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Practical Session 10 - Huffman code, Sort properties, 

QuickSort algorithm 
 

Huffman Code 

 

 

 

Huffman coding is an encoding algorithm used for lossless data 

compression, using a priority queue. 
 

Given data comprised of symbols from the set C (C can be the English 

alphabet, for example),  Huffman code uses a priority queue (Minimum 

Heap based on symbol frequency) to assign encodings to the different 

symbols in the. 

The algorithm builds a binary tree (the Huffman tree) whose leafs are the 

elements of C. Every symbol in C is associated with a leaf in the Huffman 

tree. The binary encoding of a symbol is as long as the depth of the leaf 

associated with it, and contains a 0 bit for every left move and a 1 bit for 

every right move on the path from the root to that leaf. 

Algorithm 

Description 

Example Huffman tree with 4 symbols 

(C={e,s,x,y}) 

Numbers signify symbol frequency. 

Encoding: 

e: 0 

s: 10 

x:110  

y: 111 

Example 

Huffman (C) 

n ← |C| 

Q ← { new priority queue for the letters in C } 

for i ← 1 to n-1 

z ← allocate new node 

x ← Extract_Min(Q) 

y ← Extract_Min(Q) 

z.left ← x 

z.right ← y 

frequency (z) ← frequency (x) + frequency (y) 

Insert(Q, z) 
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Question 1 

A.  What is the optimal Huffman code for the following set of frequencies, based on the first 8 

Fibonacci  numbers? 

             a:1   b:1   c:2    d:3   e:5   f:8   g:13   h:21 

B.   Generalize your answer to find the optimal code when the frequencies are   the first n 

Fibonacci numbers, for a general n. 

Solution: 

A. Since there are 8 letters in the alphabet, the initial queue size is n = 8, and 7 merge steps 

are required to build the tree. The final tree represents the optimal prefix code. The codeword 

for a letter is the sequence of the edge labels on the path from the root to the letter. Thus, the 

optimal Huffman code is as follows:  

 

 

 

 

 

 

 

 

B. As we can see the tree is one long limb with leaves n=hanging off. This is true for 

Fibonacci weights in general, because the Fibonacci the recurrence is implies that 

         

 

   

   

 

We can prove this by induction. The numbers 1,1,2,3 provide a sufficient base. 

We assume the equality holds for all Fibonacci numbers smaller than Fn+2. 

Step: We prove correctness for Fn+2: 

                

   

   

         

 

   

   

Therefore         
 
       and clearly           so      is chosen after all smaller 

Fibonacci numbers have been merged into a single tree. 

 

  

h : 0             

g : 1 0           

f : 1 1 0         

e : 1 1 1 0       

d : 1 1 1 1 0     

c : 1 1 1 1 1 0   

b : 1 1 1 1 1 1 0 

a : 1 1 1 1 1 1 1 
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Question 2 

A. Given the frequency series for a Huffman code as follows: 
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Draw the structure of the Huffman Tree that describes this series. 

Solution A: 

 
B. Write a frequency list that the Huffman code of this frequency would deterministically 

create  the following structure. 

 
Solution B: 
 

 

Frequencies: 2,2,3,5,5,5 

tree diagram Explanation 

 on each level of the tree, 
jf  can 

be written as: 

121 ...  jj ffff  

Therefore, on each level we will 

choose the node with the root of 

the subtree of 11  iff created 

before, and we will get the tree  in 

the diagram 
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C. Write a frequency formula the Huffman code of this frequency would deterministically 

create the following structure. 

  

 

 

 

 

 

 

 

 

Solution C: 

 
In order to create this structure, we want that the next two elements on the series will be 

chosen before the unification of the existent subtree. The pattern of the series is based on the 

principle that on each level the frequency of each of the next two elements is smaller than the 

sum of the frequencies till now. 

 

The following recurrence formula that satisfy this quality:  
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An example of the function f that creates the series: 

,81,81,27,27,9,9,3,3,1,1,1,1   is: 
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Quicksort 
 

quickSort( A, low, high ) 

        if( high > low ) 

                pivot ← partition( A, low, high )   //  

                quickSort( A, low, pivot-1 ) 

                quickSort( A, pivot+1, high ) 

 

int partition( A, low, high ) 

        pivot_value  A[low] 

        left ← low 

        pivot ← left  

        right ← high 

        while ( left <  right )  

 

                // Move left while item <  pivot 

                while( left < high && A[left] ≤ pivot_value)  

                        left++ 

 

                // Move right while item >  pivot  

                while( A[right] > pivot_value)  

                        right-- 

 

                if( left < right )  Make sure right has not passed left 

                        SWAP(A,left,right) 

 

        // right is final position for the pivot  

        A[low] ← A[right] 

        A[right] ← pivot_item 

        return right 

 

quickSort(A,0,length(A)-1) 

 

 

 

 stable sorting algorithms: maintain the relative order of records with equal 

keys 

 in place algorithms: need only O(log N) extra memory beyond the items 

being sorted and they don't need to create auxiliary locations for data to be 

temporarily stored 

 QuickSort version above is not stable. 
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Question 3 

Given a multi-set S of n integer elements and an index k (1 ≤ k ≤ n), we define the k-smallest 

element to be the k-th element when the elements are sorted from the smallest to the largest. 

 

Suggest an O(n) on average time algorithm for finding the k-smallest element. 

 

 

Example:  

For the given set of numbers:                   
The 4-smallest element is 2 since in the 2 is the 4’th element in the sorted set 
                 . 

Solution: 

 

The algorithm is based on the Quick-Sort algorithm. 

Quick-Sort :  //Reminder 

quicksort(A,p, r) 

   If (p<r) 

       q ← partition(A,p,r)        // Partition into two parts in        time. 

       quicksort(A,p,q-1) 

       quicksort(A,q+1,r) 

 

 

 

In the worst case:  the chosen pivot x is the maximal element in the current array and there is 

only one such element. G is empty             and                       

      
              
                              

  

  

The solution of the recursive equation:            
 

In the average case: similar to quick-sort, half of the elements in S are good pivots, for 

which the size of L and G are each less than      . 

Therefore,                       , (master theorem, case c). 

  

Select(k, S) // returns k-th element in S. 

pick x in S 

partition S into: // Slightly different variant of partition()  

max(L) < x, E = {x}, x < min(G) 

if k ≤ length(L) // Searching for item ≤ x. 

return Select(k, L) 

else if k ≤ length(L) + length(E) // Found 

return x 

else  // Searching for item ≥ x. 

return Select(k - length(L) - length(E), G) 
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Question 4 

Given an array of n numbers, suggest an      expected time algorithm to determine whether 

there is a number in A that appears more than     times. 

 

Solution:  

 

If x is a number that appears more than     times in A, then x is the          -smallest in 

the array A. 

 

 

Frequent (A,n) 

x ← Select (         , A)   // find middle element 

count ← 0 

for  i ← 1 to n do:  // count appearances of middle element 

if (A[i] = x) count ++ 

if  count > n/2  

then return TRUE 

else return FALSE 

 

Time Complexity:  

In the mean case, Select algorithm runs in     . 
Computing count takes      as well. 

Total run time in the mean case:       
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Question 5 

n records are stored in an array A of size n. 

Suggest an algorithm to sort the records in O(n) (time) and no additional space in each of the 

following cases:  

I. All the keys are 0 or 1  

II. All the keys are in the range [1..k], k is constant  

Solution: 

I. Use Quicksort's partition method as we did in question 4 with pivot 0. After the 

completion of the partition function, the array is sorted (L={}, E will have all 

elements with key 0, G will have all elements with key 1). Time complexity  is 

     – the cost of one partition. 

II. First, partition method on A[1..n] with pivot 1, this way all the records with key 1 

will be on the first x1 indices of the array. 

Second, partition method on A[x1+1,..,n] with pivot 2 

... 

After k-1 steps A is sorted  

Time complexity is O(kn)=O(n) – the cost of k partitions. 

 

Question 6 

Given the following algorithm to sort an array A of size n:  

1. Sort recursively the first 2/3 of A (A[1..2n/3])  

2. Sort recursively the last 2/3 of A (A[n/3+1..n])  

3. Sort recursively the first 2/3 of A (A[1..2n/3])  

 

* If (2/3*n) is not a natural number, round it up. 

Prove the above algorithm sorts A and find a recurrence T(n), expressing it's running time. 

Solution: 

The basic assumption is that after the first 2 steps, the n/3 largest number are in their places, 

sorted in the last third of A. In the last stage the algorithm sorts the left 2 thirds of A. 

 

         
  

 
         

  

 
            

  

  
               

 

 
 
 

     

after i=    
 

  steps ... 

                                         

          
              

                 

                                   

 

T(n) = O(n
log

3/2
3
) , (also according to the Master-Theorem) 
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Question 7 

Given an array A of M+N elements, where the first N elements in A are sorted and the last M 

elements in A are unsorted. 

1. Evaluate the run-time complexity in term of M and N in the worst case, of fully 

sorting the array using insertion sort on A?  

  

2. For each of the following cases, which sort method (or methods combination) would 

you use and what would be the run-time complexity in the worst case?  

 

a) M = O(1)  

b) M = O(logN)  

c) M = O(N)  

Solution: 

 

1. O(M(M+N))  

The last M elements will be inserted to their right place and that requires N, N+1, 

N+2,...,N+M shifts ( in the worst case ), or O(M
2
 + N) if we apply insertion sort to the 

last M elements and then merge.  

2.  

a. Insertion-Sort in O(N)  

b. Use any comparison based sort algorithm that has a runtime of 

O(MlogM) (Such as merge sort) on the M unsorted elements, 

and then merge the two sorted parts of the array in O(M + N). 

Total runtime: O(MlogM + N) = O(N) 

c. Use any efficient comparison based sort algorithm for a runtime 

of O((M+N)log(M+N))=O(NlogN). 

Quick-Sort is bad for this case, as its worst case analysis is 

O(n
2
).  
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Question 8 

How can we use an unstable sorting (comparisons based) algorithm U (for example, quick-

sort or heap-sort) to build a new stable sorting algorithm S with the same time complexity as 

the algorithm U? 

Solution 1: 

U is a comparisons based sorting algorithm, thus it's runtime               . 

1. Add a new field, index, to each element. This new field holds the original 

index of that element in the unsorted array.  

2. Change the comparison operator so that:  

[key1, index1]  < [key2, index2]    key1 < key2   or  

                                                       ( key1 = key2  and   index1 < index2) 

[key1, index1]  > [key2, index2]    key1 > key2   or 

                                                        (key1 = key2  and   index1 > index2) 

3. Execute the sorting algorithm U with the new comparison operation. 

 

Time complexity:  

adding an index field is O(n), the sorting time is the same as of the unstable 

algorithm,      , total is            (as               ). 

Solution 2: 

1. Add a new field, index, to each element in the input array A – O(n). 

This new field holds the original index of that element in the input.  

2. Execute U on A to sort the elements by their key –       
3. Execute U on each set of equal-key elements to sort them by the index field –       

Time complexity of phase 3: assume we have m different keys in the input array(1 ≤ m ≤ n), 

ni is the number of elements with key ki, where       and      
 
     . That is, the 

time complexity of phase 3 is: 

            

 

   

            

 

   

 

In the worst case all keys in the array are equal (i.e., m=1) and the phase 3 is in fact sorting of 

the array by index values:                    .  

 

Time  complexity (for entire algorithm):                          . 
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