7) =2y

polynomial kernel: k(Z,7) := ("7 + c)*

Gaussian or RBF kernel: k(7 1) = exp (—
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Recap: Dual Optimization Problem

solve:

Zaz — == Z Qi 5Yi Y5 x27x]>

1,7=1

S.t. Zaiyi = (0 and
=1
(87 >0 iZl,...,n

n
maximum margin hyperplane: <w’ = 5 yiai:ﬁ;) :
=1
n
T = Zyi&i <fz,f> <+ b
b= —= (;flaﬁ (Z Yyl § @ Ty ) +£nl1} (Z Yi i (L3, T ) ))
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Dual Form: Remark

optimization problem:

n n
]- — — <
mgx E Q; — 5 E aiajyiyj@:i,:z:j) -
a
=1

i,j=1

S.t. Z a;y; =0 and

=1

remark 1. input data and new
points () are used only
through inner products

a; >0,1=1,...,n

maximum margin hyperplane: = kernel trick is applicable!

Iy
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Dual Form: Remark

optimization problem:

n n
1 5 5
max E ai—§ E aio{jyiyjk(xiyxj) <
(0%
i=1

2,7=1

s.1. Z a;y; =0 and
i=1 kernel trick: replace the inner
a; >0,1=1,...,n products by a kernel function —

maximum margin hyperplan
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Example

e synthetic data (R?) with two classes

e Gaussian kernel

e contours: constant f(

-
-
-
-
-
-
-
-

support vectors -22_------

decision boundary margin boundaries
(hyperplane in the feature space) (hyperplanes in the feature space)
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