
Inheritance and 

Polymorphism

STUDENTS-HUB.com

https://students-hub.com


 Title: Inheritance and Polymorphism

 Goals:

 Understand how inheritance promotes code reuse

 Learn how to create and use subclasses

 Apply polymorphism for flexible code

 Understand dynamic binding and casting

STUDENTS-HUB.com

https://students-hub.com


Introduction to Inheritance

 One of the fundamental principles of Object-Oriented Programming (OOP).

 Allows a new class (subclass) to be based on an existing class (superclass).

 Promotes code reuse and establishes a hierarchical "is-a" relationship.

 Inheritance = acquiring properties from another class

 Promotes code reuse and organization

 Java uses extends keyword

STUDENTS-HUB.com

https://students-hub.com


Motivations for Inheritance

 Avoids redundant code.

 Facilitates code maintenance and modification.

 Supports the modeling of real-world hierarchies (e.g., a Student is a Person).

 Enables polymorphism (next major topic).

STUDENTS-HUB.com

https://students-hub.com


Superclasses and Subclasses

 Superclass (Parent/Base Class): The existing class from which a new class is 

derived.

 Subclass (Child/Derived Class): The new class that inherits from a superclass.

 A subclass extends the functionality of its superclass, often adding more 

specific data fields and methods.

STUDENTS-HUB.com

https://students-hub.com


Defining a Subclass (extends keyword)

 In Java, inheritance is achieved using the extends keyword.

 Syntax: class Subclass extends Superclass { ... }

 Example: public class Circle extends GeometricObject { ... }

STUDENTS-HUB.com

https://students-hub.com


What is Inherited?

 A subclass inherits all public and protected data fields and methods from its 

superclass.

 Private members of the superclass are not directly accessible by the subclass, 

but they are still part of the superclass object and can be accessed indirectly 

through public/protected methods of the superclass.

 Constructors are NOT inherited.

STUDENTS-HUB.com

https://students-hub.com


The Object Class: The Root of All Classes

 Every class in Java, explicitly or implicitly, extends the java.lang.Object

class.

 If a class doesn't explicitly extend another class, it implicitly extends Object.

 Object provides common functionalities (e.g., equals(), toString(), 

hashCode())

STUDENTS-HUB.com

https://students-hub.com


Constructor Chaining

 When a subclass object is created, its constructor is invoked.

 Before the subclass constructor's body executes, a superclass constructor 

must be called. This forms a "chain" of constructor calls up the hierarchy.

 This ensures that the superclass's portion of the object is properly initialized.

STUDENTS-HUB.com

https://students-hub.com


Invoking Superclass Constructors 

(super() keyword)

 Use super() to explicitly invoke a superclass constructor.

 super() must be the first statement in a subclass constructor.

 If super() is not explicitly called, the Java compiler implicitly inserts a call to 

the superclass's no-arg constructor as the first statement. If the superclass 

does not have a no-arg constructor, this will result in a compile-time error.

STUDENTS-HUB.com

https://students-hub.com


Example: Constructor Chaining

class Person {

private String name;

public Person(String name) {

this.name = name;

System.out.println("Person constructor: " + name);

}

}

class Student extends Person {

private int studentId;

public Student(String name, int id) {

super(name); // Must be the first statement

this.studentId = id;

System.out.println("Student constructor: " + name + ", " + id);

}

}

// When new Student("Alice", 123) is called, Person's constructor runs first.

STUDENTS-HUB.com

https://students-hub.com


Method Overriding

 A subclass can provide a specific implementation for a method that is already 

defined in its superclass.

 The method signature (name and parameter list) must be identical.

 The return type must be the same or a covariant (sub)type.

 The access modifier cannot be more restrictive than the superclass method.

STUDENTS-HUB.com

https://students-hub.com


@Override Annotation

 Recommended to use the @Override annotation when overriding methods.

 The compiler checks if the annotated method actually overrides a superclass 

method. If not, it's a compile-time error, helping catch common mistakes 

(e.g., typos in method names).

STUDENTS-HUB.com

https://students-hub.com


Invoking Superclass Methods (super 

keyword)

 The super keyword can also be used to explicitly call an overridden method 

from the superclass.

 Useful when you want to extend the superclass's behavior rather than 

completely replacing it.

 Syntax: super.methodName(arguments);

STUDENTS-HUB.com

https://students-hub.com


Overriding vs. Overloading

 Overriding: Same method signature (name + parameter list) in subclass as in 

superclass. (Runtime polymorphism)

 Overloading: Same method name in the same class (or inherited classes), but 

different parameter lists. (Compile-time polymorphism)

STUDENTS-HUB.com

https://students-hub.com


Introduction to Polymorphism

 Polymorphism: "Many forms." The ability of an object to take on many forms.

 A single reference variable can refer to objects of different (related) types at 

different times.

 Central to object-oriented design, allowing flexible and extensible code.

STUDENTS-HUB.com

https://students-hub.com


Polymorphic References

 A reference variable of a superclass type can refer to an object of any of its 

subclasses.

 Example: 

GeometricObject obj = new Circle(5);

GeometricObject obj2 = new Rectangle(4, 6);

 While obj is declared as GeometricObject, it actually holds a Circle object.

STUDENTS-HUB.com

https://students-hub.com


Dynamic Binding

 The JVM determines which version of an overridden method to execute at 

runtime, based on the actual type of the object being referenced, not the 

type of the reference variable.

 This is also known as runtime polymorphism.

 Example: If obj (referring to a Circle) calls obj.getArea(), the Circle's 

getArea() method is executed.

STUDENTS-HUB.com

https://students-hub.com


Casting Objects

 Upcasting (Implicit): Assigning a subclass object to a superclass reference. 

Always safe.

 Object obj = new String("Hello");

 Downcasting (Explicit): Assigning a superclass reference to a subclass 

reference. Requires an explicit cast and is potentially unsafe if the object 

isn't truly of that subclass type.

 String s = (String) obj;

STUDENTS-HUB.com

https://students-hub.com


The instanceof Operator

 Used to check if an object is an instance of a particular class (or an interface 

it implements).

 Prevents ClassCastException during downcasting.

 Syntax: 

objectRef instanceof ClassOrInterface

 Returns true or false.

STUDENTS-HUB.com

https://students-hub.com


instanceof Example

Object myObject = new Circle(3);

if (myObject instanceof Circle) {

Circle c = (Circle) myObject; // Safe downcast

System.out.println("It's a circle with radius: " + c.getRadius());

} else if (myObject instanceof String) {

// This block won't execute

}

STUDENTS-HUB.com

https://students-hub.com


The equals() Method in Object Class

 The default equals() method (from Object) simply compares object 

references (memory addresses).

 For meaningful content comparison, you almost always need to override 

equals() in your custom classes.

 Consider instanceof and proper type casting within the method.

STUDENTS-HUB.com

https://students-hub.com


The toString() Method

 Returns a string representation of the object.

 Default Object.toString() returns class name and hash code.

 Frequently overridden to provide a concise, human-readable description of 

the object's state (e.g., a Circle object showing its radius).

STUDENTS-HUB.com

https://students-hub.com


Array of Objects and Polymorphism

 An array of a superclass type can hold objects of its subclasses.

 Example: 

GeometricObject[] objects = new GeometricObject[3];

objects[0] = new Circle(1.0);

objects[1] = new Rectangle(2.0, 3.0);

objects[2] = new Circle(4.5);

 Allows processing diverse objects uniformly in a loop.

STUDENTS-HUB.com

https://students-hub.com


ArrayList of Objects and Polymorphism

 ArrayList (from java.util) is a dynamic, resizable array.

 Even more flexible for storing polymorphic collections than standard arrays.

 Example: 

ArrayList<GeometricObject> shapes = new ArrayList<>();

shapes.add(new Circle(5));

shapes.add(new Rectangle(2, 3));

STUDENTS-HUB.com

https://students-hub.com


protected Modifier Revisited

 Allows members to be accessible within the same package and by subclasses 

in any package.

 More restrictive than public, less restrictive than private.

 Often used for fields or methods that subclasses might need to access or 

modify directly.

STUDENTS-HUB.com

https://students-hub.com


The final Modifier

 Can be applied to:

 Variables: Makes them constants (value cannot be changed after initialization).

 Methods: Prevents the method from being overridden by subclasses.

 Classes: Prevents the class from being extended (no subclasses allowed, e.g., 

String, Math classes).

STUDENTS-HUB.com

https://students-hub.com


Designing with Inheritance

 Use inheritance when there is a clear "is-a" relationship.

 Look for common attributes and behaviors to abstract into a superclass.

 Favor composition over inheritance if the relationship is "has-a" rather than 

"is-a".

 Keep hierarchies shallow and focused.

STUDENTS-HUB.com

https://students-hub.com


Key Concepts from Chapter 11

 Inheritance: extends keyword, superclass/subclass, code reuse.

 Constructor Chaining: super() call, automatic invocation of no-arg superclass 

constructor.

 Method Overriding: Redefining superclass methods in subclasses, @Override.

 Polymorphism: Superclass references to subclass objects, instanceof.

 Dynamic Binding: Runtime determination of method calls.

 Object class methods: equals(), toString() (and their importance for 

overriding).

 protected and final modifiers.

STUDENTS-HUB.com

https://students-hub.com


Conclusion

 Inheritance and polymorphism are cornerstones of robust, flexible, and 

scalable object-oriented programming.

 They allow for code reuse, extensibility, and the ability to work with objects 

at different levels of abstraction.

 Mastering these concepts is crucial for advanced Java development.

STUDENTS-HUB.com

https://students-hub.com

	Chapter 11
	Slide 1: Inheritance and Polymorphism
	Slide 2
	Slide 3: Introduction to Inheritance
	Slide 4: Motivations for Inheritance
	Slide 5: Superclasses and Subclasses
	Slide 6: Defining a Subclass (extends keyword)
	Slide 7: What is Inherited?
	Slide 8: The Object Class: The Root of All Classes
	Slide 9: Constructor Chaining
	Slide 10: Invoking Superclass Constructors (super() keyword)
	Slide 11: Example: Constructor Chaining
	Slide 12: Method Overriding
	Slide 13: @Override Annotation
	Slide 14: Invoking Superclass Methods (super keyword)
	Slide 15: Overriding vs. Overloading
	Slide 16: Introduction to Polymorphism
	Slide 17: Polymorphic References
	Slide 18: Dynamic Binding
	Slide 19: Casting Objects
	Slide 20: The instanceof Operator
	Slide 21: instanceof Example
	Slide 22: The equals() Method in Object Class
	Slide 23: The toString() Method
	Slide 24: Array of Objects and Polymorphism
	Slide 25: ArrayList of Objects and Polymorphism
	Slide 26: protected Modifier Revisited
	Slide 27: The final Modifier
	Slide 28: Designing with Inheritance
	Slide 29: Key Concepts from Chapter 11
	Slide 30: Conclusion


