
Objectives
■■ To write Java programs to perform simple computations (§2.2).

■■ To obtain input from the console using the Scanner class (§2.3).

■■ To use identifiers to name variables, constants, methods, and classes (§2.4).

■■ To use variables to store data (§§2.5 and 2.6).

■■ To program with assignment statements and assignment expressions (§2.6).

■■ To use constants to store permanent data (§2.7).

■■ To name classes, methods, variables, and constants by following their
naming conventions (§2.8).

■■ To explore Java numeric primitive data types: byte, short, int,
long, float, and double (§2.9).

■■ To read a byte, short, int, long, float, or double value from the
keyboard (§2.9.1).

■■ To perform operations using operators +, -, *, /, and % (§2.9.2).

■■ To perform exponent operations using Math.pow(a, b) (§2.9.3).

■■ To write integer literals, floating-point literals, and literals in scientific
notation (§2.10).

■■ To use JShell to quickly test Java code (§2.11).

■■ To write and evaluate numeric expressions (§2.12).

■■ To obtain the current system time using System.currentTimeMi-
llis() (§2.13).

■■ To use augmented assignment operators (§2.14).

■■ To distinguish between postincrement and preincrement and between
postdecrement and predecrement (§2.15).

■■ To cast the value of one type to another type (§2.16).

■■ To describe the software development process and apply it to develop
the loan payment program (§2.17).

■■ To write a program that converts a large amount of money into smaller
units (§2.18).

■■ To avoid common errors and pitfalls in elementary programming (§2.19).

Elementary
Programming

CHAPTER

2

M02_LIAN9966_12_SE_C02.indd 33 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

34 Chapter 2   Elementary Programming

2.1  Introduction
The focus of this chapter is on learning elementary programming techniques to solve
problems.

In Chapter 1, you learned how to create, compile, and run very basic Java programs. You will
learn how to solve problems by writing programs. Through these problems, you will learn
elementary programming using primitive data types, variables, constants, operators, expres-
sions, and input and output.

Suppose, for example, you need to take out a student loan. Given the loan amount, loan
term, and annual interest rate, can you write a program to compute the monthly payment and
total payment? This chapter shows you how to write programs like this. Along the way, you
will learn the basic steps that go into analyzing a problem, designing a solution, and imple-
menting the solution by creating a program.

2.2  Writing a Simple Program
Writing a program involves designing a strategy for solving the problem then using a
programming language to implement that strategy.

 Let’s first consider the simple problem of computing the area of a circle. How do we write a
program for solving this problem?

Writing a program involves designing algorithms and translating algorithms into program-
ming instructions, or code. An algorithm lists the steps you can follow to solve a problem.
Algorithms can help the programmer plan a program before writing it in a programming lan-
guage. Algorithms can be described in natural languages or in pseudocode (natural language
mixed with some programming code). The algorithm for calculating the area of a circle can
be described as follows:

1.	 Read in the circle’s radius.

2.	 Compute the area using the following formula:

area = radius * radius * p

3.	 Display the result.

Tip
It’s always a good practice to outline your program (or its underlying problem) in the
form of an algorithm before you begin coding.

When you code—that is, when you write a program—you translate an algorithm into a
program. You already know every Java program begins with a class definition in which the
keyword class is followed by the class name. Assume you have chosen ComputeArea as
the class name. The outline of the program would look as follows:

public class ComputeArea {
 // Details to be given later
}

As you know, every Java program must have a main method where program execution
begins. The program is then expanded as follows:

public class ComputeArea {
 public static void main(String[] args) {
 // Step 1: Read in radius

 // Step 2: Compute area

Point
Key

problem

algorithm

pseudocode

Point
Key

M02_LIAN9966_12_SE_C02.indd 34 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.2  Writing a Simple Program 35

 // Step 3: Display the area
 }
}

The program needs to read the radius entered by the user from the keyboard. This raises
two important issues:

■■ Reading the radius

■■ Storing the radius in the program

Let’s address the second issue first. In order to store the radius, the program needs to declare
a symbol called a variable. A variable represents a value stored in the computer’s memory.

Rather than using x and y as variable names, choose descriptive names: in this case,
radius for radius and area for area. To let the compiler know what radius and area are,
specify their data types. That is the kind of data stored in a variable, whether an integer, real
number, or something else. This is known as declaring variables. Java provides simple data
types for representing integers, real numbers, characters, and Boolean types. These types are
known as primitive data types or fundamental types.

Real numbers (i.e., numbers with a decimal point) are represented using a method known
as floating-point in computers. Therefore, the real numbers are also called floating-point
numbers. In Java, you can use the keyword double to declare a floating-point variable.
Declare radius and area as double. The program can be expanded as follows:

public class ComputeArea {
 public static void main(String[] args) {
 double radius;
 double area;

 // Step 1: Read in radius

 // Step 2: Compute area

 // Step 3: Display the area
 }
}

The program declares radius and area as variables. The keyword double indicates that
radius and area are floating-point values stored in the computer.

The first step is to prompt the user to designate the circle’s radius. You will soon learn
how to prompt the user for information. For now, to learn how variables work, you can assign
a fixed value to radius in the program as you write the code. Later, you’ll modify the pro-
gram to prompt the user for this value.

The second step is to compute area by assigning the result of the expression radius *
radius * 3.14159 to area.

In the final step, the program will display the value of area on the console by using the
System.out.println method.

Listing 2.1 shows the complete program, and a sample run of the program is shown in
Figure 2.1.

Listing 2.1  ComputeArea.java
 1 public class ComputeArea {
 2 public static void main(String[] args) {
 3 double radius; // Declare radius
 4 double area; // Declare area
 5
 6 // Assign a radius
 7 radius = 20; // radius is now 20

variable
descriptive names

declare variables
data type

primitive data types

floating-point numbers

M02_LIAN9966_12_SE_C02.indd 35 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

36 Chapter 2   Elementary Programming

 8
 9 // Compute area
10 area = radius * radius * 3.14159;
11
12 // Display results
13 System.out.println("The area for the circle of radius " +
14 radius + " is " + area);
15 }
16 }

Compile

Run

Figure 2.1  The program displays the area of a circle.

Variables such as radius and area correspond to memory locations. Every variable has
a name, a type, and a value. Line 3 declares that radius can store a double value. The value
is not defined until you assign a value. Line 7 assigns 20 into the variable radius. Similarly,
line 4 declares the variable area, and line 10 assigns a value into area. The following table
shows the value in the memory for area and radius as the program is executed. Each row
in the table shows the values of variables after the statement in the corresponding line in the
program is executed. This method of reviewing how a program works is called tracing a
program. Tracing programs are helpful for understanding how programs work, and they are
useful tools for finding errors in programs.

line# radius area

  3 no value

  4 no value

  7 20

10 1256.636

The plus sign (+) has two meanings: one for addition, and the other for concatenating
(combining) strings. The plus sign (+) in lines 13–14 is called a string concatenation oper-
ator. It combines two strings into one. If a string is combined with a number, the number is
converted into a string and concatenated with the other string. Therefore, the plus signs (+)
in lines 13–14 concatenate strings into a longer string, which is then displayed in the output.
Strings and string concatenation will be discussed further in Chapter 4.

Caution
A string cannot cross lines in the source code. Thus, the following statement would result in
a compile error:

System.out.println("Introduction to Java Programming,
by Y. Daniel Liang");

To fix the error, break the string into separate substrings, and use the concatenation
operator (+) to combine them:

System.out.println("Introduction to Java Programming, " +
 "by Y. Daniel Liang");

declare variable

assign value

tracing program

concatenate strings

concatenate strings with
numbers

break a long string

M02_LIAN9966_12_SE_C02.indd 36 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.3  Reading Input from the Console 37

2.2.1  Identify and fix the errors in the following code:
 1 public class Test {
 2 public void main(string[] args) {
 3 double i = 50.0;
 4 double k = i + 50.0;
 5 double j = k + 1;
 6
 7 System.out.println("j is " + j + " and
 8 k is " + k);
 9 }
10 }

2.3  Reading Input from the Console
Reading input from the console enables the program to accept input from the user.

 In Listing 2.1, the radius is fixed in the source code. To use a different radius, you have to
modify the source code and recompile it. Obviously, this is not convenient, so instead you can
use the Scanner class for console input.

Java uses System.out to refer to the standard output device, and System.in to the stan-
dard input device. By default, the output device is the display monitor, and the input device
is the keyboard. To perform console output, you simply use the println method to display
a primitive value or a string to the console. To perform console input, you need to use the
Scanner class to create an object to read input from System.in, as follows:

Scanner input = new Scanner(System.in);

The syntax new Scanner(System.in) creates an object of the Scanner type. The syn-
tax Scanner input declares that input is a variable whose type is Scanner. The whole
line Scanner input = new Scanner(System.in) creates a Scanner object and assigns
its reference to the variable input. An object may invoke its methods. To invoke a method on
an object is to ask the object to perform a task. You can invoke the nextDouble() method
to read a double value as follows:

double radius = input.nextDouble();

This statement reads a number from the keyboard and assigns the number to radius.
Listing 2.2 rewrites Listing 2.1 to prompt the user to enter a radius.

Listing 2.2  ComputeAreaWithConsoleInput.java
 1 import java.util.Scanner; // Scanner is in the java.util package
 2
 3 public class ComputeAreaWithConsoleInput {
 4 public static void main(String[] args) {
 5 // Create a Scanner object
 6 Scanner input = new Scanner(System.in);
 7
 8 // Prompt the user to enter a radius
 9 System.out.print("Enter a number for radius: ");
10 double radius = input.nextDouble();
11
12 // Compute area
13 double area = radius * radius * 3.14159;
14
15 // Display results
16 System.out.println("The area for the circle of radius " +

Point
Check

Point
Key

VideoNote

Obtain Input

import class

create a Scanner

read a double

M02_LIAN9966_12_SE_C02.indd 37 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

38 Chapter 2   Elementary Programming

17 radius + " is " + area);
18 }
19 }

Enter a number for radius: 2.5
The area for the circle of radius 2.5 is 19.6349375

Enter a number for radius: 23
The area for the circle of radius 23.0 is 1661.90111

The Scanner class is in the java.util package. It is imported in line 1. Line 6 creates
a Scanner object. Note the import statement can be omitted if you replace Scanner by
java.util.Scanner in line 6.

Line 9 displays a string "Enter a number for radius: " to the console. This is
known as a prompt, because it directs the user to enter an input. Your program should always
tell the user what to enter when expecting input from the keyboard.

Recall that the print method in line 9 is identical to the println method, except that
println moves to the beginning of the next line after displaying the string, but print does
not advance to the next line when completed.

Line 6 creates a Scanner object. The statement in line 10 reads input from the keyboard.

double radius = input.nextDouble();

After the user enters a number and presses the Enter key, the program reads the number
and assigns it to radius.

More details on objects will be introduced in Chapter 9. For the time being, simply accept
that this is how we obtain input from the console.

The Scanner class is in the java.util package. It is imported in line 1. There are two
types of import statements: specific import and wildcard import. The specific import spec-
ifies a single class in the import statement. For example, the following statement imports
Scanner from the package java.util.

import java.util.Scanner;

The wildcard import imports all the classes in a package by using the asterisk as the wildcard.
For example, the following statement imports all the classes from the package java.util.

import java.util.*;

The information for the classes in an imported package is not read in at compile time or
runtime unless the class is used in the program. The import statement simply tells the com-
piler where to locate the classes. There is no performance difference between a specific im-
port and a wildcard import declaration.

Listing 2.3 gives an example of reading multiple inputs from the keyboard. The program
reads three numbers and displays their average.

Listing 2.3  ComputeAverage.java
1 import java.util.Scanner; // Scanner is in the java.util package
2
3 public class ComputeAverage {
4 public static void main(String[] args) {
5 // Create a Scanner object
6 Scanner input = new Scanner(System.in);
7
8 // Prompt the user to enter three numbers
9 System.out.print("Enter three numbers: ");

prompt

specific import

wildcard import

no performance difference

import class

create a Scanner

M02_LIAN9966_12_SE_C02.indd 38 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.3  Reading Input from the Console 39

10 double number1 = input.nextDouble();
11 double number2 = input.nextDouble();
12 double number3 = input.nextDouble();
13
14 // Compute average
15 double average = (number1 + number2 + number3) / 3;
16
17 // Display results
18 System.out.println("The average of " + number1 + " " + number2
19 + " " + number3 + " is " + average);
20 }
21 }

read a double

Enter three numbers: 1 2 3
The average of 1.0 2.0 3.0 is 2.0

Enter three numbers: 10.5
11
11.5
The average of 10.5 11.0 11.5 is 11.0

enter input in one line

enter input in multiple lines

The codes for importing the Scanner class (line 1) and creating a Scanner object (line
6) are the same as in the preceding example, as well as in all new programs you will write for
reading input from the keyboard.

Line 9 prompts the user to enter three numbers. The numbers are read in lines 10–12. You
may enter three numbers separated by spaces, then press the Enter key, or enter each number
followed by a press of the Enter key, as shown in the sample runs of this program.

If you entered an input other than a numeric value, a runtime error would occur. In
Chapter 12, you will learn how to handle the exception so the program can continue to run.

Note
Most of the programs in the early chapters of this book perform three steps— input,
process, and output—called IPO. Input is receiving input from the user; process is
producing results using the input; and output is displaying the results.

Note
If you use an IDE such as Eclipse or NetBeans, you will get a warning to ask you to close
the input for preventing a potential resource leak. Ignore the warning for the time being
because the input is automatically closed when your program is terminated. In this case,
there will be no resource leaking.

2.3.1	 How do you write a statement to let the user enter a double value from the key-
board? What happens if you entered 5a when executing the following code?

double radius = input.nextDouble();

2.3.2	 Are there any performance differences between the following two import
statements?

import java.util.Scanner;
import java.util.*;

runtime error

IPO

Warning in IDE

Point
Check

M02_LIAN9966_12_SE_C02.indd 39 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

40 Chapter 2   Elementary Programming

2.4  Identifiers
Identifiers are the names that identify the elements such as classes, methods, and vari-
ables in a program.

As you see in Listing 2.3, ComputeAverage, main, input, number1, number2, number3,
and so on are the names of things that appear in the program. In programming terminology,
such names are called identifiers. All identifiers must obey the following rules:

■■ An identifier is a sequence of characters that consists of letters, digits, underscores
(_), and dollar signs ($).

■■ An identifier must start with a letter, an underscore (_), or a dollar sign ($). It cannot
start with a digit.

■■ An identifier cannot be a reserved word. See Appendix A for a list of reserved
words. Reserved words have specific meaning in the Java language. Keywords are
reserved words.

■■ An identifier can be of any length.

For example, $2, ComputeArea, area, radius, and print are legal identifiers, whereas
2A and d+4 are not because they do not follow the rules. The Java compiler detects illegal
identifiers and reports syntax errors.

Note
Since Java is case sensitive, area, Area, and AREA are all different identifiers.

Tip
Identifiers are for naming variables, methods, classes, and other items in a program.
Descriptive identifiers make programs easy to read. Avoid using abbreviations for iden-
tifiers. Using complete words is more descriptive. For example, numberOfStudents
is better than numStuds, numOfStuds, or numOfStudents. We use descriptive
names for complete programs in the text. However, we will occasionally use variable
names such as i, j, k, x, and y in the code snippets for brevity. These names also
provide a generic tone to the code snippets.

Tip
Do not name identifiers with the $ character. By convention, the $ character should be
used only in mechanically generated source code.

2.4.1	 Which of the following identifiers are valid? Which are Java keywords?

miles, Test, a++, ––a, 4#R, $4, #44, apps
class, public, int, x, y, radius

2.5  Variables
Variables are used to represent values that may be changed in the program.

 As you see from the programs in the preceding sections, variables are used to store values
to be used later in a program. They are called variables because their values can be changed.
In the program in Listing 2.2, radius and area are variables of the double type. You can
assign any numerical value to radius and area, and the values of radius and area can be
reassigned. For example, in the following code, radius is initially 1.0 (line 2) then changed
to 2.0 (line 7), and area is set to 3.14159 (line 3) then reset to 12.56636 (line 8).

identifiers
identifier naming rules

Point
Key

case sensitive

descriptive names

the $ character

Point
Check

why called variables?
Point

Key

M02_LIAN9966_12_SE_C02.indd 40 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.5  Variables 41

1 // Compute the first area
2 radius = 1.0; 	 radius:  1.0
3 area = radius * radius * 3.14159; 	 area:  3.14159
4 System.out.println("The area is " + area + " for radius " + radius);
5
6 // Compute the second area
7 radius = 2.0; 	 radius:  2.0
8 area = radius * radius * 3.14159; 	 area:  12.56636
9 System.out.println("The area is " + area + " for radius " + radius);

Variables are for representing data of a certain type. To use a variable, you declare it by
telling the compiler its name as well as what type of data it can store. The variable declara-
tion tells the compiler to allocate appropriate memory space for the variable based on its data
type. The syntax for declaring a variable is

datatype variableName;

Here are some examples of variable declarations:

int count; // Declare count to be an integer variable
double radius; // Declare radius to be a double variable
double interestRate; // Declare interestRate to be a double variable

These examples use the data types int and double. Later you will be introduced to addi-
tional data types, such as byte, short, long, float, char, and boolean.

If variables are of the same type, they can be declared together, as follows:

datatype variable1, variable2, . . . , variablen;

The variables are separated by commas. For example,

int i, j, k; // Declare i, j, and k as int variables

Variables often have initial values. You can declare a variable and initialize it in one step.
Consider, for instance, the following code:

int count = 1;

This is equivalent to the next two statements:

int count;
count = 1;

You can also use a shorthand form to declare and initialize variables of the same type to-
gether. For example,

int i = 1, j = 2;

Tip
A variable must be declared before it can be assigned a value. A variable declared in a
method must be assigned a value before it can be used.

Whenever possible, declare a variable and assign its initial value in one step. This will
make the program easy to read and avoid programming errors.

Every variable has a scope. The scope of a variable is the part of the program where the
variable can be referenced. The rules that define the scope of a variable will be gradually in-
troduced later in the book. For now, all you need to know is that a variable must be declared
and initialized before it can be used.

declare variable

initialize variables

M02_LIAN9966_12_SE_C02.indd 41 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

42 Chapter 2   Elementary Programming

2.5.1	 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = k + 2;
4 System.out.println(i);
5 }
6 }

2.6 � Assignment Statements and Assignment
Expressions

An assignment statement assigns a value to a variable. An assignment statement can
also be used as an expression in Java.

 After a variable is declared, you can assign a value to it by using an assignment statement. In
Java, the equal sign (=) is used as the assignment operator. The syntax for assignment state-
ments is as follows:

variable = expression;

An expression represents a computation involving values, variables, and operators that,
taking them together, evaluates to a value. In an assignment statement, the expression on the
right-hand side of the assignment operator is evaluated, and then the value is assigned to the
variable on the left-hand side of the assignment operator. For example, consider the following
code:

int y = 1;	 // Assign 1 to variable y
double radius = 1.0;	 // Assign 1.0 to variable radius
int x = 5 * (3 / 2);	 // Assign the value of the expression to x
x = y + 1;	 // Assign the addition of y and 1 to x
double area = radius * radius * 3.14159;	 // Compute area

You can use a variable in an expression. A variable can also be used in both sides of the =
operator. For example,

x = x + 1;

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the state-
ment is executed, then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assign-
ment operator. Thus, the following statement is wrong:

1 = x; // Wrong

Note
In mathematics, x = 2 * x + 1 denotes an equation. However, in Java, x = 2
* x + 1 is an assignment statement that evaluates the expression 2 * x + 1 and
assigns the result to x.

In Java, an assignment statement is essentially an expression that evaluates to the value
to be assigned to the variable on the left side of the assignment operator. For this reason, an
assignment statement is also known as an assignment expression. For example, the following
statement is correct:

System.out.println(x = 1);

which is equivalent to

x = 1;
System.out.println(x);

Point
Check

Point
Key

assignment statement
assignment operator

expression

assignment expression

M02_LIAN9966_12_SE_C02.indd 42 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.7  Named Constants 43

If a value is assigned to multiple variables, you can use chained assignments like this:

i = j = k = 1;

which is equivalent to

k = 1;
j = k;
i = j;

Note
In an assignment statement, the data type of the variable on the left must be compatible
with the data type of the value on the right. For example, int x = 1.0 would be ille-
gal, because the data type of x is int. You cannot assign a double value (1.0) to an
int variable without using type casting. Type casting will be introduced in Section 2.15.

2.6.1	 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 int i = j = k = 2;
4 System.out.println(i + " " + j + " " + k);
5 }
6 }

2.7  Named Constants
A named constant is an identifier that represents a permanent value.

 The value of a variable may change during the execution of a program, but a named constant,
or simply constant, represents permanent data that never changes. A constant is also known
as a final variable in Java. In our ComputeArea program, p is a constant. If you use it fre-
quently, you don’t want to keep typing 3.14159; instead, you can declare a constant for p.
Here is the syntax for declaring a constant:

final datatype CONSTANTNAME = value;

A constant must be declared and initialized in the same statement. The word final is a
Java keyword for declaring a constant. By convention, all letters in a constant are in upper-
case. For example, you can declare p as a constant and rewrite Listing 2.2, as in Listing 2.4.

Listing 2.4  ComputeAreaWithConstant.java
 1 import java.util.Scanner; // Scanner is in the java.util package
 2
 3 public class ComputeAreaWithConstant {
 4 public static void main(String[] args) {
 5 final double PI = 3.14159; // Declare a constant
 6
 7 // Create a Scanner object
 8 Scanner input = new Scanner(System.in);
 9
10 // Prompt the user to enter a radius
11 System.out.print("Enter a number for radius: ");
12 double radius = input.nextDouble();
13
14 // Compute area
15 double area = radius * radius * PI;
16
17 // Display result

Point
Check

Point
Key

constant

final keyword

M02_LIAN9966_12_SE_C02.indd 43 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

44 Chapter 2   Elementary Programming

18 System.out.println("The area for the circle of radius " +
19 radius + " is " + area);
20 }
21 }

There are three benefits of using constants: (1) you don’t have to repeatedly type the same
value if it is used multiple times; (2) if you have to change the constant value (e.g., from 3.14
to 3.14159 for PI), you need to change it only in a single location in the source code; and (3)
a descriptive name for a constant makes the program easy to read.

2.7.1	 What are the benefits of using constants? Declare an int constant SIZE with
value 20.

2.7.2	 Translate the following algorithm into Java code:

Step 1:	Declare a double variable named miles with an initial value 100.

Step 2:	Declare a double constant named KILOMETERS_PER_MILE with value
1.609.

Step 3:	Declare a double variable named kilometers, multiply miles and
KILOMETERS_PER_MILE, and assign the result to kilometers.

Step 4:	Display kilometers to the console.

What is kilometers after Step 4?

2.8  Naming Conventions
Sticking with the Java naming conventions makes your programs easy to read and
avoids errors.

Make sure you choose descriptive names with straightforward meanings for the variables,
constants, classes, and methods in your program. As mentioned earlier, names are case sensi-
tive. Listed below are the conventions for naming variables, methods, and classes.

■■ Use lowercase for variables and methods—for example, the variables radius and
area, and the method print. If a name consists of several words, concatenate them
into one, making the first word lowercase and capitalizing the first letter of each sub-
sequent word—for example, the variable numberOfStudents. This naming style is
known as the camelCase because the uppercase characters in the name resemble a
camel’s humps.

■■ Capitalize the first letter of each word in a class name—for example, the class names
ComputeArea and System.

■■ Capitalize every letter in a constant, and use underscores between words—for exam-
ple, the constants PI and MAX_VALUE.

It is important to follow the naming conventions to make your programs easy to read.

Caution
�Do not choose class names that are already used in the Java library. For example, since the
System class is defined in Java, you should not name your class System.

2.8.1	 What are the naming conventions for class names, method names, constants, and
variables? Which of the following items can be a constant, a method, a variable, or a
class according to the Java naming conventions?

MAX_VALUE, Test, read, readDouble

benefits of constants

Point
Check

Point
Key

name variables and methods

name classes

name constants

Point
Check

M02_LIAN9966_12_SE_C02.indd 44 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.9  Numeric Data Types and Operations 45

2.9  Numeric Data Types and Operations
Java has six numeric types for integers and floating-point numbers with operators +,
-, *, /, and %.

Every data type has a range of values. The compiler allocates memory space for each variable
or constant according to its data type. Java provides eight primitive data types for numeric val-
ues, characters, and Boolean values. This section introduces numeric data types and operators.

Table 2.1 lists the six numeric data types, their ranges, and their storage sizes.

Point
Key

byte type

short type

int type

long type

float type

double type

Table 2.1   Numeric Data Types

Name Range Storage Size

byte -27 to 27 -1 (-128 to 127) 8-bit signed

short -215 to 215 -1 (-32768 to 32767) 16-bit signed

int -231 to 231 -1 (-2147483648 to 2147483647) 32-bit signed

long -263 to 263-1 64-bit signed

(i.e., -9223372036854775808 to 9223372036854775807)

float Negative range: -3.4028235E + 38 to -1.4E -45 32-bit IEEE 754

Positive range: 1.4E -45 to 3.4028235E+38
6–9 significant digits

double Negative range: -1.7976931348623157E+308 to -4.9E -324 64-bit IEEE 754

Positive range: 4.9E -324 to 1.7976931348623157E+308
15–17 significant digits

Note
IEEE 754 is a standard approved by the Institute of Electrical and Electronics Engineers for rep-
resenting floating-point numbers on computers. The standard has been widely adopted. Java
uses the 32-bit IEEE 754 for the float type and the 64-bit IEEE 754 for the double type.
The IEEE 754 standard also defines special floating-point values, which are listed in Appendix E.

Java uses four types for integers: byte, short, int, and long. Choose the type that is
most appropriate for your variable. For example, if you know an integer stored in a variable
is within a range of a byte, declare the variable as a byte. For simplicity and consistency, we
will use int for integers most of the time in this book.

Java uses two types for floating-point numbers: float and double. The double type is twice
as big as float, so the double is known as double precision, and float as single precision.
Normally, you should use the double type, because it is more accurate than the float type.

2.9.1  Reading Numbers from the Keyboard
You know how to use the nextDouble() method in the Scanner class to read a double
value from the keyboard. You can also use the methods listed in Table 2.2 to read a number
of the byte, short, int, long, and float type.

integer types

floating-point types

Table 2.2  Methods for Scanner Objects

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

M02_LIAN9966_12_SE_C02.indd 45 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

46 Chapter 2   Elementary Programming

Here are examples for reading values of various types from the keyboard:

 1 Scanner input = new Scanner(System.in);
 2 System.out.print("Enter a byte value: ");
 3 byte byteValue = input.nextByte();
 4
 5 System.out.print("Enter a short value: ");
 6 short shortValue = input.nextShort();
 7
 8 System.out.print("Enter an int value: ");
 9 int intValue = input.nextInt();
10
11 System.out.print("Enter a long value: ");
12 long longValue = input.nextLong();
13
14 System.out.print("Enter a float value: ");
15 float floatValue = input.nextFloat();

If you enter a value with an incorrect range or format, a runtime error would occur. For
example, if you enter a value 128 for line 3, an error would occur because 128 is out of range
for a byte type integer.

2.9.2  Numeric Operators
The operators for numeric data types include the standard arithmetic operators: addition (+),
subtraction (–), multiplication (*), division (/), and remainder (%), as listed in Table 2.3. The
operands are the values operated by an operator.

operators +, –, *, /, and %

operands

integer division

Table 2.3  Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 - 0.1 33.9

* Multiplication 300*30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

When both operands of a division are integers, the result of the division is the quotient and
the fractional part is truncated. For example, 5 / 2 yields 2, not 2.5, and –5 / 2 yields –2,
not –2.5. To perform a floating-point division, one of the operands must be a floating-point
number. For example, 5.0 / 2 yields 2.5.

The % operator, known as remainder, yields the remainder after division. The operand on
the left is the dividend, and the operand on the right is the divisor. Therefore, 7 % 3 yields 1,
3 % 7 yields 3, 12 % 4 yields 0, 26 % 8 yields 2, and 20 % 13 yields 7.

4 12

12

0

3

8 26

24

2

3

Remainder

Quotient

Divisor Dividend13 20

13

7

1

7 3

0

3

0

3 7

6

1

2

M02_LIAN9966_12_SE_C02.indd 46 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.9  Numeric Data Types and Operations 47

The % operator is often used for positive integers, but it can also be used with negative inte-
gers and floating-point values. The remainder is negative only if the dividend is negative. For
example, -7 % 3 yields -1, -12 % 4 yields 0, -26 % -8 yields -2, and 20 % -13 yields 7.

Remainder is very useful in programming. For example, an even number % 2 is always
0 and a positive odd number % 2 is always 1. Thus, you can use this property to determine
whether a number is even or odd. If today is Saturday, it will be Saturday again in 7 days.
Suppose you and your friends are going to meet in 10 days. What will be the day in 10 days?
You can find that the day is Tuesday using the following expression:

The program in Listing 2.5 obtains minutes and remaining seconds from an amount of time
in seconds. For example, 500 seconds contains 8 minutes and 20 seconds.

Listing 2.5  DisplayTime.java
 1 import java.util.Scanner;
 2
 3 public class DisplayTime {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 // Prompt the user for input
 7 System.out.print("Enter an integer for seconds: ");
 8 int seconds = input.nextInt();
 9
10 int minutes = seconds / 60; // Find minutes in seconds
11 int remainingSeconds = seconds % 60; // Seconds remaining
12 System.out.println(seconds + " seconds is " + minutes +
13 " minutes and " + remainingSeconds + " seconds");
14 }
15 }

import Scanner

create a Scanner

read an integer

divide
remainder

(6 + 10) % 7 is 2

After 10 days

Day 2 in a week is Tuesday
Note: Day 0 is a week is Sunday

A week has 7 days
Day 6 in a week is Saturday

Enter an integer for seconds: 500
500 seconds is 8 minutes and 20 seconds

line# seconds minutes remainingSeconds

  8 500

10 8

11 20

The nextInt() method (line 8) reads an integer for seconds. Line 10 obtains the min-
utes using seconds / 60. Line 11 (seconds % 60) obtains the remaining seconds after
taking away the minutes.

M02_LIAN9966_12_SE_C02.indd 47 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

48 Chapter 2   Elementary Programming

The + and - operators can be both unary and binary. A unary operator has only one
operand; a binary operator has two. For example, the – operator in –5 is a unary operator
to negate number 5, whereas the – operator in 4 – 5 is a binary operator for subtracting 5
from 4.

2.9.3  Exponent Operations
The Math.pow(a, b) method can be used to compute ab. The pow method is defined in
the Math class in the Java API. You invoke the method using the syntax Math.pow(a, b)
(e.g., Math.pow(2, 3)), which returns the result of ab (23). Here, a and b are parameters for
the pow method and the numbers 2 and 3 are actual values used to invoke the method. For
example,

System.out.println(Math.pow(2, 3)); // Displays 8.0
System.out.println(Math.pow(4, 0.5)); // Displays 2.0
System.out.println(Math.pow(2.5, 2)); // Displays 6.25
System.out.println(Math.pow(2.5, –2)); // Displays 0.16

Chapter 6 introduces more details on methods. For now, all you need to know is how to
invoke the pow method to perform the exponent operation.

2.9.1	 Find the largest and smallest byte, short, int, long, float, and double. Which
of these data types requires the least amount of memory?

2.9.2	 Show the result of the following remainders:
 56 % 6
 78 % -4
-34 % 5
-34 % -5
 5 % 1
 1 % 5

2.9.3	 If today is Tuesday, what will be the day in 100 days?

2.9.4	 What is the result of 25 / 4? How would you rewrite the expression if you wished
the result to be a floating-point number?

2.9.5	 Show the result of the following code:
System.out.println(2 * (5 / 2 + 5 / 2));
System.out.println(2 * 5 / 2 + 2 * 5 / 2);
System.out.println(2 * (5 / 2));
System.out.println(2 * 5 / 2);

2.9.6	 Are the following statements correct? If so, show the output.
System.out.println("25 / 4 is " + 25 / 4);
System.out.println("25 / 4.0 is " + 25 / 4.0);
System.out.println("3 * 2 / 4 is " + 3 * 2 / 4);
System.out.println("3.0 * 2 / 4 is " + 3.0 * 2 / 4);

2.9.7	 Write a statement to display the result of 23.5.

2.9.8	 Suppose m and r are integers. Write a Java expression for mr2 to obtain a
floating-point result.

2.10  Numeric Literals
A literal is a constant value that appears directly in a program.

 For example, 34 and 0.305 are literals in the following statements:

int numberOfYears = 34;
double weight = 0.305;

unary operator

binary operator

Math.pow(a, b) method

Point
Check

Point
Key

literal

M02_LIAN9966_12_SE_C02.indd 48 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.10  Numeric Literals 49

2.10.1  Integer Literals
An integer literal can be assigned to an integer variable as long as it can fit into the variable. A
compile error will occur if the literal is too large for the variable to hold. The statement byte
b = 128, for example, will cause a compile error, because 128 cannot be stored in a variable
of the byte type. (Note the range for a byte value is from –128 to 127.)

An integer literal is assumed to be of the int type, whose value is between
-231 (-2147483648) and 231 -1 (2147483647). To denote an integer literal of the long
type, append the letter L or l to it. For example, to write integer 2147483648 in a Java pro-
gram, you have to write it as 2147483648L or 2147483648l, because 2147483648 exceeds
the range for the int value. L is preferred because l (lowercase L) can easily be confused
with 1 (the digit one).

Note
By default, an integer literal is a decimal integer number. To denote a binary integer
literal, use a leading 0b or 0B (zero B); to denote an octal integer literal, use a leading
0 (zero); and to denote a hexadecimal integer literal, use a leading 0x or 0X (zero X).
For example,

System.out.println(0B1111); // Displays 15
System.out.println(07777); // Displays 4095
System.out.println(0XFFFF); // Displays 65535

Hexadecimal numbers, binary numbers, and octal numbers will be introduced in
Appendix F.

2.10.2  Floating-Point Literals
Floating-point literals are written with a decimal point. By default, a floating-point literal is
treated as a double type value. For example, 5.0 is considered a double value, not a float
value. You can make a number a float by appending the letter f or F, and you can make
a number a double by appending the letter d or D. For example, you can use 100.2f or
100.2F for a float number, and 100.2d or 100.2D for a double number.

Note
The double type values are more accurate than the float type values. For example,

binary, octal, and hex literals

suffix f or F

suffix d or D

double vs. float

A float value has 6–9 numbers of significant digits, and a double value has 15–17 numbers
of significant digits.

Note
To improve readability, Java allows you to use underscores to separate two digits in a
number literal. For example, the following literals are correct.

long value = 232_45_4519;
double amount = 23.24_4545_4519_3415;

However, 45_ or _45 is incorrect. The underscore must be placed between two digits. underscores in numbers

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);
displays 1.0 / 3.0 is 0.3333333333333333

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);
displays 1.0F / 3.0F is 0.33333334

16 digits

8 digits

M02_LIAN9966_12_SE_C02.indd 49 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

50 Chapter 2   Elementary Programming

2.10.3  Scientific Notation
Floating-point literals can be written in scientific notation in the form of a * 10b. For example,
the scientific notation for 123.456 is 1.23456 * 102 and for 0.0123456 is 1.23456 * 10-2.
A special syntax is used to write scientific notation numbers. For example, 1.23456 * 102 is
written as 1.23456E2 or 1.23456E+2 and 1.23456 * 10-2 as 1.23456E-2. E (or e) rep-
resents an exponent, and can be in either lowercase or uppercase.

Note
The float and double types are used to represent numbers with a decimal point.
Why are they called floating-point numbers? These numbers are stored in scientific no-
tation internally. When a number such as 50.534 is converted into scientific notation,
such as 5.0534E+1, its decimal point is moved (i.e., floated) to a new position.

2.10.1	 	 How many accurate digits are stored in a float or double type variable?

2.10.2		 Which of the following are correct literals for floating-point numbers?

12.3, 12.3e+2, 23.4e-2, -334.4, 20.5, 39F, 40D

2.10.3		 Which of the following are the same as 52.534?

5.2534e+1, 0.52534e+2, 525.34e-1, 5.2534e+0

2.10.4		 Which of the following are correct literals?

	 	5_2534e+1, _2534, 5_2, 5_

2.11  JShell
JShell is a command line tool for quickly evaluating an expression and executing a statement.

JShell is a command line interactive tool introduced in Java 9. JShell enables you to type a single
Java statement and get it executed to see the result right away without having to write a com-
plete class. This feature is commonly known as REPL (Read-Evaluate-Print Loop), which eval-
uates expressions and executes statements as they are entered and shows the result immediately.
To use JShell, you need to install JDK 9 or higher. Make sure that you set the correct path on
the Windows environment if you use Windows. Open a Command Window and type jshell to
launch JShell as shown in Figure 2.2.

why called floating-point?

Point
Check

Point
Key

Figure 2.2  JShell is launched.

You can enter a Java statement from the jshell prompt. For example, enter int x = 5, as
shown in Figure 2.3.

Figure 2.3  Enter a Java statement at the jshell command prompt

M02_LIAN9966_12_SE_C02.indd 50 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.11  JShell 51

To print the variable, simply type x. Alternatively, you can type System.out.printl-
n(x), as shown in Figure 2.4.

Figure 2.4  Print a variable

You can list all the declared variables using the /vars command as shown in Figure 2.5.

Figure 2.5  List all variables

You can use the /edit command to edit the code you have entered from the jshell prompt, as
shown in Figure 2.6a. This command opens up an edit pane. You can also add/delete the code
from the edit pane, as shown in Figure 2.6b. After finishing editing, click the Accept button to
make the change in JShell and click the Exit button to exit the edit pane.

(a)

M02_LIAN9966_12_SE_C02.indd 51 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

52 Chapter 2   Elementary Programming

In JShell, if you don’t specify a variable for a value, JShell will automatically create a vari-
able for the value. For example, if you type 6.8 from the jshell prompt, you will see variable
$7 is automatically created for 6.8, as shown in Figure 2.7.

Figure 2.7  A variable is automatically created for a value.

(b)

Figure 2.6  The /edit command opens up the edit pane

To exit JShell, enter /exit.
For more information on JShell, see https://docs.oracle.com/en/java/javase/11/jshell/.

2.11.1	 What does REPL stand for? How do you launch JShell?

2.12  Evaluating Expressions and Operator Precedence
Java expressions are evaluated in the same way as arithmetic expressions.

Writing a numeric expression in Java involves a straightforward translation of an arithmetic
expression using Java operators. For example, the arithmetic expression

3 + 4x
5

-
10(y - 5)(a + b + c)

x
+ 9a4

x
+

9 + x
y

b
can be translated into a Java expression as follows:

(3 + 4 * x) / 5 – 10 * (y - 5) * (a + b + c) / x +
 9 * (4 / x + (9 + x) / y)

Although Java has its own way to evaluate an expression behind the scene, the result of a Java
expression and its corresponding arithmetic expression is the same. Therefore, you can safely
apply the arithmetic rule for evaluating a Java expression. Operators contained within pairs of
parentheses are evaluated first. Parentheses can be nested, in which case the expression in the

Point
Check

Point
Key

evaluating an expression

M02_LIAN9966_12_SE_C02.indd 52 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.12  Evaluating Expressions and Operator Precedence 53

inner parentheses is evaluated first. When more than one operator is used in an expression, the
following operator precedence rule is used to determine the order of evaluation:

■■ Multiplication, division, and remainder operators are applied first. If an expression
contains several multiplication, division, and remainder operators, they are applied
from left to right.

■■ Addition and subtraction operators are applied last. If an expression contains several
addition and subtraction operators, they are applied from left to right.

Here is an example of how an expression is evaluated:

operator precedence rule

3 + 4 * 4 + 5 * (4 + 3) – 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

54 – 1

53

(1) inside parentheses first

(2) multiplication

(3) multiplication

(4) addition

(5) addition

(6) subtraction

Listing 2.6 gives a program that converts a Fahrenheit degree to Celsius using the formula
Celsius = 15

92(Fahrenheit - 32).

Listing 2.6  FahrenheitToCelsius.java
 1 import java.util.Scanner;
 2
 3 public class FahrenheitToCelsius {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter a degree in Fahrenheit: ");
 8 double fahrenheit = input.nextDouble();
 9
10 // Convert Fahrenheit to Celsius
11 double celsius = (5.0 / 9) * (fahrenheit - 32);
12 System.out.println("Fahrenheit " + fahrenheit + " is " +
13 celsius + " in Celsius");
14 }
15 }

divide

Enter a degree in Fahrenheit: 100
Fahrenheit 100.0 is 37.77777777777778 in Celsius

line# fahrenheit celsius

8 100

11 37.77777777777778

M02_LIAN9966_12_SE_C02.indd 53 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

54 Chapter 2   Elementary Programming

Be careful when applying division. Division of two integers yields an integer in Java. 59 is
coded 5.0 / 9 instead of 5 / 9 in line 11, because 5 / 9 yields 0 in Java.

2.12.1	 How would you write the following arithmetic expressions in Java?

a.	
4

3(r + 34)
- 9(a + bc) +

3 + d(2 + a)

a + bd

b.	 5.5 * (r + 2.5)2.5 + t

2.13  Case Study: Displaying the Current Time
You can invoke System.currentTimeMillis() to return the current time.

The problem is to develop a program that displays the current time in GMT (Greenwich Mean
Time) in the format hour:minute:second, such as 13:19:8.

The currentTimeMillis method in the System class returns the current time in milli-
seconds elapsed since the time midnight, January 1, 1970 GMT, as shown in Figure 2.8. This
time is known as the UNIX epoch. The epoch is the point when time starts, and 1970 was the
year when the UNIX operating system was formally introduced.

integer vs. floating-point
division

Point
Check

Point
Key

VideoNote

Use operators / and %

currentTimeMillis
UNIX epoch

Elapsed time

Time

UNIX epoch
01-01-1970

00:00:00 GMT

Current time returned from
System.currentTimeMillis()

Figure 2.8  The System.currentTimeMillis() returns the number of milliseconds
since the UNIX epoch.

You can use this method to obtain the current time, then compute the current second, min-
ute, and hour as follows:

1.	 Obtain the total milliseconds since midnight, January 1, 1970, in totalMilliseconds
by invoking System.currentTimeMillis() (e.g., 1203183068328 milliseconds).

2.	 Obtain the total seconds totalSeconds by dividing totalMilliseconds by 1000
(e.g., 1203183068328 milliseconds / 1000 = 1203183068 seconds).

3.	 Compute the current second from totalSeconds % 60 (e.g., 1203183068 seconds %
60 = 8, which is the current second).

4.	 Obtain the total minutes totalMinutes by dividing totalSeconds by 60 (e.g.,
1203183068 seconds / 60 = 20053051 minutes).

5.	 Compute the current minute from totalMinutes % 60 (e.g., 20053051 minutes % 60
= 31, which is the current minute).

6.	 Obtain the total hours totalHours by dividing totalMinutes by 60 (e.g., 20053051
minutes / 60 = 334217 hours).

7.	 Compute the current hour from totalHours % 24 (e.g., 334217 hours % 24 = 17,
which is the current hour).

Listing 2.7 gives the complete program.

M02_LIAN9966_12_SE_C02.indd 54 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.13  Case Study: Displaying the Current Time 55

Listing 2.7  ShowCurrentTime.java
 1 public class ShowCurrentTime {
 2 public static void main(String[] args) {
 3 // Obtain the total milliseconds since midnight, Jan 1, 1970
 4 long totalMilliseconds = System.currentTimeMillis();
 5
 6 // Obtain the total seconds since midnight, Jan 1, 1970
 7 long totalSeconds = totalMilliseconds / 1000;
 8
 9 // Compute the current second in the minute in the hour
10 long currentSecond = totalSeconds % 60;
11
12 // Obtain the total minutes
13 long totalMinutes = totalSeconds / 60;
14
15 // Compute the current minute in the hour
16 long currentMinute = totalMinutes % 60;
17
18 // Obtain the total hours
19 long totalHours = totalMinutes / 60;
20
21 // Compute the current hour
22 long currentHour = totalHours % 24;
23
24 // Display results
25 System.out.println("Current time is " + currentHour + ":"
26 + currentMinute + ":" + currentSecond + " GMT");
27 }
28 }

totalMilliseconds

totalSeconds

currentSecond

totalMinutes

currentMinute

totalHours

currentHour

display output

Line 4 invokes System.currentTimeMillis() to obtain the current time in millisec-
onds as a long value. Thus, all the variables are declared as the long type in this program.
The seconds, minutes, and hours are extracted from the current time using the / and % oper-
ators (lines 6–22).

Current time is 17:31:8 GMT

line# 4 7 10 13 16 19 22

variables

totalMilliseconds 1203183068328

totalSeconds 1203183068

currentSecond 8

totalMinutes 20053051

currentMinute 31

totalHours 334217

currentHour 17

M02_LIAN9966_12_SE_C02.indd 55 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

56 Chapter 2   Elementary Programming

In the sample run, a single digit 8 is displayed for the second. The desirable output would
be 08. This can be fixed by using a method that formats a single digit with a prefix 0 (see
Programming Exercise 6.37).

The hour displayed in this program is in GMT. Programming Exercise 2.8 enables to dis-
play the hour in any time zone.

Java also provides the System.nanoTime() method that returns the elapse time in nano-
seconds. nanoTime() is more precise and accurate than currentTimeMillis().

2.13.1	 How do you obtain the current second, minute, and hour?

2.14  Augmented Assignment Operators
The operators +, -, *, /, and % can be combined with the assignment operator to form
augmented operators.

Very often, the current value of a variable is used, modified, then reassigned back to the same
variable. For example, the following statement increases the variable count by 1:

count = count + 1;

Java allows you to combine assignment and addition operators using an augmented (or
compound) assignment operator. For example, the preceding statement can be written as

count += 1;

The += is called the addition assignment operator. Table 2.4 shows other augmented as-
signment operators.

nanoTime

Point
Check

Point
Key

addition assignment operator

Table 2.4  Augmented Assignment Operators

Operator Name Example Equivalent

+= Addition assignment i += 8 i = i + 8

-= Subtraction assignment i -= 8 i = i - 8

*= Multiplication assignment i *= 8 i = i * 8

/= Division assignment i /= 8 i = i / 8

%= Remainder assignment i %= 8 i = i % 8

The augmented assignment operator is performed last after all the other operators in the
expression are evaluated. For example,

x /= 4 + 5.5 * 1.5;

is same as

x = x / (4 + 5.5 * 1.5);

Caution
There are no spaces in the augmented assignment operators. For example, + = should be +=.

Note
Like the assignment operator (=), the operators (+=, -=, *=, /=, and %=) can be used
to form an assignment statement as well as an expression. For example, in the following
code, x += 2 is a statement in the first line, and an expression in the second line:

x += 2; // Statement
System.out.println(x += 2); // Expression

M02_LIAN9966_12_SE_C02.indd 56 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.15  Increment and Decrement Operators 57

2.14.1	 Show the output of the following code:

double a = 6.5;
a += a + 1;
System.out.println(a);
a = 6;
a /= 2;
System.out.println(a);

2.15  Increment and Decrement Operators
The increment operator (+ +) and decrement operator (— —) are for incrementing and
decrementing a variable by 1.

The ++ and — — are two shorthand operators for incrementing and decrementing a variable by
1. These are handy because that’s often how much the value needs to be changed in many pro-
gramming tasks. For example, the following code increments i by 1 and decrements j by 1.

int i = 3, j = 3;
i++; // i becomes 4
j— —; // j becomes 2

i++ is pronounced as "i plus plus" and i— — as "i minus minus." These operators are
known as postfix increment (or postincrement) and postfix decrement (or postdecrement), be-
cause the operators ++ and — — are placed after the variable. These operators can also be placed
before the variable. For example,

int i = 3, j = 3;
++i; // i becomes 4
— —j; // j becomes 2

++i increments i by 1 and — —j decrements j by 1. These operators are known as prefix
increment (or preincrement) and prefix decrement (or predecrement).

As you see, the effect of i++ and ++i or i— — and — —i are the same in the preceding ex-
amples. However, their effects are different when they are used in statements that do more
than just increment and decrement. Table 2.5 describes their differences and gives examples.

Point
Check

increment operator (+ +)

decrement operator (— —)

Point
Key

postincrement
postdecrement

Table 2.5  Increment and Decrement Operators

Operator Name Description Example (assume i = 1)

++var preincrement Increment var by 1, and use the
new var value in the statement

int j = ++i;
// j is 2, i is 2

var++ postincrement Increment var by 1, but use the
original var value in the statement

int j = i++;
// j is 1, i is 2

——var predecrement Decrement var by 1, and use the
new var value in the statement

int j = — —i;
// j is 0, i is 0

var—— postdecrement Decrement var by 1, and use the
original var value in the statement

int j = i— —;
// j is 1, i is 0

Here are additional examples to illustrate the differences between the prefix form of ++ (or
— —) and the postfix form of ++ (or — —). Consider the following code:

int newNum = 10 * i++;
int i = 10;

i = i + 1;

int newNum = 10 * i;Same effect as

System.out.print("i is " + i

+ ", newNum is " + newNum);

Output is

i is 11, newNum is 100

preincrement
predecrement

M02_LIAN9966_12_SE_C02.indd 57 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

58 Chapter 2   Elementary Programming

In this case, i is incremented by 1, then the old value of i is used in the multiplication.
Thus, newNum becomes 100. If i++ is replaced by ++i, then it becomes as follows:

i is incremented by 1, and the new value of i is used in the multiplication. Thus, newNum
becomes 110.

Here is another example:

double x = 1.0;
double y = 5.0;
double z = x–– + (++y);

After all three lines are executed, y becomes 6.0, z becomes 7.0, and x becomes 0.0.

Operands are evaluated from left to right in Java. The left-hand operand of a binary opera-
tor is evaluated before any part of the right-hand operand is evaluated. This rule takes prece-
dence over any other rules that govern expressions. Here is an example:

int i = 1;
int k = ++i + i * 3;

++i is evaluated and returns 2. When evaluating i * 3, i is now 2. Therefore, k becomes 8.

Tip
Using increment and decrement operators makes expressions short, but it also makes them
complex and difficult to read. Avoid using these operators in expressions that modify multiple
variables or the same variable multiple times, such as this one: int k = ++i + i * 3.

2.15.1	  Which of these statements are true?

a.	 Any expression can be used as a statement.

b.	 The expression x++ can be used as a statement.

c.	 The statement x = x + 5 is also an expression.

d.	 The statement x = y = x = 0 is illegal.

2.15.2	     Show the output of the following code:

int a = 6;
int b = a++;
System.out.println(a);
System.out.println(b);
a = 6;
b = ++a;
System.out.println(a);
System.out.println(b);

2.16  Numeric Type Conversions
Floating-point numbers can be converted into integers using explicit casting.

Can you perform binary operations with two operands of different types? Yes. If an integer
and a floating-point number are involved in a binary operation, Java automatically converts
the integer to a floating-point value. Therefore, 3 * 4.5 is the same as 3.0 * 4.5.

Point
Check

Point
Key

int newNum = 10 * (++i);
int i = 10;

int newNum = 10 * i;
i = i + 1;Same effect as

System.out.print("i is " + i

+ ", newNum is " + newNum);

Output is

i is 11, newNum is 110

M02_LIAN9966_12_SE_C02.indd 58 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.16  Numeric Type Conversions 59

You can always assign a value to a numeric variable whose type supports a larger range
of values; thus, for instance, you can assign a long value to a float variable. You cannot,
however, assign a value to a variable of a type with a smaller range unless you use type
casting. Casting is an operation that converts a value of one data type into a value of another
data type. Casting a type with a small range to a type with a larger range is known as widening
a type. Casting a type with a large range to a type with a smaller range is known as narrowing
a type. Java will automatically widen a type, but you must narrow a type explicitly.

The syntax for casting a type is to specify the target type in parentheses, followed by the
variable’s name or the value to be cast. For example, the following statement

System.out.println((int)1.7);

displays 1. When a double value is cast into an int value, the fractional part is truncated.
The following statement

System.out.println((double)1 / 2);

displays 0.5, because 1 is cast to 1.0 first, then 1.0 is divided by 2. However, the
statement

System.out.println(1 / 2);

displays 0, because 1 and 2 are both integers and the resulting value should also be an integer.

Caution
Casting is necessary if you are assigning a value to a variable of a smaller type range, such
as assigning a double value to an int variable. A compile error will occur if casting is not
used in situations of this kind. However, be careful when using casting, as loss of information
might lead to inaccurate results.

Note
Casting does not change the variable being cast. For example, d is not changed after
casting in the following code:

double d = 4.5;
int i = (int)d; // i becomes 4, but d is still 4.5

Note
In Java, an augmented expression of the form x1 op= x2 is implemented as x1 =
(T)(x1 op x2), where T is the type for x1. Therefore, the following code is correct:

int sum = 0;
sum += 4.5; // sum becomes 4 after this statement
sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

Note
To assign a variable of the int type to a variable of the short or byte type, explicit
casting must be used. For example, the following statements have a compile error:

int i = 1;
byte b = i; // Error because explicit casting is required

However, so long as the integer literal is within the permissible range of the target vari-
able, explicit casting is not needed to assign an integer literal to a variable of the short
or byte type (see Section 2.10, Numeric Literals).

The program in Listing 2.8 displays the sales tax with two digits after the decimal point.

casting

widening a type
narrowing a type

possible loss of precision

casting in an augmented
expression

M02_LIAN9966_12_SE_C02.indd 59 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

60 Chapter 2   Elementary Programming

Listing 2.8  SalesTax.java
 1 import java.util.Scanner;
 2
 3 public class SalesTax {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 System.out.print("Enter purchase amount: ");
 8 double purchaseAmount = input.nextDouble();
 9
10 double tax = purchaseAmount * 0.06;
11 System.out.println("Sales tax is $" + (int)(tax * 100) / 100.0);
12 }
13 }

Enter purchase amount: 197.55
Sales tax is $11.85

casting

line# purchaseAmount tax Output

8 197.55

10 11.853

11 11.85

Using the input in the sample run, the variable purchaseAmount is 197.55 (line 8). The
sales tax is 6% of the purchase, so the tax is evaluated as 11.853 (line 10). Note

tax * 100 is 1185.3
(int)(tax * 100) is 1185
(int)(tax * 100) / 100.0 is 11.85

Thus, the statement in line 11 displays the tax 11.85 with two digits after the decimal point.
Note the expression (int)(tax * 100) / 100.0 rounds down tax to two decimal places.
If tax is 3.456, (int)(tax * 100) / 100.0 would be 3.45. Can it be rounded up to two
decimal places? Note any double value x can be rounded up to an integer using (int)(x + 0.5).
Thus, tax can be rounded up to two decimal places using (int)(tax * 100 + 0.5) / 100.0.

2.16.1	  Can different types of numeric values be used together in a computation?

2.16.2	 � What does an explicit casting from a double to an int do with the fractional part
of the double value? Does casting change the variable being cast?

2.16.3	  Show the following output:

float f = 12.5F;
int i = (int)f;
System.out.println("f is " + f);
System.out.println("i is " + i);

2.16.4	 � If you change (int)(tax * 100) / 100.0 to (int)(tax * 100) / 100 in line
11 in Listing 2.8, what will be the output for the input purchase amount of 197.556?

2.16.5	 � Show the output of the following code:

double amount = 5;
System.out.println(amount / 2);
System.out.println(5 / 2);

2.16.6	 Write an expression that rounds up a double value in variable d to an integer.

formatting numbers

Point
Check

M02_LIAN9966_12_SE_C02.indd 60 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.17  Software Development Process 61

2.17  Software Development Process
The software development life cycle is a multistage process that includes requirements
specification, analysis, design, implementation, testing, deployment, and maintenance.

Developing a software product is an engineering process. Software products, no matter how
large or how small, have the same life cycle: requirements specification, analysis, design,
implementation, testing, deployment, and maintenance, as shown in Figure 2.9.

Point
Key

VideoNote

Software development
process

Requirements
Specification

System Analysis

System
Design

Input, Process, Output
IPO

Implementation

Maintenance

Deployment

Testing

Figure 2.9  At any stage of the software development life cycle, it may be necessary to go
back to a previous stage to correct errors or deal with other issues that might prevent the
software from functioning as expected.

Requirements specification is a formal process that seeks to understand the problem the
software will address, and to document in detail what the software system needs to do. This
phase involves close interaction between users and developers. Most of the examples in this
book are simple, and their requirements are clearly stated. In the real world, however, prob-
lems are not always well defined. Developers need to work closely with their customers (the
individuals or organizations that will use the software) and study the problem carefully to
identify what the software needs to do.

System analysis seeks to analyze the data flow and to identify the system’s input and out-
put. When you perform analysis, it helps to identify what the output is first, then figure out
what input data you need in order to produce the output.

System design is to design a process for obtaining the output from the input. This phase
involves the use of many levels of abstraction to break down the problem into manageable
components and design strategies for implementing each component. You can view each
component as a subsystem that performs a specific function of the system. The essence of
system analysis and design is input, process, and output (IPO).

Implementation involves translating the system design into programs. Separate programs
are written for each component then integrated to work together. This phase requires the use
of a programming language such as Java. The implementation involves coding, self-testing,
and debugging (that is, finding errors, called bugs, in the code).

Testing ensures the code meets the requirements specification and weeds out bugs. An
independent team of software engineers not involved in the design and implementation of the
product usually conducts such testing.

requirements specification

system analysis

IOP

system design

implementation

testing

M02_LIAN9966_12_SE_C02.indd 61 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

62 Chapter 2   Elementary Programming

Deployment makes the software available for use. Depending on the type of software,
it may be installed on each user’s machine, or installed on a server accessible on the
Internet.

Maintenance is concerned with updating and improving the product. A software product
must continue to perform and improve in an ever-evolving environment. This requires peri-
odic upgrades of the product to fix newly discovered bugs and incorporate changes.

To see the software development process in action, we will now create a program that
computes loan payments. The loan can be a car loan, a student loan, or a home mortgage loan.
For an introductory programming course, we focus on requirements specification, analysis,
design, implementation, and testing.

Stage 1: Requirements Specification

The program must satisfy the following requirements:

■■ It must let the user enter the interest rate, the loan amount, and the number of years
for which payments will be made.

■■ It must compute and display the monthly payment and total payment amounts.

Stage 2: System Analysis

The output is the monthly payment and total payment, which can be obtained using the fol-
lowing formulas:

monthlyPayment =
loanAmount * monthlyInterestRate

1 -
1

(1 + monthlyInterestRate)numberOf Years * 12

totalPayment = monthlyPayment * numberOf Years * 12

Therefore, the input needed for the program is the monthly interest rate, the length of the
loan in years, and the loan amount.

Note
The requirements specification says the user must enter the annual interest rate, the
loan amount, and the number of years for which payments will be made. During analy-
sis, however, it is possible you may discover that input is not sufficient or some values
are unnecessary for the output. If this happens, you can go back and modify the require-
ments specification.

Note
In the real world, you will work with customers from all walks of life. You may de-
velop software for chemists, physicists, engineers, economists, and psychologists, and
of course you will not have (or need) complete knowledge of all these fields. Therefore,
you don’t have to know how formulas are derived, but given the monthly interest rate,
the number of years, and the loan amount, you can compute the monthly payment in
this program. You will, however, need to communicate with customers and understand
how a mathematical model works for the system.

Stage 3: System Design

During system design, you identify the steps in the program.

Step 3.1.	 Prompt the user to enter the annual interest rate, the number of years, and the loan
amount.

(The interest rate is commonly expressed as a percentage of the principal for a period of
one year. This is known as the annual interest rate.)

deployment

maintenance

VideoNote

Compute loan payments

M02_LIAN9966_12_SE_C02.indd 62 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.17  Software Development Process 63

Step 3.2.	 The input for the annual interest rate is a number in percent format, such as 4.5%.
The program needs to convert it into a decimal by dividing it by 100. To obtain
the monthly interest rate from the annual interest rate, divide it by 12, since a year
has 12 months. Thus, to obtain the monthly interest rate in decimal format, you
need to divide the annual interest rate in percentage by 1200. For example, if the
annual interest rate is 4.5%, then the monthly interest rate is 4.5/1200 = 0.00375.

Step 3.3.	 Compute the monthly payment using the preceding formula.

Step 3.4.	 Compute the total payment, which is the monthly payment multiplied by 12 and
multiplied by the number of years.

Step 3.5.	 Display the monthly payment and total payment.

Stage 4: Implementation

Implementation is also known as coding (writing the code). In the formula, you have to com-
pute (1 + monthlyInterestRate)numberOfYears*12, which can be obtained using Math.
pow(1 + monthlyInterestRate, numberOfYears * 12).

Listing 2.9 gives the complete program.

Listing 2.9  ComputeLoan.java
 1 import java.util.Scanner;
 2
 3 public class ComputeLoan {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Enter annual interest rate in percentage, e.g., 7.25
 9 System.out.print("Enter annual interest rate, e.g., 7.25: ");
10 double annualInterestRate = input.nextDouble();
11
12 // Obtain monthly interest rate
13 double monthlyInterestRate = annualInterestRate / 1200;
14
15 // Enter number of years
16 System.out.print(
17 "Enter number of years as an integer, e.g., 5: ");
18 int numberOfYears = input.nextInt();
19
20 // Enter loan amount
21 System.out.print("Enter loan amount, e.g., 120000.95: ");
22 double loanAmount = input.nextDouble();
23
24 // Calculate payment
25 double monthlyPayment = loanAmount * monthlyInterestRate / (1
26 - 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));
27 double totalPayment = monthlyPayment * numberOfYears * 12;
28
29 // Display results
30 System.out.println("The monthly payment is $" +
31 (int)(monthlyPayment * 100) / 100.0);
32 System.out.println("The total payment is $" +
33 (int)(totalPayment * 100) / 100.0);
34 }
35 }

Math.pow(a, b) method

import class

create a Scanner

enter loan amount

monthlyPayment

totalPayment

casting

casting

enter interest rate

enter years

M02_LIAN9966_12_SE_C02.indd 63 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

64 Chapter 2   Elementary Programming

Enter annual interest rate, for example, 7.25: 5.75
Enter number of years as an integer, for example, 5: 15
Enter loan amount, for example, 120000.95: 250000
The monthly payment is $2076.02
The total payment is $373684.53

line# 10 13 18 22 25 27

variables

annualInterestRate 5.75

monthlyInterestRate 0.0047916666666

numberOfYears 15

loanAmount 250000

monthlyPayment 2076.0252175

totalPayment 373684.539

Line 10 reads the annual interest rate, which is converted into the monthly interest rate in line 13.
Choose the most appropriate data type for the variable. For example, numberOfYears is

best declared as an int (line 18), although it could be declared as a long, float, or double.
Note byte might be the most appropriate for numberOfYears. For simplicity, however, the
examples in this booktext will use int for integer and double for floating-point values.

The formula for computing the monthly payment is translated into Java code in lines 25–27.
Casting is used in lines 31 and 33 to obtain a new monthlyPayment and totalPayment

with two digits after the decimal points.
The program uses the Scanner class, imported in line 1. The program also uses the Math

class, and you might be wondering why that class isn’t imported into the program. The Math
class is in the java.lang package, and all classes in the java.lang package are implicitly
imported. Therefore, you don’t need to explicitly import the Math class.

Stage 5: Testing

After the program is implemented, test it with some sample input data and verify whether the
output is correct. Some of the problems may involve many cases, as you will see in later chap-
ters. For these types of problems, you need to design test data that cover all cases.

Tip
The system design phase in this example identified several steps. It is a good approach to
code and test these steps incrementally by adding them one at a time. This approach, called
incremental coding and testing, makes it much easier to pinpoint problems and debug the
program.

2.17.1	 How would you write the following arithmetic expression?

-b + 2b2 - 4ac
2a

2.18  Case Study: Counting Monetary Units
This section presents a program that breaks a large amount of money into smaller units.

Suppose you want to develop a program that changes a given amount of money into smaller
monetary units. The program lets the user enter an amount as a double value representing a

java.lang package

incremental coding and
testing

Point
Check

Point
Key

M02_LIAN9966_12_SE_C02.indd 64 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.18  Case Study: Counting Monetary Units 65

total in dollars and cents, and outputs a report listing the monetary equivalent in the maximum
number of dollars, quarters, dimes, nickels, and pennies, in this order, to result in the mini-
mum number of coins.
Here are the steps in developing the program:

1.	 Prompt the user to enter the amount as a decimal number, such as 11.56.

2.	 Convert the amount (e.g., 11.56) into cents (1156).

3.	 Divide the cents by 100 to find the number of dollars. Obtain the remaining cents using
the cents remainder 100.

4.	 Divide the remaining cents by 25 to find the number of quarters. Obtain the remaining
cents using the remaining cents remainder 25.

5.	 Divide the remaining cents by 10 to find the number of dimes. Obtain the remaining
cents using the remaining cents remainder 10.

6.	 Divide the remaining cents by 5 to find the number of nickels. Obtain the remaining
cents using the remaining cents remainder 5.

7.	 The remaining cents are the pennies.

8.	 Display the result.

The complete program is given in Listing 2.10.

Listing 2.10  ComputeChange.java
 1 import java.util.Scanner;
 2
 3 public class ComputeChange {
 4 public static void main(String[] args) {
 5 // Create a Scanner
 6 Scanner input = new Scanner(System.in);
 7
 8 // Receive the amount
 9 System.out.print(
10 "Enter an amount in double, for example 11.56: ");
11 double amount = input.nextDouble();
12
13 int remainingAmount = (int)(amount * 100);
14
15 // Find the number of one dollars
16 int numberOfOneDollars = remainingAmount / 100;
17 remainingAmount = remainingAmount % 100;
18
19 // Find the number of quarters in the remaining amount
20 int numberOfQuarters = remainingAmount / 25;
21 remainingAmount = remainingAmount % 25;
22
23 // Find the number of dimes in the remaining amount
24 int numberOfDimes = remainingAmount / 10;
25 remainingAmount = remainingAmount % 10;
26
27 // Find the number of nickels in the remaining amount
28 int numberOfNickels = remainingAmount / 5;
29 remainingAmount = remainingAmount % 5;
30
31 // Find the number of pennies in the remaining amount
32 int numberOfPennies = remainingAmount;
33

import class

enter input

dollars

quarters

dimes

nickels

pennies

M02_LIAN9966_12_SE_C02.indd 65 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

66 Chapter 2   Elementary Programming

34 // Display results
35 System.out.println("Your amount " + amount + " consists of");
36 System.out.println(" " + numberOfOneDollars + " dollars");
37 System.out.println(" " + numberOfQuarters + " quarters ");
38 System.out.println(" " + numberOfDimes + " dimes");
39 System.out.println(" " + numberOfNickels + " nickels");
40 System.out.println(" " + numberOfPennies + " pennies");
41 }
42 }

output

Enter an amount in double, for example, 11.56: 11.56
Your amount 11.56 consists of
 11 dollars
 2 quarters
 0 dimes
 1 nickels
 1 pennies

line# 11 13 16 17 20 21 24 25 28 29 32

variables

amount 11.56

remainingAmount 1156 56 6 6 1

numberOfOneDollars 11

numberOfQuarters 2

numberOfDimes 0

numberOfNickels 1

numberOfPennies 1

The variable amount stores the amount entered from the console (line 11). This variable is not
changed, because the amount has to be used at the end of the program to display the results. The pro-
gram introduces the variable remainingAmount (line 13) to store the changing remaining amount.

The variable amount is a double decimal representing dollars and cents. It is converted to
an int variable remainingAmount, which represents all the cents. For instance, if amount
is 11.56, then the initial remainingAmount is 1156. The division operator yields the inte-
ger part of the division, so 1156 / 100 is 11. The remainder operator obtains the remainder
of the division, so 1156 % 100 is 56.

The program extracts the maximum number of singles from the remaining amount and
obtains a new remaining amount in the variable remainingAmount (lines 16–17). It then
extracts the maximum number of quarters from remainingAmount and obtains a new re-
mainingAmount (lines 20–21). Continuing the same process, the program finds the maxi-
mum number of dimes, nickels, and pennies in the remaining amount.

One serious problem with this example is the possible loss of precision when casting a
double amount to an int remainingAmount. This could lead to an inaccurate result. If
you try to enter the amount 10.03, 10.03 * 100 becomes 1002.9999999999999. You
will find that the program displays 10 dollars and 2 pennies. To fix the problem, enter the
amount as an integer value representing cents (see Programming Exercise 2.22).

2.18.1	 Show the output of Listing 2.10 with the input value 1.99. Why does the program
produce an incorrect result for the input 10.03?

loss of precision

Point
Check

M02_LIAN9966_12_SE_C02.indd 66 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

2.19  Common Errors and Pitfalls 67

2.19  Common Errors and Pitfalls
Common elementary programming errors often involve undeclared variables, uninitial-
ized variables, integer overflow, unintended integer division, and round-off errors.

Common Error 1: Undeclared/Uninitialized Variables and Unused Variables

A variable must be declared with a type and assigned a value before using it. A common error
is not declaring a variable or initializing a variable. Consider the following code:

double interestRate = 0.05;
double interest = interestrate * 45;

This code is wrong, because interestRate is assigned a value 0.05; but intere-
strate has not been declared and initialized. Java is case sensitive, so it considers intere-
stRate and interestrate to be two different variables.

If a variable is declared, but not used in the program, it might be a potential programming
error. Therefore, you should remove the unused variable from your program. For example, in
the following code, taxRate is never used. It should be removed from the code.

double interestRate = 0.05;
double taxRate = 0.05;
double interest = interestRate * 45;
System.out.println("Interest is " + interest);

If you use an IDE such as Eclipse and NetBeans, you will receive a warning on unused
variables.

Common Error 2: Integer Overflow

Numbers are stored with a limited numbers of digits. When a variable is assigned a value that
is too large (in size) to be stored, it causes overflow. For example, executing the following
statement causes overflow, because the largest value that can be stored in a variable of the
int type is 2147483647. 2147483648 will be too large for an int value:

int value = 2147483647 + 1;
// value will actually be -2147483648

Likewise, executing the following statement also causes overflow, because the smallest value
that can be stored in a variable of the int type is -2147483648. -2147483649 is too large
in size to be stored in an int variable.

int value = –2147483648 – 1;
// value will actually be 2147483647

Java does not report warnings or errors on overflow, so be careful when working with inte-
gers close to the maximum or minimum range of a given type.

When a floating-point number is too small (i.e., too close to zero) to be stored, it causes
underflow. Java approximates it to zero, so normally you don’t need to be concerned about
underflow.

Common Error 3: Round-off Errors

A round-off error, also called a rounding error, is the difference between the calculated ap-
proximation of a number and its exact mathematical value. For example, 1/3 is approximately
0.333 if you keep three decimal places, and is 0.3333333 if you keep seven decimal places.
Since the number of digits that can be stored in a variable is limited, round-off errors are in-
evitable. Calculations involving floating-point numbers are approximated because these num-
bers are not stored with complete accuracy. For example,

Point
Key

what is overflow?

what is underflow?

floating-point approximation

M02_LIAN9966_12_SE_C02.indd 67 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

68 Chapter 2   Elementary Programming

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are stored precisely. Therefore, calcula-
tions with integers yield a precise integer result.

Common Error 4: Unintended Integer Division

Java uses the same divide operator, namely /, to perform both integer and floating-point divi-
sion. When two operands are integers, the / operator performs an integer division. The result of
the operation is an integer. The fractional part is truncated. To force two integers to perform a
floating-point division, make one of the integers into a floating-point number. For example, the
code in (a) displays that average as 1 and the code in (b) displays that average as 1.5.

int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2;
System.out.println(average);

int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2.0;
System.out.println(average);

(a) (b)

Common Pitfall 1: Redundant Input Objects

New programmers often write the code to create multiple input objects for each input.
For example, the following code in (a) reads an integer and a double value:

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in); BAD CODE
System.out.print("Enter a double value: ");
double v2 = input1.nextDouble();

The code is not good. It creates two input objects unnecessarily and may lead to some
subtle errors. You should rewrite the code in (b):

Scanner input = new Scanner(System.in); GOOD CODE
System.out.print("Enter an integer: ");
int v1 = input.nextInt();
System.out.print("Enter a double value: ");
double v2 = input.nextDouble();

2.19.1	 Can you declare a variable as int and later redeclare it as double?

2.19.2	 What is an integer overflow? Can floating-point operations cause overflow?

2.19.3	 Will overflow cause a runtime error?

2.19.4	 �What is a round-off error? Can integer operations cause round-off errors? Can
floating-point operations cause round-off errors?

Key Terms

Point
Check

algorithm, 34
assignment operator (=), 42
assignment statement, 42
byte type, 45

casting, 59
constant, 43
data type, 35
declare variables, 35

M02_LIAN9966_12_SE_C02.indd 68 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Chapter Summary   69

decrement operator (– –), 57
double type, 45
expression, 42
final keyword, 43
float type, 45
floating-point number, 35
identifier, 40
increment operator (++), 57
incremental coding and testing, 64
int type, 45
IPO, 39
literal, 48
long type, 45
narrowing a type, 59
operand, 46
operator, 46
overflow, 67

postdecrement, 57
postincrement, 57
predecrement, 57
preincrement, 57
primitive data type, 35
pseudocode, 34
requirements specification, 61
scope of a variable, 41
short type, 45
specific import, 38
system analysis, 61
system design, 61
underflow, 67
UNIX epoch, 54
variable, 35
widening a type, 59
wildcard import, 38

Chapter Summary

1.	 Identifiers are names for naming elements such as variables, constants, methods,
classes, and packages in a program.

2.	 An identifier is a sequence of characters that consists of letters, digits, underscores (_),
and dollar signs ($). An identifier must start with a letter or an underscore. It cannot
start with a digit. An identifier cannot be a reserved word. An identifier can be of any
length.

3.	 Variables are used to store data in a program. To declare a variable is to tell the compiler
what type of data a variable can hold.

4.	 There are two types of import statements: specific import and wildcard import. The
specific import specifies a single class in the import statement. The wildcard import
imports all the classes in a package.

5.	 In Java, the equal sign (=) is used as the assignment operator.

6.	 A variable declared in a method must be assigned a value before it can be used.

7.	 A named constant (or simply a constant) represents permanent data that never changes.

8.	 A named constant is declared by using the keyword final.

9.	 Java provides four integer types (byte, short, int, and long) that represent integers
of four different sizes.

10.	 Java provides two floating-point types (float and double) that represent floating-point
numbers of two different precisions.

11.	 Java provides operators that perform numeric operations: + (addition), – (subtraction),
* (multiplication), / (division), and % (remainder).

12.	 Integer arithmetic (/) yields an integer result.

13.	 The numeric operators in a Java expression are applied the same way as in an arithmetic
expression.

M02_LIAN9966_12_SE_C02.indd 69 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

70 Chapter 2   Elementary Programming

14.	 Java provides the augmented assignment operators += (addition assignment), –= (sub-
traction assignment), *= (multiplication assignment), /= (division assignment), and %=
(remainder assignment).

15.	 The increment operator (++) and the decrement operator (––) increment or decrement
a variable by 1.

16.	 When evaluating an expression with values of mixed types, Java automatically converts
the operands to appropriate types.

17.	 You can explicitly convert a value from one type to another using the (type)value
notation.

18.	 Casting a variable of a type with a small range to a type with a larger range is known as
widening a type.

19.	 Casting a variable of a type with a large range to a type with a smaller range is known
as narrowing a type.

20.	 Widening a type can be performed automatically without explicit casting. Narrowing a
type must be performed explicitly.

21.	 In computer science, midnight of January 1, 1970, is known as the UNIX epoch.

Quiz

Answer the quiz for this chapter online at the Companion Website.

Debugging Tip
The compiler usually gives a reason for a syntax error. If you don’t know how to correct it,
compare your program closely, character by character, with similar examples in the text.

Pedagogical Note
Instructors may ask you to document your analysis and design for selected exercises.
Use your own words to analyze the problem, including the input, output, and what
needs to be computed, and describe how to solve the problem in pseudocode.

Pedagogical Note
The solution to most even-numbered programming exercises are provided to stu-
dents. These exercises serve as additional examples for a variety of programs. To max-
imize the benefits of these solutions, students should first attempt to complete the
even-numbered exercises and then compare their solutions with the solutions pro-
vided in the book. Since the book provides a large number of programming exercises,
it is sufficient if you can complete all even-numbered programming exercises.

learn from examples

document analysis and design

even-numbered programming
exercises

Programming Exercises

Sections 2.2–2.13
	 2.1	 (Convert Celsius to Fahrenheit) Write a program that reads a Celsius degree in a

double value from the console, then converts it to Fahrenheit, and displays the
result. The formula for the conversion is as follows:

fahrenheit = (9 / 5) * celsius + 32

Hint: In Java, 9 / 5 is 1, but 9.0 / 5 is 1.8.

Here is a sample run:

M02_LIAN9966_12_SE_C02.indd 70 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   71

Enter a degree in Celsius: 43.5
43.5 Celsius is 110.3 Fahrenheit

	 2.2	 (Compute the volume of a cylinder) Write a program that reads in the radius
and length of a cylinder and computes the area and volume using the following
formulas:

area = radius * radius * π
volume = area * length

Here is a sample run:

Enter the radius and length of a cylinder: 5.5 12
The area is 95.0331
The volume is 1140.4

	 2.3	 (Convert feet into meters) Write a program that reads a number in feet, converts it
to meters, and displays the result. One foot is 0.305 meter. Here is a sample run:

Enter a value for feet: 16.5
16.5 feet is 5.0325 meters

	 2.4	 (Convert pounds into kilograms) Write a program that converts pounds into ki-
lograms. The program prompts the user to enter a number in pounds, converts it
to kilograms, and displays the result. One pound is 0.454 kilogram. Here is a
sample run:

Enter a number in pounds: 55.5
55.5 pounds is 25.197 kilograms

	 *2.5	 (Financial application: calculate tips) Write a program that reads the subtotal
and the gratuity rate, then computes the gratuity and total. For example, if the
user enters 10 for subtotal and 15% for gratuity rate, the program displays $1.5
as gratuity and $11.5 as total. Here is a sample run:

Enter the subtotal and a gratuity rate: 10 15
The gratuity is $1.5 and total is $11.5

	 **2.6	 (Sum the digits in an integer) Write a program that reads an integer between 0
and 1000 and adds all the digits in the integer. For example, if an integer is 932,
the sum of all its digits is 14.

Hint: Use the % operator to extract digits, and use the / operator to remove the
extracted digit. For instance, 932 % 10 = 2 and 932 / 10 = 93.

Here is a sample run:

Enter a number between 0 and 1000: 999
The sum of the digits is 27

M02_LIAN9966_12_SE_C02.indd 71 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

72 Chapter 2   Elementary Programming

	 *2.7	 (Find the number of years) Write a program that prompts the user to enter the
minutes (e.g., 1 billion), and displays the maximum number of years and remain-
ing days for the minutes. For simplicity, assume that a year has 365 days. Here is
a sample run:

Enter the number of minutes: 1000000000
1000000000 minutes is approximately 1902 years and 214 days

	 *2.8	 (Current time) Listing 2.7, ShowCurrentTime.java, gives a program that displays
the current time in GMT. Revise the program so it prompts the user to enter the
time zone offset to GMT and displays the time in the specified time zone. Here is
a sample run:

Enter the time zone offset to GMT: -5
The current time is 4:50:34

	 2.9	 (Physics: acceleration) Average acceleration is defined as the change of velocity
divided by the time taken to make the change, as given by the following formula:

a =
v1 - v0

t
Write a program that prompts the user to enter the starting velocity v0 in meters/
second, the ending velocity v1 in meters/second, and the time span t in seconds,
then displays the average acceleration. Here is a sample run:

Enter v0, v1, and t: 5.5 50.9 4.5
The average acceleration is 10.0889

	 2.10	 (Science: calculating energy) Write a program that calculates the energy needed
to heat water from an initial temperature to a final temperature. Your program
should prompt the user to enter the amount of water in kilograms and the initial
and final temperatures of the water. The formula to compute the energy is

Q = M * (finalTemperature – initialTemperature) * 4184

where M is the weight of water in kilograms, initial and final temperatures are in
degrees Celsius, and energy Q is measured in joules. Here is a sample run:

Enter the amount of water in kilograms: 55.5

Enter the initial temperature: 3.5

Enter the final temperature: 10.5

The energy needed is 1625484.0

	 2.11	 (Population projection) Rewrite Programming Exercise 1.11 to prompt the user
to enter the number of years and display the population after the number of years.
Use the hint in Programming Exercise 1.11 for this program. Here is a sample
run of the program:

Enter the number of years: 5
The population in 5 years is 325932969

M02_LIAN9966_12_SE_C02.indd 72 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   73

	 2.12	 (Physics: finding runway length) Given an airplane’s acceleration a and take-off
speed v, you can compute the minimum runway length needed for an airplane to
take off using the following formula:

length =
v2

2a
Write a program that prompts the user to enter v in meters/second (m/s) and
the acceleration a in meters/second squared (m/s2), then, displays the minimum
runway length.

Enter speed and acceleration: 60 3.5
The minimum runway length for this airplane is 514.286

	**2.13	 (Financial application: compound value) Suppose you save $100 each month into
a savings account with an annual interest rate of 5%. Thus, the monthly interest
rate is 0.05/12 = 0.00417. After the first month, the value in the account becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.

Write a program that prompts the user to enter a monthly saving amount and dis-
plays the account value after the sixth month. (In Programming Exercise 5.30, you
will use a loop to simplify the code and display the account value for any month.)

Enter the monthly saving amount: 100
After the sixth month, the account value is $608.81

	 *2.14	 (Health application: computing BMI) Body Mass Index (BMI) is a measure of
health on weight. It can be calculated by taking your weight in kilograms and divid-
ing, by the square of your height in meters. Write a program that prompts the user to
enter a weight in pounds and height in inches and displays the BMI. Note one pound
is 0.45359237 kilograms and one inch is 0.0254 meters. Here is a sample run:

VideoNote

Enter weight in pounds: 95.5

Enter height in inches: 50

BMI is 26.8573

	 2.15	 (Geometry: distance of two points) Write a program that prompts the user to
enter two points (x1, y1) and (x2, y2) and displays their distance. The for-
mula for computing the distance is 2(x2 - x1)

2 + (y2 - y1)
2. Note you can use

Math.pow(a, 0.5) to compute 2a. Here is a sample run:

Enter x1 and y1: 1.5 -3.4

Enter x2 and y2: 4 5

The distance between the two points is 8.764131445842194

Compute BMI

M02_LIAN9966_12_SE_C02.indd 73 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

74 Chapter 2   Elementary Programming

	 2.16	 (Geometry: area of a hexagon) Write a program that prompts the user to enter the
side of a hexagon and displays its area. The formula for computing the area of a
hexagon is

Area =
323

2
 s2,

where s is the length of a side. Here is a sample run:

Enter the length of the side: 5.5
The area of the hexagon is 78.5918

	 *2.17	 (Science: wind-chill temperature) How cold is it outside? The temperature alone is
not enough to provide the answer. Other factors including wind speed, relative hu-
midity, and sunshine play important roles in determining coldness outside. In 2001,
the National Weather Service (NWS) implemented the new wind-chill temperature
to measure the coldness using temperature and wind speed. The formula is

twc = 35.74 + 0.6215ta - 35.75v0.16 + 0.4275tav
0.16

where ta is the outside temperature measured in degrees Fahrenheit, v is the speed
measured in miles per hour, and twc is the wind-chill temperature. The formula cannot
be used for wind speeds below 2 mph or temperatures below -58°F or above 41°F.

Write a program that prompts the user to enter a temperature between -58°F
and 41°F and a wind speed greater than or equal to 2 then displays the wind-chill
temperature. Use Math.pow(a, b) to compute v0.16. Here is a sample run:

Enter the temperature in Fahrenheit between -58°F and 41°F:
5.3

Enter the wind speed (7 = 2) in miles per hour: 6
The wind chill index is -5.56707

	 2.18	 (Print a table) Write a program that displays the following table. Cast
floating-point numbers into integers.

		 a   b   pow(a, b)
		 1   2   1
		 2   3   8
		 3   4   81
		 4   5   1024
		 5   6   15625

	 *2.19	 (Geometry: area of a triangle) Write a program that prompts the user to enter
three points, (x1, y1), (x2, y2), and (x3, y3), of a triangle then displays
its area. The formula for computing the area of a triangle is

s = (side1 + side2 + side3)/2;

area = 2s(s - side1)(s - side2)(s - side3)

Here is a sample run:

Enter the coordinates of three points separated by spaces

like x1 y1 x2 y2 x3 y3: 1.5 -3.4 4.6 5 9.5 -3.4

The area of the triangle is 33.6

M02_LIAN9966_12_SE_C02.indd 74 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   75

Sections 2.13–2.18
	 *2.20	 (Financial application: calculate interest) If you know the balance and the an-

nual percentage interest rate, you can compute the interest on the next monthly
payment using the following formula:

interest = balance * (annualInterestRate/1200)

Write a program that reads the balance and the annual percentage interest rate
and displays the interest for the next month. Here is a sample run:

Enter balance and interest rate (e.g., 3 for 3%): 1000 3.5
The interest is 2.91667

	 *2.21	 (Financial application: calculate future investment value) Write a program that
reads in investment amount, annual interest rate, and number of years and dis-
plays the future investment value using the following formula:

futureInvestmentValue =
investmentAmount * (1 + monthlyInterestRate)numberOfYears*12

For example, if you enter amount 1000, annual interest rate 3.25%, and number
of years 1, the future investment value is 1032.98.

Here is a sample run:

Enter investment amount: 1000.56

Enter annual interest rate in percentage: 4.25

Enter number of years: 1

Future value is $1043.92

	 *2.22	 (Financial application: monetary units) Rewrite Listing 2.10,
ComputeChange.java, to fix the possible loss of accuracy when converting
a double value to an int value. Enter the input as an integer whose last
two digits represent the cents. For example, the input 1156 represents 11
dollars and 56 cents.

	 *2.23	 (Cost of driving) Write a program that prompts the user to enter the distance to
drive, the fuel efficiency of the car in miles per gallon, and the price per gallon
then displays the cost of the trip. Here is a sample run:

Enter the driving distance: 900.5

Enter miles per gallon: 25.5

Enter price per gallon: 3.55

The cost of driving is $125.36

Note
More than 200 additional programming exercises with solutions are provided to the
instructors on the Instructor Resource Website.

M02_LIAN9966_12_SE_C02.indd 75 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

M02_LIAN9966_12_SE_C02.indd 76 28/09/19 3:45 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

