Inheritance and
Polymorphism



https://students-hub.com

» Title: Inheritance and Polymorphism

» Goals:

» Understand how inheritance promotes code reuse

» Learn how to create and use subclasses

» Apply polymorphism for flexible code

» Understand dynamic binding and casting

ENTS-HUB.com


https://students-hub.com

Introduction to Inheritance

» One of the fundamental principles of Object-Oriented Programming (OOP).
» Allows a new class (subclass) to be based on an existing class (superclass).
» Promotes code reuse and establishes a hierarchical "is-a" relationship.

» Inheritance = acquiring properties from another class

» Promotes code reuse and organization

Java uses extends keyword

ENTS-HUB.com


https://students-hub.com

Motivations for Inheritance

» Avoids redundant code.

» Facilitates code maintenance and modification.

» Supports the modeling of real-world hierarchies (e.g., a Student is a Person).

» Enables polymorphism (next major topic).

ENTS-HUB.com


https://students-hub.com

Superclasses and Subclasses

» Superclass (Parent/Base Class): The existing class from which a new class is
derived.

» Subclass (Child/Derived Class): The new class that inherits from a superclass.

» A subclass extends the functionality of its superclass, often adding more
specific data fields and methods.

ENTS-HUB.com


https://students-hub.com

Defining a Subclass (extends keyword)

» In Java, inheritance is achieved using the extends keyword.
» Syntax: class Subclass extends Superclass { ... }

» Example: public class Circle extends GeometricObject { ... }

ENTS-HUB.com


https://students-hub.com

What is Inherited?

» Asubclass inherits all public and protected data fields and methods from its
superclass.

» Private members of the superclass are not directly accessible by the subclass,
but they are still part of the superclass object and can be accessed indirectly
through public/protected methods of the superclass.

» Constructors are NOT inherited.

ENTS-HUB.com


https://students-hub.com

The Object Class: The Root of All Classes

» Every class in Java, explicitly or implicitly, extends the java.lang.Object
class.

» If a class doesn't explicitly extend another class, it implicitly extends Object.

» Object provides common functionalities (e.g., equals(), toString(),
hashCode())

ENTS-HUB.com



https://students-hub.com

Constructor Chaining

» When a subclass object is created, its constructor is invoked.

» Before the subclass constructor's body executes, a superclass constructor
must be called. This forms a "chain” of constructor calls up the hierarchy.

» This ensures that the superclass's portion of the object is properly initialized.

ENTS-HUB.com


https://students-hub.com

Invoking Superclass Constructors
(super() keyword)

» Use super() to explicitly invoke a superclass constructor.

» super() must be the first statement in a subclass constructor.

» If super() is not explicitly called, the Java compiler implicitly inserts a call to
the superclass's no-arg constructor as the first statement. If the superclass
does not have a no-arg constructor, this will result in a compile-time error.

ENTS-HUB.com


https://students-hub.com

Example: Constructor Chaining

class Person {
private String name;
public Person(String name) {
this.name = name;

System.out.println("Person constructor: " + name);

class Student extends Person {
private int studentld;
public Student(String name, int id) {
super(name); // Must be the first statement
this.studentld = id;
System.out.println("Student constructor: " + name + “, " + id);

3

/1 When new Student("Alice”, 123) is called, Person’'s constructor runs first.

ENTS-HUB.com


https://students-hub.com

Method Overriding

» A subclass can provide a specific implementation for a method that is already
defined in its superclass.

» The method signature (name and parameter list) must be identical.

» The return type must be the same or a covariant (sub)type.

» The access modifier cannot be more restrictive than the superclass method.

ENTS-HUB.com


https://students-hub.com

@O0verride Annotation

» Recommended to use the @0verride annotation when overriding methods.

» The compiler checks if the annotated method actually overrides a superclass
method. If not, it's a compile-time error, helping catch common mistakes
(e.g., typos in method names).

ENTS-HUB.com


https://students-hub.com

Invoking Superclass Methods (super
keyword)

» The super keyword can also be used to explicitly call an overridden method
from the superclass.

» Useful when you want to extend the superclass's behavior rather than
completely replacing it.

» Syntax: super.methodName(arguments);

ENTS-HUB.com


https://students-hub.com

Overriding vs. Overloading

» Overriding: Same method signature (name + parameter list) in subclass as in
superclass. (Runtime polymorphism)

» Overloading: Same method name in the same class (or inherited classes), but
different parameter lists. (Compile-time polymorphism)

ENTS-HUB.com


https://students-hub.com

Introduction to Polymorphism

» Polymorphism: "Many forms."” The ability of an object to take on many forms.

» Asingle reference variable can refer to objects of different (related) types at
different times.

» Central to object-oriented design, allowing flexible and extensible code.

ENTS-HUB.com


https://students-hub.com

Polymorphic References

» Areference variable of a superclass type can refer to an object of any of its
subclasses.

» Example:
GeometricObject obj = new Circle(5);
GeometricObject obj2 = new Rectangle(4, 6);

» While obj is declared as GeometricObject, it actually holds a Circle object.

ENTS-HUB.com


https://students-hub.com

Dynamic Binding

» The JVM determines which version of an overridden method to execute at
runtime, based on the actual type of the object being referenced, not the
type of the reference variable.

» This is also known as runtime polymorphism.

» Example: If obj (referring to a Circle) calls obj.getArea(), the Circle's
getArea() method is executed.

ENTS-HUB.com


https://students-hub.com

Casting Objects

» Upcasting (Implicit): Assigning a subclass object to a superclass reference.
Always safe.

» Object obj = new String("Hello");

» Downcasting (Explicit): Assigning a superclass reference to a subclass
reference. Requires an explicit cast and is potentially unsafe if the object
isn't truly of that subclass type.

» String s = (String) obj;

ENTS-HUB.com


https://students-hub.com

The instanceof Operator

» Used to check if an object is an instance of a particular class (or an interface
it implements).

» Prevents ClassCastException during downcasting.

» Syntax:
objectRef instanceof ClassOrinterface

Returns true or false.

ENTS-HUB.com


https://students-hub.com

instanceof Example

Object myObject = new Circle(3);
if (myObject instanceof Circle) {
Circle c = (Circle) myObject; // Safe downcast
System.out.println("It's a circle with radius: " + c.getRadius());
} else if (myObject instanceof String) {

// This block won't execute

ENTS-HUB.com


https://students-hub.com

The equals() Method in Object Class

» The default equals() method (from Object) simply compares object
references (memory addresses).

» For meaningful content comparison, you almost always need to override
equals() in your custom classes.

» Consider instanceof and proper type casting within the method.

ENTS-HUB.com


https://students-hub.com

The toString() Method

» Returns a string representation of the object.
» Default Object.toString() returns class name and hash code.

» Frequently overridden to provide a concise, human-readable description of
the object'’s state (e.g., a Circle object showing its radius).

ENTS-HUB.com


https://students-hub.com

Array of Objects and Polymorphism

» An array of a superclass type can hold objects of its subclasses.

» Example:
GeometricObject[] objects = new GeometricObject[3];

objects[0] = new Circle(1.0);
objects[1] = new Rectangle(2.0, 3.0);
objects[2] = new Circle(4.5);

» Allows processing diverse objects uniformly in a loop.

ENTS-HUB.com


https://students-hub.com

ArrayList of Objects and Polymorphism

» ArrayList (from java.util) is a dynamic, resizable array.

» Even more flexible for storing polymorphic collections than standard arrays.

» Example:

ArrayList<GeometricObject> shapes = new ArrayList<>();

shapes.add(new Circle(5));

shapes.add(new Rectangle(2, 3));

ENTS-HUB.com


https://students-hub.com

protected Modifier Revisited

» Allows members to be accessible within the same package and by subclasses
in any package.

» More restrictive than public, less restrictive than private.

» Often used for fields or methods that subclasses might need to access or
modify directly.

ENTS-HUB.com


https://students-hub.com

The final Modifier

» Can be applied to:

» Variables: Makes them constants (value cannot be changed after initialization).
» Methods: Prevents the method from being overridden by subclasses.

» Classes: Prevents the class from being extended (no subclasses allowed, e.g.,
String, Math classes).

ENTS-HUB.com


https://students-hub.com

Designing with Inheritance

» Use inheritance when there is a clear "is-a" relationship.
» Look for common attributes and behaviors to abstract into a superclass.

» Favor composition over inheritance if the relationship is "has-a" rather than
“is-a”.

» Keep hierarchies shallow and focused.

ENTS-HUB.com


https://students-hub.com

Key Concepts from Chapter 11

» Inheritance: extends keyword, superclass/subclass, code reuse.

v

Constructor Chaining: super() call, automatic invocation of no-arg superclass
constructor.

Method Overriding: Redefining superclass methods in subclasses, @0verride.
Polymorphism: Superclass references to subclass objects, instanceof.

Dynamic Binding: Runtime determination of method calls.

vV v v Vv

Object class methods: equals(), toString() (and their importance for
overriding).

protected and final modifiers.

ENTS-HUB.com


https://students-hub.com

Conclusion

» Inheritance and polymorphism are cornerstones of robust, flexible, and
scalable object-oriented programming.

» They allow for code reuse, extensibility, and the ability to work with objects
at different levels of abstraction.

» Mastering these concepts is crucial for advanced Java development.

ENTS-HUB.com


https://students-hub.com

	Chapter 11
	Slide 1: Inheritance and Polymorphism
	Slide 2
	Slide 3: Introduction to Inheritance
	Slide 4: Motivations for Inheritance
	Slide 5: Superclasses and Subclasses
	Slide 6: Defining a Subclass (extends keyword)
	Slide 7: What is Inherited?
	Slide 8: The Object Class: The Root of All Classes
	Slide 9: Constructor Chaining
	Slide 10: Invoking Superclass Constructors (super() keyword)
	Slide 11: Example: Constructor Chaining
	Slide 12: Method Overriding
	Slide 13: @Override Annotation
	Slide 14: Invoking Superclass Methods (super keyword)
	Slide 15: Overriding vs. Overloading
	Slide 16: Introduction to Polymorphism
	Slide 17: Polymorphic References
	Slide 18: Dynamic Binding
	Slide 19: Casting Objects
	Slide 20: The instanceof Operator
	Slide 21: instanceof Example
	Slide 22: The equals() Method in Object Class
	Slide 23: The toString() Method
	Slide 24: Array of Objects and Polymorphism
	Slide 25: ArrayList of Objects and Polymorphism
	Slide 26: protected Modifier Revisited
	Slide 27: The final Modifier
	Slide 28: Designing with Inheritance
	Slide 29: Key Concepts from Chapter 11
	Slide 30: Conclusion


