
EXPERIMENT #6

Public-Key Infrastructure (PKI) Lab

ENCS5121

Information Security and

Computer Networks Laboratory

Slides by: Mohamad Balawi

Updated By: Tariq Odeh

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

2

Overview

• Problem:

- Man-in-the-middle attacks exploit the exchange of public keys due to the lack of verification.

• Solution:

- Public Key Infrastructure (PKI), establishes a trusted system to verify public key ownership.

• Key Components:

- Certificate Authority (CA): Issues and verifies digital certificates.

- X.509 Certificate: Binds public keys with identity information.

- Root CA: The ultimate trust anchor in the PKI hierarchy.

• Applications:

- Secures web communications (e.g., HTTPS).

- Prevents MITM attacks by ensuring the authenticity of public keys.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

3

Overview (Cont.)

• Learning Outcomes:

- Understand PKI, CAs, and the role of certificates.

- Learn how HTTPS uses PKI to secure data.

- Explore potential issues if the root trust is compromised.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

4

Outline

• Introduction

• Task 1: Becoming a Certificate Authority (CA).

• Task 2: Generate a Certificate Request for a Server.

• Task 3: Generating a Certificate for your server.

• Task 4: Deploying Certificate in an Apache-Based Website.

• Task 5: Launching a Man-In-The-Middle Attack.

• Task 6: Man-In-The-Middle Attack with a Compromised CA.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

5

Public Key Infrastructure (PKI) Overview

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

Certificate Signing
 Request

Online Certificate Status Protocol

https://students-hub.com

6

Apache HTTP Server Project

• The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP server

for modern operating systems including UNIX and Windows. The goal of this project is to provide a

secure, efficient and extensible server that provides HTTP services in sync with the current HTTP

standards.

• The Apache HTTP Server ("httpd") was launched in 1995, and it has been the most popular web

server on the Internet since April 1996.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

7

SSL & TLS

• SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are cryptographic protocols for

securing network communication. TLS, the successor to SSL, offers improved security and is widely

used for HTTPS and other secure connections.

• Even though TLS is the successor to SSL, but the terms are often used interchangeably. TLS 1.0 is

essentially SSL 3.0, and subsequent versions of TLS have evolved independently of SSL.

• SSL versions prior to SSL 3.0 are considered insecure and deprecated due to various vulnerabilities

discovered over time.

• SSL 2.0 was first released in 1995.

• TLS 1.0 was first released in 1999.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

HTTP port 80
HTTPS port 443

https://students-hub.com

TASK1
Becoming a Certificate Authority (CA)

Expected output of this task:

• CA Private Key (ca.key)

• CA Certificate (ca.crt)

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

9

Task 1: Becoming a Certificate Authority (CA)

• A Certificate Authority (CA) is a trusted entity that issues digital certificates.

• Users who want to get digital certificates issued by the commercial CAs need to pay those CAs.

• In this lab, we need to create digital certificates, but we are not going to pay any commercial CA.

• We will become a root CA ourselves and then use this CA to issue certificate for others.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

10

Step1: Default settings to prepare

ENCS5121 Information Security and Computer Networks Laboratory

The [CA default] section of the configuration file shows the default setting that we need to prepare.

[CA_default]

Dir = ./demoCA # Where everything is kept.

Certs = $dir/certs # Where the issued certs are kept.

crl_dir = $dir/crl # Where the issued crl are kept.

Database = $dir/index.txt # database index file.

#unique_subject = no # allows multiple certs with the same subject.

new_certs_dir = $dir/newcerts # default place for new certs.

serial = $dir/serial # The current serial number.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

11

Step1: Default settings to prepare (Cont.)

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ mkdir ./demoCA

seed@VM:~/.../EXP6$ cd demoCA/

seed@VM:~/.../demoCA$ mkdir cert

seed@VM:~/.../demoCA$ mkdir crl

seed@VM:~/.../demoCA$ mkdir newcerts

seed@VM:~/.../demoCA$ touch index.txt

seed@VM:~/.../demoCA$ echo "1000" > serial

seed@VM:~/.../demoCA$ cd ..

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

12

Step2: Copy openssl.conf

• To use OpenSSL to create certificates, you must have a configuration file.

• The configuration file usually has an extension .cnf

• The configuration file is used by three OpenSSL commands: ca, req and x509.

• By default, OpenSSL uses the configuration file from/usr/lib/ssl/openssl.cnf.

• Since we need to make changes to this file, we will copy it into our current directory and instruct

OpenSSL to use this copy instead.

seed@VM:~/.../EXP6$ cp /usr/lib/ssl/openssl.cnf myCA_openssl.cnf

• Later, we will use the “-config” option to use our version instead of the default one.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

13

Step3: Certificate Authority (CA)

• As we described before, we need to generate a self-signed certificate for our CA. You can run the

following command to generate the self-signed certificate for the CA:

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ openssl req -x509 -newkey rsa:4096 -sha256 -days 3650 -keyout ca.key -out ca.crt -

config myCA_openssl.cnf

Argument Description

req Certificate request.

-x509 Outputs a certificate instead of a certificate request.

-newkey rsa:4096 Generate a new RSA (4096-bit) private key.

-sha256 The hashing algorithm to use for generating the certificate's fingerprint.

-days 3650 Sets the validity period of the certificate to 3650 days (approximately 10 years).

-keyout ca.key The file where the generated private key should be saved.

-out ca.crt The file where the generated X.509 certificate should be saved.

-config openssl.cnf This specifies the configuration file to use for generating the certificate.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

14

Step4: Decode X.509 Certificate and RSA Key

• To look at the decoded content of the X509 certificate and the RSA key

- -text means decoding the content into plain text;

- -noout means not printing out the encoded version)

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ openssl x509 -in ca.crt -text -noout

seed@VM:~/.../EXP6$ openssl rsa -in ca.key -text -noout

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

15

openssl rsa -in ca.key -text -noout

• The output of the "openssl rsa -in ca.key -text -noout“

command provides comprehensive details regarding both the

private and public keys.

• The table on the right correlates the output of the command with

the mathematical components of the keys.

• The last three rows, (highlighted in red) are used in the Chinese

Remainder Theorem (CRT) optimization, which enables efficient

decryption and signing operations, particularly in RSA private

key operations.

ENCS5121 Information Security and Computer Networks Laboratory

Title in the CMD
output

Mathematical
symbol

modulus 𝑛 (𝑝𝑥𝑞)

publicExponent 𝑒

privateExponent 𝑑

prime1 𝑝

prime2 𝑞

exponent1 𝑑 𝑚𝑜𝑑 (𝑝 − 1)

exponent2 𝑑 𝑚𝑜𝑑 (𝑞 − 1)

coefficient 𝑞−1 mod 𝑝

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

TASK2
Generate a Certificate Request for a Server

Expected output of this task:

• Server Private Key (server.key)

• -Certificate Request (server.csr)

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

17

Step 1: Edit openssl.cnf file

• Uncommenting the following from openssl.cnf file:

ENCS5121 Information Security and Computer Networks Laboratory

#unique_subject= no → unique_subject = no

#copy_extensions = copy → copy_extensions = copy

#Policy = policy_match → policy = policy_match

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

18

Step 2: Generate a Certificate Request for a Server

• A company called www.mbalawi.com wants to get a public-key certificate from our CA.

• First it needs to generate a Certificate Signing Request (CSR), which basically includes the company’s

public key and identity information.

• The CSR will be sent to the CA, who will verify the identity information in the request, and then generate

a certificate.

• The command to generate a CSR is similar to the one we used in creating the self-signed certificate, the

only difference is the absence of the –x509 argument.

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ openssl req -newkey rsa:2048 -sha256 -keyout server.key -out

server.csr -subj "/CN=www.mbalawi.com/O=Birzeit University/C=PS" -passout pass:dees

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

19

Adding Alternative names

• Many websites have different URLs. For example, www.example.com, example.com, example.net, and

example.org are all pointing to the same web server.

• Due to the hostname matching policy enforced by browsers, the common name in a certificate must

match with the server’s hostname, or browsers will refuse to communicate with the server.

• To allow a certificate to have multiple names, the X.509 specification defines extensions to be attached to

a certificate. This extension is called Subject Alternative Name (SAN).

• Using the SAN extension, it’s possible to specify several hostnames in the subjectAltName field of a

certificate.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

http://www.example.com/
https://students-hub.com

20

Step 3: Add SAN extension using command-line

• To use the SAN extension can add the "-addext" option to the "openssl req" command.

• It should be noted that the subjectAltName extension field must also include the Common Name (CN)

field; otherwise, the common name will not be accepted as a valid name.

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ openssl req -newkey rsa:2048 -sha256 -keyout server.key -out

server.csr -subj "/CN=www.mbalawi.com/O=Birzeit University/C=PS" -passout pass:dees

-addext "subjectAltName = DNS:mbalawi.com, DNS:www.mbalawi.com, DNS:www.mb.com"

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

21

Additional info

• The command will generate a pair of public/private key and then create a certificate signing request

from the public key.

• We can use the following command to look at the decoded content of the CSR and private key files:

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ openssl req -in server.csr -text –noout

seed@VM:~/.../EXP6$ openssl rsa -in server.key -text -noout

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

TASK3
Generating a Certificate for your server

Expected output of this task:

• Server Certificate (server.crt)

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

23

Step 1: Becoming a Certificate Authority (CA)

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ openssl ca -config myCA_openssl.cnf -policy policy_anything -md

sha256 -days 3650 -in server.csr -out server.crt -batch -cert ca.crt -keyfile ca.key -

passin pass:dees

• The following command turns the certificate signing request (server.csr) into an X509 certificate

(server.crt), using the CA’s ca.crt and ca.key:

• where myCA_openssl.cnf is the configuration file we copied from /usr/lib/ ssl/openssl.cnf (we

also made changes to this file in Task 1).

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

24

Options Description

seed@VM:~/.../EXP6$ openssl ca -config myCA_openssl.cnf -policy policy_anything -md

sha256 -days 3650 -in server.csr -out server.crt -batch -cert ca.crt -keyfile ca.key -

passin pass:dees

Argument Description

-policy policy_anything Specifies the policy to use when signing the certificate. The "policy_anything“
allows for flexibility, the default policy has more restriction, requiring some of
the subject information in the request to match those in the CA’s certificate.

-md sha256 (message digest) specifies the SHA-256 signature algorithm for OpenSSL.

-batch batch mode, operates without user prompts, ideal for automated processes.

-passin pass:dees Specifies the password the private key file. Here it is “dees”.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

25

Step 2: Read the certificate

ENCS5121 Information Security and Computer Networks Laboratory

seed@VM:~/.../EXP6$ openssl x509 -in server.crt -text -noout

• After executing the previous certificate signing command command, execute the following to read

the certificate:

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

TASK4
Deploying Certificate in an Apache-Based

HTTPS Website & add our CA to the

browser’s list of trusted CAs

Expected output of this task:

• Secure connection to our server

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

27

Task 4: Deploying Certificate in an HTTPS Website

• In this task, we will see how public-key certificates are used by websites to secure web browsing.

• We will set up an HTTPS website-based Apache.

• The Apache server, which is already installed in the docker container, supports the HTTPS protocol.

• You can deploy it after extracting labsetup.zip and executing dcbuild && dcup inside

labsetup directory.

• To create an HTTPS website, we just need to configure the Apache server, so it knows where to get

the private key and certificates.

• Inside our container, we have already set up an HTTPS site for bank32.com. Students can follow

this example to set up their own HTTPS site.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

28

Hosting Multiple Websites

• An Apache server can simultaneously host multiple websites.

• It needs to know the directory where a website’s files are stored.

• This is done via its VirtualHost file, located in the /etc/apache2/sites-available directory.

• In our container, we have a file called bank32_apache_ssl.conf, which contains two VirtualHosts.

• Each virtual host has its own configuration settings, enabling the server to serve different content

based on factors like domain name or IP address.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

29

VirtualHost File

• In our container, we have a file called bank32_apache_ssl.conf, which contains the following:

<VirtualHost *:80>
 DocumentRoot /var/www/bank32
 ServerName www.bank32.com
 DirectoryIndex index_red.html
</VirtualHost>

ENCS5121 Information Security and Computer Networks Laboratory

<VirtualHost *:443>

 DocumentRoot /var/www/bank32

 ServerName www.bank32.com

 ServerAlias www.bank32A.com

 ServerAlias www.bank32B.com

 ServerAlias www.bank32W.com

 DirectoryIndex index.html

 SSLEngine On

 SSLCertificateFile /certs/bank32.crt

 SSLCertificateKeyFile /certs/bank32.key

</VirtualHost>

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

30

VirtualHost File Entries

• The following table contains the meaning of different entries in the VirtualHost file

entry Description

<VirtualHost *:443> Defines the port (443 is the default port for HTTPS) (80 is the default for HTTP)

DocumentRoot Specifies where the files for the website are stored.

ServerName Specifies the primary domain name for the website.

ServerAlias Specifies additional domain names (aliases) for the virtual host.

DirectoryIndex index.html Defines the default filename to be served when a directory is requested. If a
directory is accessed without specifying a filename, Apache will look for
index.html in that directory and serve it if found.

SSLEngine On Enables SSL/TLS encryption for this virtual host, allowing HTTPS connections.

SSLCertificateFile Specifies the path to the SSL certificate file. The SSL certificate file contains
the public key and other details necessary for SSL/TLS encryption.

SSLCertificateKeyFile Specifies the path to the private key file associated with the SSL certificate.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

31

Shared Folder Between the VM and Container

• In this task, we need to copy files from the VM to the container.

• To avoid repeatedly recreating containers, we have created a shared folder between the VM and

container.

• When you use the Compose file inside the Labsetup folder to create containers, the volumes sub-

folder will be mounted to the container. Anything you put inside this folder will be accessible from

inside of the running container.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

32

What do we Need to Do?

3. Copy our server’s certificate (server.crt) and key (server.key) to Labsetup/volumes.

4. Navigate to Labsetup directory and execute the following command:

seed@VM:~/.../Labsetup$ dcbuild

seed@VM:~/.../Labsetup$ dcup

2. Add the following IP-to-Hostname mapping to the end of /etc/hosts file:

 seed@VM:~/.../Labsetup$ 10.9.0.80 www.mbalawi.com

1. Open the /etc/hosts file:

 seed@VM:~/.../Labsetup$ sudo nano /etc/hosts

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

33

What do we Need to Do?

7. Start the Apache server using the following command:

root@<container_id>:/# service apache2 start

6. Enter the container by executing the following command after replacing <container_id>:

 seed@VM:~/.../Labsetup$ docksh <container_id>

5. Get the container ID from executing the following command:

 seed@VM:~/.../Labsetup$ dockps

ENCS5121 Information Security and Computer Networks Laboratory

• if it asks for a password, use the one we set for our server in Task 2. it asks for a password

because when Apache starts, it needs to load the private key for each HTTPS site, and our

private key is encrypted, so Apache will ask us to type the password for decryption.

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

34

What to expect?

• If you get the Apache2 Ubuntu Default Page after

accessing the HTTP port or

the HTTPS port of your

website, then there is something wrong with your

configuration.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

35

What to expect?

• When you try to access the HTTP port of

your website you will

get index_red.html page.

• The icon means that your connection is

insecure and that is because HTTP is

insecure by nature.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

36

What to expect?

• When you try to access the HTTPS port of

your website you

will get a warning page from Firefox.

• The icon means that your connection is

insecure and that is because the certificate

is invalid, there are many reasons for that, in

our case it is caused by unknown CA.

• You can bypass this warning by clicking

 button then

• Read the dialoge that appears after clicking

 button.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

37

What to expect?

• After bypassing the warning for the HTTPS

port of your website

you will get a index.html page which is a

“Hello, world!” title on green background.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

38

Add our CA to Firefox trusted CAs

• To avoid the browser’s warning, we need to add our CA to the browser’s list of trusted CA.

• To do that, we need to navigate to the following URL:

about:preferences#privacy

• Then go to Certificates section and click the button.

• Switch to tab.

• Then click button.

• Choose our CA’s self signed certificate (ca.crt).

• Tick checkbox.

• Click button.

• Refresh https://www.mbalawi.com

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

39

What to expect after adding our CA to Firefox?

• When you try to access the HTTPS port

of your website

you will get index.html page, but this

time the padlock icon is different.

• The icon means that your connection

is secure because it provided a certificate

that is signed by a valid CA (our CA).

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

TASK5
Launching a Man-In-The-Middle Attack

Expected output of this task:

• Getting SSL_ERROR_BAD_CERT_DOMAIN

when trying to access facebook.com

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

41

Launching a Man-In-The-Middle Attack

• In this task, we will show how PKI can defeat Man-In-The-Middle (MITM) attacks.

• Assume Alice wants to visit facebook.com via the HTTPS protocol. She needs to get the public key

from the facebook.com server; Alice will generate a secret, and encrypt the secret using the

server’s public key, and send it to the server.

• If an attacker can intercept the communication between Alice and the server, the attacker can

replace the server’s public key with its own public key.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

42

Launching a Man-In-The-Middle Attack

• Therefore, Alice’s secret is encrypted with the attacker’s public key, so the attacker will be able to

read the secret. The attacker can forward the secret to the server using the server’s public key. The

secret is used to encrypt the communication between Alice and server, so the attacker can decrypt

the encrypted communication.

• In the task, we will emulate an MITM attack and see how exactly PKI can defeat it.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

43

Planning Our Attack Strategy (step 1)

• In Task 4, we have already set up an HTTPS website.

• We will use the same Apache server to impersonate www.facebook.com. To achieve that, we will

follow the instruction in Task 4 to add a VirtualHost entry to Apache’s SSL configuration file: the

ServerName should be www.facebook.com, but the rest of the configuration can be the same as

that used in Task 4. Obviously, in the real world, you won’t be able to get a valid certificate for

www.facebook.com, so we will use the same certificate that we used for our own server.

• Our goal is the following: when a user tries to visit www.facebook.com, we are going to get the user

to land in our server, which hosts a fake website for www.facebook.com. The fake site can display

a login page like the one in the target website. If users cannot tell the difference, they may type

their account credentials in the fake webpage, essentially disclosing the credentials.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

44

Planning Our Attack Strategy (step 2)

• There are several ways to get the user’s HTTPS request to land in our web server.

• One way is to attack the routing, so the user’s HTTPS request is routed to our web server.

• Another way is to attack DNS, so when the victim’s machine tries to find out the IP address of the target

web server, it gets the IP address of our web server.

• In this task, we simulate the attack-DNS approach. Instead of launching an actual DNS cache poisoning

attack, we simply modify the victim’s machine /etc/hosts file to emulate the result of a DNS cache

poisoning attack by mapping the hostname www.facebook.com to our malicious web server.

ENCS5121 Information Security and Computer Networks Laboratory

 seed@VM:~/.../Labsetup$ sudo nano /etc/hosts

 seed@VM:~/.../Labsetup$ 10.9.0.80 www.facebook.com

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

45

What to expect?

• When attempting to visit www.facebook.com, we

encounter a warning page denying access to the

website.

• SSL_ERROR_BAD_CERT_DOMAIN is the displayed

error message.

• This outcome is anticipated because we utilized a

certificate from www.mbalawi.com. The browser

compares the domain name on the certificate

with the domain name we are attempting to

access and detects a discrepancy, resulting in the

display of the error page.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

TASK6
Launching a Man-In-The-Middle Attack

with a Compromised CA

Expected output of this task:

• MITM attack is successful

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

47

Launching a Man-In-The-Middle Attack

• In this task, we assume that the root CA created in Task 1 is compromised by an

attacker, and its private key is stolen.

• Therefore, the attacker can generate any arbitrary certificate using this CA’s private key.

• In this task, we will see the consequence of such a compromise.

• Please design an experiment to show that the attacker can successfully launch MITM

attacks on any HTTPS website. You can use the same setting created in Task 5, but this

time, you need to demonstrate that the MITM attack is successful, i.e., the browser will

not raise any suspicion when the victim tries to visit a website but land in the MITM

attacker’s fake website.

ENCS5121 Information Security and Computer Networks Laboratory

Uploaded By: anonymousSTUDENTS-HUB.com

https://students-hub.com

	Introduction
	Slide 1
	Slide 2: Overview
	Slide 3: Overview (Cont.)
	Slide 4: Outline
	Slide 5: Public Key Infrastructure (PKI) Overview
	Slide 6: Apache HTTP Server Project
	Slide 7: SSL & TLS

	Task 1
	Slide 8
	Slide 9: Task 1: Becoming a Certificate Authority (CA)
	Slide 10: Step1: Default settings to prepare
	Slide 11: Step1: Default settings to prepare (Cont.)
	Slide 12: Step2: Copy openssl.conf
	Slide 13: Step3: Certificate Authority (CA)
	Slide 14: Step4: Decode X.509 Certificate and RSA Key
	Slide 15: openssl rsa -in ca.key -text -noout

	Task 2
	Slide 16
	Slide 17: Step 1: Edit openssl.cnf file
	Slide 18: Step 2: Generate a Certificate Request for a Server
	Slide 19: Adding Alternative names
	Slide 20: Step 3: Add SAN extension using command-line
	Slide 21: Additional info

	Task 3
	Slide 22
	Slide 23: Step 1: Becoming a Certificate Authority (CA)
	Slide 24: Options Description
	Slide 25: Step 2: Read the certificate

	Task 4
	Slide 26
	Slide 27: Task 4: Deploying Certificate in an HTTPS Website
	Slide 28: Hosting Multiple Websites
	Slide 29: VirtualHost File
	Slide 30: VirtualHost File Entries
	Slide 31: Shared Folder Between the VM and Container
	Slide 32: What do we Need to Do?
	Slide 33: What do we Need to Do?
	Slide 34: What to expect?
	Slide 35: What to expect?
	Slide 36: What to expect?
	Slide 37: What to expect?
	Slide 38: Add our CA to Firefox trusted CAs
	Slide 39: What to expect after adding our CA to Firefox?

	Task 5
	Slide 40
	Slide 41: Launching a Man-In-The-Middle Attack
	Slide 42: Launching a Man-In-The-Middle Attack
	Slide 43: Planning Our Attack Strategy (step 1)
	Slide 44: Planning Our Attack Strategy (step 2)
	Slide 45: What to expect?

	Task 6
	Slide 46
	Slide 47: Launching a Man-In-The-Middle Attack

