DIGITAL DESIGN

M. MORRIS MANO MICHAEL D. CILETTI

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Digital Design

With an Introduction to the Verilog HDL

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

This page intentionally left blank

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Digital Design

With an Introduction to the Verilog HDL

FIFTH EDITION

M. Morris Mano

Emeritus Professor of Computer Engineering
California State University, Los Angeles

Michael D. Ciletti

Emeritus Professor of Electrical and Computer Engineering
University of Colorado at Colorado Springs

PEARSON

Upper Saddle River Boston Columbus San Franciso New York
Indianapolis London Toronto Sydney Singapore Tokyo Montreal
Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Vice President and Editorial Director, ECS: Cover Designer: Jayne Conte

Marcia J. Horton Cover Photo: Michael D. Ciletti
Executive Editor: Andrew Gilfillan Composition: Jouve India Private Limited
Vice-President, Production: Vince O’Brien Full-Service Project Management: Jouve India Private
Executive Marketing Manager: Tim Galligan Limited
Marketing Assistant: Jon Bryant Printer/Binder: Edwards Brothers
Permissions Project Manager: Karen Sanatar Typeface: Times Ten 10/12

Senior Managing Editor: Scott Disanno
Production Project Manager/Editorial Production
Manager: Greg Dulles

Copyright © 2013, 2007, 2002, 1991, 1984 Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper
Saddle River, New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is
protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing
from the publisher.

Verilogger Pro and SynaptiCAD are trademarks of SynaptiCAD, Inc., Blacksburg, VA 24062-0608.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

About the cover: “Spider Rock in Canyon de Chelley,” Chinle, Arizona, USA, January 2011. Photograph courtesy of mdc
Images, LLC (www.mdcilettiphotography.com). Used by permission.

Library of Congress Cataloging-in-Publication Data

Mano, M. Morris, 1927—-

Digital design : with an introduction to the verilog hdl / M. Morris Mano, Michael D. Ciletti.—5th ed.

p.cm.

Includes index.

ISBN-13:978-0-13-277420-8

ISBN-10: 0-13-277420-8

1. Electronic digital computers— Circuits. 2. Logic circuits. 3. Logic design. 4. Digital integrated

circuits. I. Ciletti, Michael D. II. Title.

TK7888.3.M343 2011

621.39'5—dc23

2011039094

10987654321
P E A R S O N ISBN-13:978-0-13-277420-8
ISBN-10: 0-13-277420-8

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

www.mdcilettiphotography.com

Contents

Preface ix
1 Digital Systems and Binary Numbers 1
1.1 Digital Systems 1
1.2 Binary Numbers 3
1.3 Number-Base Conversions 6
1.4 Octal and Hexadecimal Numbers 8
1.5 Complements of Numbers 10
1.6 Signed Binary Numbers 14
1.7 Binary Codes 18
1.8 Binary Storage and Registers 27
1.9 Binary Logic 30
2 Boolean Algebra and Logic Gates 38
2.1 Introduction 38
2.2 Basic Definitions 38
2.3 Axiomatic Definition of Boolean Algebra 40
2.4 Basic Theorems and Properties of Boolean Algebra 43
2.5 Boolean Functions 46
2.6 Canonical and Standard Forms 51
2.7 Other Logic Operations 58
2.8 Digital Logic Gates 60
2.9 Integrated Circuits 66

\"

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

vi Contents

3 Gate-Level Minimization 73
3.1 Introduction 73
3.2 The Map Method 73
3.3 Four-Variable K-Map 80
3.4 Product-of-Sums Simplification 84
3.5 Don‘t-Care Conditions 88
3.6 NAND and NOR Implementation 90
3.7 Other Two-Level Implementations 97
3.8 Exclusive-OR Function 103
3.9 Hardware Description Language 108
4 Combinational Logic 125
4.1 Introduction 125
4.2 Combinational Circuits 125
4.3 Analysis Procedure 126
4.4 Design Procedure 129
4.5 Binary Adder—Subtractor 133
4.6 Decimal Adder 144
4.7 Binary Multiplier 146
4.8 Magnitude Comparator 148
4.9 Decoders 150
410 Encoders 155
4.11 Multiplexers 158
412 HDL Models of Combinational Circuits 164
5 Synchronous Sequential Logic 190
5.1 Introduction 190
5.2 Sequential Circuits 190
5.3 Storage Elements: Latches 193
5.4 Storage Elements: Flip-Flops 196
5.5 Analysis of Clocked Sequential Circuits 204
5.6 Synthesizable HDL Models of Sequential Circuits 217
5.7 State Reduction and Assignment 231
5.8 Design Procedure 236
6 Registers and Counters 255
6.1 Registers 255
6.2 Shift Registers 258
6.3 Ripple Counters 266
6.4 Synchronous Counters 271
6.5 Other Counters 278
6.6 HDL for Registers and Counters 283

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Contents vii
7 Memory and Programmable Logic 299
7.1 Introduction 299
7.2 Random-Access Memory 300
7.3 Memory Decoding 307
7.4 Error Detection and Correction 312
7.5 Read-Only Memory 315
7.6 Programmable Logic Array 321
7.7 Programmable Array Logic 325
7.8 Sequential Programmable Devices 329
8 Design at the Register
Transfer Level 351
8.1 Introduction 351
8.2 Register Transfer Level Notation 351
8.3 Register Transfer Level in HDL 354
8.4 Algorithmic State Machines (ASMs) 363
8.5 Design Example (ASMD Chart) 371
8.6 HDL Description of Design Example 381
8.7 Sequential Binary Multiplier 391
8.8 Control Logic 396
8.9 HDL Description of Binary Multiplier 402
8.10 Design with Multiplexers 411
8.11 Race-Free Design (Software Race Conditions) 422
8.12 Latch-Free Design (Why Waste Silicon?) 425
8.13 Other Language Features 426
9 Laboratory Experiments
with Standard ICs and FPGAs 438
9.1 Introduction to Experiments 438
9.2 Experiment 1: Binary and Decimal Numbers 443
9.3 Experiment 2: Digital Logic Gates 446
9.4 Experiment 3: Simplification of Boolean Functions 448
9.5 Experiment 4: Combinational Circuits 450
9.6 Experiment 5: Code Converters 452
9.7 Experiment 6: Design with Multiplexers 453
9.8 Experiment 7: Adders and Subtractors 455
9.9 Experiment 8: Flip-Flops 457
9.10 Experiment 9: Sequential Circuits 460
9.11 Experiment 10: Counters 461
9.12 Experiment 11: Shift Registers 463
9.13 Experiment 12: Serial Addition 466
9.14 Experiment 13: Memory Unit 467
9.15 Experiment 14: Lamp Handball 469

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

viii Contents

9.16 Experiment 15: Clock-Pulse Generator 473
9.17 Experiment 16: Parallel Adder and Accumulator 475
9.18 Experiment 17: Binary Multiplier 478
9.19 Verilog HDL Simulation Experiments
and Rapid Prototyping with FPGAs 480
10 Standard Graphic Symbols 488
10.1 Rectangular-Shape Symbols 488
10.2 Qualifying Symbols 491
10.3 Dependency Notation 493
10.4 Symbols for Combinational Elements 495
10.5 Symbols for Flip-Flops 497
10.6 Symbols for Registers 499
10.7 Symbols for Counters 502
10.8 Symbol for RAM 504
Appendix 507
Answers to Selected Problems 521
Index 539

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Preface

Since the fourth edition of Digital Design,the commercial availability of devices using
digital technology to receive, manipulate, and transmit information seems to have
exploded. Cell phones and handheld devices of various kinds offer new, competing
features almost daily. Underneath the attractive graphical user interface of all of these
devices sits a digital system that processes data in a binary format. The theoretical
foundations of these systems have not changed much; indeed, one could argue that
the stability of the core theory, coupled with modern design tools, has promoted the
widespread response of manufacturers to the opportunities of the marketplace. Con-
sequently, our refinement of our text has been guided by the need to equip our grad-
uates with a solid understanding of digital machines and to introduce them to the
methodology of modern design.

This edition of Digital Design builds on the previous four editions, and the feedback
of the team of reviewers who helped set a direction for our presentation. The focus of
the text has been sharpened to more closely reflect the content of a foundation course
in digital design and the mainstream technology of today’s digital systems: CMOS
circuits. The intended audience is broad, embracing students of computer science, com-
puter engineering, and electrical engineering. The key elements that the book focuses
include (1) Boolean logic, (2) logic gates used by designers, (3) synchronous finite state
machines, and (4) datapath controller design—all from a perspective of designing dig-
ital systems. This focus led to elimination of material more suited for a course in elec-
tronics. So the reader will not find here content for asynchronous machines or
descriptions of bipolar transistors. Additionally, the widespread availability of web-
based ancillary material prompted us to limit our discussion of field programmable
gate arrays (FPGAs) to an introduction of devices offered by only one manufacturer,
rather than two. Today’s designers rely heavily on hardware description languages

ix

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

X Preface

(HDLs), and this edition of the book gives greater attention to their use and presents
what we think is a clear development of a design methodology using the Verilog HDL.

MULTI-MODAL LEARNING

Digital Design supports a multimodal approach to learning. The so-called VARK char-
acterization of learning modalities identifies four major modes by which humans learn:
(V) visual, (A) aural, (R) reading, and (K) kinesthetic. In hindsight, we note that the
relatively high level of illustrations and graphical content of our text addresses the visual
(V) component of VARK; discussions and numerous examples address the reading (R)
component. Students who exploit the availability of free simulators to work assignments
are led through a kinesthetic (K) learning experience, including the positive feedback
and delight of designing a logic system that works. The remaining element of VARK, the
aural/auditory (A) experience, is left to the instructor. We have provided an abundance
of material and examples to support classroom lectures. Thus, a course in digital design,
using Digital Design, can provide a rich, balanced learning experience and address all
the modes identified by VARK.

For those who might still question the presentation and use of HDLs in a first course
in digital design, we note that industry has largely abandoned schematic-based design
entry, a style which emerged in the 1980s, during the nascent development of CAD tools
for integrated circuit (IC) design. Schematic entry creates a representation of functional-
ity that is implicit in the layout of the schematic. Unfortunately, it is difficult for anyone
in a reasonable amount of time to determine the functionality represented by the sche-
matic of a logic circuit without having been instrumental in its construction, or without
having additional documentation expressing the design intent. Consequently, industry
has migrated to HDLs (e.g., Verilog) to describe the functionality of a design and to serve
as the basis for documenting, simulating, testing, and synthesizing the hardware imple-
mentation of the design in a standard cell-based ASIC or an FPGA. The utility of a
schematic depends on the careful, detailed documentation of a carefully constructed
hierarchy of design modules. In the old paradigm, designers relied upon their years of
experience to create a schematic of a circuit to implement functionality. In today’s design
flow, designers using HDLs can express functionality directly and explicitly, without years
of accumulated experience, and use synthesis tools to generate the schematic as a by-
product, automatically. Industry practices arrived here because schematic entry dooms
us to inefficiency, if not failure, in understanding and designing large, complex ICs.

We note, again in this edition, that introducing HDLs in a first course in designing
digital circuits is not intended to replace fundamental understanding of the building blocks
of such circuits or to eliminate a discussion of manual methods of design. It is still essential
for a student to understand how hardware works. Thus, we retain a thorough treatment of
combinational and sequential logic devices. Manual design practices are presented, and
their results are compared with those obtained with a HDL-based paradigm. What we are
presenting, however, is an emphasis on how hardware is designed, to better prepare a
student for a career in today’s industry, where HDL-based design practices are dominant.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Preface Xi

FLEXIBILITY

The sequence of topics in the text can accommodate courses that adhere to traditional,
manual-based, treatments of digital design, courses that treat design using an HDL, and
courses that are in transition between or blend the two approaches. Because modern
synthesis tools automatically perform logic minimization, Karnaugh maps and related
topics in optimization can be presented at the beginning of a treatment of digital design,
or they can be presented after circuits and their applications are examined and simulated
with an HDL. The text includes both manual and HDL-based design examples. Our end-
of-chapter problems further facilitate this flexibility by cross referencing problems that
address a traditional manual design task with a companion problem that uses an HDL
to accomplish the task. Additionally, we link the manual and HDL-based approaches by
presenting annotated results of simulations in the text, in answers to selected problems
at the end of the text, and in the solutions manual.

NEW TO THIS EDITION

This edition of Digital Design uses the latest features of IEEE Standard 1364, but only
insofar as they support our pedagogical objectives. The revisions and updates to the
text include:

¢ Elimination of specialized circuit-level content not typically covered in a first
course in logic circuits and digital design (e.g., RTL, DTL, and emitter-coupled
logic circuits)

¢ Addition of “Web Search Topics” at the end of each chapter to point students to
additional subject matter available on the web

e Revision of approximately one-third of the problems at the end of the chapters

e A printed solution manual for entire text, including all new problems

e Streamlining of the discussion of Karnaugh maps

e Integration of treatment of basic CMOS technology with treatment of logic gates

¢ Inclusion of an appendix introducing semiconductor technology

DESIGN METHODLOGY

This text presents a systematic methodology for designing a state machine to control
the datapath of a digital system. Moreover, the framework in which this material is pre-
sented treats the realistic situation in which status signals from the datapath are used by
the controller, i.e., the system has feedback. Thus, our treatment provides a foundation
for designing complex and interactive digital systems. Although it is presented with an
emphasis on HDL-based design, the methodology is also applicable to manual-based
approaches to design.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

xii Preface

JUST ENOUGH HDL

We present only those elements of the Verilog language that are matched to the level and
scope of this text. Also, correct syntax does not guarantee that a model meets a functional
specification or that it can be synthesized into physical hardware. So, we introduce stu-
dents to a disciplined use of industry-based practices for writing models to ensure that a
behavioral description can be synthesized into physical hardware, and that the behavior
of the synthesized circuit will match that of the behavioral description. Failure to follow
this discipline can lead to software race conditions in the HDL models of such machines,
race conditions in the test bench used to verify them, and a mismatch between the results
of simulating a behavioral model and its synthesized physical counterpart. Similarly, fail-
ure to abide by industry practices may lead to designs that simulate correctly, but which
have hardware latches that are introduced into the design accidentally as a consequence
of the modeling style used by the designer. The industry-based methodology we present
leads to race-free and latch-free designs. It is important that students learn and follow
industry practices in using HDL models, independent of whether a student’s curriculum
has access to synthesis tools.

VERIFICATION

In industry, significant effort is expended to verify that the functionality of a circuit is
correct. Yet not much attention is given to verification in introductory texts on digital
design, where the focus is on design itself, and testing is perhaps viewed as a secondary
undertaking. Our experience is that this view can lead to premature “high-fives” and
declarations that “the circuit works beautifully.” Likewise, industry gains repeated returns
on its investment in an HDL model by ensuring that it is readable, portable, and reusable.
We demonstrate naming practices and the use of parameters to facilitate reusability and
portability. We also provide test benches for all of the solutions and exercises to (1) verify
the functionality of the circuit, (2) underscore the importance of thorough testing, and
(3) introduce students to important concepts, such as self-checking test benches. Advo-
cating and illustrating the development of a test plan to guide the development of a test
bench, we introduce test plans, albeit simply, in the text and expand them in the solutions
manual and in the answers to selected problems at the end of the text.

HDL CONTENT

We have ensured that all examples in the text and all answers in the solution manual
conform to accepted industry practices for modeling digital hardware. As in the previ-
ous edition, HDL material is inserted in separate sections so that it can be covered or
skipped as desired, does not diminish treatment of manual-based design, and does not
dictate the sequence of presentation. The treatment is at a level suitable for beginning
students who are learning digital circuits and a HDL at the same time. The text prepares

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Preface xiii

students to work on signficant independent design projects and to succeed in a later
course in computer architecture and advanced digital design.

Instructor Resources

Instructors can download the following classroom-ready resources from the publisher’s
website for the text (www.pearsonhighered.com/mano):

e Source code and test benches for all Verilog HDL examples in the test

¢ All figures and tables in the text

e Source code for all HDL models in the solutions manual

¢ A downloadable solutions manual with graphics suitable for classroom presentation

HDL Simulators

The Companion Website identifies web URLs to two simulators provided by Synapti-
CAD. The first simulator is VeriLogger Pro, a traditional Verilog simulator that can be
used to simulate the HDL examples in the book and to verify the solutions of HDL
problems. This simulator accepts the syntax of the IEEE-1995 standard and will be
useful to those who have legacy models. As an interactive simulator, Verilogger Ex-
treme accepts the syntax of IEEE-2001 as well as IEEE-1995, allowing the designer to
simulate and analyze design ideas before a complete simulation model or schematic is
available. This technology is particularly useful for students because they can quickly
enter Boolean and D flip-flop or latch input equations to check equivalency or to ex-
periment with flip-flops and latch designs. Students can access the Companion Website
at www.pearsonhighered.com/mano.

Chapter Summary

The following is a brief summary of the topics that are covered in each chapter.

Chapter 1 presents the various binary systems suitable for representing information
in digital systems. The binary number system is explained and binary codes are illus-
trated. Examples are given for addition and subtraction of signed binary numbers and
decimal numbers in binary-coded decimal (BCD) format.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correla-
tion between Boolean expressions and their corresponding logic diagrams. All possible
logic operations for two variables are investigated, and the most useful logic gates used
in the design of digital systems are identified. This chapter also introduces basic CMOS
logic gates.

Chapter 3 covers the map method for simplifying Boolean expressions. The map
method is also used to simplify digital circuits constructed with AND-OR, NAND, or
NOR gates. All other possible two-level gate circuits are considered, and their method
of implementation is explained. Verilog HDL is introduced together with simple exam-
ples of gate-level models.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

www.pearsonhighered.com/mano
www.pearsonhighered.com/mano

Xiv Preface

Chapter 4 outlines the formal procedures for the analysis and design of combina-
tional circuits. Some basic components used in the design of digital systems, such as
adders and code converters, are introduced as design examples. Frequently used digital
logic functions such as parallel adders and subtractors, decoders, encoders, and multi-
plexers are explained, and their use in the design of combinational circuits is illustrated.
HDL examples are given in gate-level, dataflow, and behavioral models to show the
alternative ways available for describing combinational circuits in Verilog HDL. The
procedure for writing a simple test bench to provide stimulus to an HDL design is
presented.

Chapter 5 outlines the formal procedures for analyzing and designing clocked (syn-
chronous) sequential circuits. The gate structure of several types of flip-flops is presented
together with a discussion on the difference between level and edge triggering. Specific
examples are used to show the derivation of the state table and state diagram when
analyzing a sequential circuit. A number of design examples are presented with empha-
sis on sequential circuits that use D-type flip-flops. Behavioral modeling in Verilog HDL
for sequential circuits is explained. HDL Examples are given to illustrate Mealy and
Moore models of sequential circuits.

Chapter 6 deals with various sequential circuit components such as registers, shift
registers, and counters. These digital components are the basic building blocks from
which more complex digital systems are constructed. HDL descriptions of shift registers
and counter are presented.

Chapter 7 deals with random access memory (RAM) and programmable logic
devices. Memory decoding and error correction schemes are discussed. Combinational
and sequential programmable devices such as ROMs, PLAs, PALs, CPLDs, and FPGAs
are presented.

Chapter 8 deals with the register transfer level (RTL) representation of digital sys-
tems. The algorithmic state machine (ASM) chart is introduced. A number of examples
demonstrate the use of the ASM chart, ASMD chart, RTL representation, and HDL
description in the design of digital systems. The design of a finite state machine to con-
trol a datapath is presented in detail, including the realistic situation in which status
signals from the datapath are used by the state machine that controls it. This chapter is
the most important chapter in the book as it provides the student with a systematic
approach to more advanced design projects.

Chapter 9 outlines experiments that can be performed in the laboratory with hard-
ware that is readily available commercially. The operation of the ICs used in the
experiments is explained by referring to diagrams of similar components introduced
in previous chapters. Each experiment is presented informally and the student is
expected to design the circuit and formulate a procedure for checking its operation
in the laboratory. The lab experiments can be used in a stand-alone manner too and
can be accomplished by a traditional approach, with a breadboard and TTL circuits,
or with an HDL/synthesis approach using FPGAs. Today, software for synthesizing
an HDL model and implementing a circuit with an FPGA is available at no cost from
vendors of FPGAs, allowing students to conduct a significant amount of work in their
personal environment before using prototyping boards and other resources in a lab.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Preface XV

Circuit boards for rapid prototyping circuits with FPGAs are available at a nominal
cost, and typically include push buttons, switches, seven-segment displays, LCDs, key-
pads, and other I/O devices. With these resources, students can work prescribed lab
exercises or their own projects and get results immediately.

Chapter 10 presents the standard graphic symbols for logic functions recommended
by an ANSI/IEEE standard. These graphic symbols have been developed for small-scale
integration (SSI) and medium-scale integration (MSI) components so that the user can
recognize each function from the unique graphic symbol assigned. The chapter shows
the standard graphic symbols of the ICs used in the laboratory experiments.

ACKNOWLEDGMENTS

We are grateful to the reviewers of Digital Design, Se. Their expertise, careful reviews,
and suggestions helped shape this edition.

Dmitri Donetski, Stony Brook University

Ali Amini, California State University, Northridge
Mihaela Radu, Rose Hulman Institute of Technology
Stephen J Kuyath, University of North Carolina, Charlotte
Peter Pachowicz, George Mason University

David Jeff Jackson, University of Alabama

A. John Boye, University of Nebraska, Lincoln

William H. Robinson, Vanderbilt University

Dinesh Bhatia, University of Texas, Dallas

We also wish to express our gratitude to the editorial and publication team at Prentice
Hall/Pearson Education for supporting this edition of our text. We are grateful, too, for
the ongoing support and encouragement of our wives, Sandra and Jerilynn.

M. Morris MANO
Emeritus Professor of Computer Engineering
California State University, Los Angeles

MicHAEL D. CILETTI

Emeritus Professor of Electrical and Computer Engineering
University of Colorado at Colorado Springs

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

This page intentionally left blank

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 1
Digital Systems and Binary Numbers

1.1 DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present
technological period as the digital age. Digital systems are used in communication, busi-
ness transactions, traffic control, spacecraft guidance, medical treatment, weather mon-
itoring, the Internet, and many other commercial, industrial, and scientific enterprises.
We have digital telephones, digital televisions, digital versatile discs, digital cameras,
handheld devices, and, of course, digital computers. We enjoy music downloaded to our
portable media player (e.g., iPod Touch™) and other handheld devices having high-
resolution displays. These devices have graphical user interfaces (GUIs), which enable
them to execute commands that appear to the user to be simple, but which, in fact,
involve precise execution of a sequence of complex internal instructions. Most, if not all,
of these devices have a special-purpose digital computer embedded within them. The
most striking property of the digital computer is its generality. It can follow a sequence
of instructions, called a program, that operates on given data. The user can specify and
change the program or the data according to the specific need. Because of this flexibil-
ity, general-purpose digital computers can perform a variety of information-processing
tasks that range over a wide spectrum of applications.

One characteristic of digital systems is their ability to represent and manipulate dis-
crete elements of information. Any set that is restricted to a finite number of elements
contains discrete information. Examples of discrete sets are the 10 decimal digits, the
26 letters of the alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early
digital computers were used for numeric computations. In this case, the discrete ele-
ments were the digits. From this application, the term digital computer emerged. Dis-
crete elements of information are represented in a digital system by physical quantities

1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

2 Chapter 1 Digital Systems and Binary Numbers

called signals. Electrical signals such as voltages and currents are the most common.
Electronic devices called transistors predominate in the circuitry that implements these
signals. The signals in most present-day electronic digital systems use just two discrete
values and are therefore said to be binary. A binary digit, called a bit, has two values: 0
and 1. Discrete elements of information are represented with groups of bits called binary
codes. For example, the decimal digits 0 through 9 are represented in a digital system
with a code of four bits (e.g., the number 7 is represented by 0111). How a pattern of
bits is interpreted as a number depends on the code system in which it resides. To make
this distinction, we could write (0111), to indicate that the pattern 0111 is to be inter-
preted in a binary system, and (0111), to indicate that the reference system is decimal.
Then 0111, =7, which is not the same as 0111, or one hundred eleven. The subscript
indicating the base for interpreting a pattern of bits will be used only when clarification
is needed. Through various techniques, groups of bits can be made to represent discrete
symbols, not necessarily numbers, which are then used to develop the system in a digital
format. Thus, a digital system is a system that manipulates discrete elements of informa-
tion represented internally in binary form. In today’s technology, binary systems are most
practical because, as we will see, they can be implemented with electronic components.

Discrete quantities of information either emerge from the nature of the data being
processed or may be quantized from a continuous process. On the one hand, a payroll
schedule is an inherently discrete process that contains employee names, social security
numbers, weekly salaries, income taxes, and so on. An employee’s paycheck is processed
by means of discrete data values such as letters of the alphabet (names), digits (salary),
and special symbols (such as $). On the other hand, a research scientist may observe a
continuous process, but record only specific quantities in tabular form. The scientist is
thus quantizing continuous data, making each number in his or her table a discrete
quantity. In many cases, the quantization of a process can be performed automatically
by an analog-to-digital converter, a device that forms a digital (discrete) representation
of a analog (continuous) quantity.

The general-purpose digital computer is the best-known example of a digital system.
The major parts of a computer are a memory unit, a central processing unit, and input—
output units. The memory unit stores programs as well as input, output, and intermedi-
ate data. The central processing unit performs arithmetic and other data-processing
operations as specified by the program. The program and data prepared by a user are
transferred into memory by means of an input device such as a keyboard. An output
device, such as a printer, receives the results of the computations, and the printed results
are presented to the user. A digital computer can accommodate many input and output
devices. One very useful device is a communication unit that provides interaction with
other users through the Internet. A digital computer is a powerful instrument that can
perform not only arithmetic computations, but also logical operations. In addition, it can
be programmed to make decisions based on internal and external conditions.

There are fundamental reasons that commercial products are made with digital cir-
cuits. Like a digital computer, most digital devices are programmable. By changing the
program in a programmable device, the same underlying hardware can be used for many
different applications, thereby allowing its cost of development to be spread across a
wider customer base. Dramatic cost reductions in digital devices have come about

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.2 Binary Numbers 3

because of advances in digital integrated circuit technology. As the number of transistors
that can be put on a piece of silicon increases to produce complex functions, the cost per
unit decreases and digital devices can be bought at an increasingly reduced price. Equip-
ment built with digital integrated circuits can perform at a speed of hundreds of millions
of operations per second. Digital systems can be made to operate with extreme reli-
ability by using error-correcting codes. An example of this strategy is the digital versa-
tile disk (DVD), in which digital information representing video, audio, and other data
is recorded without the loss of a single item. Digital information on a DVD is recorded
in such a way that, by examining the code in each digital sample before it is played back,
any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the opera-
tion of each digital module, it is necessary to have a basic knowledge of digital circuits
and their logical function. The first seven chapters of this book present the basic tools
of digital design, such as logic gate structures, combinational and sequential circuits, and
programmable logic devices. Chapter 8 introduces digital design at the register transfer
level (RTL) using a modern hardware description language (HDL). Chapter 9 concludes
the text with laboratory exercises using digital circuits.

A major trend in digital design methodology is the use of a HDL to describe and simulate
the functionality of a digital circuit. An HDL resembles a programming language and is
suitable for describing digital circuits in textual form. It is used to simulate a digital system
to verify its operation before hardware is built. It is also used in conjunction with logic syn-
thesis tools to automate the design process. Because it is important that students become
familiar with an HDL-based design methodology, HDL descriptions of digital circuits are
presented throughout the book. While these examples help illustrate the features of an HDL,
they also demonstrate the best practices used by industry to exploit HDLs. Ignorance of
these practices will lead to cute, but worthless, HDL models that may simulate a phenom-
enon, but that cannot be synthesized by design tools, or to models that waste silicon area or
synthesize to hardware that cannot operate correctly.

As previously stated, digital systems manipulate discrete quantities of information
that are represented in binary form. Operands used for calculations may be expressed
in the binary number system. Other discrete elements, including the decimal digits and
characters of the alphabet, are represented in binary codes. Digital circuits, also referred
to as logic circuits, process data by means of binary logic elements (logic gates) using
binary signals. Quantities are stored in binary (two-valued) storage elements (flip-flops).
The purpose of this chapter is to introduce the various binary concepts as a frame of
reference for further study in the succeeding chapters.

1.2 BINARY NUMBERS

A decimal number such as 7392 represents a quantity equal to 7 thousands, plus 3 hun-
dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied
by the position of the coefficients (symbols) in the number. To be more exact, 7392 is a
shorthand notation for what should be written as

7 X 10° + 3 X 102+ 9 x 10" + 2 x 10°

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

4 Chapter 1 Digital Systems and Binary Numbers

However, the convention is to write only the numeric coefficients and, from their posi-
tion, deduce the necessary powers of 10 with powers increasing from right to left. In
general, a number with a decimal point is represented by a series of coefficients:

asasasaraag. a—1a—,a-3

The coefficients a; are any of the 10 digits (0, 1,2, ... ,9), and the subscript value j gives
the place value and, hence, the power of 10 by which the coefficient must be multiplied.
Thus, the preceding decimal number can be expressed as

10%as + 10%a, + 10%a; + 10%a, + 10'a; + 10%, + 107 'a_; + 102a_, + 103a_4

withas=7a,=3,a;=9,and ay=2.

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits
and the coefficients are multiplied by powers of 10. The binary system is a different
number system. The coefficients of the binary number system have only two possible
values: 0 and 1. Each coefficient g; is multiplied by a power of the radix, e.g., 2, and
the results are added to obtain the decimal equivalent of the number. The radix
point (e.g., the decimal point when 10 is the radix) distinguishes positive powers of
10 from negative powers of 10. For example, the decimal equivalent of the binary
number 11010.11 is 26.75, as shown from the multiplication of the coefficients by
powers of 2:

IX224+1X2P4+0X2+1x21+0x22+1x21+1x%x22=2675

There are many different number systems. In general, a number expressed in a base-r
system has coefficients multiplied by powers of r:

ap 1"+ a,_r" N+ v ayer?+tagertagtaqrt

ta,rt+ o ta,r "

The coefficients a; range in value from 0 to r — 1. To distinguish between numbers of
different bases, we enclose the coefficients in parentheses and write a subscript equal to
the base used (except sometimes for decimal numbers, where the content makes it obvi-
ous that the base is decimal). An example of a base-5 number is

(40212)s =4 X 53+ 0 x5 +2 x5 +1 x5 +2x 5= (5114)

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system
is a base-8 system that has eight digits: 0,1,2,3,4,5,6, 7. An example of an octal number
is 127.4. To determine its equivalent decimal value, we expand the number in a power
series with a base of 8:

(1274)g =1 X 8 +2x 8 +7x 8 + 4 x 8! =(87.5),

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to borrow the needed r digits for the coefficients from the decimal
system when the base of the number is less than 10. The letters of the alphabet are used
to supplement the 10 decimal digits when the base of the number is greater than 10. For
example, in the hexadecimal (base-16) number system, the first 10 digits are borrowed

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.2 Binary Numbers 5

from the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11,
12,13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F) ;s = 11 X 163 + 6 X 162 + 5 X 16! + 15 X 16° = (46,687)y9

The hexadecimal system is used commonly by designers to represent long strings of bits
in the addresses, instructions, and data in digital systems. For example, B65F is used to
represent 1011011001010000.

As noted before, the digits in a binary number are called bits. When a bit is equal to
0, it does not contribute to the sum during the conversion. Therefore, the conversion
from binary to decimal can be obtained by adding only the numbers with powers of two
corresponding to the bits that are equal to 1. For example,

(110101), = 32 + 16 + 4 + 1 = (53)y9

There are four 1’s in the binary number. The corresponding decimal number is the sum
of the four powers of two. Zero and the first 24 numbers obtained from 2 to the power of
n are listed in Table 1.1. In computer work, 2!° is referred to as K (kilo), 2** as M (mega),
2% as G (giga),and 2*° as T (tera). Thus,4K = 2!> = 4,096 and 16M = 2** = 16,777,216.
Computer capacity is usually given in bytes. A byte is equal to eight bits and can accom-
modate (i.e., represent the code of) one keyboard character. A computer hard disk with
four gigabytes of storage has a capacity of 4G = 232 bytes (approximately 4 billion bytes).
A terabyte is 1024 gigabytes, approximately 1 trillion bytes.

Arithmetic operations with numbers in base r follow the same rules as for decimal
numbers. When a base other than the familiar base 10 is used, one must be careful to
use only the r-allowable digits. Examples of addition, subtraction, and multiplication of
two binary numbers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: = —100111 multiplier: X 101
sum: 1010100 difference: 000110 1011
0000
partial product: 1011
product: 110111
Table 1.1
Powers of Two
n 2" n 2" n 2"
0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 10 1,024 (1K) 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 (4K) 20 1,048,576 (1M)
5 32 13 8,192 21 2,097152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

6 Chapter 1 Digital Systems and Binary Numbers

The sum of two binary numbers is calculated by the same rules as in decimal, except
that the digits of the sum in any significant position can be only 0 or 1. Any carry
obtained in a given significant position is used by the pair of digits one significant posi-
tion higher. Subtraction is slightly more complicated. The rules are still the same as in
decimal, except that the borrow in a given significant position adds 2 to a minuend digit.
(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple:
The multiplier digits are always 1 or 0; therefore, the partial products are equal either
to a shifted (left) copy of the multiplicand or to 0.

1.3 NUMBER-BASE CONVERSIONS

Representations of a number in a different radix are said to be equivalent if they have
the same decimal representation. For example, (0011)g and (1001), are equivalent—both
have decimal value 9. The conversion of a number in base r to decimal is done by
expanding the number in a power series and adding all the terms as shown previously.
We now present a general procedure for the reverse operation of converting a decimal
number to a number in base r. If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction part, since each part must be
converted differently. The conversion of a decimal integer to a number in base r is done
by dividing the number and all successive quotients by r and accumulating the remain-
ders. This procedure is best illustrated by example.

EXAMPLE 1.1

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20
and a remainder of % Then the quotient is again divided by 2 to give a new quotient and
remainder. The process is continued until the integer quotient becomes 0. The coefficients
of the desired binary number are obtained from the remainders as follows:

Integer Remainder Coefficient

Quotient
41/2 = 20 + ! a =1
20/2 = 10 + 0 a =0
10/2 = 5 + 0 a =0
5/2 = 2 + 1 az =1
2/2 = 1 + 0 a; = 0
1/2 = 0 + ! as =1

Therefore, the answer is (41)9 = (asasasazaiay), = (101001),.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.3 Number-Base Conversions 7

The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

1 0

0 1 101001 = answer

Conversion from decimal integers to any base-r system is similar to this example, except
that division is done by r instead of 2.

EXAMPLE 1.2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give
an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer
quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and
a remainder of 2. This process can be conveniently manipulated as follows:

153

19 1

2 3

0 2 = (231)g

The conversion of a decimal fraction to binary is accomplished by a method similar
to that used for integers. However, multiplication is used instead of division, and integers
instead of remainders are accumulated. Again, the method is best explained by example.

|

EXAMPLE 1.3

Convert (0.6875) to binary. First,0.6875 is multiplied by 2 to give an integer and a fraction.
Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process
is continued until the fraction becomes 0 or until the number of digits has sufficient
accuracy. The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction Coefficient
0.6875 X 2 = 1 + 0.3750 aq, =1
0.3750 X 2 = 0 + 0.7500 a, =10
0.7500 X 2 = 1 + 0.5000 as =1
0.5000 X 2 = 1 + 0.0000 ay, =1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

8 Chapter 1 Digital Systems and Binary Numbers

Therefore, the answer is (0.6875)1g = (0. a_; a_» a_3 a_4), = (0.1011),.

To convert a decimal fraction to a number expressed in base 7, a similar procedure is
used. However, multiplication is by r instead of 2, and the coefficients found from the
integers may range in value from 0 to r — 1 instead of 0 and 1.

[|

EXAMPLE 1.4

Convert (0.513)q to octal.

0.513 X 8 = 4.104
0.104 X 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5.248
0248 X 8 = 1.984
0.984 X 8 = 7.872

The answer, to seven significant figures, is obtained from the integer part of the products:
(0.513)1p = (0.406517 ...)g

The conversion of decimal numbers with both integer and fraction parts is done by
converting the integer and the fraction separately and then combining the two answers.
Using the results of Examples 1.1 and 1.3, we obtain

(41.6875)1p = (101001.1011),
From Examples 1.2 and 1.4, we have

(153.513), = (231.406517)g

1.4 OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important role in digi-
tal computers, because shorter patterns of hex characters are easier to recognize than long
patterns of 1’s and 0’s. Since 2° = 8 and 2* = 16, each octal digit corresponds to three
binary digits and each hexadecimal digit corresponds to four binary digits. The first 16 num-
bers in the decimal, binary, octal, and hexadecimal number systems are listed in Table 1.2.

The conversion from binary to octal is easily accomplished by partitioning the binary
number into groups of three digits each, starting from the binary point and proceeding
to the left and to the right. The corresponding octal digit is then assigned to each group.
The following example illustrates the procedure:

(10 110 001 101 011 - 111 100 000 110), = (26153.7406)g
2 6 1 5 3 7 4 0 6

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.4 Octal and Hexadecimal Numbers 9

Table 1.2
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Conversion from binary to hexadecimal is similar, except that the binary number is
divided into groups of four digits:
(10 1100 0110 1011 - 1111 0010); = (2C6B.F2)4
2 C 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily
remembered from the values listed in Table 1.2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding
procedure. Each octal digit is converted to its three-digit binary equivalent. Similarly,

each hexadecimal digit is converted to its four-digit binary equivalent. The procedure is
illustrated in the following examples:

(673.124)g = (110 111 011 - 001 010 100),
6 7 3 1 2 4
and
(306.D);¢ = (0011 0000 0110 - 1101),
3 0 6 D

Binary numbers are difficult to work with because they require three or four times
as many digits as their decimal equivalents. For example, the binary number 111111111111
is equivalent to decimal 4095. However, digital computers use binary numbers, and it is
sometimes necessary for the human operator or user to communicate directly with the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

10 Chapter 1 Digital Systems and Binary Numbers

machine by means of such numbers. One scheme that retains the binary system in the
computer, but reduces the number of digits the human must consider, utilizes the rela-
tionship between the binary number system and the octal or hexadecimal system. By this
method, the human thinks in terms of octal or hexadecimal numbers and performs the
required conversion by inspection when direct communication with the machine is nec-
essary. Thus, the binary number 111111111111 has 12 digits and is expressed in octal as
7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between
people (about binary numbers in the computer), the octal or hexadecimal representa-
tion is more desirable because it can be expressed more compactly with a third or a
quarter of the number of digits required for the equivalent binary number. Thus, most
computer manuals use either octal or hexadecimal numbers to specify binary quantities.
The choice between them is arbitrary, although hexadecimal tends to win out, since it
can represent a byte with two digits.

1.5 COMPLEMENTS OF NUMBERS

Complements are used in digital computers to simplify the subtraction operation and for
logical manipulation. Simplifying operations leads to simpler, less expensive circuits to
implement the operations. There are two types of complements for each base-r system:
the radix complement and the diminished radix complement. The first is referred to as
the r’s complement and the second as the (r — 1)’s complement. When the value of the
base ris substituted in the name, the two types are referred to as the 2’s complement and
1’s complement for binary numbers and the 10’s complement and 9’s complement for
decimal numbers.

Diminished Radix Complement

Given a number N in base r having n digits, the (r — 1)’s complement of N, i.e., its
diminished radix complement, is defined as (+” — 1) — N. For decimal numbers, » = 10
andr — 1 = 9,sothe 9’s complement of Nis (10" — 1) — N. In this case, 10" represents
a number that consists of a single 1 followed by n 0’s. 10" — 1 is a number represented
by n 9’s. For example, if n = 4, we have 10* = 10,000 and 10* — 1 = 9999. It follows
that the 9’s complement of a decimal number is obtained by subtracting each digit from 9.
Here are some numerical examples:

The 9’s complement of 546700 is 999999 — 546700 = 453299.
The 9’s complement of 012398 is 999999 — 012398 = 987601.

For binary numbers, r =2 and r —1=1, so the 1’s complement of N is 2" —1) — N\.
Again,2" is represented by a binary number that consists of a 1 followed by n 0’s.2" — 1
is a binary number represented by n 1’s. For example, if n = 4, we have 2* = (10000),
and 2* — 1 = (1111),. Thus, the 1’s complement of a binary number is obtained by
subtracting each digit from 1. However, when subtracting binary digits from 1, we can

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.5 Complements of Numbers 11

have either1 — 0 = 1or1 — 1 = 0, which causes the bit to change from 0 to 1 or from
1 to 0, respectively. Therefore, the 1’s complement of a binary number is formed by
changing 1’s to 0’s and 0’s to 1’s. The following are some numerical examples:

The 1’s complement of 1011000 is 0100111.
The 1’s complement of 0101101 is 1010010.

The (r — 1)’s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

The r’s complement of an z-digit number N in base r is defined as r* — N for N # 0 and
as0for N = 0. Comparing with the (» — 1)’s complement, we note that the r’s complement
is obtained by adding 1 to the (r — 1)’s complement, since r* — N = [(r" —1) — N] + L.
Thus, the 10’s complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding
1 tothe 9’s complement value. The 2’s complement of binary 101100is 010011 + 1 = 010100
and is obtained by adding 1 to the 1’s-complement value.

Since 10 is a number represented by a 1 followed by n 0’s,10" — N, which is the 10’s
complement of N, can be formed also by leaving all least significant 0’s unchanged,
subtracting the first nonzero least significant digit from 10, and subtracting all higher
significant digits from 9. Thus,

the 10’s complement of 012398 is 987602

and
the 10’s complement of 246700 is 753300

The 10’s complement of the first number is obtained by subtracting 8 from 10 in the least
significant position and subtracting all other digits from 9. The 10’s complement of the
second number is obtained by leaving the two least significant 0’s unchanged, subtract-
ing 7 from 10, and subtracting the other three digits from 9.

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and
the first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher sig-
nificant digits. For example,

the 2’s complement of 1101100 is 0010100
and

the 2’s complement of 0110111 is 1001001

The 2’s complement of the first number is obtained by leaving the two least significant
0’s and the first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other
four most significant digits. The 2’s complement of the second number is obtained by
leaving the least significant 1 unchanged and complementing all other digits.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

12 Chapter 1 Digital Systems and Binary Numbers

In the previous definitions, it was assumed that the numbers did not have a radix point.
If the original number N contains a radix point, the point should be removed temporarily
in order to form the r’s or (r — 1)’s complement. The radix point is then restored to the
complemented number in the same relative position. It is also worth mentioning that the
complement of the complement restores the number to its original value. To see this
relationship, note that the 7’s complement of Nis " — N, so that the complement of the
complement is r* — (r" — N) = N and is equal to the original number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow concept.
In this method, we borrow a 1 from a higher significant position when the minuend digit
is smaller than the subtrahend digit. The method works well when people perform sub-
traction with paper and pencil. However, when subtraction is implemented with digital
hardware, the method is less efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M — N in base r can be done as
follows:

1. Add the minuend M to the s complement of the subtrahend N. Mathematically,
M+ @#"—N)=M-—-N+r".

2. If M = N, the sum will produce an end carry r", which can be discarded; what is
left is the result M — N.

3. If M < N, the sum does not produce an end carry and is equal to r" — (N — M),
which is the r’s complement of (N — M). To obtain the answer in a familiar form,
take the r’s complement of the sum and place a negative sign in front.

The following examples illustrate the procedure:

EXAMPLE 1.5

Using 10’s complement, subtract 72532 — 3250.

M= 72532

10’s complement of N = + 96750

Sum = 169282

Discard end carry 10° = — 100000

Answer = 69282
Note that M has five digits and N has only four digits. Both numbers must have the same
number of digits, so we write N as 03250. Taking the 10’s complement of N produces a
9 in the most significant position. The occurrence of the end carry signifies that M = N

and that the result is therefore positive.
[|

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.5 Complements of Numbers 13

EXAMPLE 1.6

Using 10’s complement, subtract 3250 — 72532.

M = 03250
10’s complement of N = + 27468
Sum = 30718

There is no end carry. Therefore, the answer is —(10’s complement of 30718) = —69282.
Note that since 3250 < 72532, the result is negative. Because we are dealing with
unsigned numbers, there is really no way to get an unsigned result for this case. When
subtracting with complements, we recognize the negative answer from the absence
of the end carry and the complemented result. When working with paper and pencil,
we can change the answer to a signed negative number in order to put it in a famil-
iar form.
Subtraction with complements is done with binary numbers in a similar manner, using
the procedure outlined previously.
|

EXAMPLE 1.7

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction
(a) X — Y and (b) Y — X by using 2’s complements.
(a) X = 1010100
2’s complement of Y = + 0111101
Sum = 10010001
Discard end carry 2’ = — 10000000

Answer: X — Y = 0010001

(b) Y= 1000011
2’s complement of X = + 0101100

Sum = 1101111

There is no end carry. Therefore, the answer is Y — X = —(2’s complement of 1101111) =

—0010001.
|

Subtraction of unsigned numbers can also be done by means of the (r — 1)’s com-
plement. Remember that the (r — 1)’s complement is one less than the r’s comple-
ment. Because of this, the result of adding the minuend to the complement of the
subtrahend produces a sum that is one less than the correct difference when an end
carry occurs. Removing the end carry and adding 1 to the sum is referred to as an
end-around carry.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

14 Chapter 1 Digital Systems and Binary Numbers

EXAMPLE 1.8

Repeat Example 1.7 but this time using 1’s complement.

(a) X — Y = 1010100 — 1000011

X = 1010100

1’s complement of Y = + 0111100
Sum = 10010000

End-around carry = + 1
Answer: X — Y = 0010001

(b) Y — X = 1000011 — 1010100

Y = 1000011
1’s complement of X = + 0101011
Sum = 1101110
There is no end carry. Therefore, the answer is Y — X = —(1’s complement of 1101110) =

—0010001.
[|

Note that the negative result is obtained by taking the 1’s complement of the sum, since
this is the type of complement used. The procedure with end-around carry is also appli-
cable to subtracting unsigned decimal numbers with 9’s complement.

1.6 SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to
represent negative integers, we need a notation for negative values. In ordinary arith-
metic, a negative number is indicated by a minus sign and a positive number by a plus
sign. Because of hardware limitations, computers must represent everything with binary
digits. It is customary to represent the sign with a bit placed in the leftmost position of
the number. The convention is to make the sign bit 0 for positive and 1 for negative.

It is important to realize that both signed and unsigned binary numbers consist of a
string of bits when represented in a computer. The user determines whether the number
is signed or unsigned. If the binary number is signed, then the leftmost bit represents the
sign and the rest of the bits represent the number. If the binary number is assumed to
be unsigned, then the leftmost bit is the most significant bit of the number. For example,
the string of bits 01001 can be considered as 9 (unsigned binary) or as +9 (signed binary)
because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent of
25 when considered as an unsigned number and the binary equivalent of —9 when con-
sidered as a signed number. This is because the 1 that is in the leftmost position designates
a negative and the other four bits represent binary 9. Usually, there is no confusion in
interpreting the bits if the type of representation for the number is known in advance.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.6 Signed Binary Numbers 15

The representation of the signed numbers in the last example is referred to as the
signed-magnitude convention. In this notation, the number consists of a magnitude and
asymbol (+ or —) or a bit (0 or 1) indicating the sign. This is the representation of signed
numbers used in ordinary arithmetic. When arithmetic operations are implemented in
a computer, it is more convenient to use a different system, referred to as the signed-
complement system, for representing negative numbers. In this system, a negative num-
ber is indicated by its complement. Whereas the signed-magnitude system negates a
number by changing its sign, the signed-complement system negates a number by taking
its complement. Since positive numbers always start with 0 (plus) in the leftmost posi-
tion, the complement will always start with a 1, indicating a negative number. The
signed-complement system can use either the 1’s or the 2’s complement, but the 2’s
complement is the most common.

As an example, consider the number 9, represented in binary with eight bits. +9 is
represented with a sign bit of 0 in the leftmost position, followed by the binary equiva-
lent of 9, which gives 00001001. Note that all eight bits must have a value; therefore, 0’s
are inserted following the sign bit up to the first 1. Although there is only one way to
represent +9, there are three different ways to represent —9 with eight bits:

signed-magnitude representation: 10001001
signed-1’s-complement representation: 11110110
signed-2’s-complement representation: 11110111

In signed-magnitude, —9 is obtained from +9 by changing only the sign bit in the leftmost
position from 0 to 1. In signed-1’s-complement, —9 is obtained by complementing all the
bits of +9, including the sign bit. The signed-2’s-complement representation of —9 is
obtained by taking the 2’s complement of the positive number, including the sign bit.

Table 1.3 lists all possible four-bit signed binary numbers in the three representations.
The equivalent decimal number is also shown for reference. Note that the positive num-
bers in all three representations are identical and have 0 in the leftmost position. The
signed-2’s-complement system has only one representation for 0, which is always posi-
tive. The other two systems have either a positive 0 or a negative 0, something not
encountered in ordinary arithmetic. Note that all negative numbers have a 1 in the
leftmost bit position; that is the way we distinguish them from the positive numbers.
With four bits, we can represent 16 binary numbers. In the signed-magnitude and the
1’s-complement representations, there are eight positive numbers and eight negative
numbers, including two zeros. In the 2’s-complement representation, there are eight
positive numbers, including one zero, and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when
employed in computer arithmetic because of the separate handling of the sign and the
magnitude. Therefore, the signed-complement system is normally used. The 1’s com-
plement imposes some difficulties and is seldom used for arithmetic operations. It is
useful as a logical operation, since the change of 1 to 0 or 0 to 1 is equivalent to a
logical complement operation, as will be shown in the next chapter. The discussion of
signed binary arithmetic that follows deals exclusively with the signed-2’s-complement

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

16 Chapter 1 Digital Systems and Binary Numbers

Table 1.3
Signed Binary Numbers
Signed-2’s Signed-1's Signed
Decimal Complement Complement Magnitude

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 — 1111 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
—4 1100 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110
=7 1001 1000 1111
-8 1000 — —

representation of negative numbers. The same procedures can be applied to the
signed-1’s-complement system by including the end-around carry as is done with
unsigned numbers.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of
ordinary arithmetic. If the signs are the same, we add the two magnitudes and give
the sum the common sign. If the signs are different, we subtract the smaller magni-
tude from the larger and give the difference the sign of the larger magnitude. For
example, (+25) + (=37) = —(37 — 25) = —12is done by subtracting the smaller mag-
nitude, 25, from the larger magnitude, 37 and appending the sign of 37 to the result.
This is a process that requires a comparison of the signs and magnitudes and then per-
forming either addition or subtraction. The same procedure applies to binary numbers
in signed-magnitude representation. In contrast, the rule for adding numbers in the
signed-complement system does not require a comparison or subtraction, but only
addition. The procedure is very simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers represented in
signed-2’s-complement form is obtained from the addition of the two numbers, includ-
ing their sign bits. A carry out of the sign-bit position is discarded.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.6 Signed Binary Numbers 17

Numerical examples for addition follow:

+ 6 00000110 - 6 11111010
+13 00001101 +13 00001101
+19 00010011 + 7 00000111
+ 6 00000110 - 6 11111010
—13 11110011 —13 11110011
- 7 11111001 —19 11101101

Note that negative numbers must be initially in 2’s-complement form and that if the sum
obtained after the addition is negative, it is in 2’s-complement form. For example, —7 is
represented as 11111001, which is the 2s complement of +7.

In each of the four cases, the operation performed is addition with the sign bit
included. Any carry out of the sign-bit position is discarded, and negative results are
automatically in 2’s-complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient
number of bits to accommodate the sum. If we start with two n-bit numbers and the sum
occupies n + 1 bits, we say that an overflow occurs. When one performs the addition with
paper and pencil, an overflow is not a problem, because we are not limited by the width
of the page. We just add another 0 to a positive number or another 1 to a negative number
in the most significant position to extend the number to n + 1 bits and then perform the
addition. Overflow is a problem in computers because the number of bits that hold a
number is finite, and a result that exceeds the finite value by 1 cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used
to the signed-magnitude system. To determine the value of a negative number in signed-2’s
complement, it is necessary to convert the number to a positive number to place it in a
more familiar form. For example, the signed binary number 11111001 is negative because
the leftmost bit is 1. Its 2’s complement is 00000111, which is the binary equivalent of
+7. We therefore recognize the original negative number to be equal to —7.

Arithmetic Subtraction
Subtraction of two signed binary numbers when negative numbers are in 2’s-complement
form is simple and can be stated as follows:

Take the 2’s complement of the subtrahend (including the sign bit) and add it to the
minuend (including the sign bit). A carry out of the sign-bit position is discarded.

This procedure is adopted because a subtraction operation can be changed to an addi-
tion operation if the sign of the subtrahend is changed, as is demonstrated by the
following relationship:

(£A4) = (+B) = (£A) + (-B);

(£A) — =B) = (£A) + (+B).
But changing a positive number to a negative number is easily done by taking the 2’s
complement of the positive number. The reverse is also true, because the complement

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

18 Chapter 1 Digital Systems and Binary Numbers

of a negative number in complement form produces the equivalent positive number. To
see this, consider the subtraction (—6) — (—13) = +7. In binary with eight bits, this
operation is written as (11111010 — 11110011). The subtraction is changed to addition
by taking the 2’s complement of the subtrahend (—13), giving (+13). In binary, this is
11111010 + 00001101 = 100000111. Removing the end carry, we obtain the correct
answer: 00000111 (+7).

It is worth noting that binary numbers in the signed-complement system are added
and subtracted by the same basic addition and subtraction rules as unsigned numbers.
Therefore, computers need only one common hardware circuit to handle both types of
arithmetic. This consideration has resulted in the signed-complement system being used
in virtually all arithmetic units of computer systems. The user or programmer must
interpret the results of such addition or subtraction differently, depending on whether
it is assumed that the numbers are signed or unsigned.

1.7 BINARY CODES

Digital systems use signals that have two distinct values and circuit elements that
have two stable states. There is a direct analogy among binary signals, binary circuit
elements, and binary digits. A binary number of n digits, for example, may be repre-
sented by n binary circuit elements, each having an output signal equivalent to 0 or 1.
Digital systems represent and manipulate not only binary numbers, but also many
other discrete elements of information. Any discrete element of information that is
distinct among a group of quantities can be represented with a binary code (i.e., a
pattern of 0’s and 1’s). The codes must be in binary because, in today’s technology,
only circuits that represent and manipulate patterns of 0’s and 1’s can be manufac-
tured economically for use in computers. However, it must be realized that binary
codes merely change the symbols, not the meaning of the elements of information
that they represent. If we inspect the bits of a computer at random, we will find that
most of the time they represent some type of coded information rather than binary
numbers.

An n-bit binary code is a group of » bits that assumes up to 2" distinct combinations
of 1’s and 0’s, with each combination representing one element of the set that is being
coded. A set of four elements can be coded with two bits, with each element assigned
one of the following bit combinations: 00, 01, 10, 11. A set of eight elements requires a
three-bit code and a set of 16 elements requires a four-bit code. The bit combination of
an n-bit code is determined from the count in binary from 0 to 2" — 1. Each element
must be assigned a unique binary bit combination, and no two elements can have the
same value; otherwise, the code assignment will be ambiguous.

Although the minimum number of bits required to code 2" distinct quantities is 7,
there is no maximum number of bits that may be used for a binary code. For example,
the 10 decimal digits can be coded with 10 bits, and each decimal digit can be assigned
a bit combination of nine 0’s and a 1. In this particular binary code, the digit 6 is assigned
the bit combination 0001000000.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.7 Binary Codes 19

Binary-Coded Decimal Code

Although the binary number system is the most natural system for a computer because
it is readily represented in today’s electronic technology, most people are more accus-
tomed to the decimal system. One way to resolve this difference is to convert decimal
numbers to binary, perform all arithmetic calculations in binary, and then convert the
binary results back to decimal. This method requires that we store decimal numbers in
the computer so that they can be converted to binary. Since the computer can accept
only binary values, we must represent the decimal digits by means of a code that contains
1’s and 0’s. It is also possible to perform the arithmetic operations directly on decimal
numbers when they are stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements
in the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary
code that distinguishes among 10 elements must contain at least four bits, but 6 out of
the 16 possible combinations remain unassigned. Different binary codes can be obtained
by arranging four bits into 10 distinct combinations. The code most commonly used for
the decimal digits is the straight binary assignment listed in Table 1.4. This scheme is
called binary-coded decimal and is commonly referred to as BCD. Other decimal codes
are possible and a few of them are presented later in this section.

Table 1.4 gives the four-bit code for one decimal digit. A number with k& decimal
digits will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as
0011 1001 0110, with each group of 4 bits representing one decimal digit. A decimal
number in BCD is the same as its equivalent binary number only when the number is
between 0 and 9. A BCD number greater than 10 looks different from its equivalent
binary number, even though both contain 1’s and 0’s. Moreover, the binary combina-
tions 1010 through 1111 are not used and have no meaning in BCD. Consider decimal
185 and its corresponding value in BCD and binary:

(185);0 = (0001 1000 0101)gcp = (10111001),

Table 1.4
Binary-Coded Decimal (BCD)
Decimal BCD
Symbol Digit
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

20 Chapter 1 Digital Systems and Binary Numbers

The BCD value has 12 bits to encode the characters of the decimal value, but the equiv-
alent binary number needs only 8 bits. It is obvious that the representation of a BCD
number needs more bits than its equivalent binary value. However, there is an advantage
in the use of decimal numbers, because computer input and output data are generated
by people who use the decimal system.

It is important to realize that BCD numbers are decimal numbers and not binary
numbers, although they use bits in their representation. The only difference between a
decimal number and BCD is that decimals are written with the symbols 0,1,2, ... ,9
and BCD numbers use the binary code 0000,0001,0010, ... ,1001.The decimal value
is exactly the same. Decimal 10 is represented in BCD with eight bits as 0001 0000 and
decimal 15 as 0001 0101. The corresponding binary values are 1010 and 1111 and have
only four bits.

BCD Addition

Consider the addition of two decimal digits in BCD, together with a possible carry
from a previous less significant pair of digits. Since each digit does not exceed 9, the
sum cannot be greater than 9 + 9 + 1 = 19, with the 1 being a previous carry. Sup-
pose we add the BCD digits as if they were binary numbers. Then the binary sum will
produce a result in the range from 0 to 19. In binary, this range will be from 0000 to
10011, but in BCD, it is from 0000 to 1 1001, with the first (i.e., leftmost) 1 being a
carry and the next four bits being the BCD sum. When the binary sum is equal to or
less than 1001 (without a carry), the corresponding BCD digit is correct. However,
when the binary sum is greater than or equal to 1010, the result is an invalid BCD
digit. The addition of 6 = (0110), to the binary sum converts it to the correct digit and
also produces a carry as required. This is because a carry in the most significant bit
position of the binary sum and a decimal carry differ by 16 — 10 = 6. Consider the
following three BCD additions:

4 0100 4 0100 8 1000
+5 40101 +8 +1000 +9 1001
9 1001 12 1100 17 10001

+0110 +0110

10010 10111

In each case, the two BCD digits are added as if they were two binary numbers. If the
binary sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum
and a carry. In the first example, the sum is equal to 9 and is the correct BCD sum. In
the second example, the binary sum produces an invalid BCD digit. The addition of 0110
produces the correct BCD sum, 0010 (i.e., the number 2), and a carry. In the third
example, the binary sum produces a carry. This condition occurs when the sum is greater
than or equal to 16. Although the other four bits are less than 1001, the binary sum
requires a correction because of the carry. Adding 0110, we obtain the required BCD
sum 0111 (i.e., the number 7) and a BCD carry.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.7 Binary Codes 21

The addition of two n-digit unsigned BCD numbers follows the same procedure.
Consider the addition of 184 + 576 = 760 in BCD:

BCD 1 1
0001 1000 0100 184
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Add 6 0110 0110
BCD sum 0111 0110 0000 760

The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a
carry for the next pair of digits. The second pair of BCD digits plus a previous carry
produces a digit sum of 0110 and a carry for the next pair of digits. The third pair of
digits plus a carry produces a binary sum of 0111 and does not require a correction.

Decimal Arithmetic

The representation of signed decimal numbers in BCD is similar to the representation
of signed numbers in binary. We can use either the familiar signed-magnitude system or
the signed-complement system. The sign of a decimal number is usually represented
with four bits to conform to the four-bit code of the decimal digits. It is customary to
designate a plus with four 0’s and a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is seldom used in computers. The signed-complement
system can be either the 9’s or the 10’s complement, but the 10’s complement is the one
most often used. To obtain the 10’s complement of a BCD number, we first take the 9’s
complement and then add 1 to the least significant digit. The 9’s complement is calcu-
lated from the subtraction of each digit from 9.

The procedures developed for the signed-2’s-complement system in the previous
section also apply to the signed-10’s-complement system for decimal numbers. Addition
is done by summing all digits, including the sign digit, and discarding the end carry. This
operation assumes that all negative numbers are in 10’s-complement form. Consider the
addition (+375) + (—240) = +135, done in the signed-complement system:

0 375
+9 760
0 135

The 9 in the leftmost position of the second number represents a minus, and 9760 is
the 10’s complement of 0240. The two numbers are added and the end carry is dis-
carded to obtain +135. Of course, the decimal numbers inside the computer, including
the sign digits, must be in BCD. The addition is done with BCD digits as described
previously.

The subtraction of decimal numbers, either unsigned or in the signed-10’s-complement
system, is the same as in the binary case: Take the 10’s complement of the subtrahend and
add it to the minuend. Many computers have special hardware to perform arithmetic

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

22 Chapter 1 Digital Systems and Binary Numbers

calculations directly with decimal numbers in BCD. The user of the computer can specify
programmed instructions to perform the arithmetic operation with decimal numbers
directly, without having to convert them to binary.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits per digit. Many different
codes can be formulated by arranging four bits into 10 distinct combinations. BCD and
three other representative codes are shown in Table 1.5. Each code uses only 10 out of
a possible 16 bit combinations that can be arranged with four bits. The other six unused
combinations have no meaning and should be avoided.

BCD and the 2421 code are examples of weighted codes. In a weighted code, each bit
position is assigned a weighting factor in such a way that each digit can be evaluated by
adding the weights of all the 1’s in the coded combination. The BCD code has weights
of 8,4,2,and 1, which correspond to the power-of-two values of each bit. The bit assign-
ment 0110, for example, is interpreted by the weights to represent decimal 6 because
8X0+4X1+2X1+1X0=6.The bit combination 1101, when weighted by the
respective digits 2421, gives the decimal equivalent of 2X1+4 X1+2X0+1X1="7
Note that some digits can be coded in two possible ways in the 2421 code. For instance,
decimal 4 can be assigned to bit combination 0100 or 1010, since both combinations add
up to a total weight of 4.

Table 1.5
Four Different Binary Codes for the Decimal Digits
Decimal BCD
Digit 8421 2421 Excess-3 8,4, -2, -1
0 0000 0000 0011 0000
1 0001 0001 0100 0111
2 0010 0010 0101 0110
3 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1011
6 0110 1100 1001 1010
7 0111 1101 1010 1001
8 1000 1110 1011 1000
9 1001 1111 1100 1111
1010 0101 0000 0001
Unused 1011 0110 0001 0010
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1100
nations 1110 1001 1110 1101
1111 1010 1111 1110

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.7 Binary Codes 23

BCD adders add BCD values directly, digit by digit, without converting the numbers
to binary. However, it is necessary to add 6 to the result if it is greater than 9. BCD
adders require significantly more hardware and no longer have a speed advantage of
conventional binary adders [5].

The 2421 and the excess-3 codes are examples of self-complementing codes. Such
codes have the property that the 9’s complement of a decimal number is obtained
directly by changing 1’s to 0’s and 0’s to 1’s (i.e., by complementing each bit in the pat-
tern). For example, decimal 395 is represented in the excess-3 code as 0110 1100 1000.
The 9’s complement of 604 is represented as 1001 0011 0111, which is obtained simply
by complementing each bit of the code (as with the 1’s complement of binary numbers).

The excess-3 code has been used in some older computers because of its self-
complementing property. Excess-3 is an unweighted code in which each coded com-
bination is obtained from the corresponding binary value plus 3. Note that the BCD
code is not self-complementing.

The 8,4, —2, —1 code is an example of assigning both positive and negative weights
to a decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and
is calculated from 8 X 0 + 4 X 1 + (=2) X 1 + (=1) X 0 = 2.

Gray Code

The output data of many physical systems are quantities that are continuous. These
data must be converted into digital form before they are applied to a digital system.
Continuous or analog information is converted into digital form by means of an ana-
log-to-digital converter. It is sometimes convenient to use the Gray code shown in
Table 1.6 to represent digital data that have been converted from analog data. The
advantage of the Gray code over the straight binary number sequence is that only
one bit in the code group changes in going from one number to the next. For example,
in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit
changes, from 0 to 1; the other three bits remain the same. By contrast, with binary
numbers the change from 7 to 8 will be from 0111 to 1000, which causes all four bits
to change values.

The Gray code is used in applications in which the normal sequence of binary numbers
generated by the hardware may produce an error or ambiguity during the transition from
one number to the next. If binary numbers are used, a change, for example, from 0111 to
1000 may produce an intermediate erroneous number 1001 if the value of the rightmost
bit takes longer to change than do the values of the other three bits. This could have seri-
ous consequences for the machine using the information. The Gray code eliminates this
problem, since only one bit changes its value during any transition between two numbers.

A typical application of the Gray code is the representation of analog data by a con-
tinuous change in the angular position of a shaft. The shaft is partitioned into segments,
and each segment is assigned a number. If adjacent segments are made to correspond
with the Gray-code sequence, ambiguity is eliminated between the angle of the shaft
and the value encoded by the sensor.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

24 Chapter 1 Digital Systems and Binary Numbers

Table 1.6
Gray Code

Gray Decimal
Code Equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

ASCII Character Code

Many applications of digital computers require the handling not only of numbers, but
also of other characters or symbols, such as the letters of the alphabet. For instance,
consider a high-tech company with thousands of employees. To represent the names
and other pertinent information, it is necessary to formulate a binary code for the let-
ters of the alphabet. In addition, the same binary code must represent numerals and
special characters (such as $). An alphanumeric character set is a set of elements that
includes the 10 decimal digits, the 26 letters of the alphabet, and a number of special
characters. Such a set contains between 36 and 64 elements if only capital letters are
included, or between 64 and 128 elements if both uppercase and lowercase letters are
included. In the first case, we need a binary code of six bits, and in the second, we need
a binary code of seven bits.

The standard binary code for the alphanumeric characters is the American Standard
Code for Information Interchange (ASCII), which uses seven bits to code 128 charac-
ters, as shown in Table 1.7 The seven bits of the code are designated by b; through b,
with b; the most significant bit. The letter A, for example, is represented in ASCII as
1000001 (column 100, row 0001). The ASCII code also contains 94 graphic characters
that can be printed and 34 nonprinting characters used for various control functions.
The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lower-
case letters (a through z), the 10 numerals (0 through 9), and 32 special printable char-
acters, such as %, *, and §.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.7 Binary Codes 25

Table 1.7
American Standard Code for Information Interchange (ASCII)
bsbebs

bsbsb,b; 000 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 «“ 2 B R b T
0011 ETX DC3 # 3 C S c S
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F A" f v
0111 BEL ETB ¢ 7 G w g w
1000 BS CAN (8 H X h X
1001 HT EM) 9 I Y i y
1010 LF SUB * : J zZ j VA
1011 VT ESC + ; K [k {
1100 FF FS , < L \ 1 |
1101 CR GS - = M] m }
1110 SO RS . > N A n ~
1111 SI UsS / ? O - o DEL

Control Characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in [ON] Unit separator

SP Space DEL Delete

The 34 control characters are designated in the ASCII table with abbreviated names. They
are listed again below the table with their functional names. The control characters are used
for routing data and arranging the printed text into a prescribed format. There are three types
of control characters: format effectors, information separators, and communication-control

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

26 Chapter 1 Digital Systems and Binary Numbers

characters. Format effectors are characters that control the layout of printing. They include
the familiar word processor and typewriter controls such as backspace (BS), horizontal tabu-
lation (HT), and carriage return (CR). Information separators are used to separate the data
into divisions such as paragraphs and pages. They include characters such as record separator
(RS) and file separator (FS). The communication-control characters are useful during
the transmission of text between remote devices so that it can be distinguished from other
messages using the same communication channel before it and after it. Examples of
communication-control characters are STX (start of text) and ETX (end of text), which are
used to frame a text message transmitted through a communication channel.

ASCII is a seven-bit code, but most computers manipulate an eight-bit quantity
as a single unit called a byte. Therefore, ASCII characters most often are stored one
per byte. The extra bit is sometimes used for other purposes, depending on the appli-
cation. For example, some printers recognize eight-bit ASCII characters with the
most significant bit set to 0. An additional 128 eight-bit characters with the most
significant bit set to 1 are used for other symbols, such as the Greek alphabet or italic
type font.

Error-Detecting Code

To detect errors in data communication and processing, an eighth bit is sometimes added
to the ASCII character to indicate its parity. A parity bit is an extra bit included with a
message to make the total number of 1’s either even or odd. Consider the following two
characters and their even and odd parity:

With even parity With odd parity
ASCII A = 1000001 01000001 11000001
ASCII'T = 1010100 11010100 01010100

In each case, we insert an extra bit in the leftmost position of the code to produce an
even number of 1’s in the character for even parity or an odd number of 1’s in the char-
acter for odd parity. In general, one or the other parity is adopted, with even parity being
more common.

The parity bit is helpful in detecting errors during the transmission of information
from one location to another. This function is handled by generating an even parity bit
at the sending end for each character. The eight-bit characters that include parity bits
are transmitted to their destination. The parity of each character is then checked at the
receiving end. If the parity of the received character is not even, then at least one bit has
changed value during the transmission. This method detects one, three, or any odd com-
bination of errors in each character that is transmitted. An even combination of errors,
however, goes undetected, and additional error detection codes may be needed to take
care of that possibility.

What is done after an error is detected depends on the particular application. One
possibility is to request retransmission of the message on the assumption that the error
was random and will not occur again. Thus, if the receiver detects a parity error, it sends

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.8 Binary Storage and Registers 27

back the ASCII NAK (negative acknowledge) control character consisting of an even-
parity eight bits 10010101. If no error is detected, the receiver sends back an ACK
(acknowledge) control character, namely, 00000110. The sending end will respond to an
NAK by transmitting the message again until the correct parity is received. If, after a
number of attempts, the transmission is still in error, a message can be sent to the oper-
ator to check for malfunctions in the transmission path.

1.8 BINARY STORAGE AND REGISTERS

The binary information in a digital computer must have a physical existence in some
medium for storing individual bits. A binary cell is a device that possesses two stable
states and is capable of storing one bit (0 or 1) of information. The input to the cell
receives excitation signals that set it to one of the two states. The output of the cell is
a physical quantity that distinguishes between the two states. The information stored
in a cell is 1 when the cell is in one stable state and 0 when the cell is in the other stable
state.

Registers

A registeris a group of binary cells. A register with # cells can store any discrete quantity
of information that contains # bits. The state of a register is an n-tuple of 1’s and 0’s, with
each bit designating the state of one cell in the register. The content of a register is a
function of the interpretation given to the information stored in it. Consider, for example,
a 16-bit register with the following binary content:

1100001111001001

A register with 16 cells can be in one of 2'° possible states. If one assumes that the con-
tent of the register represents a binary integer, then the register can store any binary
number from 0 to 2!® — 1. For the particular example shown, the content of the register
is the binary equivalent of the decimal number 50,121. If one assumes instead that the
register stores alphanumeric characters of an eight-bit code, then the content of the
register is any two meaningful characters. For the ASCII code with an even parity placed
in the eighth most significant bit position, the register contains the two characters C (the
leftmost eight bits) and I (the rightmost eight bits). If, however, one interprets the con-
tent of the register to be four decimal digits represented by a four-bit code, then the
content of the register is a four-digit decimal number. In the excess-3 code, the register
holds the decimal number 9,096. The content of the register is meaningless in BCD,
because the bit combination 1100 is not assigned to any decimal digit. From this exam-
ple,itis clear that a register can store discrete elements of information and that the same
bit configuration may be interpreted differently for different types of data depending
on the application.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

28 Chapter 1 Digital Systems and Binary Numbers

Register Transfer

A digital system is characterized by its registers and the components that perform data
processing. In digital systems, a register transfer operation is a basic operation that con-
sists of a transfer of binary information from one set of registers into another set of
registers. The transfer may be direct, from one register to another, or may pass through
data-processing circuits to perform an operation. Figure 1.1 illustrates the transfer of infor-
mation among registers and demonstrates pictorially the transfer of binary information
from a keyboard into a register in the memory unit. The input unit is assumed to have a
keyboard, a control circuit, and an input register. Each time a key is struck, the control
circuit enters an equivalent eight-bit alphanumeric character code into the input register.
We shall assume that the code used is the ASCII code with an odd-parity bit. The informa-
tion from the input register is transferred into the eight least significant cells of a processor
register. After every transfer, the input register is cleared to enable the control to insert a
new eight-bit code when the keyboard is struck again. Each eight-bit character transferred
to the processor register is preceded by a shift of the previous character to the next eight
cells on its left. When a transfer of four characters is completed, the processor register is
full, and its contents are transferred into a memory register. The content stored in the

MEMORY UNIT
J o H
t t t t i Memory
01001010010011111100100011001110 Register

PROCESSOR UNIT

| 8 cells |<—| 8 cells |<—| 8 cells |<—| 8 cells gt:;s:tsz?r

INPUT UNIT Input

8 cells Register

CONTROL

Keyboard

@O

FIGURE 1.1
Transfer of information among registers

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.8 Binary Storage and Registers 29

memory register shown in Fig. 1.1 came from the transfer of the characters “J,” “O,” “H.,”
and “N” after the four appropriate keys were struck.

To process discrete quantities of information in binary form, a computer must be
provided with devices that hold the data to be processed and with circuit elements that
manipulate individual bits of information. The device most commonly used for holding
data is a register. Binary variables are manipulated by means of digital logic circuits.
Figure 1.2 illustrates the process of adding two 10-bit binary numbers. The memory unit,
which normally consists of millions of registers, is shown with only three of its registers.
The part of the processor unit shown consists of three registers—RI, R2, and R3—
together with digital logic circuits that manipulate the bits of R/ and R2 and transfer into
R3 a binary number equal to their arithmetic sum. Memory registers store information
and are incapable of processing the two operands. However, the information stored in
memory can be transferred to processor registers, and the results obtained in processor
registers can be transferred back into a memory register for storage until needed again.
The diagram shows the contents of two operands transferred from two memory registers

MEMORY UNIT

1 Sum
0000000000|

Operand 1

}0011100001

Operand 2

}000100001o|

I0001000010|R1

Digital logic
circuits for —>0100100011|R3
binary addition

I0011100001|R2

PROCESSOR UNIT

FIGURE 1.2
Example of binary information processing

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

30 Chapter 1 Digital Systems and Binary Numbers

into R/ and R2.The digital logic circuits produce the sum, which is transferred to register
R3.The contents of R3 can now be transferred back to one of the memory registers.

The last two examples demonstrated the information-flow capabilities of a digital
system in a simple manner. The registers of the system are the basic elements for storing
and holding the binary information. Digital logic circuits process the binary information
stored in the registers. Digital logic circuits and registers are covered in Chapters 2
through 6. The memory unit is explained in Chapter 7 The description of register oper-
ations at the register transfer level and the design of digital systems are covered in
Chapter 8.

1.9 BINARY LOGIC

Binary logic deals with variables that take on two discrete values and with operations
that assume logical meaning. The two values the variables assume may be called by dif-
ferent names (true and false, yes and no, etc.), but for our purpose, it is convenient to
think in terms of bits and assign the values 1 and 0. The binary logic introduced in this
section is equivalent to an algebra called Boolean algebra. The formal presentation of
Boolean algebra is covered in more detail in Chapter 2. The purpose of this section is
to introduce Boolean algebra in a heuristic manner and relate it to digital logic circuits
and binary signals.

Definition of Binary Logic

Binary logic consists of binary variables and a set of logical operations. The variables are
designated by letters of the alphabet, such as A, B, C, x, y, z, etc., with each variable hav-
ing two and only two distinct possible values: 1 and 0. There are three basic logical oper-
ations: AND, OR, and NOT. Each operation produces a binary result, denoted by z.

1. AND:This operation is represented by a dot or by the absence of an operator. For
example,x+y = zorxy = zisread “x AND yis equal to z.” The logical operation
AND is interpreted to mean that z = 1 ifand onlyif x = 1 and y = 1; otherwise
z = 0. (Remember that x, y, and z are binary variables and can be equal either to
1 or 0, and nothing else.) The result of the operation x - y is z.

2. OR:This operation is represented by a plus sign. For example, x + y = z is read
“x OR y is equal to z,” meaning that z = 1ifx = lorify = lorif bothx =1
andy = 1. If bothx = 0and y = 0, then z = 0.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For
example, x' = z (or X = z) is read “not x is equal to z,” meaning that z is what x
is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1. The NOT
operation is also referred to as the complement operation, since it changes a 1 to
0 and a 0 to 1, i.e., the result of complementing 1 is 0, and vice versa.

Binary logic resembles binary arithmetic, and the operations AND and OR have
similarities to multiplication and addition, respectively. In fact, the symbols used for

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 1.9 Binary Logic 31

Table 1.8
Truth Tables of Logical Operations
AND NOT
x | x'
1
110

AND and OR are the same as those used for multiplication and addition. However,
binary logic should not be confused with binary arithmetic. One should realize that an
arithmetic variable designates a number that may consist of many digits. A logic vari-
able is always either 1 or 0. For example, in binary arithmetic, we have 1 + 1 = 10 (read
“one plus one is equal to 2”), whereas in binary logic, we have 1 + 1 = 1 (read “one
OR one is equal to one”).

For each combination of the values of x and y, there is a value of z specified by the
definition of the logical operation. Definitions of logical operations may be listed in a
compact form called fruth tables. A truth table is a table of all possible combinations of
the variables, showing the relation between the values that the variables may take and
the result of the operation. The truth tables for the operations AND and OR with vari-
ables x and y are obtained by listing all possible values that the variables may have when
combined in pairs. For each combination, the result of the operation is then listed in a
separate row. The truth tables for AND, OR, and NOT are given in Table 1.8. These
tables clearly demonstrate the definition of the operations.

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to pro-
duce an output signal. Electrical signals such as voltages or currents exist as analog
signals having values over a given continuous range, say, 0 to 3 V, but in a digital
system these voltages are interpreted to be either of two recognizable values, 0 or 1.
Voltage-operated logic circuits respond to two separate voltage levels that represent a
binary variable equal to logic 1 or logic 0. For example, a particular digital system may
define logic 0 as a signal equal to 0 V and logic 1 as a signal equal to 3 V. In practice,
each voltage level has an acceptable range, as shown in Fig. 1.3. The input terminals of
digital circuits accept binary signals within the allowable range and respond at the
output terminals with binary signals that fall within the specified range. The intermedi-
ate region between the allowed regions is crossed only during a state transition. Any
desired information for computing or control can be operated on by passing binary
signals through various combinations of logic gates, with each signal representing a
particular binary variable. When the physical signal is in a particular range it is inter-
preted to be eithera O or a 1.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

32 Chapter 1 Digital Systems and Binary Numbers

Volts
3
Signal
range for
logic 1
T
Transition occurs
between these limits
1 l
Signal
range for
logic 0

FIGURE 1.3
Signal levels for binary logic values

x —])z:xw x:DLHY >O '
X X
y — y

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter
FIGURE 1.4
Symbols for digital logic circuits

The graphic symbols used to designate the three types of gates are shown in Fig. 1.4.
The gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output
signals if input logic requirements are satisfied. The input signals x and y in the AND and
OR gates may exist in one of four possible states: 00, 10, 11, or 01. These input signals
are shown in Fig. 1.5 together with the corresponding output signal for each gate. The
timing diagrams illustrate the idealized response of each gate to the four input signal
combinations. The horizontal axis of the timing diagram represents the time, and the
vertical axis shows the signal as it changes between the two possible voltage levels. In
reality, the transitions between logic values occur quickly, but not instantaneously. The
low level represents logic 0, the high level logic 1. The AND gate responds with a logic
1 output signal when both input signals are logic 1. The OR gate responds with a logic
1 output signal if any input signal is logic 1. The NOT gate is commonly referred to as
an inverter. The reason for this name is apparent from the signal response in the timing
diagram, which shows that the output signal inverts the logic sense of the input signal.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 33

AND:x -y 0 0 1 0 0

OR:x +y 0 1 1 1 0

NOT: x’ 1 0 0 1 1
FIGURE 1.5
Input-output signals for gates

—ﬂ F=ABC
—

(a) Three-input AND gate (b) Four-input OR gate

G=A+B+C+D

O

T

FIGURE 1.6
Gates with multiple inputs

AND and OR gates may have more than two inputs. An AND gate with three inputs
and an OR gate with four inputs are shown in Fig. 1.6. The three-input AND gate
responds with logic 1 output if all three inputs are logic 1. The output produces logic 0
if any input is logic 0. The four-input OR gate responds with logic 1 if any input is logic
1; its output becomes logic 0 only when all inputs are logic 0.

PROBLEMS

(Answers to problems marked with * appear at the end of the text.)

1.1 List the octal and hexadecimal numbers from 16 to 32. Using A and B for the last two
digits, list the numbers from 8 to 28 in base 12.

1.2* What is the exact number of bytes in a system that contains (a) 32K bytes, (b) 64M bytes,

and (c) 6.4G bytes?

1.3 Convert the following numbers with the indicated bases to decimal:
(a)* (4310)s (b)* (198)1
(c) (435)s (d) (345)6

1.4 Whatis the largest binary number that can be expressed with 16 bits? What are the equiv-
alent decimal and hexadecimal numbers?

1.5% Determine the base of the numbers in each case for the following operations to be correct:
(a) 142=5 (b) 54/4=13 (c) 24+17=40.

1.6% The solutions to the quadratic equation x> — 11x + 22 =0 are x = 3 and x = 6. What is the
base of the numbers?

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

34 Chapter 1 Digital Systems and Binary Numbers

1.7* Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal.

1.8 Convert the decimal number 431 to binary in two ways: (a) convert directly to binary;
(b) convert first to hexadecimal and then from hexadecimal to binary. Which method is faster?

1.9 Express the following numbers in decimal:
(a)* (10110.0101), (b)* (16.5)44
(c)* (26.24) (d) (DADA.B)s
(e) (1010.1101),

1.10 Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010,
(b) 110.010. Explain why the decimal answer in (b) is 4 times that in (a).

1.11 Perform the following division in binary: 111011 + 101.

1.12% Add and multiply the following numbers without converting them to decimal.
(a) Binary numbers 1011 and 101.
(b) Hexadecimal numbers 2E and 34.

1.13 Do the following conversion problems:
(a) Convert decimal 27315 to binary.
(b) Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to
decimal. How close is the result to 2/3?
(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal.
Is the answer the same?

1.14 Obtain the 1’s and 2’s complements of the following binary numbers:

(a) 00010000 (b) 00000000
(c) 11011010 (d) 10101010
(e) 10000101 (f) 11111111
1.15 Find the 9’s and the 10’s complement of the following decimal numbers:
(a) 25,478,036 (b) 63,325,600
(¢) 25,000,000 (d) 00,000,000.

1.16 (a) Find the 16’s complement of C3DF.
(b) Convert C3DF to binary.
(c) Find the 2’s complement of the result in (b).
(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

1.17 Perform subtraction on the given unsigned numbers using the 10’s complement of the
subtrahend. Where the result should be negative, find its 10’s complement and affix a minus
sign. Verify your answers.

(a) 4,637-2,579 (b) 125-1,800
(c) 2,043 —4,361 (d) 1,631 —745

1.18 Perform subtraction on the given unsigned binary numbers using the 2’s complement of the
subtrahend. Where the result should be negative, find its 2’s complement and affix a minus sign.
(a) 10011 —10010 (b) 100010 —100110
(c) 1001—110101 (d) 101000 — 10101

1.19* The following decimal numbers are shown in sign-magnitude form: +9,286 and +801.
Convert them to signed-10’s-complement form and perform the following operations
(note that the sum is +10,627 and requires five digits and a sign).
(a) (+9,286) + (+801) (b) (+9,286) + (—801)
(c) (—9,286) + (+801) (d) (—9,286) + (—801)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 35

1.20 Convert decimal +49 and +29 to binary, using the signed-2’s-complement representation
and enough digits to accommodate the numbers. Then perform the binary equivalent of
(+29) + (—49), (-29) + (+49), and (-29) + (—49). Convert the answers back to decimal and
verify that they are correct.

1.21 If the numbers (+9,742),y and (+641),, are in signed magnitude format, their sum is (+10,383)q
and requires five digits and a sign. Convert the numbers to signed-10’s-complement form and
find the following sums:

(a) (+9,742) + (+641) (b) (+9,742) + (—641)
(c) (=9,742) + (+641) (d) (-9,742) + (—641)

1.22 Convert decimal 6,514 to both BCD and ASCII codes. For ASCII, an even parity bit is to
be appended at the left.

1.23 Represent the unsigned decimal numbers 791 and 658 in BCD, and then show the steps
necessary to form their sum.

1.24 Formulate a weighted binary code for the decimal digits, using the following weights:
(a)* 6,3,1,1
(b) 6,4,2,1

1.25 Represent the decimal number 6,248 in (a) BCD, (b) excess-3 code, (c) 2421 code, and
(d) a 6311 code.

1.26 Find the 9’s complement of decimal 6,248 and express it in 2421 code. Show that the result
is the 1’s complement of the answer to (c) in CR_PROBIlem 1.25. This demonstrates that
the 2421 code is self-complementing.

1.27 Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum
number of bits.

1.28 Write the expression “G. Boole” in ASCII, using an eight-bit code. Include the period and
the space. Treat the leftmost bit of each character as a parity bit. Each eight-bit code should
have odd parity. (George Boole was a 19th-century mathematician. Boolean algebra,
introduced in the next chapter, bears his name.)

1.29% Decode the following ASCII code:
1010011 1110100 1100101 1110110 1100101 0100000 1001010 1101111 1100010 1110011.

1.30 The following is a string of ASCII characters whose bit patterns have been converted into
hexadecimal for compactness: 73 F4 E5 76 ES 4A EF 62 73. Of the eight bits in each pair
of digits, the leftmost is a parity bit. The remaining bits are the ASCII code.

(a) Convert the string to bit form and decode the ASCII.
(b) Determine the parity used: odd or even?

1.37* How many printing characters are there in ASCII? How many of them are special char-
acters (not letters or numerals)?

1.32* What bit must be complemented to change an ASCII letter from capital to lowercase and
vice versa?

1.33* The state of a 12-bit register is 100010010111. What is its content if it represents
(a) Three decimal digits in BCD?
(b) Three decimal digits in the excess-3 code?
(c) Three decimal digits in the 84-2-1 code?
(d) A binary number?

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

36 Chapter 1 Digital Systems and Binary Numbers

1.34 List the ASCII code for the 10 decimal digits with an even parity bit in the leftmost
position.

1.35 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in
Fig. P1.35 as functions of the three inputs a, b, and c. Use all eight possible combinations
of a,b,and c.

abc

jf
S

FIGURE P1.35

1.36 By means of a timing diagram similar to Fig. 1.5, show the signals of the outputs f and g in
Fig. P1.36 as functions of the two inputs a and b. Use all four possible combinations of a

and b.
a b
D
7
=
FIGURE P1.36
REFERENCES

CAVANAGH, J. J. 1984. Digital Computer Arithmetic. New York: McGraw-Hill.

Mano, M. M. 1988. Computer Engineering: Hardware Design. Englewood Cliffs, NJ:

Prentice-Hall.

3. NELsoN, V. P, H. T. NAGLE, J. D. Irwin, and B. D. CarroLL. 1997. Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

4. Scumip, H. 1974. Decimal Computation. New York: John Wiley.

5. Karz, R. H. and BorrieLLo, G. 2004. Contemporary Logic Design,?2nd ed. Upper Saddle

River, NJ: Prentice-Hall.

N =

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Web Search Topics 37

WEB SEARCH TOPICS

BCD code
ASCII

Storage register
Binary logic
BCD addition
Binary codes
Binary numbers
Excess-3 code

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 2
Boolean Algebra and Logic Gates

2.1 INTRODUCTION

Because binary logic is used in all of today’s digital computers and devices, the cost of
the circuits that implement it is an important factor addressed by designers—be they
computer engineers, electrical engineers, or computer scientists. Finding simpler and
cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the
overall cost of the design. Mathematical methods that simplify circuits rely primarily on
Boolean algebra. Therefore, this chapter provides a basic vocabulary and a brief founda-
tion in Boolean algebra that will enable you to optimize simple circuits and to under-
stand the purpose of algorithms used by software tools to optimize complex circuits
involving millions of logic gates.

2.2 BASIC DEFINITIONS

Boolean algebra, like any other deductive mathematical system, may be defined with a
set of elements, a set of operators, and a number of unproved axioms or postulates. A set
of elements is any collection of objects, usually having a common property. If S is a set,
and x and y are certain objects, then the notation x € S means that x is a member of the
set S and y ¢ S means that y is not an element of S. A set with a denumerable number
of elements is specified by braces: A = {1, 2, 3, 4} indicates that the elements of set A
are the numbers 1,2, 3, and 4. A binary operator defined on a set S of elements is a rule
that assigns, to each pair of elements from S, a unique element from S. As an example,
consider the relation a*b = c¢. We say that * is a binary operator if it specifies a rule
for finding ¢ from the pair (g, b) and also if a, b, ¢ € S. However, * is not a binary operator
ifa,beS,andifceS.

38

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.2 Basic Definitions 39

The postulates of a mathematical system form the basic assumptions from which it
is possible to deduce the rules, theorems, and properties of the system. The most com-
mon postulates used to formulate various algebraic structures are as follows:

1. Closure. A set S is closed with respect to a binary operator if, for every pair of
elements of S, the binary operator specifies a rule for obtaining a unique element
of S. For example, the set of natural numbers N = {1,2,3,4, ...} is closed with
respect to the binary operator + by the rules of arithmetic addition, since, for any
a, b e N, there is a unique ¢ € N such that @ + b = c. The set of natural numbers
is not closed with respect to the binary operator — by the rules of arithmetic
subtraction, because 2 — 3 = —1and 2,3 e N, but (—1) ¢ N.

2. Associative law. A binary operator * on a set S is said to be associative whenever
(x*y)*z = x*(y*z) forallx,y, z,e S

3. Commutative law. A binary operator * on a set S is said to be commutative when-
ever

x*y = y*xforallx,yeS

4. Identity element. A set S is said to have an identity element with respect to a binary
operation * on S if there exists an element e € S with the property that

e*x = x*e = xforeveryxe$§
Example: The element 0 is an identity element with respect to the binary operator
+ on the set of integers I = {...,—3,-2,-1,0,1,2,3,...}, since
x+0=0+x=xforanyxel

The set of natural numbers, N, has no identity element, since 0 is excluded from the set.

5. Inverse. A set S having the identity element e with respect to a binary operator *
is said to have an inverse whenever, for every x € S, there exists an element y e §
such that

x*y =e
Example: In the set of integers, 1, and the operator +, with e = 0, the inverse of
an element a is (—a), since a + (—a) = 0.

6. Distributive law. If * and - are two binary operators on a set S, * is said to be dis-
tributive over - whenever

x*(y-z) = (x*y)-(x*2)

A field is an example of an algebraic structure. A field is a set of elements, together with
two binary operators, each having properties 1 through 5 and both operators combining
to give property 6. The set of real numbers, together with the binary operators + and -,

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

40 Chapter 2 Boolean Algebra and Logic Gates

forms the field of real numbers. The field of real numbers is the basis for arithmetic and
ordinary algebra. The operators and postulates have the following meanings:

The binary operator + defines addition.

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator - defines multiplication.

The multiplicative identity is 1.

Fora # 0, the multiplicative inverse of a = 1/a defines division (i.e.,a-1/a = 1).
The only distributive law applicable is that of - over +:

a+(b+c)=1(a-b)+ (a-c)

2.3 AXIOMATIC DEFINITION
OF BOOLEAN ALGEBRA

In 1854, George Boole developed an algebraic system now called Boolean algebra. In
1938, Claude E. Shannon introduced a two-valued Boolean algebra called switching
algebra that represented the properties of bistable electrical switching circuits. For the
formal definition of Boolean algebra, we shall employ the postulates formulated by
E. V. Huntington in 1904.

Boolean algebra is an algebraic structure defined by a set of elements, B, together
with two binary operators, +and -, provided that the following (Huntington) postulates
are satisfied:

1. (a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator -.

2. (a) The element O is an identity element with respect to +; that is, x + 0 =
0+x=x.
(b) The element 1 is an identity element with respect to -; thatis,x-1 = 1-x = x.

3. (a) The structure is commutative with respect to +; thatis,x + y =y + x.
(b) The structure is commutative with respect to -; thatis,x-y = y-x.

4. (a) The operator - is distributive over +; thatis,x-(y + z) = (x-y) + (x*2).
(b) The operator + is distributive over -; thatis,x + (y-z) = (x + y)-(x + 2).

5. Foreveryelement x € B, there existsanelementx’ € B (called the complement of x)
such that (a) x + x" = land (b) x-x" = 0.

6. There exist at least two elements x, ye B such that x # y.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real
numbers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over + (i.e.,x + (y+-z) = (x + y)*(x + z)) is valid for
Boolean algebra, but not for ordinary algebra.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.3 Axiomatic Definition of Boolean Algebra 11

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there
are no subtraction or division operations.

4. Postulate 5 defines an operator called the complement that is not available in
ordinary algebra.

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of
elements. Boolean algebra deals with the as yet undefined set of elements, B, but
in the two-valued Boolean algebra defined next (and of interest in our subse-
quent use of that algebra), B is defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects. The choice of the
symbols + and - isintentional, to facilitate Boolean algebraic manipulations by persons
already familiar with ordinary algebra. Although one can use some knowledge from
ordinary algebra to deal with Boolean algebra, the beginner must be careful not to
substitute the rules of ordinary algebra where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic structure
and the variables of an algebraic system. For example, the elements of the field of real
numbers are numbers, whereas variables such as a, b, c, etc., used in ordinary algebra,
are symbols that stand for real numbers. Similarly, in Boolean algebra, one defines the
elements of the set B, and variables such as x, y, and z are merely symbols that represent
the elements. At this point, it is important to realize that, in order to have a Boolean
algebra, one must show that

1. the elements of the set B,
2. the rules of operation for the two binary operators, and

3. the set of elements, B, together with the two operators, satisfy the six Huntington
postulates.

One can formulate many Boolean algebras, depending on the choice of elements of
B and the rules of operation. In our subsequent work, we deal only with a two-valued
Boolean algebra (i.c., a Boolean algebra with only two elements). Two-valued Boolean
algebra has applications in set theory (the algebra of classes) and in propositional logic.
Our interest here is in the application of Boolean algebra to gate-type circuits commonly
used in digital devices and computers.

Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with rules
for the two binary operators + and - as shown in the following operator tables (the rule
for the complement operator is for verification of postulate 5):

X y Xy Xy x+ty x | x
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

42 Chapter 2 Boolean Algebra and Logic Gates

These rules are exactly the same as the AND, OR, and NOT operations, respectively,
defined in Table 1.8. We must now show that the Huntington postulates are valid for the
set B = {0, 1} and the two binary operators + and - .

1. That the structure is closed with respect to the two operators is obvious from the
tables, since the result of each operation is either 1 or O and 1, 0 € B.

2. From the tables, we see that
() 0+0=0 0+1=1+0=1,
Mb)1-1=1 1-0=0-1=0.
This establishes the two identity elements, O for + and 1 for -, as defined by
postulate 2.
3. The commutative laws are obvious from the symmetry of the binary operator tables.

4. (a) The distributive law x - (y + z) = (x-y) + (x-z) can be shown to hold from
the operator tables by forming a truth table of all possible values of x, y, and z. For
each combination, we derive x - (y + z) and show that the value is the same as the
value of (x-y) + (x-z):

X y z y+z x-(y+2) Xy |x-z|(x-y)+(x-2)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

(b) The distributive law of + over - can be shown to hold by means of a truth table
similar to the one in part (a).

5. From the complement table, it is easily shown that

(a)x +x"=1,since0 +0" =0+1=1landl +1'"=1+0=1.
(b) x-x" = 0,since 0-0' =01 =0and1-1"=1-0=0.
Thus, postulate 1 is verified.

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two elements,
1and O,with 1 # 0.

We have just established a two-valued Boolean algebra having a set of two elements,
1 and 0, two binary operators with rules equivalent to the AND and OR operations, and
a complement operator equivalent to the NOT operator. Thus, Boolean algebra has been
defined in a formal mathematical manner and has been shown to be equivalent to the
binary logic presented heuristically in Section 1.9. The heuristic presentation is helpful
in understanding the application of Boolean algebra to gate-type circuits. The formal

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.4 Basic Theorems and Properties of Boolean Algebra 43

presentation is necessary for developing the theorems and properties of the algebraic
system. The two-valued Boolean algebra defined in this section is also called “switching
algebra” by engineers. To emphasize the similarities between two-valued Boolean alge-
bra and other binary systems, that algebra was called “binary logic” in Section 1.9. From
here on, we shall drop the adjective “two-valued” from Boolean algebra in subsequent
discussions.

BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

In Section 2.3, the Huntington postulates were listed in pairs and designated by part
(a) and part (b). One part may be obtained from the other if the binary operators and
the identity elements are interchanged. This important property of Boolean algebra is
called the duality principle and states that every algebraic expression deducible from
the postulates of Boolean algebra remains valid if the operators and identity elements
are interchanged. In a two-valued Boolean algebra, the identity elements and the ele-
ments of the set B are the same: 1 and 0. The duality principle has many applications. If
the dual of an algebraic expression is desired, we simply interchange OR and AND
operators and replace 1’s by 0’s and 0’s by 1’s.

Basic Theorems

Table 2.1 lists six theorems of Boolean algebra and four of its postulates. The notation
is simplified by omitting the binary operator whenever doing so does not lead to
confusion. The theorems and postulates listed are the most basic relationships in Boolean

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2 (a) x+0=x (b) x-1=x
Postulate 5 (a) x+x'=1 (b) x-x"=0
Theorem 1 (a) X +x=x (b) X+*x =x
Theorem 2 (a) x+1=1 (b) x-0=0
Theorem 3, involution x) =x

Postulate 3, commutative (a) x+y=y+x (b) Xy = yx
Theorem 4, associative @ x+@+tz)=Cx+y +z (b) x(yz) = (xy)z

Postulate 4, distributive (a) x(y +z)=xy +xz ®) x+yz=(@+y(x+2)
Theorem 5, DeMorgan (a) (x +y) =x'y’ (b) (xy) =x" +y’
Theorem 6, absorption (a) X +txy=x (b) x(x +y)=x

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

44 Chapter 2 Boolean Algebra and Logic Gates

algebra. The theorems, like the postulates, are listed in pairs; each relation is the dual of
the one paired with it. The postulates are basic axioms of the algebraic structure and
need no proof. The theorems must be proven from the postulates. Proofs of the theorems
with one variable are presented next. At the right is listed the number of the postulate
which justifies that particular step of the proof.

THEOREM 1(a): x + x = x.

Statement Justification
x+x=(x+x)-1 postulate 2(b)
= (x + X)(x + x') 5(a)
=x + xx’ 4(b)
=x+0 5(b)
=x 2(a)

THEOREM 1(b): x-x = x.

Statement Justification
x-x=xx+0 postulate 2(a)
= xx + xx’ 5(b)
= x(x + x') 4(a)
=x-1 5(a)
=Xx 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof
in part (b) is the dual of its counterpart in part (a). Any dual theorem can be similarly
derived from the proof of its corresponding theorem.

THEOREM 2(a): x + 1 = 1.

Statement Justification
x+1=1-(x+1) postulate 2(b)
=x+x)(x+1) 5(a)
=x+x'-1 4(b)
=x+x' 2(b)
=1 5(a)

THEOREM 2(b): x -0 = 0 by duality.

THEOREM 3: (x')" = x.From postulate 5, we have x + x’ = land x-x' = 0, which
together define the complement of x. The complement of x" is x and is also (x')".

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.4 Basic Theorems and Properties of Boolean Algebra 45

Therefore, since the complement is unique, we have (x’)’ = x. The theorems involv-
ing two or three variables may be proven algebraically from the postulates and the
theorems that have already been proven. Take, for example, the absorption theorem:

THEOREM 6(a): x + xy = x.

Statement Justification
x+xy=x-1+xy postulate 2(b)
=x(1 +y) 4(a)
=x(y +1) 3(a)
=x-1 2(a)
=X 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be proven by means of truth tables. In truth
tables, both sides of the relation are checked to see whether they yield identical results
for all possible combinations of the variables involved. The following truth table verifies
the first absorption theorem:

TT xy | x+xy
0o 0 0
01 0 o0
1]0 0 1
1)1 ! 1

The algebraic proofs of the associative law and DeMorgan’s theorem are long and will
not be shown here. However, their validity is easily shown with truth tables. For example,
the truth table for the first DeMorgan’s theorem, (x + y)’ = x'y’, is as follows:

X yl|x+y (x+y) x|y | xy
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0|1 0
1 1 1 0 0|0 0

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses,
(2) NOT, (3) AND, and (4) OR. In other words, expressions inside parentheses must be
evaluated before all other operations. The next operation that holds precedence is the
complement, and then follows the AND and, finally, the OR. As an example, consider
the truth table for one of DeMorgan’s theorems. The left side of the expression is
(x + y)'. Therefore, the expression inside the parentheses is evaluated first and the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

46 Chapter 2 Boolean Algebra and Logic Gates

result then complemented. The right side of the expression is x'y’, so the complement
of x and the complement of y are both evaluated first and the result is then ANDed.
Note that in ordinary arithmetic, the same precedence holds (except for the comple-
ment) when multiplication and addition are replaced by AND and OR, respectively.

2.5 BOOLEAN FUNCTIONS

Boolean algebra is an algebra that deals with binary variables and logic operations. A
Boolean function described by an algebraic expression consists of binary variables, the
constants 0 and 1, and the logic operation symbols. For a given value of the binary variables,
the function can be equal to either 1 or 0. As an example, consider the Boolean function

Fi=x+y'z

The function F; is equal to 1 if x is equal to 1 or if both y' and z are equal to 1. F; is equal
to 0 otherwise. The complement operation dictates that when y’ = 1,y = 0. Therefore,
Fi=1ifx=1orify = 0and z = 1. A Boolean function expresses the logical rela-
tionship between binary variables and is evaluated by determining the binary value of
the expression for all possible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the
truth table is 2", where n is the number of variables in the function. The binary combina-
tions for the truth table are obtained from the binary numbers by counting from 0
through 2" — 1. Table 2.2 shows the truth table for the function F;. There are eight pos-
sible binary combinations for assigning bits to the three variables x, y, and z. The column
labeled F; contains either O or 1 for each of these combinations. The table shows that
the function is equal to 1 when x = 1 or when yz = 01 and is equal to 0 otherwise.

A Boolean function can be transformed from an algebraic expression into a circuit
diagram composed of logic gates connected in a particular structure. The logic-circuit
diagram (also called a schematic) for F; is shown in Fig.2.1. There is an inverter for input
y to generate its complement. There is an AND gate for the term y’z and an OR gate

Table 2.2

Truth Tables for F; and F,
X y z F,; F,
0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 0
1 1 1 1 0

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.5 Boolean Functions 47

)

FIGURE 2.1
Gate implementation of F; = x + y'z

that combines x with yz. In logic-circuit diagrams, the variables of the function are taken
as the inputs of the circuit and the binary variable F; is taken as the output of the circuit.
The schematic expresses the relationship between the output of the circuit and its inputs.
Rather than listing each combination of inputs and outputs, it indicates how to compute
the logic value of each output from the logic values of the inputs.

There is only one way that a Boolean function can be represented in a truth table.
However, when the function is in algebraic form, it can be expressed in a variety of ways,
all of which have equivalent logic. The particular expression used to represent the function
will dictate the interconnection of gates in the logic-circuit diagram. Conversely, the inter-
connection of gates will dictate the logic expression. Here is a key fact that motivates our
use of Boolean algebra: By manipulating a Boolean expression according to the rules of
Boolean algebra, it is sometimes possible to obtain a simpler expression for the same
function and thus reduce the number of gates in the circuit and the number of inputs to
the gate. Designers are motivated to reduce the complexity and number of gates because
their effort can significantly reduce the cost of a circuit. Consider, for example, the fol-
lowing Boolean function:

F,=x"y'z + x'yz + xy’

A schematic of an implementation of this function with logic gates is shown in
Fig. 2.2(a). Input variables x and y are complemented with inverters to obtain x’ and
y'. The three terms in the expression are implemented with three AND gates. The
OR gate forms the logical OR of the three terms. The truth table for F; is listed in
Table 2.2. The function is equal to 1 when xyz = 001 or 011 or when xy = 10 (irre-
spective of the value of z) and is equal to 0 otherwise. This set of conditions produces
four 1’s and four 0’s for F.

Now consider the possible simplification of the function by applying some of the
identities of Boolean algebra:

E=x"y'z+x'yz +xy' =x'z(y' +y) +xy' =x'z +xy'

The function is reduced to only two terms and can be implemented with gates as shown
in Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both
implement the same function. By means of a truth table, it is possible to verify that the
two expressions are equivalent. The simplified expression is equal to 1 when xz = 01 or
when xy = 10. This produces the same four 1’s in the truth table. Since both expressions

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

48 Chapter 2 Boolean Algebra and Logic Gates

>
>

L]
&

(a) F =x"y'z + x'yz + xy’

P>
—

J U

b)F,=xy' +x'z
FIGURE 2.2
Implementation of Boolean function F, with gates

produce the same truth table, they are equivalent. Therefore, the two circuits have the
same outputs for all possible binary combinations of inputs of the three variables. Each
circuit implements the same identical function, but the one with fewer gates and fewer
inputs to gates is preferable because it requires fewer wires and components. In general,
there are many equivalent representations of a logic function. Finding the most eco-
nomic representation of the logic is an important design task.

Algebraic Manipulation

When a Boolean expression is implemented with logic gates, each term requires a gate
and each variable within the term designates an input to the gate. We define a literal to
be a single variable within a term, in complemented or uncomplemented form. The
function of Fig. 2.2(a) has three terms and eight literals, and the one in Fig. 2.2(b) has
two terms and four literals. By reducing the number of terms, the number of literals, or
both in a Boolean expression, it is often possible to obtain a simpler circuit. The manip-
ulation of Boolean algebra consists mostly of reducing an expression for the purpose of
obtaining a simpler circuit. Functions of up to five variables can be simplified by the
map method described in the next chapter. For complex Boolean functions and many

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.5 Boolean Functions 49

different outputs, designers of digital circuits use computer minimization programs that
are capable of producing optimal circuits with millions of logic gates. The concepts intro-
duced in this chapter provide the framework for those tools. The only manual method
available is a cut-and-try procedure employing the basic relations and other manipulation
techniques that become familiar with use, but remain, nevertheless, subject to human
error. The examples that follow illustrate the algebraic manipulation of Boolean algebra
to acquaint the reader with this important design task.

EXAMPLE 2.1

Simplify the following Boolean functions to a minimum number of literals.

L x(x' +y)=xx" +xy =0+ xy = xy.
2. xtx'y=x+x)x+y)=1lx+y)=x+y.
3. x+y)x+ty)y=x+txy+txy +yy =x(1+y+y)=nx
4. xy +x'z+yz=xy +x'z + yz(x + x')

=xy +x'z +xyz + x'yz

=xy(1 +z2) +x'z(1 +y)

=xy + x'z.
5. (x + y)(x" + 2)(y + 2) = (x + y)(x' + z), by duality from function 4.

|

Functions 1 and 2 are the dual of each other and use dual expressions in correspond-
ing steps. An easier way to simplify function 3 is by means of postulate 4(b) from
Table 2.1: (x + y)(x + y') = x + yy’ = x.The fourth function illustrates the fact that
an increase in the number of literals sometimes leads to a simpler final expression.
Function 5 is not minimized directly, but can be derived from the dual of the steps used
to derive function 4. Functions 4 and 5 are together known as the consensus theorem.

Complement of a Function

The complement of a function F is ' and is obtained from an interchange of 0’s for 1’s
and 1’s for 0’s in the value of F. The complement of a function may be derived algebraically
through DeMorgan’s theorems, listed in Table 2.1 for two variables. DeMorgan’s theo-
rems can be extended to three or more variables. The three-variable form of the first
DeMorgan’s theorem is derived as follows, from postulates and theorems listed in Table 2.1:

(A+B+C)' =(A+x) letB+C=x
= A'x' by theorem 5(a) (DeMorgan)
= A'(B + C)’ substitute B + C = x
= A'(B'C’') by theorem 5(a) (DeMorgan)
= A'B'C’ by theorem 4(b) (associative)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

50 Chapter 2 Boolean Algebra and Logic Gates

DeMorgan’s theorems for any number of variables resemble the two-variable case in
form and can be derived by successive substitutions similar to the method used in the
preceding derivation. These theorems can be generalized as follows:

(A+B+C+D+ —I—F')’ = A'B'C'D'... F'
(ABCD ... F)) =A"+B'"+C'"+D'"+ --- + F
The generalized form of DeMorgan’s theorems states that the complement of a func-

tion is obtained by interchanging AND and OR operators and complementing each
literal.

EXAMPLE 2.2

Find the complement of the functions F; = x'yz’ + x'y’zand F, = x(y'z" + yz). By
applying DeMorgan’s theorems as many times as necessary, the complements are
obtained as follows:
Fi = (x'yz" +x'y'2)" = (x'yz) (x'y'2)" = (x +y' +)x +y + 27)
=[x’z +y9)]" =x"+ 'z +y) =x"+ (') ()
=x'++90" +2)
— x! + yZ, + y,Z
|

A simpler procedure for deriving the complement of a function is to take the dual of
the function and complement each literal. This method follows from the generalized
forms of DeMorgan’s theorems. Remember that the dual of a function is obtained from
the interchange of AND and OR operators and 1’s and 0’s.

EXAMPLE 2.3

Find the complement of the functions F; and F, of Example 2.2 by taking their duals
and complementing each literal.
1. Fi=x"yz' +x'y'z.
The dual of Fyis (x' + y + z')(x' + y' + 2).
Complement each literal: (x + y" + z)(x +y + z') = F|.
2. F,=x(y'z" + y2).
The dual of Frisx + (y' + z')(y + 2).
Complement each literal: x" + (y + z)(y' + z') = F;.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.6 Canonical and Standard Forms 51

2.6 CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x").
Now consider two binary variables x and y combined with an AND operation. Since each
variable may appear in either form, there are four possible combinations: x'y’, x'y, xy’,
and xy. Each of these four AND terms is called a minterm, or a standard product. In a
similar manner, n variables can be combined to form 2" minterms. The 2" different min-
terms may be determined by a method similar to the one shown in Table 2.3 for three
variables. The binary numbers from 0 to 2" — 1 are listed under the n variables. Each
minterm is obtained from an AND term of the n variables, with each variable being
primed if the corresponding bit of the binary number is a 0 and unprimed if a 1. A symbol
for each minterm is also shown in the table and is of the form m;, where the subscript j
denotes the decimal equivalent of the binary number of the minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being primed
or unprimed, provide 2" possible combinations, called maxterms, or standard sums. The
eight maxterms for three variables, together with their symbolic designations, are listed
in Table 2.3. Any 2" maxterms for n variables may be determined similarly. It is impor-
tant to note that (1) each maxterm is obtained from an OR term of the »n variables, with
each variable being unprimed if the corresponding bit is a 0 and primed if a 1, and (2)
each maxterm is the complement of its corresponding minterm and vice versa.

A Boolean function can be expressed algebraically from a given truth table by form-
ing a minterm for each combination of the variables that produces a 1 in the function
and then taking the OR of all those terms. For example, the function f; in Table 2.4 is
determined by expressing the combinations 001, 100, and 111 as x'y’z, xy’z, and xyz,
respectively. Since each one of these minterms results in f; = 1, we have

fi=xy'z+xy'z' +xyz =my + my + my

Table 2.3
Minterms and Maxterms for Three Binary Variables
Minterms Maxterms

X y z Term Designation Term Designation
0 0 0 x'y'z’ my x+y+z M,
0 0 1 x'y'z m x+y+z M,
0 1 0 x'yz' m, x+y +z M,
0 1 1 x'yz my x+y +z M;
1 0 0 xy'z' my x'"+y+z M,
1 0 1 xy'z ms x'"+y+z M;
1 1 0 xyz' mg x'"+y +z Mg
1 1 1 xyz my x"+y + 2z M,

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

52 Chapter 2 Boolean Algebra and Logic Gates

Table 2.4

Functions of Three Variables
X y z Function f; Function f,
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Similarly, it may be easily verified that
fHh=x'yz +xy'z + xyz' + xyz = mz + ms + mg + my

These examples demonstrate an important property of Boolean algebra: Any Boolean
function can be expressed as a sum of minterms (with “sum” meaning the ORing of terms).

Now consider the complement of a Boolean function. It may be read from the truth
table by forming a minterm for each combination that produces a 0 in the function and
then ORing those terms. The complement of f; is read as

o

fi=xy'z +x'yvz' + x'yz +xy'z + xyz’
If we take the complement of f, we obtain the function f;:
h=@+y+)x+y +2)x" +y+z2)x +y +2)
= MO-MZ'M3'M5'M6
Similarly, it is possible to read the expression for f, from the table:
h=tyt+t gty +2)x+y +29x" +y+2)
== MOM1M2M4

These examples demonstrate a second property of Boolean algebra: Any Boolean func-
tion can be expressed as a product of maxterms (with “product” meaning the ANDing
of terms). The procedure for obtaining the product of maxterms directly from the truth
table is as follows: Form a maxterm for each combination of the variables that produces

a 0 in the function, and then form the AND of all those maxterms. Boolean functions
expressed as a sum of minterms or product of maxterms are said to be in canonical form.

Sum of Minterms

Previously, we stated that, for n binary variables, one can obtain 2" distinct minterms and
that any Boolean function can be expressed as a sum of minterms. The minterms whose
sum defines the Boolean function are those which give the 1’s of the function in a

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.6 Canonical and Standard Forms 53

truth table. Since the function can be either 1 or 0 for each minterm, and since there are
2" minterms, one can calculate all the functions that can be formed with n variables to
be 2%". It is sometimes convenient to express a Boolean function in its sum-of-minterms
form. If the function is not in this form, it can be made so by first expanding the expres-
sion into a sum of AND terms. Each term is then inspected to see if it contains all the
variables. If it misses one or more variables, it is ANDed with an expression such as
x + x', where x is one of the missing variables. The next example clarifies this procedure.

EXAMPLE 2.4

Express the Boolean function ' = A + B'C as a sum of minterms. The function has
three variables: A, B, and C.The first term A is missing two variables; therefore,

A =AB + B') = AB + AB’
This function is still missing one variable, so
A=AB(C+ C")+ AB'(C + (')
= ABC + ABC' + AB'C + AB'C’
The second term B'C is missing one variable; hence,
B'C=B'C(A+ A'"y=AB'C+ A'B'C
Combining all terms, we have
F=A+ B'C
= ABC + ABC' + AB'C + AB'C' + A'B'C
But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to

remove one of those occurrences. Rearranging the minterms in ascending order, we
finally obtain

F=A'B'C+ AB'C + AB'C + ABC' + ABC
m1+m4+m5+m6+m7

When a Boolean function is in its sum-of-minterms form, it is sometimes convenient to
express the function in the following brief notation:

F(A,B,C) = %(1,4,5,6,7)

The summation symbol X stands for the ORing of terms; the numbers following it are
the indices of the minterms of the function. The letters in parentheses following F form
a list of the variables in the order taken when the minterm is converted to an AND term.
An alternative procedure for deriving the minterms of a Boolean function is to obtain
the truth table of the function directly from the algebraic expression and then read the
minterms from the truth table. Consider the Boolean function given in Example 2.4:

F=A+B'C

The truth table shown in Table 2.5 can be derived directly from the algebraic expres-
sion by listing the eight binary combinations under variables A, B, and C and inserting

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

54 Chapter 2 Boolean Algebra and Logic Gates

Table 2.5

Truth Table for F = A + B'C
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

1’s under F for those combinations for which A = 1 and BC = 01. From the truth table,
we can then read the five minterms of the function tobe 1,4, 5,6, and 7.

Product of Maxterms

Each of the 22" functions of n binary variables can be also expressed as a product of
maxterms. To express a Boolean function as a product of maxterms, it must first be
brought into a form of OR terms. This may be done by using the distributive law,
X + yz = (x + y)(x + z). Then any missing variable x in each OR term is ORed with
xx'. The procedure is clarified in the following example.

EXAMPLE 2.5

Express the Boolean function FF = xy + x'z as a product of maxterms. First, convert
the function into OR terms by using the distributive law:

F=xy+x'z=(xy+x")xy+2)
=@+ x)y +x)x +)y + 2)
=KX +y)x+ 20O+ 2)
The function has three variables: x, y, and z. Each OR term is missing one variable;
therefore,

X'+y=x"+y+tzz'=x' +y+2)x' +y+2z)
xtz=x+tz+yy =@x+y+2)x+y +2)
yvtz=y+tz+x'=x+y+z2)x +y+2)

Combining all the terms and removing those which appear more than once, we finally
obtain
F=x+y+2)x+y +2)x" +y+2)x" +y+z7')
= MMM Mj5

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.6 Canonical and Standard Forms 55

A convenient way to express this function is as follows:
F(x,y,z) = 11(0, 2,4, 5)

The product symbol, I, denotes the ANDing of maxterms; the numbers are the indices
of the maxterms of the function.

Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of min-
terms missing from the original function. This is because the original function is expressed
by those minterms which make the function equal to 1, whereas its complement is a 1 for
those minterms for which the function is a 0. As an example, consider the function

F(A,B,C) = %(1,4,5,6,7)
This function has a complement that can be expressed as
F’(A,B, C) - 2(0, 2, 3) = my + ny + ms

Now, if we take the complement of F' by DeMorgan’s theorem, we obtain F in a differ-
ent form:

F = (mo + my + m3)' == mE)'m'z'mé = MOM2M3 = H(O, 2, 3)
The last conversion follows from the definition of minterms and maxterms as shown in
Table 2.3. From the table, it is clear that the following relation holds:

r—

That is, the maxterm with subscript j is a complement of the minterm with the same
subscript j and vice versa.

The last example demonstrates the conversion between a function expressed in sum-
of-minterms form and its equivalent in product-of-maxterms form. A similar argument
will show that the conversion between the product of maxterms and the sum of minterms
is similar. We now state a general conversion procedure: To convert from one canonical
form to another, interchange the symbols 3 and IT and list those numbers missing from
the original form. In order to find the missing terms, one must realize that the total number
of minterms or maxterms is 2", where # is the number of binary variables in the function.

A Boolean function can be converted from an algebraic expression to a product of
maxterms by means of a truth table and the canonical conversion procedure. Consider,
for example, the Boolean expression

F=xy+x'z
First, we derive the truth table of the function, as shown in Table 2.6. The 1’s under Fin
the table are determined from the combination of the variables for which xy = 11 or

xz = 01. The minterms of the function are read from the truth table to be 1,3, 6, and 7.
The function expressed as a sum of minterms is

F(x,y,z) = 2(1,3,6,7)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

56 Chapter 2 Boolean Algebra and Logic Gates

Table 2.6
Truth Table for F = xy + x'z
X y F
0 0 0 0 Minterms
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1 Maxterms
1 1 1 1

Since there is a total of eight minterms or maxterms in a function of three variables, we
determine the missing terms to be 0, 2,4, and 5. The function expressed as a product of
maxterms is

F(x,y,z) = 11(0, 2,4, 5)

the same answer as obtained in Example 2.5.

Standard Forms

The two canonical forms of Boolean algebra are basic forms that one obtains from read-
ing a given function from the truth table. These forms are very seldom the ones with the
least number of literals, because each minterm or maxterm must contain, by definition,
all the variables, either complemented or uncomplemented.

Another way to express Boolean functions is in standard form. In this configuration,
the terms that form the function may contain one, two, or any number of literals. There
are two types of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product
terms, with one or more literals each. The sum denotes the ORing of these terms. An
example of a function expressed as a sum of products is

Fi=y +xy+x'yz’

The expression has three product terms, with one, two, and three literals. Their sum is,
in effect, an OR operation.

The logic diagram of a sum-of-products expression consists of a group of AND gates
followed by a single OR gate. This configuration pattern is shown in Fig. 2.3(a). Each
product term requires an AND gate, except for a term with a single literal. The logic sum
is formed with an OR gate whose inputs are the outputs of the AND gates and the
single literal. It is assumed that the input variables are directly available in their comple-
ments, so inverters are not included in the diagram. This circuit configuration is referred
to as a two-level implementation.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.6 Canonical and Standard Forms 57

Yy X
=] >—= T o>—)—-=
L — =D

(a) Sum of Products (b) Product of Sums

FIGURE 2.3
Two-level implementation

A —]
A — B —

By
o — r € —D — F
By

g:Dj i: —1
F—

(a) AB + C(D + E) (b)AB + CD + CE

FIGURE 2.4
Three- and two-level implementation

A product of sums is a Boolean expression containing OR terms, called sum terms.
Each term may have any number of literals. The product denotes the ANDing of these
terms. An example of a function expressed as a product of sums is

F=x(y +2)x" +y+2z)

This expression has three sum terms, with one, two, and three literals. The product is an
AND operation. The use of the words product and sum stems from the similarity of the
AND operation to the arithmetic product (multiplication) and the similarity of the OR
operation to the arithmetic sum (addition). The gate structure of the product-of-sums
expression consists of a group of OR gates for the sum terms (except for a single literal),
followed by an AND gate, as shown in Fig. 2.3(b). This standard type of expression
results in a two-level structure of gates.

A Boolean function may be expressed in a nonstandard form. For example, the function

F; = AB + C(D + E)

is neither in sum-of-products nor in product-of-sums form. The implementation of this
expression is shown in Fig.2.4(a) and requires two AND gates and two OR gates. There
are three levels of gating in this circuit. It can be changed to a standard form by using
the distributive law to remove the parentheses:

F;=AB + C(D + E) = AB + CD + CE

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

58 Chapter 2 Boolean Algebra and Logic Gates

The sum-of-products expression is implemented in Fig. 2.4(b). In general, a two-level
implementation is preferred because it produces the least amount of delay through the
gates when the signal propagates from the inputs to the output. However, the number
of inputs to a given gate might not be practical.

2.7 OTHER LOGIC OPERATIONS

When the binary operators AND and OR are placed between two variables, x and y,
they form two Boolean functions, x - y and x + y, respectively. Previously we stated that
there are 2" functions for n binary variables. Thus, for two variables, n = 2, and the
number of possible Boolean functions is 16. Therefore, the AND and OR functions
are only 2 of a total of 16 possible functions formed with two binary variables. It would
be instructive to find the other 14 functions and investigate their properties.

The truth tables for the 16 functions formed with two binary variables are listed in
Table 2.7 Each of the 16 columns, Fj to F;s, represents a truth table of one possible func-
tion for the two variables, x and y. Note that the functions are determined from the
16 binary combinations that can be assigned to F. The 16 functions can be expressed
algebraically by means of Boolean functions, as is shown in the first column of Table 2.8.
The Boolean expressions listed are simplified to their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND,
OR, and NOT, there is no reason one cannot assign special operator symbols for express-
ing the other functions. Such operator symbols are listed in the second column of
Table 2.8. However, of all the new symbols shown, only the exclusive-OR symbol, @,
is in common use by digital designers.

Each of the functions in Table 2.8 is listed with an accompanying name and a com-
ment that explains the function in some way.! The 16 functions listed can be subdivided
into three categories:

1. Two functions that produce a constant 0 or 1.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND,
OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

Table 2.7

Truth Tables for the 16 Functions of Two Binary Variables
x y | Fb FR F, F3 F, F; Fs F, Fg Fo Fio Fyu Fiz Fi3 Fiy Fis
0 0 0 O o o o o o0 1 1 1 1 1 1 1 1
0 1 o o o o 1t 1t 1 1 O O O O 1 1 1 1
1 0 o o 1 1 o0 o0 1 1 o0 O 1 1 o0 O 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

IThe symbol " is also used to indicate the exclusive or operator, e.g., x'y. The symbol for the AND function is
sometimes omitted from the product of two variables, e.g., xy.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.7 Other Logic Operations 59

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables
Operator
Boolean Functions Symbol Name Comments
Fp,=0 Null Binary constant 0
F =xy x-y AND xandy
F, = xy’ x/y Inhibition x, but not y
F;=x Transfer X
Fy=x'y v/x Inhibition y, but not x
Fs=y Transfer y
Fo=xy +x'y x®y Exclusive-OR x or y, but not both
F,=x+y X +y OR xory
Fg=(x +y) xly NOR Not-OR
Fo=xy +x'y’ x®@y) Equivalence x equals y
Fy=y' y' Complement Not y
Fpu=x+y' xCy Implication If y, then x
Fi, = x' x' Complement Not x
Fs=x"+y xDy Implication If x, then y
Fiy = (xy)’ xTy NAND Not-AND
Fis=1 Identity Binary constant 1

Constants for binary functions can be equal to only 1 or 0. The complement function
produces the complement of each of the binary variables. A function that is equal to an
input variable has been given the name transfer, because the variable x or y is transferred
through the gate that forms the function without changing its value. Of the eight binary
operators, two (inhibition and implication) are used by logicians, but are seldom used
in computer logic. The AND and OR operators have been mentioned in conjunction
with Boolean algebra. The other four functions are used extensively in the design of
digital systems.

The NOR function is the complement of the OR function, and its name is an
abbreviation of not-OR. Similarly, NAND is the complement of AND and is an
abbreviation of not-AND. The exclusive-OR, abbreviated XOR, is similar to OR, but
excludes the combination of both x and y being equal to 1;it holds only when x and y
differ in value. (It is sometimes referred to as the binary difference operator.) Equiv-
alence is a function that is 1 when the two binary variables are equal (i.e., when both
are 0 or both are 1). The exclusive-OR and equivalence functions are the comple-
ments of each other. This can be easily verified by inspecting Table 2.7: The truth
table for exclusive-OR is Fg and for equivalence is Fy, and these two functions are
the complements of each other. For this reason, the equivalence function is called
exclusive-NOR, abbreviated XNOR.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

60 Chapter 2 Boolean Algebra and Logic Gates

Boolean algebra, as defined in Section 2.2, has two binary operators, which we have
called AND and OR, and a unary operator, NOT (complement). From the definitions,
we have deduced a number of properties of these operators and now have defined other
binary operators in terms of them. There is nothing unique about this procedure. We
could have just as well started with the operator NOR (), for example, and later
defined AND, OR, and NOT in terms of it. There are, nevertheless, good reasons for
introducing Boolean algebra in the way it has been introduced. The concepts of “and,”
“or,” and “not” are familiar and are used by people to express everyday logical ideas.
Moreover, the Huntington postulates reflect the dual nature of the algebra, emphasizing
the symmetry of + and - with respect to each other.

2.8 DIGITAL LOGIC GATES

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is
easier to implement a Boolean function with these type of gates. Still, the possibility of
constructing gates for the other logic operations is of practical interest. Factors to be
weighed in considering the construction of other types of logic gates are (1) the feasibil-
ity and economy of producing the gate with physical components, (2) the possibility of
extending the gate to more than two inputs, (3) the basic properties of the binary oper-
ator,such as commutativity and associativity, and (4) the ability of the gate to implement
Boolean functions alone or in conjunction with other gates.

Of the 16 functions defined in Table 2.8, two are equal to a constant and four are
repeated. There are only 10 functions left to be considered as candidates for logic gates.
Two—inhibition and implication—are not commutative or associative and thus are
impractical to use as standard logic gates. The other eight —complement, transfer, AND,
OR, NAND, NOR, exclusive-OR, and equivalence —are used as standard gates in
digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig. 2.5. Each
gate has one or two binary input variables, designated by x and y, and one binary output
variable, designated by F. The AND, OR, and inverter circuits were defined in Fig. 1.6.
The inverter circuit inverts the logic sense of a binary variable, producing the NOT, or
complement, function. The small circle in the output of the graphic symbol of an inverter
(referred to as a bubble) designates the logic complement. The triangle symbol by itself
designates a buffer circuit. A buffer produces the transfer function, but does not produce
a logic operation, since the binary value of the output is equal to the binary value of the
input. This circuit is used for power amplification of the signal and is equivalent to two
inverters connected in cascade.

The NAND function is the complement of the AND function, as indicated by a
graphic symbol that consists of an AND graphic symbol followed by a small circle. The
NOR function is the complement of the OR function and uses an OR graphic symbol
followed by a small circle. NAND and NOR gates are used extensively as standard logic
gates and are in fact far more popular than the AND and OR gates. This is because
NAND and NOR gates are easily constructed with transistor circuits and because digital
circuits can be easily implemented with them.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.8 Digital Logic Gates 61

Graphic Algebraic Truth
Name symbol function table
x yl| F
X — _ 0 0] O
AND y }F F=x-y o 1! o
1 0] 0
1 1] 1
x yl| F
OR x _ 0 0/ 0
y :DiF F=xty 0 11
1 0] 1
1 1] 1
x| F
Inverter x—Do— F F=x T 1
110
x| F
Buffer _D— =]
X F F=x ol o
111
x yl| F
* 0 0| 1
F F= !
NAND y (xy) o 1| 1
1 0] 1
1 1] 0
x yl| F
X , 0 0o 1
F=(x+
NOR i %F (x +) o 1l o
1 0] 0
1 1] 0
x y| F
Exclusive-OR X F=xy +x'y 0 0] O
(XOR) y £ By 0 1 1
1 0] 1
1 1] 0
x yl| F
Exclusi(;lre—NOR X - F=xy+xy' 0o ol 1
. y :):) > =(xDy) 0 1/ 0
equivalence 1 ol o
1 1] 1
FIGURE 2.5

Digital logic gates

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

62 Chapter 2 Boolean Algebra and Logic Gates

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except
for the additional curved line on the input side. The equivalence, or exclusive-NOR, gate
is the complement of the exclusive-OR, as indicated by the small circle on the output
side of the graphic symbol.

Extension to Multiple Inputs

The gates shown in Fig. 2.5—except for the inverter and buffer —can be extended to
have more than two inputs. A gate can be extended to have multiple inputs if the binary
operation it represents is commutative and associative. The AND and OR operations,
defined in Boolean algebra, possess these two properties. For the OR function, we have

x+y=y+x (commutative)
and

(x+y)+z=x+(y+2z) =x+y+z (associative)

which indicates that the gate inputs can be interchanged and that the OR function can
be extended to three or more variables.

The NAND and NOR functions are commutative, and their gates can be extended
to have more than two inputs, provided that the definition of the operation is modified
slightly. The difficulty is that the NAND and NOR operators are not associative
(ie.,(x | y) | z # x| (v | 2)),as shown in Fig. 2.6 and the following equations:

xiylz=[x+y) +z]' =+yz =xz" +yz
x|l =k+O+)] =x'(+2z)=xy+xz

To overcome this difficulty, we define the multiple NOR (or NAND) gate as a
complemented OR (or AND) gate. Thus, by definition, we have

x| lylz=@x+y+2)
x1Ty1z=(xyz)

The graphic symbols for the three-input gates are shown in Fig. 2.7 In writing cascaded
NOR and NAND operations, one must use the correct parentheses to signify the proper
sequence of the gates. To demonstrate this principle, consider the circuit of Fig. 2.7(c).
The Boolean function for the circuit must be written as

F = [(ABC)'(DE)']' = ABC + DE

The second expression is obtained from one of DeMorgan’s theorems. It also shows that
an expression in sum-of-products form can be implemented with NAND gates. (NAND
and NOR gates are discussed further in Section 3.7)

The exclusive-OR and equivalence gates are both commutative and associative and
can be extended to more than two inputs. However, multiple-input exclusive-OR gates
are uncommon from the hardware standpoint. In fact, even a two-input function is usu-
ally constructed with other types of gates. Moreover, the definition of the function must
be modified when extended to more than two variables. Exclusive-OR is an odd function
(i.e.,it is equal to 1 if the input variables have an odd number of 1’s). The construction

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.8 Digital Logic Gates 63

xdlz)=x"(y+2)

y v(xiy)iz=(x+y)z’

FIGURE 2.6
Demonstrating the nonassociativity of the NOR operator: (x | y) | z = x | (y | 2)

x x —]
y (x+y+z) y—} (xyz)’
z z—

(a) 3-input NOR gate (b) 3-input NAND gate
A —
B EE—
C EE—

} F=[(ABC)' - (DE)']' = ABC + DE

D
E EE—

(c) Cascaded NAND gates

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gates

of a three-input exclusive-OR function is shown in Fig. 2.8. This function is normally
implemented by cascading two-input gates, as shown in (a). Graphically, it can be
represented with a single three-input gate, as shown in (b). The truth table in (c) clearly
indicates that the output Fis equal to 1 if only one input is equal to 1 or if all three inputs
are equal to 1 (i.e., when the total number of 1’s in the input variables is odd). (Exclusive-
OR gates are discussed further in Section 3.9.)

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except
during transition. One signal value represents logic 1 and the other logic 0. Since two
signal values are assigned to two logic values, there exist two different assignments of

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

64 Chapter 2 Boolean Algebra and Logic Gates

X y z F
y

_ 0 0 0 0
. / F=x®y®dz 0 0 1 1
0 1 0 1
(a) Using 2-input gates 0o 1 1 0
1 0 0 1
1 0 1 0
N 1 1 0 0
y ﬂ —— F=x®yDz ol !

b4

(b) -input gate (c) Truth table
FIGURE 2.8
Three-input exclusive-OR gate
Logic Signal Logic Signal
value value value value
1 I H 0 I H
0 L 1 L
a) Positive logic egative logic
(a) Positive logi (b) Negative logi

FIGURE 2.9
Signal assignment and logic polarity

signal level to logic value, as shown in Fig. 2.9. The higher signal level is designated by
H and the lower signal level by L. Choosing the high-level H to represent logic 1 defines
a positive logic system. Choosing the low-level L to represent logic 1 defines a negative
logic system. The terms positive and negative are somewhat misleading, since both sig-
nals may be positive or both may be negative. It is not the actual values of the signals
that determine the type of logic, but rather the assignment of logic values to the relative
amplitudes of the two signal levels.

Hardware digital gates are defined in terms of signal values such as H and L. It is up
to the user to decide on a positive or negative logic polarity. Consider, for example, the
electronic gate shown in Fig. 2.10(b). The truth table for this gate is listed in Fig. 2.10(a).
It specifies the physical behavior of the gate when H is 3V and L is 0 V. The truth table
of Fig. 2.10(c) assumes a positive logic assignment, with H = 1 and L = 0. This truth
table is the same as the one for the AND operation. The graphic symbol for a positive
logic AND gate is shown in Fig. 2.10(d).

Now consider the negative logic assignment for the same physical gate with L = 1
and H = 0. The result is the truth table of Fig. 2.10(e). This table represents the OR
operation, even though the entries are reversed. The graphic symbol for the negative-
logic OR gate is shown in Fig. 2.10(f). The small triangles in the inputs and output

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.8 Digital Logic Gates 65

x oy z
X
st o |
H L L y gate
H H H
mble (b) Gate block diagram
with H and L
x y z
0 0 0
0 1 0 .
1 0 0 —]
z
ik p—

(c) Truth table for (d) Positive logic AND gate
positive logic

x oy z

111

1 o0 |1

0 1 1 . z
0 0 [0 y

(e) Truth table for (f) Negative logic OR gate
negative logic
FIGURE 2.10
Demonstration of positive and negative logic

designate a polarity indicator, the presence of which along a terminal signifies that
negative logic is assumed for the signal. Thus, the same physical gate can operate either
as a positive-logic AND gate or as a negative-logic OR gate.

The conversion from positive logic to negative logic and vice versa is essentially
an operation that changes 1’s to 0’s and 0’s to 1’s in both the inputs and the output
of a gate. Since this operation produces the dual of a function, the change of all ter-
minals from one polarity to the other results in taking the dual of the function. The
upshot is that all AND operations are converted to OR operations (or graphic sym-
bols) and vice versa. In addition, one must not forget to include the polarity-indicator
triangle in the graphic symbols when negative logic is assumed. In this book, we will
not use negative logic gates and will assume that all gates operate with a positive logic
assignment.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

66 Chapter 2 Boolean Algebra and Logic Gates

2.9 INTEGRATED CIRCUITS

An integrated circuit (IC) is fabricated on a die of a silicon semiconductor crystal, called
a chip, containing the electronic components for constructing digital gates. The complex
chemical and physical processes used to form a semiconductor circuit are not a subject
of this book. The various gates are interconnected inside the chip to form the required
circuit. The chip is mounted in a ceramic or plastic container, and connections are welded
to external pins to form the integrated circuit. The number of pins may range from 14
on a small IC package to several thousand on a larger package. Each IC has a numeric
designation printed on the surface of the package for identification. Vendors provide
data books, catalogs, and Internet websites that contain descriptions and information
about the ICs that they manufacture.

Levels of Integration

Digital ICs are often categorized according to the complexity of their circuits, as mea-
sured by the number of logic gates in a single package. The differentiation between those
chips which have a few internal gates and those having hundreds of thousands of gates
is made by customary reference to a package as being either a small-, medium-, large-,
or very large-scale integration device.

Small-scale integration (SS1) devices contain several independent gates in a single
package. The inputs and outputs of the gates are connected directly to the pins in the
package. The number of gates is usually fewer than 10 and is limited by the number of
pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to
1,000 gates in a single package. They usually perform specific elementary digital opera-
tions. MSI digital functions are introduced in Chapter 4 as decoders, adders, and multi-
plexers and in Chapter 6 as registers and counters.

Large-scale integration (LSI) devices contain thousands of gates in a single package.
They include digital systems such as processors, memory chips, and programmable logic
devices. Some LSI components are presented in Chapter 7.

Very large-scale integration (VLSI) devices now contain millions of gates within a
single package. Examples are large memory arrays and complex microcomputer chips.
Because of their small size and low cost, VLSI devices have revolutionized the computer
system design technology, giving the designer the capability to create structures that
were previously uneconomical to build.

Digital Logic Families

Digital integrated circuits are classified not only by their complexity or logical operation,
but also by the specific circuit technology to which they belong. The circuit technology
is referred to as a digital logic family. Each logic family has its own basic electronic
circuit upon which more complex digital circuits and components are developed. The
basic circuit in each technology is a NAND, NOR, or inverter gate. The electronic

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 2.9 Integrated Circuits 67

components employed in the construction of the basic circuit are usually used to name
the technology. Many different logic families of digital integrated circuits have been
introduced commercially. The following are the most popular:

TTL transistor—transistor logic;
ECL emitter-coupled logic;
MOS metal-oxide semiconductor;

CMOS complementary metal-oxide semiconductor.

TTL is a logic family that has been in use for 50 years and is considered to be stan-
dard. ECL has an advantage in systems requiring high-speed operation. MOS is suitable
for circuits that need high component density, and CMOS is preferable in systems
requiring low power consumption, such as digital cameras, personal media players, and
other handheld portable devices. Low power consumption is essential for VLSI design;
therefore, CMOS has become the dominant logic family, while TTL and ECL continue
to decline in use. The most important parameters distinguishing logic families are listed
below; CMOS integrated circuits are discussed briefly in the appendix.

Fan-out specifies the number of standard loads that the output of a typical gate can
drive without impairing its normal operation. A standard load is usually defined as the
amount of current needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.

Power dissipation is the power consumed by the gate that must be available from the
power supply.

Propagation delay is the average transition delay time for a signal to propagate from
input to output. For example, if the input of an inverter switches from 0 to 1, the output
will switch from 1 to 0, but after a time determined by the propagation delay of the
device. The operating speed is inversely proportional to the propagation delay.

Noise margin is the maximum external noise voltage added to an input signal that
does not cause an undesirable change in the circuit output.

Computer-Aided Design of VLSI Circuits

Integrated circuits having submicron geometric features are manufactured by optically
projecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coated
with a photoresistive material that either hardens or softens when exposed to light.
Removing extraneous photoresist leaves patterns of exposed silicon. The exposed
regions are then implanted with dopant atoms to create a semiconductor material hav-
ing the electrical properties of transistors and the logical properties of gates. The design
process translates a functional specification or description of the circuit (i.e., what it must
do) into a physical specification or description (how it must be implemented in silicon).

The design of digital systems with VLSI circuits containing millions of transistors and
gates is an enormous and formidable task. Systems of this complexity are usually impos-
sible to develop and verify without the assistance of computer-aided design (CAD)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

68 Chapter 2 Boolean Algebra and Logic Gates

tools, which consist of software programs that support computer-based representations
of circuits and aid in the development of digital hardware by automating the design
process. Electronic design automation (EDA) covers all phases of the design of inte-
grated circuits. A typical design flow for creating VLSI circuits consists of a sequence of
steps beginning with design entry (e.g., entering a schematic) and culminating with the
generation of the database that contains the photomask used to fabricate the IC. There
are a variety of options available for creating the physical realization of a digital circuit
in silicon. The designer can choose between an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a programmable logic device (PLD),
and a full-custom IC. With each of these devices comes a set of CAD tools that provide
the necessary software to facilitate the hardware fabrication of the unit. Each of these
technologies has a market niche determined by the size of the market and the unit cost
of the devices that are required to implement a design.

Some CAD systems include an editing program for creating and modifying schematic
diagrams on a computer screen. This process is called schematic capture or schematic
entry. With the aid of menus, keyboard commands, and a mouse, a schematic editor can
draw circuit diagrams of digital circuits on the computer screen. Components can be
placed on the screen from a list in an internal library and can then be connected with
lines that represent wires. The schematic entry software creates and manages a database
containing the information produced with the schematic. Primitive gates and functional
blocks have associated models that allow the functionality (i.e., logical behavior) and
timing of the circuit to be verified. Verification is performed by applying inputs to the
circuit and using a logic simulator to determine and display the outputs in text or wave-
form format.

An important development in the design of digital systems is the use of a hardware
description language (HDL). Such a language resembles a computer programming
language, but is specifically oriented to describing digital hardware. It represents logic
diagrams and other digital information in textual form to describe the functionality
and structure of a circuit. Moreover, the HDL description of a circuit’s functionality
can be abstract, without reference to specific hardware, thereby freeing a designer to
devote attention to higher level functional detail (e.g., under certain conditions the
circuit must detect a particular pattern of 1’s and 0’s in a serial bit stream of data) rather
than transistor-level detail. HDL-based models of a circuit or system are simulated to
check and verify its functionality before it is submitted to fabrication, thereby reducing
the risk and waste of manufacturing a circuit that fails to operate correctly. In tandem
with the emergence of HDL-based design languages, tools have been developed to
automatically and optimally synthesize the logic described by an HDL model of a
circuit. These two advances in technology have led to an almost total reliance by indus-
try on HDL-based synthesis tools and methodologies for the design of the circuits of
complex digital systems. Two HDLs— Verilog and VHDL —have been approved as
standards by the Institute of Electronics and Electrical Engineers (IEEE) and are in
use by design teams worldwide. The Verilog HDL is introduced in Section 3.10, and
because of its importance, we include several exercises and design problems based on
Verilog throughout the book.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 69

PROBLEMS

(Answers to problems marked with * appear at the end of the text.)

2.1 Demonstrate the validity of the following identities by means of truth tables:
(a) DeMorgan’s theorem for three variables: (x + y + z)’ = x'y'z" and (xyz)' =
x"+y + 2z
(b) The distributive law: x + yz = (x + y)(x + 2)
(c) The distributive law: x(y + z) = xy + xz
(d) The associative law:x +(y+z)=(x+y)+z
(e) The associative law and x(yz) = (xy)z

2.2 Simplify the following Boolean expressions to a minimum number of literals:

(a)* xy+xy’ () (x +y) (x +y")
(e)* xyz+x'y +xy2 (d)* (A +B)' (A" + B)’
(e) (a+b+c')a b +c) (f) a’bc+abc’ +abc+a'bc’
2.3 Simplify the following Boolean expressions to a minimum number of literals:
(a)* ABC + A'B + ABC' (b)* x'yz+xz
(©)F (x +9) (x" +) (d)* xy +x(wz +w2')
(e)* (BC' + A'D) (AB' + CD") () (a'+c)(@a+b +c')
2.4 Reduce the following Boolean expressions to the indicated number of literals:
(a)* A'C' + ABC + AC' to three literals
d)* (x'y" +2z2) +z+xy+wz to three literals
(c)* A'B(D' + C'D) + B(A + A'CD) to one literal
(d)* A"+ C)(A"+ C")(A+ B+ C'D) to four literals
() ABC'D+A'BD+ABCD to two literals
2.5 Draw logic diagrams of the circuits that implement the original and simplified expressions
in Problem 2.2.
2.6 Draw logic diagrams of the circuits that implement the original and simplified expressions
in Problem 2.3.
2.7 Draw logic diagrams of the circuits that implement the original and simplified expressions
in Problem 2.4.

2.8 Find the complement of F=wx + yz; then show that FF' = Oand F+ F' = 1.

2.9 Find the complement of the following expressions:
(a)* xy' +x'y ®) (a+c)(a+d’)(a"+b+c")
(c) z+tz/(v'w+uxy)
2.10 Given the Boolean functions F; and F,, show that
(a) The Boolean function E = F| + F, contains the sum of the minterms of F; and F,.
(b) The Boolean function G = F|F, contains only the minterms that are common to F;
and F,.

2.11 List the truth table of the function:
(a)* F=xy+txy' +y'z (b) F=bc+a'c’

2.12 We can perform logical operations on strings of bits by considering each pair of correspond-
ing bits separately (called bitwise operation). Given two eight-bit strings A = 10110001
and B =10101100, evaluate the eight-bit result after the following logical operations:
(a)* AND (b) OR (c)* XOR (d)* NOT A (e) NOT B

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

70 Chapter 2 Boolean Algebra and Logic Gates

2.13 Draw logic diagrams to implement the following Boolean expressions:
(@) y=[u+x") (' +2)]
(b)) y=(u @ y) +x
(¢) y=@' +x") (y+2z)
(d) y=ulx ® z)+y’
(e) y=u+yz+uxy
f) y=u+tx+x"(uty’)
2.14 Implement the Boolean function
F=xy + x'y" + y'z
(a) With AND, OR, and inverter gates
(b)* With OR and inverter gates
(c) With AND and inverter gates
(d) With NAND and inverter gates
(e) With NOR and inverter gates

2.15%* Simplify the following Boolean functions 7 and 7, to a minimum number of literals:

A B 4 T T,
0 0 0 | 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1

2.16 The logical sum of all minterms of a Boolean function of » variables is 1.
(a) Prove the previous statement for n=3.
(b) Suggest a procedure for a general proof.

2.17 Obtain the truth table of the following functions, and express each function in sum-of-min-
terms and product-of-maxterms form:
(a)* (b+cd)(c+bd) (b) (cd+b'c+bd")(b+d)
() (c'+d)b+c") (d) bd' +acd’' +ab'c+a’c’
2.18 For the Boolean function
F=xy'z+x'y'z+wxy+ wx'y + wxy
(a) Obtain the truth table of F.
(b) Draw the logic diagram, using the original Boolean expression.
(c)* Use Boolean algebra to simplify the function to a minimum number of literals.
(d) Obtain the truth table of the function from the simplified expression and show that
it is the same as the one in part (a).

(e) Draw the logic diagram from the simplified expression, and compare the total number
of gates with the diagram of part (b).

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 71

2.19* Express the following function as a sum of minterms and as a product of maxterms:
F(A,B,C,D) = B'D + AD + BD
2.20 Express the complement of the following functions in sum-of-minterms form:
(a) F(A,B,C, D)= 2>(2,4,710,12,14)
(b) Fx, y, 2)=1I(3,5,7)
2.21 Convert each of the following to the other canonical form:
(a) F(x,y,2)=2(1,3,5)
(b) F(A, B, C, D)=11(3,5,8,11)
2.22% Convert each of the following expressions into sum of products and product of sums:
(@) (u+xw)(x+u'v)
(®) x" + x(x +y)(y + 2')
2.23 Draw the logic diagram corresponding to the following Boolean expressions without sim-
plifying them:
(a) BC'+ AB + ACD
(b) (A + B)(C+ D)A' + B+ D)
(¢) (AB+ A'B")(CD’" + C'D)
(d) A+CD+(A+D")C'+D)
2.24 Show that the dual of the exclusive-OR is equal to its complement.

2.25 By substituting the Boolean expression equivalent of the binary operations as defined in
Table 2.8, show the following:
(a) The inhibition operation is neither commutative nor associative.
(b) The exclusive-OR operation is commutative and associative.

2.26 Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

2.27 Write the Boolean equations and draw the logic diagram of the circuit whose outputs are
defined by the following truth table:

Table P2.27

fi f, a b c
1 1 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 0 1 1
1 0 1 0 0
0 1 1 0 1
1 0 1 1 1

2.28 Write Boolean expressions and construct the truth tables describing the outputs of the
circuits described by the logic diagrams in Fig. P2.28.

2.29 Determine whether the following Boolean equation is true or false.

xry/ + x/Z + xlzr — xrz/ + y/Zr + xrz

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

72 Chapter 2 Boolean Algebra and Logic Gates

— >
"1 :
=D e jD pE=

(@) (b)
FIGURE P2.28

2.30 Write the following Boolean expressions in sum of products form:
(b +d)(a +b +)
2.37 Write the following Boolean expression in product of sums form:
a'b +a'c" + abc

REFERENCES
1. Bootk, G. 1854. An Investigation of the Laws of Thought. New York: Dover.
2 DIETMEYER, D. L. 1988. Logic Design of Digital Systems, 3rd ed. Boston: Allyn and Bacon.

3. HuntinGToN, E. V. Sets of independent postulates for the algebra of logic. Trans. Am. Math.
Soc.,5 (1904): 288-3009.

4. IEEE Standard Hardware Description Language Based on the Verilog Hardware Descrip-
tion Language, Language Reference Manual (LRM), IEEE Std.1364-1995, 1996, 2001,
2005, The Institute of Electrical and Electronics Engineers, Piscataway, NJ.

5. IEEE Standard VHDL Language Reference Manual (LRM), IEEE Std. 1076-1987, 1988,
The Institute of Electrical and Electronics Engineers, Piscataway, NJ.

6. Mano, M. M. and C. R. KimE. 2000. Logic and Computer Design Fundamentals, 2nd ed.
Upper Saddle River, NJ: Prentice Hall.

7. SuannNoN, C. E. A symbolic analysis of relay and switching circuits. Trans. AIEE, 57 (1938):
713-723.

WEB SEARCH TOPICS

Algebraic field
Boolean logic
Boolean gates
Bipolar transistor
Field-effect transistor
Emitter-coupled logic
TTL logic

CMOS logic

CMOS process

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 3
Gate-Level Minimization

3.1 INTRODUCTION

Gate-level minimization is the design task of finding an optimal gate-level implementa-
tion of the Boolean functions describing a digital circuit. This task is well understood,
but is difficult to execute by manual methods when the logic has more than a few inputs.
Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean
equations efficiently and quickly. Nevertheless, it is important that a designer understand
the underlying mathematical description and solution of the problem. This chapter serves
as a foundation for your understanding of that important topic and will enable you to
execute a manual design of simple circuits, preparing you for skilled use of modern
design tools. The chapter will also introduce a hardware description language that is used
by modern design tools.

3.2 THE MAP METHOD

The complexity of the digital logic gates that implement a Boolean function is directly
related to the complexity of the algebraic expression from which the function is imple-
mented. Although the truth table representation of a function is unique, when it is expressed
algebraically it can appear in many different, but equivalent, forms. Boolean expressions may
be simplified by algebraic means as discussed in Section 2.4. However, this procedure of
minimization is awkward because it lacks specific rules to predict each succeeding step in
the manipulative process. The map method presented here provides a simple, straightforward
procedure for minimizing Boolean functions. This method may be regarded as a pictorial
form of a truth table. The map method is also known as the Karnaugh map or K-map.

73

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

74 Chapter 3 Gate-Level Minimization

A K-map is a diagram made up of squares, with each square representing one minterm
of the function that is to be minimized. Since any Boolean function can be expressed as a
sum of minterms, it follows that a Boolean function is recognized graphically in the map
from the area enclosed by those squares whose minterms are included in the function. In
fact, the map presents a visual diagram of all possible ways a function may be expressed
in standard form. By recognizing various patterns, the user can derive alternative algebraic
expressions for the same function, from which the simplest can be selected.

The simplified expressions produced by the map are always in one of the two standard
forms: sum of products or product of sums. It will be assumed that the simplest algebraic
expression is an algebraic expression with a minimum number of terms and with the
smallest possible number of literals in each term. This expression produces a circuit
diagram with a minimum number of gates and the minimum number of inputs to each
gate. We will see subsequently that the simplest expression is not unique: It is sometimes
possible to find two or more expressions that satisfy the minimization criteria. In that
case, either solution is satisfactory.

Two-Variable K-Map

The two-variable map is shown in Fig. 3.1(a). There are four minterms for two variables;
hence, the map consists of four squares, one for each minterm. The map is redrawn in
(b) to show the relationship between the squares and the two variables x and y. The 0
and 1 marked in each row and column designate the values of variables. Variable x
appears primed in row 0 and unprimed in row 1. Similarly, y appears primed in column
0 and unprimed in column 1.

If we mark the squares whose minterms belong to a given function, the two-variable
map becomes another useful way to represent any one of the 16 Boolean functions of
two variables. As an example, the function xy is shown in Fig. 3.2(a). Since xy is equal to
ms, a 1 is placed inside the square that belongs to m;. Similarly, the function x + y is
represented in the map of Fig. 3.2(b) by three squares marked with 1’s. These squares
are found from the minterms of the function:

my+m +my=x'y+xy txy=x-+y

y
—_——

N 0 1
m, my

my nmy O x'y" | x'y
m, [z

my ms X911 xy' xy
() (b)

FIGURE 3.1
Two-variable K-map

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.2 The Map Method 75

y y
y PR —_
x 0 1 X J 0 1
m, m my my y
0 0 11—
m, [z m, my
x41 1 X441 1 1
(a) xy (b)x+y

FIGURE 3.2
Representation of functions in the map

The three squares could also have been determined from the intersection of variable
x in the second row and variable y in the second column, which encloses the area
belonging to x or y. In each example, the minterms at which the function is asserted are
marked with a 1.

Three-Variable K-Map

A three-variable K-map is shown in Fig. 3.3. There are eight minterms for three binary
variables; therefore, the map consists of eight squares. Note that the minterms are
arranged, not in a binary sequence, but in a sequence similar to the Gray code (Table 1.6).
The characteristic of this sequence is that only one bit changes in value from one adjacent
column to the next. The map drawn in part (b) is marked with numbers in each row and
each column to show the relationship between the squares and the three variables. For
example, the square assigned to m5 corresponds to row 1 and column 01. When these two
numbers are concatenated, they give the binary number 101, whose decimal equivalent
is 5. Each cell of the map corresponds to a unique minterm, so another way of looking at
square ms = xy'z is to consider it to be in the row marked x and the column belonging
to y'z (column 01). Note that there are four squares in which each variable is equal to 1
and four in which each is equal to 0. The variable appears unprimed in the former four

yz _—
* 00 01 11 10
WIU ml W13 mz
my m ms my 0)x'y'z" | x'y'z | x'yz | x'yz’
my ms m;, mg
nmy ms my mg X1\ xy'z' | xy'z | xyz | xyz’'
———

(a) (®)

FIGURE 3.3
Three-variable K-map

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

76 Chapter 3 Gate-Level Minimization

squares and primed in the latter. For convenience, we write the variable with its letter
symbol under the four squares in which it is unprimed.

To understand the usefulness of the map in simplifying Boolean functions, we must
recognize the basic property possessed by adjacent squares: Any two adjacent squares
in the map differ by only one variable, which is primed in one square and unprimed in
the other. For example, ms and m; lie in two adjacent squares. Variable y is primed in
ms and unprimed in m;, whereas the other two variables are the same in both squares.
From the postulates of Boolean algebra, it follows that the sum of two minterms in
adjacent squares can be simplified to a single product term consisting of only two liter-
als. To clarify this concept, consider the sum of two adjacent squares such as ms and m:

ms + m; = xy'z + xyz = xz(y'+y) = xz

Here, the two squares differ by the variable y, which can be removed when the sum of
the two minterms is formed. Thus, any two minterms in adjacent squares (vertically or
horizontally, but not diagonally, adjacent) that are ORed together will cause a removal
of the dissimilar variable. The next four examples explain the procedure for minimizing
a Boolean function with a K-map.

EXAMPLE 3.1

Simplify the Boolean function

F(x,y,z) = 2(2,3,4,5)

First, a 1 is marked in each minterm square that represents the function. This is shown
in Fig. 3.4, in which the squares for minterms 010,011,100, and 101 are marked with 1’s.
The next step is to find possible adjacent squares. These are indicated in the map by two
shaded rectangles, each enclosing two 1’s. The upper right rectangle represents the area
enclosed by x'y. This area is determined by observing that the two-square area is in row
0, corresponding to x’, and the last two columns, corresponding to y. Similarly, the lower
left rectangle represents the product term xy’. (The second row represents x and the
two left columns represent y'.) The sum of four minterms can be replaced by a sum of

yz _L x'y
* 00 01 11 10
mg m ny m,
0 1 1
my ms my mg
x91 1 1
-
z
xy

FIGURE 3.4
Map for Example 3.1, F(x, y, z2) = 2(2, 3, 4, 5) = x'y + xy’

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.2 The Map Method 77

only two product terms. The logical sum of these two product terms gives the simplified
expression

F=x'y +xy’
|
In certain cases, two squares in the map are considered to be adjacent even though
they do not touch each other. In Fig. 3.3(b), m, is adjacent to m, and my is adjacent to

my because their minterms differ by one variable. This difference can be readily verified
algebraically:

Iy, o1

my+my =x'y'z' +x'yz' =x'z'(y +y)=x'7
my +mg=xy'z' + xyz' = xz' +(y' +y)=xz7’
Consequently, we must modify the definition of adjacent squares to include this and

other similar cases. We do so by considering the map as being drawn on a surface in
which the right and left edges touch each other to form adjacent squares.

EXAMPLE 3.2

Simplify the Boolean function
F(x,y,2) =32(3,4,6,7)

The map for this function is shown in Fig. 3.5. There are four squares marked with 1’s,
one for each minterm of the function. Two adjacent squares are combined in the third
column to give a two-literal term yz. The remaining two squares with 1’s are also adja-
cent by the new definition. These two squares, when combined, give the two-literal term
xz'. The simplified function then becomes

F=yz +xz7’
y
yz -
X 00 01 11 10
my my ms ”’2// yz
0 1 —
my ms my, mg
x31 1 1 1
-
xy'z’' ‘ xyz'
Note:xy'z' + xyz' = xz'
FIGURE 3.5
Map for Example 3.2, F (x, y, z) = (3, 4, 6, 7) = yz + xZ' [

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

78 Chapter 3 Gate-Level Minimization

Consider now any combination of four adjacent squares in the three-variable map.
Any such combination represents the logical sum of four minterms and results in an
expression with only one literal. As an example, the logical sum of the four adjacent
minterms 0, 2, 4, and 6 reduces to the single literal term z":

A

mo + my +my +mg=x'y'z" +x'yz' +xy'z' + xyz’
=Xz’ y) Fx’)
=x'z' +xz' =7/(x" +x) =7
The number of adjacent squares that may be combined must always represent a
number that is a power of two, such as 1, 2,4, and 8. As more adjacent squares are com-
bined, we obtain a product term with fewer literals.
One square represents one minterm, giving a term with three literals.
Two adjacent squares represent a term with two literals.
Four adjacent squares represent a term with one literal.

Eight adjacent squares encompass the entire map and produce a function that is
always equal to 1.

EXAMPLE 3.3

Simplify the Boolean function
F(x,y,z) = 2(0,2,4,5,6)

The map for Fis shown in Fig. 3.6. First, we combine the four adjacent squares in the
first and last columns to give the single literal term z'. The remaining single square,
representing minterm 5, is combined with an adjacent square that has already been used
once. This is not only permissible, but rather desirable, because the two adjacent squares
give the two-literal term xy’ and the single square represents the three-literal minterm
xy'z. The simplified function is

F=z +xy
y

¥z —_—

o X 00 01 11 10

yz ’
\ mg m ms m, yz
L —
my, ms m; mg
xq1 1 1 1
N —
’ Z
xy

Note:y'z' +yz' =7’

FIGURE 3.6
Map for Example 3.3, F(x, y, z) = %(0, 2,4, 5,6) = z' + xy’

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.2 The Map Method 79

If a function is not expressed in sum-of-minterms form, it is possible to use the map to
obtain the minterms of the function and then simplify the function to an expression with a
minimum number of terms. It is necessary, however, to make sure that the algebraic expres-
sion is in sum-of-products form. Each product term can be plotted in the map in one, two,
or more squares. The minterms of the function are then read directly from the map.

EXAMPLE 3.4

For the Boolean function

F=A'C+ A'B+ AB'C + BC

(a) Express this function as a sum of minterms.
(b) Find the minimal sum-of-products expression.

Note that Fis a sum of products. Three product terms in the expression have two literals
and are represented in a three-variable map by two squares each. The two squares cor-
responding to the first term, A'C, are found in Fig. 3.7 from the coincidence of A’ (first
row) and C (two middle columns) to give squares 001 and 011. Note that, in marking
1’s in the squares, it is possible to find a 1 already placed there from a preceding term.
This happens with the second term, A’ B, which has 1’s in squares 011 and 010. Square
011 is common with the first term, A'C, though, so only one 1 is marked in it. Continu-
ing in this fashion, we determine that the term AB’C belongs in square 101, correspond-
ing to minterm 5, and the term BC has two 1’s in squares 011 and 111. The function has
a total of five minterms, as indicated by the five 1’s in the map of Fig. 3.7. The minterms
are read directly from the map to be 1,2, 3,5, and 7. The function can be expressed in
sum-of-minterms form as

F(A,B,C) = 3(1,2,3,5,7)

The sum-of-products expression, as originally given, has too many terms. It can be
simplified, as shown in the map, to an expression with only two terms:

F=C+ A'B
c B
B ’
A 00 01 11 10 A'B
m, my my m,
0 1 1 1
my ms m; mg
A{1l 1 1
P —
C
C

FIGURE 3.7
Map of Example 3.4, A’'C + A'B + AB'C + BC = C + A'B

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

80 Chapter 3 Gate-Level Minimization

3.3 FOUR-VARIABLE K-MAP

The map for Boolean functions of four binary variables (w, x, y, z) is shown in Fig. 3.8.
In Fig. 3.8(a) are listed the 16 minterms and the squares assigned to each. In Fig. 3.8(b),
the map is redrawn to show the relationship between the squares and the four variables.
The rows and columns are numbered in a Gray code sequence, with only one digit
changing value between two adjacent rows or columns. The minterm corresponding to
each square can be obtained from the concatenation of the row number with the column
number. For example, the numbers of the third row (11) and the second column (01),
when concatenated, give the binary number 1101, the binary equivalent of decimal 13.
Thus, the square in the third row and second column represents minterm ;3.

The map minimization of four-variable Boolean functions is similar to the method
used to minimize three-variable functions. Adjacent squares are defined to be squares
next to each other. In addition, the map is considered to lie on a surface with the top
and bottom edges, as well as the right and left edges, touching each other to form adja-
cent squares. For example, m and m, form adjacent squares, as do m; and n1y;. The
combination of adjacent squares that is useful during the simplification process is easily
determined from inspection of the four-variable map:

One square represents one minterm, giving a term with four literals.
Two adjacent squares represent a term with three literals.

Four adjacent squares represent a term with two literals.

Eight adjacent squares represent a term with one literal.

Sixteen adjacent squares produce a function that is always equal to 1.

No other combination of squares can simplify the function. The next two examples
show the procedure used to simplify four-variable Boolean functions.

y
vz —_—
wx 00 01 11 10
My ny ny n,
m my ms my 00 |w'x'y'z'|w'x'y'z| wx'yz |w'x'yz’
ny mg m; mg
my ms my mg 0l |w'xy'z" | wxy'z | wxyz | wxyz’
X
My myy mys My
myp my3 mys myy 11| wxy'z" | wxy'z | wxyz | wxyz’
w
nig my myy My
mg my my myg 10| wx'y'z" | wx'y'z | wx'yz [wx'yz’
-

(a) (b)

FIGURE 3.8
Four-variable map

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.3 Four-Variable K-Map 81

EXAMPLE 3.5

Simplify the Boolean function
F(w,x,y,z) = 2(0,1,2,4,5,6,8,9,12, 13, 14)

Since the function has four variables, a four-variable map must be used. The minterms
listed in the sum are marked by 1’s in the map of Fig. 3.9. Eight adjacent squares marked
with 1’s can be combined to form the one literal term y’. The remaining three 1’s on the
right cannot be combined to give a simplified term; they must be combined as two or
four adjacent squares. The larger the number of squares combined, the smaller is the
number of literals in the term. In this example, the top two 1’s on the right are combined
with the top two 1’s on the left to give the term w’z’. Note that it is permissible to use
the same square more than once. We are now left with a square marked by 1 in the third
row and fourth column (square 1110). Instead of taking this square alone (which will
give a term with four literals), we combine it with squares already used to form an area
of four adjacent squares. These squares make up the two middle rows and the two end
columns, giving the term xz'. The simplified function is

F=y +wz +xz/

yz —_—
wx

w'y’z' my my my m,
s 1 1
\ w'yz'
my mg my myg
01 1 1 1
X
M my3 mys myy
11] 1 1 1 — /
X'z’ xyz
W mg ny myy KoT
10 1 1
[—
, z
y
Note:w'y'z' + w'yz' =w'z’
xy'z" + xyz' = xz'
FIGURE 3.9
Map for Example 3.5, F(w, x, y, z) = %(0,1,2,4,5,6,8,9,12,13, 14) =
y+wz + xz' m

EXAMPLE 3.6

Simplify the Boolean function
F=A'B'C'+ B'CD'"+ A’'BCD' + AB'C’

The area in the map covered by this function consists of the squares marked with 1’s in
Fig. 3.10. The function has four variables and, as expressed, consists of three terms with

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

82 Chapter 3 Gate-Level Minimization

A'B'C’
C
ABD CD —_——
A'B'C'D’ 00 01 11 10
\ my, my ms ny ~— A/B/CD/
00> 1 1 1
my ms m, mg
01 1 A'CD’
My KO s My B
11
A
Zs my myy KOT
10 1 1 1
~ ~
™ ap'cp’

AB'C'D’ _b—\ AB'C

Note: A'B'C'D" + A'B'CD' = A'B'D’
AB'C'D' + AB'CD' = AB'D'
A'B'D' + AB'D' = B'D’
A'B'C' + AB'C' = B'C’
FIGURE 3.10
Map for Example 3.6, A’B'C’ + B'CD’ + A’BCD’ + AB'C’ = B'D' + B'C' + A'CD’

three literals each and one term with four literals. Each term with three literals is repre-
sented in the map by two squares. For example, A'B'C’ is represented in squares 0000
and 0001. The function can be simplified in the map by taking the 1’s in the four corners
to give the term B'D . This is possible because these four squares are adjacent when the
map is drawn in a surface with top and bottom edges, as well as left and right edges,
touching one another. The two left-hand 1’s in the top row are combined with the two
1’s in the bottom row to give the term B’ C". The remaining 1 may be combined in a two-
square area to give the term A'CD’. The simplified function is

F=B'D"+B'C"+ A'CD’

Prime Implicants

In choosing adjacent squares in a map, we must ensure that (1) all the minterms of the
function are covered when we combine the squares, (2) the number of terms in the
expression is minimized, and (3) there are no redundant terms (i.e., minterms already
covered by other terms). Sometimes there may be two or more expressions that satisfy
the simplification criteria. The procedure for combining squares in the map may be made
more systematic if we understand the meaning of two special types of terms. A prime
implicant is a product term obtained by combining the maximum possible number of
adjacent squares in the map. If a minterm in a square is covered by only one prime
implicant, that prime implicant is said to be essential.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.3 Four-Variable K-Map 83

The prime implicants of a function can be obtained from the map by combining all
possible maximum numbers of squares. This means that a single 1 on a map represents
a prime implicant if it is not adjacent to any other 1’s. Two adjacent 1’s form a prime
implicant, provided that they are not within a group of four adjacent squares. Four
adjacent 1’s form a prime implicant if they are not within a group of eight adjacent
squares, and so on. The essential prime implicants are found by looking at each square
marked with a 1 and checking the number of prime implicants that cover it. The prime
implicant is essential if it is the only prime implicant that covers the minterm.

Consider the following four-variable Boolean function:

F(A,B,C,D) = 3(0,2,3,5,7,8,9, 10, 11, 13, 15)

The minterms of the function are marked with 1’s in the maps of Fig. 3.11. The partial
map (Fig. 3.11(a)) shows two essential prime implicants, each formed by collapsing four
cells into a term having only two literals. One term is essential because there is only one
way to include minterm m, within four adjacent squares. These four squares define the
term B'D’. Similarly, there is only one way that minterm m5 can be combined with four
adjacent squares, and this gives the second term BD.The two essential prime implicants
cover eight minterms. The three minterms that were omitted from the partial map
(m3, mg, and my;) must be considered next.

Figure 3.11(b) shows all possible ways that the three minterms can be covered with
prime implicants. Minterm 5 can be covered with either prime implicant CD or prime
implicant B'C. Minterm m9 can be covered with either AD or AB'. Minterm my; is
covered with any one of the four prime implicants. The simplified expression is obtained
from the logical sum of the two essential prime implicants and any two prime implicants

C C
AB 00 01 11 10 AB 00 01 11 10
m m, my m, A'B'CD’ m, m, my m,
00 -1 1 00 1 1 1
A'B'C'D’ / - ™ — — CD \m.l\ ms m; g
AD 01 1
BD i_ 1 1 \ \K\
My my3 ms myy B 3 s 15 My B'C
11 1 1 11 N~ 1 1
A A
g my my myy g {7 1 My
10 1 1 10 / 1 1 1 1
AB'CD’
AB'C'D' D D
Note: A'B'C'D' + A'B'CD’' = A'B'D’ AB'

AB'C'D' + AB'CD' = AB'D’
A'B'D' + AB'D" = B'D'

(a) Essential prime implicants (b) Prime implicants CD, B'C,
BD and B'D’ AD, and AB’
FIGURE 3.11

Simplification using prime implicants

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

84 Chapter 3 Gate-Level Minimization

that cover minterms m3, m9, and mq;. There are four possible ways that the function can
be expressed with four product terms of two literals each:

F=BD +B'D'"+CD + AD
=BD + B'D" + CD + AB’
=BD + B'D'+ B'C+ AD
=BD + B'D" + B'C + AB’

The previous example has demonstrated that the identification of the prime implicants in
the map helps in determining the alternatives that are available for obtaining a simplified
expression.

The procedure for finding the simplified expression from the map requires that we
first determine all the essential prime implicants. The simplified expression is obtained
from the logical sum of all the essential prime implicants, plus other prime implicants
that may be needed to cover any remaining minterms not covered by the essential prime
implicants. Occasionally, there may be more than one way of combining squares, and
each combination may produce an equally simplified expression.

Five-Variable Map

Maps for more than four variables are not as simple to use as maps for four or fewer
variables. A five-variable map needs 32 squares and a six-variable map needs 64 squares.
When the number of variables becomes large, the number of squares becomes excessive
and the geometry for combining adjacent squares becomes more involved.

Maps for more than four variables are difficult to use and will not be considered here.

3.4 PRODUCT-OF-SUMS SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were
expressed in sum-of-products form. With a minor modification, the product-of-sums
form can be obtained.

The procedure for obtaining a minimized function in product-of-sums form follows
from the basic properties of Boolean functions. The 1’s placed in the squares of the
map represent the minterms of the function. The minterms not included in the standard
sum-of-products form of a function denote the complement of the function. From this
observation, we see that the complement of a function is represented in the map by
the squares not marked by 1’s. If we mark the empty squares by 0’s and combine them
into valid adjacent squares, we obtain a simplified sum-of-products expression of the
complement of the function (i.e., of F’). The complement of F’ gives us back the func-
tion F in product-of-sums form (a consequence of DeMorgan’s theorem). Because of
the generalized DeMorgan’s theorem, the function so obtained is automatically in
product-of-sums form. The best way to show this is by example.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.4 Product-of-Sums Simplification 85

EXAMPLE 3.7

Simplify the following Boolean function into (a) sum-of-products form and
(b) product-of-sums form:

F(A,B,C,D) = 2(0,1,2,5,8,9,10)
The 1’s marked in the map of Fig. 3.12 represent all the minterms of the function. The
squares marked with 0’s represent the minterms not included in F and therefore denote

the complement of F. Combining the squares with 1’s gives the simplified function in
sum-of-products form:

(a) F=B'D' +B'C' +A'C'D

If the squares marked with 0’s are combined, as shown in the diagram, we obtain
the simplified complemented function:

F'=AB + CD + BD'

Applying DeMorgan’s theorem (by taking the dual and complementing each
literal as described in Section 2.4), we obtain the simplified function in product-
of-sums form:

(b) F=(A"+B")(C'+D')(B"+ D)
|

The gate-level implementation of the simplified expressions obtained in Example 3.7 is
shown in Fig. 3.13. The sum-of-products expression is implemented in (a) with a group of
AND gates, one for each AND term. The outputs of the AND gates are connected to the
inputs of a single OR gate. The same function is implemented in (b) in its product-of-sums

Cc
CcD —_———
AB 00 01 11 10
cD
my ny g n, l—
ol 1 1 o1 |,BcD
BC'D’
\ m, ms m, mg
orT~0 1 0 0
my my; mys myy B
11| o 0 0] o
A m, m, m m
8 9 11 10
0] 1 1 0 1 \AB
—
D

Note: BC'D' + BCD' = BD'

FIGURE 3.12
Map for Example 3.7, F (A, B, C, D) = %(0,1, 2, 5, 8,9,10) = B'D' + B'C' + A'C’'D =
(A" + B')(C' + D")(B' + D)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

86 Chapter 3 Gate-Level Minimization

:
:

_\—\ C' —
c D —1 " D —:D—}F

D _
(@ F=B'D' + B'C' + A'C'D (b)F=(A"+B')(C +D')(B +D)

:
%

FIGURE 3.13
Gate implementations of the function of Example 3.7

Table 3.1

Truth Table of Function F
X y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

form with a group of OR gates, one for each OR term. The outputs of the OR gates are
connected to the inputs of a single AND gate. In each case, it is assumed that the input
variables are directly available in their complement, so inverters are not needed. The con-
figuration pattern established in Fig. 3.13 is the general form by which any Boolean function
is implemented when expressed in one of the standard forms. AND gates are connected
to a single OR gate when in sum-of-products form; OR gates are connected to a single
AND gate when in product-of-sums form. Either configuration forms two levels of gates.
Thus, the implementation of a function in a standard form is said to be a two-level imple-
mentation. The two-level implementation may not be practical, depending on the number
of inputs to the gates.

Example 3.7 showed the procedure for obtaining the product-of-sums simplifica-
tion when the function is originally expressed in the sum-of-minterms canonical form.
The procedure is also valid when the function is originally expressed in the product-
of-maxterms canonical form. Consider, for example, the truth table that defines the
function F in Table 3.1. In sum-of-minterms form, this function is expressed as

F(x,y,z) = 2(1,3,4,6)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.4 Product-of-Sums Simplification 87

y
vz A
X 00 01 11 10
my m my m, ,
of o |t | 14T *°
my ms my mg
x<1| 1 0 0 1

XZ

FIGURE 3.14
Map for the function of Table 3.1

In product-of-maxterms form, it is expressed as
F(x,y,z) =11(0,2,5,7)

In other words, the 1’s of the function represent the minterms and the 0’s represent
the maxterms. The map for this function is shown in Fig. 3.14. One can start simplify-
ing the function by first marking the 1’s for each minterm that the function is a 1. The
remaining squares are marked by 0’s. If, instead, the product of maxterms is initially
given, one can start marking 0’s in those squares listed in the function; the remaining
squares are then marked by 1’s. Once the 1’s and 0’s are marked, the function can be
simplified in either one of the standard forms. For the sum of products, we combine
the 1’s to obtain

F=x'z+xz'

For the product of sums, we combine the 0’s to obtain the simplified complemented
function

F' =xz +x'7

which shows that the exclusive-OR function is the complement of the equivalence func-
tion (Section 2.6). Taking the complement of F’, we obtain the simplified function in
product-of-sums form:

F=x"+2z2)(x+ 2)

To enter a function expressed in product-of-sums form into the map, use the comple-
ment of the function to find the squares that are to be marked by 0’s. For example, the
function

F=A"+B +C)B+ D)
can be entered into the map by first taking its complement, namely,

F'=ABC + B'D’

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

88 Chapter 3 Gate-Level Minimization

and then marking 0’s in the squares representing the minterms of F'. The remaining
squares are marked with 1’s.

3.5 DON'T-CARE CONDITIONS

The logical sum of the minterms associated with a Boolean function specifies the con-
ditions under which the function is equal to 1. The function is equal to 0 for the rest of
the minterms. This pair of conditions assumes that all the combinations of the values
for the variables of the function are valid. In practice, in some applications the function
is not specified for certain combinations of the variables. As an example, the four-bit
binary code for the decimal digits has six combinations that are not used and conse-
quently are considered to be unspecified. Functions that have unspecified outputs for
some input combinations are called incompletely specified functions. In most applica-
tions, we simply don’t care what value is assumed by the function for the unspecified
minterms. For this reason, it is customary to call the unspecified minterms of a function
don’t-care conditions. These don’t-care conditions can be used on a map to provide
further simplification of the Boolean expression.

A don’t-care minterm is a combination of variables whose logical value is not speci-
fied. Such a minterm cannot be marked with a 1 in the map, because it would require
that the function always be a 1 for such a combination. Likewise, putting a 0 on the
square requires the function to be 0. To distinguish the don’t-care condition from 1’s and
0’s, an X is used. Thus, an X inside a square in the map indicates that we don’t care
whether the value of 0 or 1 is assigned to F for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care min-
terms may be assumed to be either 0 or 1. When simplifying the function, we can choose
to include each don’t-care minterm with either the 1’s or the 0’s, depending on which
combination gives the simplest expression.

EXAMPLE 3.8

Simplify the Boolean function

F(w,x,vy,2) = 2(1,3,7,11, 15)
which has the don’t-care conditions

d(w,x,y,z) = 2(0,2,5)

The minterms of F are the variable combinations that make the function equal to 1. The
minterms of d are the don’t-care minterms that may be assigned either O or 1. The map
simplification is shown in Fig. 3.15. The minterms of F are marked by 1’s, those of d are
marked by X’s, and the remaining squares are filled with 0’s. To get the simplified expres-
sion in sum-of-products form, we must include all five 1’s in the map, but we may or may
not include any of the X’s, depending on the way the function is simplified. The term yz
covers the four minterms in the third column. The remaining minterm, 71, can be combined

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.5 Don’t-Care Conditions 89

y y
vz —_— Yz —_—
wx 00 01 11 10 wr 00 01 11 10
m, m; iy m, ny i g my
00 X 1 1 X 0] X 1 1 X
wix' —] Wz —F—
ny ms ny Mg my mg m, mg
01 0 X 1 0 01 0 X 1 0
X X
my, s s my, my my3 s My
11 0 0 1 0 11 0 0 1 0
w w
myg my my my, mg my myy My
10(0 0 1 0 10(0 0 1 0
— J S —
Z
z
yz yz
(@) F=yz +w'x' () F=yz+w'z

FIGURE 3.15
Example with don’t-care conditions

with minterm m; to give the three-literal term w'x’z. However, by including one or
two adjacent X’s we can combine four adjacent squares to give a two-literal term. In
Fig. 3.15(a), don’t-care minterms 0 and 2 are included with the 1’s, resulting in the simpli-
fied function

F=yz+wkx'

In Fig. 3.15(b), don’t-care minterm 5 is included with the 1’s, and the simplified func-
tion is now

F=yz+w'z

Either one of the preceding two expressions satisfies the conditions stated for this
example.
|

The previous example has shown that the don’t-care minterms in the map are ini-
tially marked with X’s and are considered as being either 0 or 1. The choice between 0
and 1 is made depending on the way the incompletely specified function is simplified.
Once the choice is made, the simplified function obtained will consist of a sum of min-
terms that includes those minterms which were initially unspecified and have been
chosen to be included with the 1’s. Consider the two simplified expressions obtained
in Example 3.8:

F(w,x,y,z) = yz + w'x" = 3(0,1,2,3,7,11, 15)
F(w,x,y,z) =yz +w'z = 2(1,3,5,7,11,15)

Both expressions include minterms 1, 3,7 11, and 15 that make the function F equal
to 1. The don’t-care minterms 0, 2, and 5 are treated differently in each expression.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

20 Chapter 3 Gate-Level Minimization

The first expression includes minterms 0 and 2 with the 1’s and leaves minterm 5 with
the 0’s. The second expression includes minterm 5 with the 1’s and leaves minterms 0
and 2 with the 0’s. The two expressions represent two functions that are not algebra-
ically equal. Both cover the specified minterms of the function, but each covers dif-
ferent don’t-care minterms. As far as the incompletely specified function is concerned,
either expression is acceptable because the only difference is in the value of F for the
don’t-care minterms.

It is also possible to obtain a simplified product-of-sums expression for the function
of Fig. 3.15. In this case, the only way to combine the 0’s is to include don’t-care minterms
0 and 2 with the 0’s to give a simplified complemented function:

F' =7z +wy’
Taking the complement of F'’ gives the simplified expression in product-of-sums form:
F(w,x,y,z) = z(w" +y) = X(1,3,5,7,11,15)

In this case, we include minterms 0 and 2 with the 0’s and minterm 5 with the 1’s.

3.6 NAND AND NOR IMPLEMENTATION

Digital circuits are frequently constructed with NAND or NOR gates rather than with
AND and OR gates. NAND and NOR gates are easier to fabricate with electronic
components and are the basic gates used in all IC digital logic families. Because of the
prominence of NAND and NOR gates in the design of digital circuits, rules and proce-
dures have been developed for the conversion from Boolean functions given in terms
of AND, OR, and NOT into equivalent NAND and NOR logic diagrams.

NAND Circuits

The NAND gate is said to be a universal gate because any logic circuit can be imple-
mented with it. To show that any Boolean function can be implemented with NAND
gates, we need only show that the logical operations of AND, OR, and complement can
be obtained with NAND gates alone. This is indeed shown in Fig. 3.16. The complement
operation is obtained from a one-input NAND gate that behaves exactly like an inverter.
The AND operation requires two NAND gates. The first produces the NAND operation
and the second inverts the logical sense of the signal. The OR operation is achieved
through a NAND gate with additional inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain
the simplified Boolean function in terms of Boolean operators and then convert the
function to NAND logic. The conversion of an algebraic expression from AND, OR, and
complement to NAND can be done by simple circuit manipulation techniques that
change AND-OR diagrams to NAND diagrams.

To facilitate the conversion to NAND logic, it is convenient to define an alternative
graphic symbol for the gate. Two equivalent graphic symbols for the NAND gate are
shown in Fig. 3.17. The AND-invert symbol has been defined previously and consists

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.6 NAND and NOR Implementation 91

Inverter x {>C x'
x
y —

X

OR } (xy) =x+y

y

FIGURE 3.16
Logic operations with NAND gates

x ’ x r r ’ !
y — (xyz) y x'+y' +7' = (xyz)
I — Z

(a) AND-invert (b) Invert-OR

FIGURE 3.17
Two graphic symbols for a three-input NAND gate

of an AND graphic symbol followed by a small circle negation indicator referred to as
a bubble. Alternatively, it is possible to represent a NAND gate by an OR graphic
symbol that is preceded by a bubble in each input. The invert-OR symbol for the
NAND gate follows DeMorgan’s theorem and the convention that the negation indica-
tor (bubble) denotes complementation. The two graphic symbols’ representations are
useful in the analysis and design of NAND circuits. When both symbols are mixed in
the same diagram, the circuit is said to be in mixed notation.

Two-Level Implementation

The implementation of Boolean functions with NAND gates requires that the functions
be in sum-of-products form. To see the relationship between a sum-of-products expres-
sion and its equivalent NAND implementation, consider the logic diagrams drawn in
Fig. 3.18. All three diagrams are equivalent and implement the function

F=AB + CD

The function is implemented in Fig. 3.18(a) with AND and OR gates. In Fig. 3.18(b), the
AND gates are replaced by NAND gates and the OR gate is replaced by a NAND gate
with an OR-invert graphic symbol. Remember that a bubble denotes complementation
and two bubbles along the same line represent double complementation, so both can be
removed. Removing the bubbles on the gates of (b) produces the circuit of (a). Therefore,
the two diagrams implement the same function and are equivalent.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

92 Chapter 3 Gate-Level Minimization

A —]
B_
F
C —
D_
(a)
A — A —]
. L
: D—-
- D
D— D —
(b) (c)

FIGURE 3.18
Three ways to implement F= AB+ CD

In Fig. 3.18(c), the output NAND gate is redrawn with the AND-invert graphic symbol.
In drawing NAND logic diagrams, the circuit shown in either Fig. 3.18(b) or (c) is accept-
able.The one in Fig. 3.18(b) is in mixed notation and represents a more direct relationship
to the Boolean expression it implements. The NAND implementation in Fig. 3.18(c) can
be verified algebraically. The function it implements can easily be converted to sum-of-
products form by DeMorgan’s theorem:

F = ((AB)'(CD)")’ = AB + CD

EXAMPLE 3.9

Implement the following Boolean function with NAND gates:
F(x7y5 Z) = (1’27354’597)

The first step is to simplify the function into sum-of-products form. This is done by
means of the map of Fig. 3.19(a), from which the simplified function is obtained:

F=xy' +x'y+z

The two-level NAND implementation is shown in Fig. 3.19(b) in mixed notation. Note
that input z must have a one-input NAND gate (an inverter) to compensate for the
bubble in the second-level gate. An alternative way of drawing the logic diagram is given
in Fig. 3.19(¢c). Here, all the NAND gates are drawn with the same graphic symbol. The
inverter with input z has been removed, but the input variable is complemented and
denoted by z'.

[|

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.6 NAND and NOR Implementation 93

yz S SR
X 00 01 11 10
my my ms m,
0|l o 1 1 1 ——xy
my ms my mg
x i1 1 1 1 F=xy +x'y+z
——

L D
D ;

=D

(®) (©)
FIGURE 3.19
Solution to Example 3.9

The procedure described in the previous example indicates that a Boolean function
can be implemented with two levels of NAND gates. The procedure for obtaining the
logic diagram from a Boolean function is as follows:

1. Simplify the function and express it in sum-of-products form.

2. Draw a NAND gate for each product term of the expression that has at least two
literals. The inputs to each NAND gate are the literals of the term. This procedure
produces a group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the
second level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the first level. However, if the
single literal is complemented, it can be connected directly to an input of the second-
level NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two-level implementation.
There are occasions, however, when the design of digital systems results in gating structures
with three or more levels. The most common procedure in the design of multilevel circuits
is to express the Boolean function in terms of AND, OR, and complement operations. The
function can then be implemented with AND and OR gates. After that, if necessary, it can
be converted into an all-NAND circuit. Consider, for example, the Boolean function

F=A(CD + B) + BC'

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

94 Chapter 3 Gate-Level Minimization

& > T QO

(a) AND-OR gates

B ——— |
— 1

FIGURE 3.20
Implementing F = A(CD + B) + BC’

(b) NAND gates

Although it is possible to remove the parentheses and reduce the expression into a standard
sum-of-products form, we choose to implement it as a multilevel circuit for illustration. The
AND-OR implementation is shown in Fig. 3.20(a). There are four levels of gating in the
circuit. The first level has two AND gates. The second level has an OR gate followed by an
AND gate in the third level and an OR gate in the fourth level. A logic diagram with a pat-
tern of alternating levels of AND and OR gates can easily be converted into a NAND circuit
with the use of mixed notation, shown in Fig. 3.20(b). The procedure is to change every AND
gate to an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol.
The NAND circuit performs the same logic as the AND-OR diagram as long as there are
two bubbles along the same line. The bubble associated with input B causes an extra comple-
mentation, which must be compensated for by changing the input literal to B".

The general procedure for converting a multilevel AND-OR diagram into an all-NAND
diagram using mixed notation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2. Convert all OR gates to NAND gates with invert-OR graphic symbols.

3. Check all the bubbles in the diagram. For every bubble that is not compensated
by another small circle along the same line, insert an inverter (a one-input NAND
gate) or complement the input literal.

As another example, consider the multilevel Boolean function

F=(AB' + A'B)(C + D)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.6 NAND and NOR Implementation 95

B —| }F

(a) AND-OR gates

S) e

(b) NAND gates

FIGURE 3.21
Implementing F = (AB’ + A'B) (C + D’)

The AND-OR implementation of this function is shown in Fig. 3.21(a) with three levels
of gating. The conversion to NAND with mixed notation is presented in Fig. 3.21(b) of
the diagram. The two additional bubbles associated with inputs C and D' cause these
two literals to be complemented to C" and D. The bubble in the output NAND gate
complements the output value, so we need to insert an inverter gate at the output in
order to complement the signal again and get the original value back.

NOR Implementation

The NOR operation is the dual of the NAND operation. Therefore, all procedures and
rules for NOR logic are the duals of the corresponding procedures and rules developed
for NAND logic. The NOR gate is another universal gate that can be used to implement
any Boolean function. The implementation of the complement, OR, and AND operations
with NOR gates is shown in Fig. 3.22. The complement operation is obtained from a one-
input NOR gate that behaves exactly like an inverter. The OR operation requires two NOR
gates, and the AND operation is obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.23. The OR-invert
symbol defines the NOR operation as an OR followed by a complement. The invert-AND
symbol complements each input and then performs an AND operation. The two symbols
designate the same NOR operation and are logically identical because of DeMorgan’s
theorem.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

96 Chapter 3 Gate-Level Minimization

Inverter x {>C x'

OR ;:[>c {>c x+y
—

AND (x"+y) =xy

y {>c
FIGURE 3.22

Logic operations with NOR gates

X) x—d
y (x+y+2z) y—0q x'y'z =(x+y+z)
z 77—

(a) OR-invert (b) Invert-AND

FIGURE 3.23
Two graphic symbols for the NOR gate

A two-level implementation with NOR gates requires that the function be simplified
into product-of-sums form. Remember that the simplified product-of-sums expression
is obtained from the map by combining the 0’s and complementing. A product-of-sums
expression is implemented with a first level of OR gates that produce the sum terms
followed by a second-level AND gate to produce the product. The transformation from
the OR-AND diagram to a NOR diagram is achieved by changing the OR gates to
NOR gates with OR-invert graphic symbols and the AND gate to a NOR gate with an
invert-AND graphic symbol. A single literal term going into the second-level gate must
be complemented. Figure 3.24 shows the NOR implementation of a function expressed
as a product of sums:

F= (A + B)(C + D)E

The OR-AND pattern can easily be detected by the removal of the bubbles along the
same line. Variable E is complemented to compensate for the third bubble at the input
of the second-level gate.

The procedure for converting a multilevel AND-OR diagram to an all-NOR diagram
is similar to the one presented for NAND gates. For the NOR case, we must convert
each OR gate to an OR-invert symbol and each AND gate to an invert-AND symbol.
Any bubble that is not compensated by another bubble along the same line needs an
inverter, or the complementation of the input literal.

The transformation of the AND-OR diagram of Fig.3.21(a) into a NOR diagram is
shown in Fig. 3.25. The Boolean function for this circuit is

F=(AB' + A'B)(C + D)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.7 Other Two-Level Implementations 97

DD

FIGURE 3.24
Implementing F = (A + B)(C + D)E

A'—9
B —

F
\— —)
B’ —9

C
D/

FIGURE 3.25
Implementing F = (AB" + A’B)(C + D’) with NOR gates

The equivalent AND-OR diagram can be recognized from the NOR diagram by remov-
ing all the bubbles. To compensate for the bubbles in four inputs, it is necessary to
complement the corresponding input literals.

3.7 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates most often found in integrated circuits are NAND and NOR gates.
For this reason, NAND and NOR logic implementations are the most important from
a practical point of view. Some (but not all) NAND or NOR gates allow the possibility
of a wire connection between the outputs of two gates to provide a specific logic func-
tion. This type of logic is called wired logic. For example, open-collector TTL NAND
gates, when tied together, perform wired-AND logic. The wired-AND logic performed
with two NAND gates is depicted in Fig. 3.26(a). The AND gate is drawn with the lines
going through the center of the gate to distinguish it from a conventional gate. The
wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained from the indicated wired connection. The logic function implemented by the
circuit of Fig. 3.26(a) is

F=(AB) --- (CD)' = (AB + CD)' = (A" + B")(C' + D')
and is called an AND-OR-INVERT function.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

98 Chapter 3 Gate-Level Minimization

A
B

9— F=(AB + CD)' [}7 F=[(A+B)(C+D)]
c— — C%

A_
B_

D — D
(a) Wired-AND in open-collector (b) Wired-OR in ECL gates
TTL NAND gates.
(AND-OR-INVERT) (OR-AND-INVERT)
FIGURE 3.26
Wired logic

(a) Wired-AND logic with two NAND gates
(b) Wired-OR in emitter-coupled logic (ECL) gates

Similarly, the NOR outputs of ECL gates can be tied together to perform a wired-OR
function. The logic function implemented by the circuit of Fig. 3.26(b) is

F=(A+B) +(C+D) =[(A+B)C+D)]

and is called an OR-AND-INVERT function.

A wired-logic gate does not produce a physical second-level gate, since it is just a wire
connection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.26
as two-level implementations. The first level consists of NAND (or NOR) gates and the
second level has a single AND (or OR) gate. The wired connection in the graphic symbol
will be omitted in subsequent discussions.

Nondegenerate Forms

It will be instructive from a theoretical point of view to find out how many two-level com-
binations of gates are possible. We consider four types of gates: AND, OR, NAND, and
NOR. If we assign one type of gate for the first level and one type for the second level, we
find that there are 16 possible combinations of two-level forms. (The same type of gate can
be in the first and second levels, as in a NAND-NAND implementation.) Eight of these
combinations are said to be degenerate forms because they degenerate to a single opera-
tion. This can be seen from a circuit with AND gates in the first level and an AND gate in
the second level. The output of the circuit is merely the AND function of all input variables.
The remaining eight nondegenerate forms produce an implementation in sum-of-products
form or product-of-sums form. The eight nondegenerate forms are as follows:

AND-OR OR-AND
NAND-NAND NOR-NOR
NOR-OR NAND-AND
OR-NAND AND-NOR

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.7 Other Two-Level Implementations 929

The first gate listed in each of the forms constitutes a first level in the implementation.
The second gate listed is a single gate placed in the second level. Note that any two forms
listed on the same line are duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in
Section 3.4. The NAND-NAND and NOR-NOR forms were presented in Section 3.5.
The remaining four forms are investigated in this section.

AND-OR-INVERT Implementation

The two forms, NAND-AND and AND-NOR, are equivalent and can be treated
together. Both perform the AND-OR-INVERT function, as shown in Fig. 3.27. The
AND-NOR form resembles the AND—OR form, but with an inversion done by the
bubble in the output of the NOR gate. It implements the function

F=(AB + CD + E)’

By using the alternative graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3.27(b). Note that the single variable E is not complemented, because the only
change made is in the graphic symbol of the NOR gate. Now we move the bubble from
the input terminal of the second-level gate to the output terminals of the first-level gates.
An inverter is needed for the single variable in order to compensate for the bubble.
Alternatively, the inverter can be removed, provided that input E is complemented. The
circuit of Fig. 3.27(c) is a NAND-AND form and was shown in Fig. 3.26 to implement
the AND-OR-INVERT function.

An AND-OR implementation requires an expression in sum-of-products form. The
AND-OR-INVERT implementation is similar, except for the inversion. Therefore, if the
complement of the function is simplified into sum-of-products form (by combining the 0’s
in the map), it will be possible to implement " with the AND—OR part of the function.
When F’ passes through the always present output inversion (the INVERT part), it will

i L e
L = > L D D L D)

(a) AND-NOR (b) AND-NOR (¢) NAND-AND

FIGURE 3.27
AND-OR-INVERT circuits, F = (AB + CD + E)’

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

100 Chapter 3 Gate-Level Minimization

generate the output F of the function. An example for the AND-OR-INVERT imple-
mentation will be shown subsequently.

OR-AND-INVERT Implementation

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function, as
shown in Fig. 3.28. The OR-NAND form resembles the OR-AND form, except for the
inversion done by the bubble in the NAND gate. It implements the function

F=[(A + B)(C + D)E]

By using the alternative graphic symbol for the NAND gate, we obtain the diagram
of Fig. 3.28(b). The circuit in Fig. 3.28(c) is obtained by moving the small circles from the
inputs of the second-level gate to the outputs of the first-level gates. The circuit of Fig.
3.28(c) is a NOR-OR form and was shown in Fig. 3.26 to implement the OR-AND-
INVERT function.

The OR-AND-INVERT implementation requires an expression in product-of-sums
form. If the complement of the function is simplified into that form, we can implement
F" with the OR-AND part of the function. When F’ passes through the INVERT part,
we obtain the complement of F’, or F,in the output.

Tabular Summary and Example

Table 3.2 summarizes the procedures for implementing a Boolean function in any one
of the four 2-level forms. Because of the INVERT part in each case, it is convenient to
use the simplification of F’ (the complement) of the function. When F’ is implemented
in one of these forms, we obtain the complement of the function in the AND-OR or
OR-AND form. The four 2-level forms invert this function, giving an output that is the
complement of F". This is the normal output F.

>
D> D> D>

(a) OR-NAND (b) OR-NAND (c) NOR-OR

FIGURE 3.28
OR-AND-INVERT circuits, F = [(A + B)(C + D)E]

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.7 Other Two-Level Implementations 101

Table 3.2
Implementation with Other Two-Level Forms
Equivalent
Nondegenerate Form Implements Simplify To Get
the F an Output
(a) (b)* Function into of
AND-NOR NAND-AND AND-OR-INVERT Sum-of-products
form by combining
0’s in the map. F
OR-NAND NOR-OR OR-AND-INVERT Product-of-sums
form by combining
1’s in the map and
then complementing. F

*Form (b) requires an inverter for a single literal term.

EXAMPLE 3.10

Implement the function of Fig. 3.29(a) with the four 2-level forms listed in Table 3.2.
The complement of the function is simplified into sum-of-products form by combining
the 0’s in the map:

F'=x'y +xy' +z
The normal output for this function can be expressed as
F=x'y +xy +2)

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND imple-
mentations are shown in Fig. 3.29(b). Note that a one-input NAND, or inverter, gate is
needed in the NAND-AND implementation, but not in the AND-NOR case. The
inverter can be removed if we apply the input variable z’ instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement
of the function in product-of-sums form. To obtain this expression, we first combine the
1’s in the map:

F=x'y'z +xyz’
Then we take the complement of the function:

FF=x+y+2& +y +2)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

102 Chapter 3 Gate-Level Minimization

vz _y
x 00 01 11 10
0 mnl mlo m30 mzo F:x’y’z'+xyz’
Yyz —1 F=xy+xy' +z
my ms my mg xyzl
x{1] o 0 0 114
——

(a) Map simplification in sum of products
x, } x, }
Y — D —
x —] X —]
’ F ’
Yy — Yy —

—F
L

AND-NOR NAND-AND
(b)F=('y +xy +2)

X x
z z
X x
b4 b4
OR-NAND NOR-OR
O F=[x+y+2)(x +y +2)]
FIGURE 3.29

Other two-level implementations

The normal output F can now be expressed in the form
F=[(x+y+C +y +2)]

which is the OR-AND-INVERT form. From this expression, we can implement the
function in the OR-NAND and NOR-OR forms, as shown in Fig. 3.29(c).

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.8 Exclusive-OR Function 103

3.8 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol @, is a logical operation that performs
the following Boolean operation:

x®y =xy' +x'y

The exclusive-OR is equal to 1 if only x is equal to 1 or if only y is equal to 1 (i.e.,x and y
differ in value), but not when both are equal to 1 or when both are equal to 0. The exclusive-
NOR, also known as equivalence, performs the following Boolean operation:

(x®y) =xy +x'y’

The exclusive-NOR is equal to 1 if both x and y are equal to 1 or if both are equal to 0.
The exclusive-NOR can be shown to be the complement of the exclusive-OR by means
of a truth table or by algebraic manipulation:

@x®@y) =@ +xy) = +yx+y)=xy+xy

The following identities apply to the exclusive-OR operation:

x®0=x
x®1=x'
x®x =0
x®x'=1

x®y =x'®y=(xDy)

Any of these identities can be proven with a truth table or by replacing the @ operation
by its equivalent Boolean expression. Also, it can be shown that the exclusive-OR oper-
ation is both commutative and associative; that is,

A®DB=B®A
and

(A®B)®C=ASBOC) = AOGBOC

This means that the two inputs to an exclusive-OR gate can be interchanged without
affecting the operation. It also means that we can evaluate a three-variable exclusive-OR
operation in any order, and for this reason, three or more variables can be expressed
without parentheses. This would imply the possibility of using exclusive-OR gates with
three or more inputs. However, multiple-input exclusive-OR gates are difficult to fabri-
cate with hardware. In fact, even a two-input function is usually constructed with other
types of gates. A two-input exclusive-OR function is constructed with conventional gates
using two inverters, two AND gates,and an OR gate, as shown in Fig. 3.30(a). Figure 3.30(b)
shows the implementation of the exclusive-OR with four NAND gates. The first NAND
gate performs the operation (xy)’ = (x' + y’). The other two-level NAND circuit
produces the sum of products of its inputs:

X' +y)+ +y)y=xy +xy=xy

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

104 Chapter 3 Gate-Level Minimization

[>O
[>o

—] D>

T Y

(a) Exclusive-OR with AND-OR-NOT gates

B

)

(b) Exclusive-OR with NAND gates

o

FIGURE 3.30
Exclusive-OR implementations

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR
operations. Nevertheless, this function emerges quite often during the design of digital
systems. It is particularly useful in arithmetic operations and error detection and correc-
tion circuits.

0Odd Function

The exclusive-OR operation with three or more variables can be converted into an
ordinary Boolean function by replacing the @ symbol with its equivalent Boolean
expression. In particular, the three-variable case can be converted to a Boolean expres-
sion as follows:

A®B®C = (AB' + A'B)C' + (AB + A'B")C
= AB'C' + A'BC' + ABC + A'B'C
= 3(1,2,4,7)
The Boolean expression clearly indicates that the three-variable exclusive-OR function is
equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary
to the two-variable case, in which only one variable must be equal to 1,in the case of three

or more variables the requirement is that an odd number of variables be equal to 1. As a
consequence, the multiple-variable exclusive-OR operation is defined as an odd function.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.8 Exclusive-OR Function 105

The Boolean function derived from the three-variable exclusive-OR operation is
expressed as the logical sum of four minterms whose binary numerical values are 001,010,
100, and 111. Each of these binary numbers has an odd number of 1’s. The remaining four
minterms not included in the function are 000,011, 101, and 110, and they have an even
number of 1’s in their binary numerical values. In general, an n-variable exclusive-OR
function is an odd function defined as the logical sum of the 2"/2 minterms whose binary
numerical values have an odd number of 1s.

The definition of an odd function can be clarified by plotting it in a map. Figure 3.31(a)
shows the map for the three-variable exclusive-OR function. The four minterms of the
function are a unit distance apart from each other. The odd function is identified from
the four minterms whose binary values have an odd number of 1’s. The complement of
an odd function is an even function. As shown in Fig. 3.31(b), the three-variable even
function is equal to 1 when an even number of its variables is equal to 1 (including the
condition that none of the variables is equal to 1).

The three-input odd function is implemented by means of two-input exclusive-OR
gates, as shown in Fig. 3.32(a). The complement of an odd function is obtained by replac-
ing the output gate with an exclusive-NOR gate, as shown in Fig. 3.32(b).

Consider now the four-variable exclusive-OR operation. By algebraic manipulation,
we can obtain the sum of minterms for this function:

A®B®C®D = (AB' + A'B)®(CD' + C'D)
= (AB' + A'B)(CD + C'D'") + (AB + A'B')(CD' + C'D)
= 3(1,2,4,7,8,11,13, 14)

B B

BC BC .
ANC 00 o1 11 10 ANCow o1 11 10
m m my m, m m, msy m,
0 1 1 0 1 1
m, ms m, myg my, s my mg
A1 1 1 A3 1 1
—— ——
C C
(a) Odd function F=ADB® C (b) Even function F= (A© B ® C)’
FIGURE 3.31

Map for a three-variable exclusive-OR function

o> D -

C———F— c
(a) 3-input odd function (b) 3-input even function

FIGURE 3.32
Logic diagram of odd and even functions

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

106 Chapter 3 Gate-Level Minimization

C C
CD CD —_—
ABN_00 01 11 10 ABN 00 01 11 10
mg ny ny ny y ny ny m,
00 1 1 00 1 1
my ms m; mg ny ms m; mg
01 1 1 01 1 1
my, myy ms my B My M3 ms my B
11 1 1 11 1 1
A A
mg my my my, g my my, my
10 1 1 10 1 1
D D
(a) Odd function F=A®BO CSD (b) Even function F= (A©@BO CD D)’
FIGURE 3.33

Map for a four-variable exclusive-OR function

There are 16 minterms for a four-variable Boolean function. Half of the minterms
have binary numerical values with an odd number of 1’s; the other half of the minterms
have binary numerical values with an even number of 1’s. In plotting the function in the
map, the binary numerical value for a minterm is determined from the row and column
numbers of the square that represents the minterm. The map of Fig. 3.33(a) is a plot of
the four-variable exclusive-OR function. This is an odd function because the binary
values of all the minterms have an odd number of 1’s. The complement of an odd func-
tion is an even function. As shown in Fig. 3.33(b), the four-variable even function is equal
to 1 when an even number of its variables is equal to 1.

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error detection and cor-
rection codes. As discussed in Section 1.6, a parity bit is used for the purpose of
detecting errors during the transmission of binary information. A parity bit is an extra
bit included with a binary message to make the number of 1’s either odd or even. The
message, including the parity bit, is transmitted and then checked at the receiving end
for errors. An error is detected if the checked parity does not correspond with the
one transmitted. The circuit that generates the parity bit in the transmitter is called
a parity generator. The circuit that checks the parity in the receiver is called a parity
checker.

As an example, consider a three-bit message to be transmitted together with an
even-parity bit. Table 3.3 shows the truth table for the parity generator. The three
bits—x, y, and z —constitute the message and are the inputs to the circuit. The parity
bit P is the output. For even parity, the bit P must be generated to make the total
number of 1’s (including P) even. From the truth table, we see that P constitutes an

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.8 Exclusive-OR Function 107

Table 3.3
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
X y z P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

=

x y
y P C
z

(a) 3-bit even parity generator (b) 4-bit even parity checker

FIGURE 3.34
Logic diagram of a parity generator and checker

odd function because it is equal to 1 for those minterms whose numerical values have
an odd number of 1’s. Therefore, P can be expressed as a three-variable exclusive-OR
function:

P=x®ydz

The logic diagram for the parity generator is shown in Fig. 3.34(a).

The three bits in the message, together with the parity bit, are transmitted to their
destination, where they are applied to a parity-checker circuit to check for possible
errors in the transmission. Since the information was transmitted with even parity, the
four bits received must have an even number of 1’s. An error occurs during the trans-
mission if the four bits received have an odd number of 1’s,indicating that one bit has
changed in value during transmission. The output of the parity checker, denoted by
C, will be equal to 1 if an error occurs —that is, if the four bits received have an odd
number of 1’s. Table 3.4 is the truth table for the even-parity checker. From it, we see
that the function C consists of the eight minterms with binary numerical values hav-
ing an odd number of 1’s. The table corresponds to the map of Fig. 3.33(a), which

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

108 Chapter 3 Gate-Level Minimization

Table 3.4
Even-Parity-Checker Truth Table
Four Bits Parity Error
Received Check
X y z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

represents an odd function. The parity checker can be implemented with exclusive-
OR gates:

C=x®y®z;®P

The logic diagram of the parity checker is shown in Fig. 3.34(b).

It is worth noting that the parity generator can be implemented with the circuit of
Fig. 3.34(b) if the input P is connected to logic 0 and the output is marked with P. This is
because z ® 0 = z, causing the value of z to pass through the gate unchanged. The advan-
tage of this strategy is that the same circuit can be used for both parity generation and
checking.

It is obvious from the foregoing example that parity generation and checking circuits
always have an output function that includes half of the minterms whose numerical values
have either an odd or even number of 1’s. As a consequence, they can be implemented
with exclusive-OR gates. A function with an even number of 1’s is the complement of an
odd function. It is implemented with exclusive-OR gates, except that the gate associated
with the output must be an exclusive-NOR to provide the required complementation.

3.9 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic circuits are feasible only when the circuit is small.
For anything else (i.e., a practical circuit), designers use computer-based design tools.
Coupled with the correct-by-construction methodology, computer-based design tools

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.9 Hardware Description Language 109

leverage the creativity and the effort of a designer and reduce the risk of producing a
flawed design. Prototype integrated circuits are too expensive and time consuming to
build, so all modern design tools rely on a hardware description language to describe,
design, and test a circuit in software before it is ever manufactured.

A hardware description language (HDL) is a computer-based language that describes
the hardware of digital systems in a textual form. It resembles an ordinary computer
programming language, such as C, but is specifically oriented to describing hardware
structures and the behavior of logic circuits. It can be used to represent logic diagrams,
truth tables, Boolean expressions, and complex abstractions of the behavior of a digital
system. One way to view an HDL is to observe that it describes a relationship between
signals that are the inputs to a circuit and the signals that are the outputs of the circuit.
For example, an HDL description of an AND gate describes how the logic value of the
gate’s output is determined by the logic values of its inputs.

As a documentation language, an HDL is used to represent and document digital
systems in a form that can be read by both humans and computers and is suitable as
an exchange language between designers. The language content can be stored,
retrieved, edited, and transmitted easily and processed by computer software in
an efficient manner.

HDLs are used in several major steps in the design flow of an integrated circuit:
design entry, functional simulation or verification, logic synthesis, timing verification,
and fault simulation.

Design entry creates an HDL-based description of the functionality that is to be
implemented in hardware. Depending on the HDL, the description can be in a variety
of forms: Boolean logic equations, truth tables, a netlist of interconnected gates, or an
abstract behavioral model. The HDL model may also represent a partition of a larger
circuit into smaller interconnected and interacting functional units.

Logic simulation displays the behavior of a digital system through the use of a com-
puter. A simulator interprets the HDL description and either produces readable output,
such as a time-ordered sequence of input and output signal values, or displays wave-
forms of the signals. The simulation of a circuit predicts how the hardware will behave
before it is actually fabricated. Simulation detects functional errors in a design without
having to physically create and operate the circuit. Errors that are detected during a
simulation can be corrected by modifying the appropriate HDL statements. The stimu-
lus (i.e., the logic values of the inputs to a circuit) that tests the functionality of the design
is called a fest bench. Thus, to simulate a digital system, the design is first described in
an HDL and then verified by simulating the design and checking it with a test bench,
which is also written in the HDL. An alternative and more complex approach relies on
formal mathematical methods to prove that a circuit is functionally correct. We will focus
exclusively on simulation.

Logic synthesis is the process of deriving a list of physical components and their
interconnections (called a netlist) from the model of a digital system described in an
HDL. The netlist can be used to fabricate an integrated circuit or to lay out a printed
circuit board with the hardware counterparts of the gates in the list. Logic synthesis is
similar to compiling a program in a conventional high-level language. The difference is

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

110 Chapter 3 Gate-Level Minimization

that, instead of producing an object code, logic synthesis produces a database describing
the elements and structure of a circuit. The database specifies how to fabricate a physi-
cal integrated circuit that implements in silicon the functionality described by statements
made in an HDL. Logic synthesis is based on formal exact procedures that implement
digital circuits and addresses that part of a digital design which can be automated with
computer software. The design of today’s large, complex circuits is made possible by
logic synthesis software.

Timing verification confirms that the fabricated, integrated circuit will operate at a
specified speed. Because each logic gate in a circuit has a propagation delay, a signal
transition at the input of a circuit cannot immediately cause a change in the logic value
of the output of a circuit. Propagation delays ultimately limit the speed at which
a circuit can operate. Timing verification checks each signal path to verify that it is
not compromised by propagation delay. This step is done after logic synthesis specifies
the actual devices that will compose a circuit and before the circuit is released for
production.

In VLSI circuit design, fault simulation compares the behavior of an ideal circuit with
the behavior of a circuit that contains a process-induced flaw. Dust and other particu-
lates in the atmosphere of the clean room can cause a circuit to be fabricated with a
fault. A circuit with a fault will not exhibit the same functionality as a fault-free circuit.
Fault simulation is used to identify input stimuli that can be used to reveal the difference
between the faulty circuit and the fault-free circuit. These test patterns will be used to
test fabricated devices to ensure that only good devices are shipped to the customer.
Test generation and fault simulation may occur at different steps in the design process,
but they are always done before production in order to avoid the disaster of producing
a circuit whose internal logic cannot be tested.

Companies that design integrated circuits use proprietary and public HDLs. In the
public domain, there are two standard HDLs that are supported by the IEEE: VHDL
and Verilog. VHDL is a Department of Defense-mandated language. (The V in VHDL
stands for the first letter in VHSIC, an acronym for very high-speed integrated circuit.)
Verilog began as a proprietary HDL of Cadence Design Systems, but Cadence trans-
ferred control of Verilog to a consortium of companies and universities known as Open
Verilog International (OVI) as a step leading to its adoption as an IEEE standard.
VHDL is more difficult to learn than Verilog. Because Verilog is an easier language than
VHDL to describe, learn, and use, we have chosen it for this book. However, the Verilog
HDL descriptions listed throughout the book are not just about Verilog, but also serve
to introduce a design methodology based on the concept of computer-aided modeling
of digital systems by means of a typical hardware description language. Our emphasis
will be on the modeling, verification, and synthesis (both manual and automated) of
Verilog models of circuits having specified behavior. The Verilog HDL was initially
approved as a standard HDL in 1995; revised and enhanced versions of the language
were approved in 2001 and 2005. We will address only those features of Verilog, includ-
ing the latest standard, that support our discussion of HDL-based design methodology
for integrated circuits.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.9 Hardware Description Language 111

Module Declaration

The language reference manual for the Verilog HDL presents a syntax that describes
precisely the constructs that can be used in the language. In particular, a Verilog
model is composed of text using keywords, of which there are about 100. Keywords
are predefined lowercase identifiers that define the language constructs. Examples of
keywords are module, endmodule, input, output, wire, and, or, and not. For clarity,
keywords will be displayed in boldface in the text in all examples of code and wher-
ever it is appropriate to call attention to their use. Any text between two forward
slashes (/) and the end of the line is interpreted as a comment and will have no effect
on a simulation using the model. Multiline comments begin with /* and terminate
with */. Blank spaces are ignored, but they may not appear within the text of a key-
word, a user-specified identifier, an operator, or the representation of a number. Ver-
ilog is case sensitive, which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT). The term module refers to the text
enclosed by the keyword pair module . .. endmodule. A module is the fundamental
descriptive unit in the Verilog language. It is declared by the keyword module and
must always be terminated by the keyword endmodule.

Combinational logic can be described by a schematic connection of gates, by a set of
Boolean equations, or by a truth table. Each type of description can be developed in
Verilog. We will demonstrate each style, beginning with a simple example of a Verilog
gate-level description to illustrate some aspects of the language.

The HDL description of the circuit of Fig. 3.35 is shown in HDL Example 3.1. The
first line of text is a comment (optional) providing useful information to the reader. The
second line begins with the keyword module and starts the declaration (description) of
the module; the last line completes the declaration with the keyword endmodule. The
keyword module is followed by a name and a list of ports. The name (Simple_Circuit in
this example) is an identifier. Identifiers are names given to modules, variables (e.g., a
signal), and other elements of the language so that they can be referenced in the design.
In general, we choose meaningful names for modules. Identifiers are composed of alpha-
numeric characters and the underscore (_), and are case sensitive. Identifiers must start
with an alphabetic character or an underscore, but they cannot start with a number.

FIGURE 3.35
Circuit to demonstrate an HDL

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

112 Chapter 3 Gate-Level Minimization

HDL Example 3.1 (Combinational Logic Modeled with Primitives)

/I Verilog model of circuit of Figure 3.35. IEEE 1364—1995 Syntax
module Simple_Circuit (A, B, C, D, E);

output D, E;
input A, B, C;
wire wi1;
and G1 (w1, A, B); // Optional gate instance name
not G2 (E, C);
or G3 (D, w1, E);
endmodule

The port list of a module is the interface between the module and its environment.
In this example, the ports are the inputs and outputs of the circuit. The logic values of
the inputs to a circuit are determined by the environment; the logic values of the outputs
are determined within the circuit and result from the action of the inputs on the circuit.
The port list is enclosed in parentheses, and commas are used to separate elements of
the list. The statement is terminated with a semicolon (;). In our examples, all keywords
(which must be in lowercase) are printed in bold for clarity, but that is not a requirement
of the language. Next, the keywords input and output specify which of the ports are
inputs and which are outputs. Internal connections are declared as wires. The circuit in
this example has one internal connection, at terminal w/, and is declared with the key-
word wire. The structure of the circuit is specified by a list of (predefined) primitive
gates, each identified by a descriptive keyword (and, not, or). The elements of the list
are referred to as instantiations of a gate, each of which is referred to as a gate instance.
Each gate instantiation consists of an optional name (such as GI, G2, etc.) followed by
the gate output and inputs separated by commas and enclosed within parentheses. The
output of a primitive gate is always listed first, followed by the inputs. For example, the
OR gate of the schematic is represented by the or primitive, is named G3, and has out-
put D and inputs wl and E. (Note: The output of a primitive must be listed first, but the
inputs and outputs of a module may be listed in any order.) The module description ends
with the keyword endmodule. Each statement must be terminated with a semicolon, but
there is no semicolon after endmodule.

Itis important to understand the distinction between the terms declaration and instan-
tiation. A Verilog module is declared. Its declaration specifies the input—output behavior
of the hardware that it represents. Predefined primitives are not declared, because their
definition is specified by the language and is not subject to change by the user. Primitives
are used (i.e., instantiated), just as gates are used to populate a printed circuit board.
We'll see that once a module has been declared, it may be used (instantiated) within a
design. Note that Simple_Circuit is not a computational model like those developed in
an ordinary programming language: The sequential ordering of the statements instanti-
ating gates in the model has no significance and does not specify a sequence of compu-
tations. A Verilog model is a descriptive model. Simple_Circuit describes what primitives
form a circuit and how they are connected. The input—output behavior of the circuit is

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.9 Hardware Description Language 113

Table 3.5
Output of Gates after Delay

Input Output

Time Units

(ns) ABC EwlD
Initial — 000 1 01
Change — 111 1 01
10 111 0 01
20 111 0 01
30 111 0 10
40 111 0 10
50 111 0 11

implicitly specified by the description because the behavior of each logic gate is defined.
Thus, an HDL-based model can be used to simulate the circuit that it represents.

Gate Delays

All physical circuits exhibit a propagation delay between the transition of an input and a
resulting transition of an output. When an HDL model of a circuit is simulated, it is some-
times necessary to specify the amount of delay from the input to the output of its gates.
In Verilog, the propagation delay of a gate is specified in terms of fime units and by the
symbol #. The numbers associated with time delays in Verilog are dimensionless. The
association of a time unit with physical time is made with the ‘timescale compiler direc-
tive. (Compiler directives start with the (') back quote, or grave accent, symbol.) Such a
directive is specified before the declaration of a module and applies to all numerical
values of time in the code that follows. An example of a timescale directive is

‘timescale 1ns/100ps

The first number specifies the unit of measurement for time delays. The second number
specifies the precision for which the delays are rounded off, in this case to 0.1 ns. If no
timescale is specified, a simulator may display dimensionless values or default to a certain
time unit, usually 1ns (=107 s). Our examples will use only the default time unit.

HDL Example 3.2 repeats the description of the simple circuit of Example 3.1, but
with propagation delays specified for each gate. The and, or, and not gates have a time
delay of 30, 20, and 10 ns, respectively. If the circuit is simulated and the inputs change
from A,B,C = 0to A, B, C = 1, the outputs change as shown in Table 3.5 (calculated
by hand or generated by a simulator). The output of the inverter at E changes from 1 to
0 after a 10-ns delay. The output of the AND gate at wi changes from O to 1 after a 30-ns
delay. The output of the OR gate at D changes from 1 to 0 at t = 30 ns and then changes
back to 1 at + = 50 ns. In both cases, the change in the output of the OR gate results
from a change in its inputs 20 ns earlier. It is clear from this result that although output
D eventually returns to a final value of 1 after the input changes, the gate delays produce
a negative spike that lasts 20 ns before the final value is reached.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

114 Chapter 3 Gate-Level Minimization

HDL Example 3.2 (Gate-Level Model with Propagation Delays)

/I Verilog model of simple circuit with propagation delay

module Simple_Circuit_prop_delay (A, B, C, D, E);

output D, E;

input A, B, C;

wire w1,

and #(30) G1 (w1, A, B);

not #(10) G2 (E, C);

or #(20) G3 (D, w1, E);
endmodule

In order to simulate a circuit with an HDL, it is necessary to apply inputs to the circuit
so that the simulator will generate an output response. An HDL description that provides
the stimulus to a design is called a test bench. The writing of test benches is explained in
more detail at the end of Section 4.12. Here, we demonstrate the procedure with a simple
example without dwelling on too many details. HDL Example 3.3 shows a test bench for
simulating the circuit with delay. (Note the distinguishing name Simple_Circuit_prop_
delay.) In its simplest form, a test bench is a module containing a signal generator and
an instantiation of the model that is to be verified. Note that the test bench (z_Simple_
Circuit_prop_delay) has no input or output ports, because it does not interact with its
environment. In general, we prefer to name the test bench with the prefix z_ concatenated
with the name of the module that is to be tested by the test bench, but that choice is left
to the designer. Within the test bench, the inputs to the circuit are declared with keyword
reg and the outputs are declared with the keyword wire. The module Simple_Circuit_
prop_delay is instantiated with the instance name M1. Every instantiation of a module
must include a unique instance name. Note that using a test bench is similar to testing
actual hardware by attaching signal generators to the inputs of a circuit and attaching

HDL Example 3.3 (Test Bench)

/I Test bench for Simple_Circuit_prop_delay

module t_Simple_Circuit_prop_delay;
wire D, E;
reg A, B, C;

Simple_Circuit_prop_delay M1 (A, B, C, D, E); // Instance name required
initial
begin
A =1b0; B =1'b0; C = 1'b0;
#100 A=1b1; B =1b1; C=1Db1;
end

initial #200 $finish;
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.9 Hardware Description Language 115

0.0 ns 58.0 ns 116.0 ns 174.0 ns

Name IR T T T TN T T A T T T N N TN T AN S T T T T T TN T T N T N B B
A I
B I
C I
D L |
E
FIGURE 3.36

Simulation output of HDL Example 3.3

probes (wires) to the outputs of the circuit. (The interaction between the signal genera-
tors of the stimulus module and the instantiated circuit module is illustrated in Fig. 4.36.)

Hardware signal generators are not used to verify an HDL model: The entire simula-
tion exercise is done with software models executing on a digital computer under the
direction of an HDL simulator. The waveforms of the input signals are abstractly modeled
(generated) by Verilog statements specifying waveform values and transitions. The initial
keyword is used with a set of statements that begin executing when the simulation is ini-
tialized; the signal activity associated with initial terminates execution when the last state-
ment has finished executing. The initial statements are commonly used to describe
waveforms in a test bench. The set of statements to be executed is called a block statement
and consists of several statements enclosed by the keywords begin and end. The action
specified by the statements begins when the simulation is launched, and the statements
are executed in sequence, left to right, from top to bottom, by a simulator in order to
provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C are each set to 1'b0,
which signifies one binary digit with a value of 0.) After 100 ns, the inputs change to
A, B, C = 1. After another 100 ns, the simulation terminates at time 200 ns. A second
initial statement uses the $finish system task to specify termination of the simulation. If a
statement is preceded by a delay value (e.g., #100), the simulator postpones executing the
statement until the specified time delay has elapsed. The timing diagram of waveforms
that result from the simulation is shown in Figure 3.36. The total simulation generates
waveforms over an interval of 200 ns. The inputs A, B, and C change from 0 to 1 after 100
ns. Output E is unknown for the first 10 ns (denoted by shading),and output D is unknown
for the first 30 ns. Output E goes from 1 to 0 at 110 ns. Output D goes from 1 to 0 at 130
ns and back to 1 at 150 ns, just as we predicted in Table 3.5.

Boolean Expressions

Boolean equations describing combinational logic are specified in Verilog with a con-
tinuous assignment statement consisting of the keyword assign followed by a Boolean
expression. To distinguish arithmetic operators from logical operators, Verilog uses the
symbols (&), (/), and (~) for AND, OR, and NOT (complement), respectively. Thus, to

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

116 Chapter 3 Gate-Level Minimization
describe the simple circuit of Fig. 3.35 with a Boolean expression, we use the statement
assign D = (A && B)| |(!C);

HDL Example 3.4 describes a circuit that is specified with the following two Boolean
expressions:

E=A+BC+BD
F =B'C + BC'D'

The equations specify how the logic values E and F are determined by the values of
A, B, C, and D.

HDL Example 3.4 (Combinational Logic Modeled with Boolean Equations)

/I Verilog model: Circuit with Boolean expressions

module Circuit_Boolean_CA (E, F, A, B, C, D);
output E, F;
input A, B, C, D;

assignE = A || (B && C) || ((!B) && D);
assign F = ((!B) && C) || (B && (IC) && (!D));
endmodule

The circuit has two outputs E and F and four inputs A, B, C, and D.The two assign
statements describe the Boolean equations. The values of £ and F during simulation are
determined dynamically by the values of A, B, C,and D.The simulator detects when the
test bench changes a value of one or more of the inputs. When this happens, the simula-
tor updates the values of E and F. The continuous assignment mechanism is so named
because the relationship between the assigned value and the variables is permanent. The
mechanism acts just like combinational logic, has a gate-level equivalent circuit, and is
referred to as implicit combinational logic.

We have shown that a digital circuit can be described with HDL statements, just as
it can be drawn in a circuit diagram or specified with a Boolean expression. A third
alternative is to describe combinational logic with a truth table.

User-Defined Primitives

The logic gates used in Verilog descriptions with keywords and, or, etc., are defined by
the system and are referred to as system primitives. (Caution: Other languages may use
these words differently.) The user can create additional primitives by defining them in
tabular form. These types of circuits are referred to as user-defined primitives (UDPs).
One way of specifying a digital circuit in tabular form is by means of a truth table. UDP
descriptions do not use the keyword pair module . . . endmodule. Instead, they are
declared with the keyword pair primitive . .. endprimitive. The best way to demonstrate
a UDP declaration is by means of an example.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 3.9 Hardware Description Language 117

HDL Example 3.5 defines a UDP with a truth table. It proceeds according to the
following general rules:

It is declared with the keyword primitive, followed by a name and port list.

There can be only one output, and it must be listed first in the port list and declared
with keyword output.

There can be any number of inputs. The order in which they are listed in the input
declaration must conform to the order in which they are given values in the table that
follows.

The truth table is enclosed within the keywords table and endtable.

The values of the inputs are listed in order, ending with a colon (:). The output is al-
ways the last entry in a row and is followed by a semicolon ().

The declaration of a UDP ends with the keyword endprimitive.

HDL Example 3.5 (User-Defined Primitive)

/I Verilog model: User-defined Primitive
primitive UDP_02467 (D, A, B, C);

output D;
input A, B, C;
/[Truth table for D 5f (A, B, C) 5 (0, 2, 4, 6, 7);
table
/! A B C D /I Column header comment
0 0 0 1;
0 0 1 0;
0 1 0 1;
0 1 1 0;
1 0 0 1;
1 0 1 0;
1 1 0 1;
1 1 1 1;
endtable

endprimitive
/I Instantiate primitive
/I Verilog model: Circuit instantiation of Circuit_ UDP_02467

module Circuit_with_UDP_02467 (e, f, a, b, c, d);

output e f;

input a,bcd

UDP_02467 (e, a, b, c);

and (f, e, d); /I Option gate instance name omitted
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

118 Chapter 3 Gate-Level Minimization

A
B UDP_02467 E
c

»)

FIGURE 3.37
Schematic for Circuit with_UDP_02467

Note that the variables listed on top of the table are part of a comment and are shown
only for clarity. The system recognizes the variables by the order in which they are listed
in the input declaration. A user-defined primitive can be instantiated in the construction
of other modules (digital circuits), just as the system primitives are used. For example,
the declaration

Circuit_with_UDP_02467 (E, F, A, B, C, D);

will produce a circuit that implements the hardware shown in Figure 3.37

Although Verilog HDL uses this kind of description for UDPs only, other HDLs and
computer-aided design (CAD) systems use other procedures to specify digital circuits
in tabular form. The tables can be processed by CAD software to derive an efficient gate
structure of the design. None of Verilog’s predefined primitives describes sequential
logic. The model of a sequential UDP requires that its output be declared as a reg data
type, and that a column be added to the truth table to describe the next state. So the
columns are organized as inputs : state : next state.

In this section, we introduced the Verilog HDL and presented simple examples to
illustrate alternatives for modeling combinational logic. A more detailed presentation
of Verilog HDL can be found in the next chapter. The reader familiar with combina-
tional circuits can go directly to Section 4.12 to continue with this subject.

PROBLEMS

(Answers to problems marked with * appear at the end of the text.)

3.1* Simplify the following Boolean functions, using three-variable maps:

(a) F(x,y,z) = 2(0,2,4,5) (b) F(x,y,z) = 2(0,2,4,5,6)
(©) F(x.y,z) = 2(0,1,2,3,5) (d) Fx,y,z) = 2(1,2,3,7)
3.2 Simplify the following Boolean functions, using three-variable maps:
(a)*F (x,y,z) = 2(0,1,5,7) ®)*Fx,y,2) = 2(1,2,3,6,7)
(©) F(x,y,z) =%(2,3,4,5) (d) F(x,y,z) = £(1,2,3,5,6,7)
(e) F(x,y,z) =2(0,2,4,6) (f) F(x,y,z) = 2(3,4,5,6,7)
3.3* Simplify the following Boolean expressions, using three-variable maps:
(a)* xy + x'y'z" + x'yz' (b)* x'y" + yz +x'yz’
(©)* F(x,y,z) =x'y +yz' +y'z’ (d) F(x,y,z) = x'yz + xy'z' + xy'z

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 119

3.4 Simplify the following Boolean functions, using Karnaugh maps:
(a)* F(x,y,2) = 2(2,3,6,7) (b)* F (A, B, C, D) = X(4,6,7,15)
(©)* F(A,B,C, D) =3(3,7,11,13,14,15) (@) F(w,x,y, 2) = 22,3, 12,13, 14, 15)
(e) F(w,x,y.2) = X(11,12 13,14,15) (f) F(w,x,y.z) = 2(8,10,12,13,14)
3.5 Simplify the following Boolean functions, using four-variable maps:
(a)* Fw,x,y,2) = 2(1,4,5,6,12, 14, 15)
(b) F(A,B,C,D)=3(2306712,13 14)
(¢) F(w,x,y,z) =X2(1,3,4,5,6,7,9,11,13,15)
(d)* F(A,B,C,D) = %(0,2,4,5,6,7,8,10, 13,15)
3.6 Simplify the following Boolean expressions, using four-variable maps:
(a)* A'B'C'D" + AC'D" + B'CD’' + A’BCD + BC'D
(b)* x'z +w'xy + wx'y + xy')
(¢c) A'B'C'D + AB'D + A'BC' + ABCD + AB'C
(dy A'B'C'D' + BC'D + A'C'D + A'BCD + ACD’
3.7 Simplify the following Boolean expressions, using four-variable maps:
(@ wz+xz+x'y+wx'z
(b) AD' + B'C'D + BCD' + BC'D
() AB'C+ B'C'D" + BCD + ACD' + A'B'C + A'BC'D
(d) wxy + xz + wx'z + w'x

3.8 Find the minterms of the following Boolean expressions by first plotting each function in

a map:
(@)* xy +yz +xy'z (b)* C'D + ABC' + ABD' + A'B'D
() wyz + w'x' + wxz’ (d) A'B+ A'CD + B'CD + BC'D'

3.9 Find all the prime implicants for the following Boolean functions, and determine which
are essential:
(a)* F(w,x,y,z) = 2(0,2,4,5,6,7,8,10,13, 15)

(b)* F(A,B,C,D)=1%1(0,2,3,5,7,8,10, 11, 14, 15)
(c) F(A,B,C, D) =1%(2,3,4,506,7,9,11,12,13)
(d) F(w,x,yz)=2(1,3,6,7,8,9,12,13,14,15)
(e) F(A B C D) =2%(0,1,2,57,8,9,10,13,15)
(f) F(w,x,yz)=2%(0,1,2,5,7,8,10,15)
3.10 Simplify the following Boolean functions by first finding the essential prime implicants:
(a) F(w,x,y,2z) = 2(0,2,5,7,8,10,12,13,14, 15)
(b) F(A B, C D)= 3%(0,2,3,5,7,8,10,11, 14, 15)
() F(A, B, C, D) = %(1,3,4,5,10,11, 12,13, 14, 15)
(d F(wxyz)=2(01,4,56,79,11,14,15)
(e) F(A B CD)=2%(01,3,7,8,9,10,13,15)
(f) F(w,xyz)=2(0,1,2,4,56,7,10,15)
3.11 Convert the following Boolean function from a sum-of-products form to a simplified

product-of-sums form.
F(x,y,z) = 2(0,1,2,5,8,10,13)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

120 Chapter 3 Gate-Level Minimization

3.12

3.14

3.17*

3.19

3.20

3.21

3.22
3.23

Simplify the following Boolean functions:

(a)* F(A,B,C,D) =1I(1,3,5,7,13,15)

(b) F(A,B,C, D) =11(1,3,6,9,11,12,14)

Simplify the following expressions to (1) sum-of-products and (2) products-of-sums:

(@) x'z' +y'z' +yz' +xy

(b) ACD’' + C'D + AB' + ABCD

(¢ (A/+ B +D')(A' + B +C")(A" + B + C)(B" + C + D)

(d) BCD' + ABC' + ACD

Give three possible ways to express the following Boolean function with eight or fewer literals:
F= A'BC'D + AB'CD + A'B'C' + ACD’

Simplify the following Boolean function F, together with the don’t-care conditions d, and

then express the simplified function in sum-of-minterms form:

(a) F(x,yz) = 3(0,1,4,5,6) (b)* F(A, B, C, D) = 3(0,6,8,13,14)
d(xyz) = 3(2,3,7) d(A, B, C, D) = 3(2,4,10)

(c) F(A B, C D)= 3(56,7,12,14,15) (d) F(A B, C D) = 3(4,12,7,2,10,)
d(A, B, C, D) = 3(3,9,11,15) d(A, B, C, D) = 3(0,6,8)

Simplify the following functions, and implement them with two-level NAND gate circuits:
(a) F(A,B,C,D)=AC'D'+ A'C + ABC + AB'C + A'C'D’
(b) F(A,B,C,D) =A'B'C'D + CD + AC'D
(c) F(AB,C)=(A"+C"+D")(A"+C")(C"+D")
(d F(A,B,C,D)=A"+B+ D'+ B'C
Draw a NAND logic diagram that implements the complement of the following function:

F(A,B,C,D) =%(0,1,2,3,6,10,11, 14)
Draw a logic diagram using only two-input NOR gates to implement the following function:

F(A,B,C,D) = (A®B)'(C® D)
Simplify the following functions, and implement them with two-level NOR gate circuits:
(@) F=wx' +y'z' +w'yz’
(b) F(w,x,y,z) =2(0,3,12,15)
(© Fx,y,2) =[x+ y)x=2)]
Draw the multiple-level NOR circuit for the following expression:
CD(B + C)A + (BC' + DE")
Draw the multiple-level NAND circuit for the following expression:
w(x +y+2z)+xyz

Convert the logic diagram of the circuit shown in Fig. 4.4 into a multiple-level NAND circuit.

Implement the following Boolean function F, together with the don’t-care conditions d,
using no more than two NOR gates:

F(A,B,C, D) = %(2,4,10,12,14,)
d(A,B,C, D) =%(0,1,5,8)
Assume that both the normal and complement inputs are available.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

3.24

3.25

3.26

3.27
3.28

3.29

3.30*

3.31

3.32

3.33

3.34

STUDENTS-HUB.com

Problems 121

Implement the following Boolean function F, using the two-level forms of logic (a) NAND-
AND, (b) AND-NOR, (c) OR-NAND, and (d) NOR-OR:

F(A,B,C,D) = 3(0,4,8,9,10,11, 12, 14)

List the eight degenerate two-level forms and show that they reduce to a single operation.
Explain how the degenerate two-level forms can be used to extend the number of inputs
to a gate.

With the use of maps, find the simplest sum-of-products form of the function F = fg, where
f=abc' +c'd+a'cd + b'cz’
and
g=(a+b+c +d)b +c" +d)(a +c+d)
Show that the dual of the exclusive-OR is also its complement.

Derive the circuits for a three-bit parity generator and four-bit parity checker using an odd
parity bit.

Implement the following four Boolean expressions with three half adders:

D=A®B®C
E=A'"BC+ AB'C
F=ABC' + (A" + B")C
G = ABC
Implement the following Boolean expression with exclusive-OR and AND gates:
F=AB'CD' + A'BCD' + AB'C'D + A'BC'D
Write a Verilog gate-level description of the circuit shown in
(a) Fig.3.20(a) (b) Fig.3.20(b) (c) Fig.3.21(a)
(d) Fig.3.21(b) (e) Fig.3.24 (f) Fig.3.25

Using continuous assignment statements, write a Verilog description of the circuit

shown in

(a) Fig.3.20(a) (b) Fig.3.20(b) (c) Fig.3.21(a)

(d) Fig.3.21(b) (e) Fig.3.24 (f) Fig.3.25

The exclusive-OR circuit of Fig. 3.30(a) has gates with a delay of 3 ns for an inverter, a 6 ns

delay for an AND gate, and a 8 ns delay for an OR gate. The input of the circuit goes from

xy=00toxy=01

(a) Determine the signals at the output of each gate from 7 =0to ¢ =50 ns.

(b) Write a Verilog gate-level description of the circuit, including the delays.

(c) Write a stimulus module (i.e., a test bench similar to HDL Example 3.3), and simulate
the circuit to verify the answer in part (a).

Using continuous assignments, write a Verilog description of the circuit specified by the
following Boolean functions:

Out 1= (A + B')C'(C+ D)
Out 2 = (C'D + BCD + CD')(A’ + B)
Out3 = (AB + C)D + B'C

Write a test bench and simulate the circuit’s behavior.

Uploaded By: Malak Dar Obaid

122 Chapter 3 Gate-Level Minimization

3.35* Find the syntax errors in the following declarations (note that names for primitive gates
are optional):

module Exmpl-3(A, B, C, D, F) /I Line 1
inputs A, B, C, Output D, F, /I Line 2
output B /I Line 3
and g1(A, B, D); /I Line 4
not (D, A, C), /I Line 5
OR (F, B; C); /I Line 6

endmodule; /I Line 7

3.36 Draw the logic diagram of the digital circuit specified by the following Verilog description:

(a) module Circuit_A (A, B, C, D, F);
input A, B, C,D;

output F;

wire w, X, Y, Z, a, d;

or (x, B, C, d);

and (y, a,C);

and (w, z ,B);

and (z,y, A);

or (F x, w);

not (a, A);

not (d, D);
endmodule

(b) module Circuit_B (F1, F2, F3, A0, A1, BO, B1);
output F1, F2, F3;
input A0, A1, BO, B1;

nor (F1, F2, F3);

or (F2, w1, w2, w3);
and (F3, w4, wb);
and (w1, w6, B1);

or (w2, wb, w7, BO);
and (w3, w7, BO, B1);
not (w6, A1);

not (w7, AO);

xor (w4, A1, B1);
xnor (w5, AO, BO);

endmodule

(¢) module Circuit_C (y1, y2, y3, a, b);
output y1, y2, y3;
input a, b;

assignyl=al| b;

and (y2, a, b);

assign y3 = a && b;
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

References 123

3.37 A majority logic function is a Boolean function that is equal to 1 if the majority of the
variables are equal to 1, equal to 0 otherwise.
(a) Write a truth table for a four-bit majority function.
(b) Write a Verilog user-defined primitive for a four-bit majority function.

3.38 Simulate the behavior of Circuit_with_UDP_02467, using the stimulus waveforms shown

in Fig. P3.38.

A
1 T T T T T | t,ns
10 20 30 40 50 60 70 80

B
T T T T | t,ns
10 20 30 40 50 60 70 80

C

1 t,ns

10 20 30 40 50 60 70 80

D
T T T T] t,ns
10 20 30 40 50 60 70 80

FIGURE P3.38
Stimulus waveforms for Problem 3.38

3.39 Using primitive gates, write a Verilog model of a circuit that will produce two outputs,
s and ¢, equal to the sum and carry produced by adding two binary input bits @ and b (e.g.,
s=1and c=0ifa=0and b =1). (Hint: Begin by developing a truth table for s and c.)

REFERENCES

1. BHASKER, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

CiLeTTI, M. D. 1999. Modeling, Synthesis and Rapid Prototyping with the Verilog HD L.
Upper Saddle River, NJ: Prentice Hall.

3. HiLw, F. J., and G. R. PETERSON. 1981. Introduction to Switching Theory and Logical Design,
3rd ed. New York: John Wiley.

4. IEEE Standard Hardware Description Language Based on the Verilog Hardware Descrip-
tion Language (IEEE Std. 1364-1995). 1995. New York: The Institute of Electrical and
Electronics Engineers.

5. KarNAUGH, M. A Map Method for Synthesis of Combinational Logic Circuits. Transactions
of AIEE, Communication and Electronics. 72, part I (Nov. 1953): 593-99.

6. Komnavr, Z. 1978. Switching and Automata Theory,2nd ed. New York: McGraw-Hill.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

124 Chapter 3 Gate-Level Minimization

7. ManNo, M. M. and C. R. KiME. 2004. Logic and Computer Design Fundamentals, 3rd ed.
Upper Saddle River, NJ: Prentice Hall.

8. McCLUSKEY, E. J. 1986. Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall.

9. PALNITKAR, S. 1996. Verilog HD L: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

WEB SEARCH TOPICS

Boolean minimization
Karnaugh map

Wired logic
Emitter-coupled logic
Open-collector logic
Quine McCluskey method
Expresso software
Consensus theorem
Don’t-care conditions

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 4
Combinational Logic

4.1 INTRODUCTION

Logic circuits for digital systems may be combinational or sequential. A combinational
circuit consists of logic gates whose outputs at any time are determined from only the
present combination of inputs. A combinational circuit performs an operation that can
be specified logically by a set of Boolean functions. In contrast, sequential circuits
employ storage elements in addition to logic gates. Their outputs are a function of the
inputs and the state of the storage elements. Because the state of the storage elements
is a function of previous inputs, the outputs of a sequential circuit depend not only on
present values of inputs, but also on past inputs, and the circuit behavior must be speci-
fied by a time sequence of inputs and internal states. Sequential circuits are the building
blocks of digital systems and are discussed in Chapters 5 and 8.

4.2 COMBINATIONAL CIRCUITS

A combinational circuit consists of an interconnection of logic gates. Combinational
logic gates react to the values of the signals at their inputs and produce the value of the
output signal, transforming binary information from the given input data to a required
output data. A block diagram of a combinational circuit is shown in Fig. 4.1. The n input
binary variables come from an external source; the m output variables are produced by
the internal combinational logic circuit and go to an external destination. Each input
and output variable exists physically as an analog signal whose values are interpreted
to be a binary signal that represents logic 1 and logic 0. (Note: Logic simulators show
only 0’s and 1’s, not the actual analog signals.) In many applications, the source and

125

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

126 Chapter 4 Combinational Logic

e — —
— —

n inputs —> Combinational > m outputs

circuit
—_— >

FIGURE 4.1
Block diagram of combinational circuit

destination are storage registers. If the registers are included with the combinational
gates, then the total circuit must be considered to be a sequential circuit.

For n input variables, there are 2" possible combinations of the binary inputs. For each
possible input combination, there is one possible value for each output variable. Thus, a
combinational circuit can be specified with a truth table that lists the output values for
each combination of input variables. A combinational circuit also can be described by
m Boolean functions, one for each output variable. Each output function is expressed
in terms of the n input variables.

In Chapter 1, we learned about binary numbers and binary codes that represent discrete
quantities of information. The binary variables are represented physically by electric volt-
ages or some other type of signal. The signals can be manipulated in digital logic gates to
perform required functions. In Chapter 2, we introduced Boolean algebra as a way to
express logic functions algebraically. In Chapter 3, we learned how to simplify Boolean
functions to achieve economical (simpler) gate implementations. The purpose of the cur-
rent chapter is to use the knowledge acquired in previous chapters to formulate systematic
analysis and design procedures for combinational circuits. The solution of some typical
examples will provide a useful catalog of elementary functions that are important for the
understanding of digital systems. We'll address three tasks: (1) Analyze the behavior of a
given logic circuit, (2) synthesize a circuit that will have a given behavior, and (3) write
hardware description language (HDL) models for some common circuits.

There are several combinational circuits that are employed extensively in the design
of digital systems. These circuits are available in integrated circuits and are classified as
standard components. They perform specific digital functions commonly needed in the
design of digital systems. In this chapter, we introduce the most important standard
combinational circuits, such as adders, subtractors, comparators, decoders, encoders, and
multiplexers. These components are available in integrated circuits as medium-scale
integration (MSI) circuits. They are also used as standard cells in complex very large-
scale integrated (VLSI) circuits such as application-specific integrated circuits (ASICs).
The standard cell functions are interconnected within the VLSI circuit in the same way
that they are used in multiple-IC MSI design.

4.3 ANALYSIS PROCEDURE

The analysis of a combinational circuit requires that we determine the function that the
circuit implements. This task starts with a given logic diagram and culminates with a set
of Boolean functions, a truth table, or, possibly, an explanation of the circuit operation.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.3 Analysis Procedure 127

If the logic diagram to be analyzed is accompanied by a function name or an explanation
of what it is assumed to accomplish, then the analysis problem reduces to a verification
of the stated function. The analysis can be performed manually by finding the Boolean
functions or truth table or by using a computer simulation program.

The first step in the analysis is to make sure that the given circuit is combinational
and not sequential. The diagram of a combinational circuit has logic gates with no
feedback paths or memory elements. A feedback path is a connection from the output
of one gate to the input of a second gate whose output forms part of the input to the
first gate. Feedback paths in a digital circuit define a sequential circuit and must be
analyzed by special methods and will not be considered here.

Once the logic diagram is verified to be that of a combinational circuit, one can proceed
to obtain the output Boolean functions or the truth table. If the function of the circuit is
under investigation, then it is necessary to interpret the operation of the circuit from the
derived Boolean functions or truth table. The success of such an investigation is enhanced
if one has previous experience and familiarity with a wide variety of digital circuits.

To obtain the output Boolean functions from a logic diagram, we proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols—
but with meaningful names. Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates
with other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output
Boolean functions in terms of input variables.

The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed proce-
dure. We note that the circuit has three binary inputs—A, B, and C—and two binary
outputs— F; and F,. The outputs of various gates are labeled with intermediate symbols.
The outputs of gates that are a function only of input variables are 7 and 75. Output
F, can easily be derived from the input variables. The Boolean functions for these three
outputs are

F, = AB + AC + BC
T,=A+B+C

T, = ABC
Next, we consider outputs of gates that are a function of already defined symbols:
T; = F,T,
F=T;+T,

To obtain F; as a function of A, B, and C, we form a series of substitutions as follows:
F,=T;+ T,=F,T, + ABC = (AB + AC+ BC)'(A+ B+ C) + ABC
=(A"+B")(A'"+C")B' +C")Y(A+ B+ C) + ABC
= (A" + B'C")(AB' + AC' + BC' + B'C) + ABC
= A'BC' + A'B'C + AB'C' + ABC

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

128 Chapter 4 Combinational Logic

T,

Fy

vl®

e
F/

A_
B_

A_
C_

B —]
c —1

FIGURE 4.2

Logic diagram for analysis example

v Y
)

If we want to pursue the investigation and determine the information transformation
task achieved by this circuit, we can draw the circuit from the derived Boolean expres-
sions and try to recognize a familiar operation. The Boolean functions for F; and F,
implement a circuit discussed in Section 4.5. Merely finding a Boolean representation
of a circuit doesn’t provide insight into its behavior, but in this example we will observe
that the Boolean equations and truth table for F; and F, match those describing the
functionality of what we call a full adder.

The derivation of the truth table for a circuit is a straightforward process once the
output Boolean functions are known. To obtain the truth table directly from the logic
diagram without going through the derivations of the Boolean functions, we proceed as
follows:

1. Determine the number of input variables in the circuit. For »n inputs, form the 2"
possible input combinations and list the binary numbers from 0 to (2" — 1) in a
table.

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates which are a function of the
input variables only.

4. Proceed to obtain the truth table for the outputs of those gates which are a func-
tion of previously defined values until the columns for all outputs are determined.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.4 Design Procedure 129

Table 4.1
Truth Table for the Logic Diagram of Fig. 4.2

A B C|FR F, T, T,

wl
e

_— = = O O OO
= O O = OO0
—OROR,RORFRO
el e R e R e N]
SO OROR R,k
—_ e R R e = O
OO oo OoO0O
S OO RR O =P, O
—ooRrRORRP~,O

This process is illustrated with the circuit of Fig. 4.2. In Table 4.1, we form the
eight possible combinations for the three input variables. The truth table for F, is
determined directly from the values of A, B, and C, with F, equal to 1 for any com-
bination that has two or three inputs equal to 1. The truth table for F5 is the comple-
ment of F,. The truth tables for 7} and T, are the OR and AND functions of the
input variables, respectively. The values for 75 are derived from 77 and F3:T3 is equal
to 1 when both T and F3 are equal to 1, and 73 is equal to 0 otherwise. Finally, F; is
equal to 1 for those combinations in which either 7, or 75 or both are equal to 1.
Inspection of the truth table combinations for A, B, C, F;, and F, shows that it is
identical to the truth table of the full adder given in Section 4.5 for x, y, z, S, and C,
respectively.

Another way of analyzing a combinational circuit is by means of logic simulation.
This is not practical, however, because the number of input patterns that might be
needed to generate meaningful outputs could be very large. But simulation has a very
practical application in verifying that the functionality of a circuit actually matches its
specification. In Section 4.12, we demonstrate the logic simulation and verification of
the circuit of Fig. 4.2, using Verilog HDL.

4.4 DESIGN PROCEDURE

The design of combinational circuits starts from the specification of the design objective
and culminates in a logic circuit diagram or a set of Boolean functions from which the
logic diagram can be obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs
and outputs and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and
outputs.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

130 Chapter 4 Combinational Logic

3. Obtain the simplified Boolean functions for each output as a function of the input
variables.

4. Draw the logic diagram and verify the correctness of the design (manually or by
simulation).

A truth table for a combinational circuit consists of input columns and output
columns. The input columns are obtained from the 2" binary numbers for the » input
variables. The binary values for the outputs are determined from the stated specifica-
tions. The output functions specified in the truth table give the exact definition of the
combinational circuit. It is important that the verbal specifications be interpreted
correctly in the truth table, as they are often incomplete, and any wrong interpretation
may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available
method, such as algebraic manipulation, the map method, or a computer-based sim-
plification program. Frequently, there is a variety of simplified expressions from
which to choose. In a particular application, certain criteria will serve as a guide in
the process of choosing an implementation. A practical design must consider such
constraints as the number of gates, number of inputs to a gate, propagation time of
the signal through the gates, number of interconnections, limitations of the driving
capability of each gate (i.e., the number of gates to which the output of the circuit
may be connected), and various other criteria that must be taken into consideration
when designing integrated circuits. Since the importance of each constraint is dictated
by the particular application, it is difficult to make a general statement about what
constitutes an acceptable implementation. In most cases, the simplification begins by
satisfying an elementary objective, such as producing the simplified Boolean func-
tions in a standard form. Then the simplification proceeds with further steps to meet
other performance criteria.

Code Conversion Example

The availability of a large variety of codes for the same discrete elements of information
results in the use of different codes by different digital systems. It is sometimes necessary
to use the output of one system as the input to another. A conversion circuit must be
inserted between the two systems if each uses different codes for the same information.
Thus, a code converter is a circuit that makes the two systems compatible even though
each uses a different binary code.

To convert from binary code A to binary code B, the input lines must supply the
bit combination of elements as specified by code A and the output lines must gener-
ate the corresponding bit combination of code B. A combinational circuit performs
this transformation by means of logic gates. The design procedure will be illustrated
by an example that converts binary coded decimal (BCD) to the excess-3 code for the
decimal digits.

The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1.5
(Section 1.7). Since each code uses four bits to represent a decimal digit, there must

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.4 Design Procedure 131

Table 4.2
Truth Table for Code Conversion Example
Input BCD Output Excess-3 Code

A B C D w X y z
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

be four input variables and four output variables. We designate the four input binary
variables by the symbols A, B, C, and D, and the four output variables by w, x, y, and
z.The truth table relating the input and output variables is shown in Table 4.2. The bit
combinations for the inputs and their corresponding outputs are obtained directly
from Section 1.7. Note that four binary variables may have 16 bit combinations, but
only 10 are listed in the truth table. The six bit combinations not listed for the input
variables are don’t-care combinations. These values have no meaning in BCD and we
assume that they will never occur in actual operation of the circuit. Therefore, we are
at liberty to assign to the output variables either a 1 or a 0, whichever gives a simpler
circuit.

The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the
outputs. Each one of the four maps represents one of the four outputs of the circuit
as a function of the four input variables. The 1’s marked inside the squares are
obtained from the minterms that make the output equal to 1. The 1’s are obtained
from the truth table by going over the output columns one at a time. For example,
the column under output z has five 1’s; therefore, the map for z has five 1’s, each
being in a square corresponding to the minterm that makes z equal to 1. The six
don’t-care minterms 10 through 15 are marked with an X. One possible way to sim-
plify the functions into sum-of-products form is listed under the map of each variable.
(See Chapter 3.)

A two-level logic diagram for each output may be obtained directly from the Boolean
expressions derived from the maps. There are various other possibilities for a logic diagram
that implements this circuit. The expressions obtained in Fig. 4.3 may be manipulated
algebraically for the purpose of using common gates for two or more outputs. This manip-
ulation, shown next, illustrates the flexibility obtained with multiple-output systems when

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

132 Chapter 4 Combinational Logic

C C
CD —_— CD —_—
AB 00 01 11 10 AB 00 01 11 10
my m ms ny my m s nm,
00 1 1 00 1 1
m, ms m, mg my ms m myg
01 1 1 01 1 1
i) my3 ms myy B mp my3 mys my B
11 X X X X 11 X X X X
A A
s my my My mg my my, My
10 1 X X 10 1 X X
[[
D D
=D’ y=CD+C'D'
CD < CD ¢
—_—
Ny ny L my Ny ny ny n,
00 1 1 1 00
my ms m, myg my ms m myg
01 1 1 01 1 1 1
My My nys Ko B [Cv) (413 (s My B
11 X X X X 11 X X X X
A ng my My My A g My My My
10 1 X X 10 1 1 X X
[[
D D
x=B'C+ B'D+ BC'D' w=A+ BC+ BD
FIGURE 4.3

Maps for BCD-to-excess-3 code converter

implemented with three or more levels of gates:

z=D'

y=CD+ C'D'"=CD + (C+ D)’

x=B'C+B'D+ BC'D'"=B'(C+ D)+ BC'D'

=B'(C+ D)+ B(C+ D)’

w=A+BC+ BD=A+ B(C+ D)
The logic diagram that implements these expressions is shown in Fig. 4.4. Note that the OR
gate whose output is C + D has been used to implement partially each of three outputs.

Not counting input inverters, the implementation in sum-of-products form requires

seven AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND
gates, four OR gates, and one inverter. If only the normal inputs are available, the first

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.5 Binary Adder-Subtractor 133

D’

D>
e D ,
) DDty
C+D
B
X

Do
A w
FIGURE 4.4

Logic diagram for BCD-to-excess-3 code converter

implementation will require inverters for variables B, C, and D, and the second
implementation will require inverters for variables B and D. Thus, the three-level logic
circuit requires fewer gates, all of which in turn require no more than two inputs.

4.5 BINARY ADDER-SUBTRACTOR

Digital computers perform a variety of information-processing tasks. Among the func-
tions encountered are the various arithmetic operations. The most basic arithmetic
operation is the addition of two binary digits. This simple addition consists of four pos-
sible elementary operations: 0 + 0 = 0,0+ 1 =1,1 + 0 =1,and 1 + 1 = 10. The
first three operations produce a sum of one digit, but when both augend and addend
bits are equal to 1, the binary sum consists of two digits. The higher significant bit of this
result is called a carry. When the augend and addend numbers contain more significant
digits, the carry obtained from the addition of two bits is added to the next higher order
pair of significant bits. A combinational circuit that performs the addition of two bits is
called a half adder. One that performs the addition of three bits (two significant bits and
a previous carry) is a full adder. The names of the circuits stem from the fact that two
half adders can be employed to implement a full adder.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

134 Chapter 4 Combinational Logic

A binary adder—subtractor is a combinational circuit that performs the arithmetic
operations of addition and subtraction with binary numbers. We will develop this
circuit by means of a hierarchical design. The half adder design is carried out first, from
which we develop the full adder. Connecting n full adders in cascade produces a binary
adder for two n-bit numbers. The subtraction circuit is included in a complementing
circuit.

Half Adder

From the verbal explanation of a half adder, we find that this circuit needs two binary
inputs and two binary outputs. The input variables designate the augend and addend
bits; the output variables produce the sum and carry. We assign symbols x and y to the
two inputs and S (for sum) and C (for carry) to the outputs. The truth table for the half
adder is listed in Table 4.3. The C output is 1 only when both inputs are 1. The S output
represents the least significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from
the truth table. The simplified sum-of-products expressions are

S=x'y +xy’
C =xy

The logic diagram of the half adder implemented in sum of products is shown in
Fig.4.5(a). It can be also implemented with an exclusive-OR and an AND gate as shown
in Fig. 4.5(b). This form is used to show that two half adders can be used to construct a

full adder.
Table 4.3
Half Adder
X C s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
¥ —]
Y —

x'— X — 4 s
Yy — y i

C
y—{ J ¢
(@) S=xy' +x'y b)S=xDy
C=uxy C=xy
FIGURE 4.5

Implementation of half adder

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.5 Binary Adder-Subtractor 135

Full Adder

Addition of n-bit binary numbers requires the use of a full adder, and the process of addi-
tion proceeds on a bit-by-bit basis, right to left, beginning with the least significant bit. After
the least significant bit, addition at each position adds not only the respective bits of the
words, but must also consider a possible carry bit from addition at the previous position.

A full adder is a combinational circuit that forms the arithmetic sum of three bits. It
consists of three inputs and two outputs. Two of the input variables, denoted by x and y,
represent the two significant bits to be added. The third input, z, represents the carry from
the previous lower significant position. Two outputs are necessary because the arithmetic
sum of three binary digits ranges in value from 0 to 3, and binary representation of 2 or 3
needs two bits. The two outputs are designated by the symbols S for sum and C for carry.
The binary variable S gives the value of the least significant bit of the sum. The binary
variable C gives the output carry formed by adding the input carry and the bits of the
words. The truth table of the full adder is listed in Table 4.4. The eight rows under the input
variables designate all possible combinations of the three variables. The output variables
are determined from the arithmetic sum of the input bits. When all input bits are 0, the
output is 0. The S output is equal to 1 when only one input is equal to 1 or when all three
inputs are equal to 1. The C output has a carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations
at various stages of the problem. On the one hand, physically, the binary signals of the
inputs are considered binary digits to be added arithmetically to form a two-digit sum
at the output. On the other hand, the same binary values are considered as variables of
Boolean functions when expressed in the truth table or when the circuit is implemented
with logic gates. The maps for the outputs of the full adder are shown in Fig. 4.6. The
simplified expressions are

S — xly/z + x/yzl + xy/zr + xyz
C=xy+xz+yz

The logic diagram for the full adder implemented in sum-of-products form is shown
in Fig. 4.7 It can also be implemented with two half adders and one OR gate, as shown

Table 4.4

Full Adder
X y z C s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

136 Chapter 4 Combinational Logic

yz _{}— yz _{J_
x 00 o0l 11 10 . 00 01 11 10
m m my m, my my ms my
0 1 1 0 1
my mg m; mg my ms my mg
x41 1 1 x51 1 1 1
—_— —_—
z z
(a)S=x"y'z +x'yz' +xy'z' +xyz (b)C=xy +xz +yz

FIGURE 4.6
K-Maps for full adder

x:—
y —
, Yy —
x' —]
y_}
7' —
X —]
s DD
X, — Z
y_
Z,_}
O
Z_
x —]
EDS
Z_

FIGURE 4.7
Implementation of full adder in sum-of-products form

in Fig. 4.8. The S output from the second half adder is the exclusive-OR of z and the
output of the first half adder, giving
S=z® (xDy)
=z'(xy" +x'y) + z(xy' + x'y)
=z'(xy' +x'y) + z(xy + x'y")
=xy'z' +x'yz' +xyz + x'y'z
The carry output is

C=z(xy' +x'y) +xy=xy'z +x'yz +xy

Binary Adder

A binary adder is a digital circuit that produces the arithmetic sum of two binary num-
bers. It can be constructed with full adders connected in cascade, with the output carry
from each full adder connected to the input carry of the next full adder in the chain.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.5 Binary Adder-Subtractor 137

(x®Dy)z+xy

FIGURE 4.8
Implementation of full adder with two half adders and an OR gate

Addition of n-bit numbers requires a chain of » full adders or a chain of one-half adder
and n—1 full adders. In the former case, the input carry to the least significant position
is fixed at 0. Figure 4.9 shows the interconnection of four full-adder (FA) circuits to
provide a four-bit binary ripple carry adder. The augend bits of A and the addend bits
of B are designated by subscript numbers from right to left, with subscript O denoting
the least significant bit. The carries are connected in a chain through the full adders. The
input carry to the adder is C, and it ripples through the full adders to the output carry
C,4. The S outputs generate the required sum bits. An n-bit adder requires n full adders,
with each output carry connected to the input carry of the next higher order full adder.

To demonstrate with a specific example, consider the two binary numbers A = 1011
and B = 0011. Their sum S = 1110 is formed with the four-bit adder as follows:

Subscript i 3 2 1 o

Input carry 0 1 1 0 (@F

Augend 1 0 1 1 A;

Addend 0 0 1 1 B;

Sum 1 1 1 0 S;

Output carry 0 0 1 1 Cii

The bits are added with full adders, starting from the least significant position (subscript
0), to form the sum bit and carry bit. The input carry C, in the least significant position
must be 0. The value of C;; in a given significant position is the output carry of the full
adder. This value is transferred into the input carry of the full adder that adds the bits
one higher significant position to the left. The sum bits are thus generated starting from
the rightmost position and are available as soon as the corresponding previous carry
bit is generated. All the carries must be generated for the correct sum bits to appear at
the outputs.

The four-bit adder is a typical example of a standard component. It can be used in
many applications involving arithmetic operations. Observe that the design of this circuit

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

138

Chapter 4 Combinational Logic

B, A, B, A, B, A By, A,
C3 C2 Cl
FA FA FA FA le——
Cy 83 S $ So
FIGURE 4.9

Four-bit adder

by the classical method would require a truth table with 2° = 512 entries, since there
are nine inputs to the circuit. By using an iterative method of cascading a standard func-
tion, it is possible to obtain a simple and straightforward implementation.

Carry Propagation

STUDENTS-HUB.com

The addition of two binary numbers in parallel implies that all the bits of the augend
and addend are available for computation at the same time. As in any combinational
circuit, the signal must propagate through the gates before the correct output sum is
available in the output terminals. The total propagation time is equal to the propagation
delay of a typical gate, times the number of gate levels in the circuit. The longest propa-
gation delay time in an adder is the time it takes the carry to propagate through the full
adders. Since each bit of the sum output depends on the value of the input carry, the
value of S; at any given stage in the adder will be in its steady-state final value only after
the input carry to that stage has been propagated. In this regard, consider output S5 in
Fig.4.9. Inputs A; and Bj; are available as soon as input signals are applied to the adder.
However, input carry C; does not settle to its final value until C, is available from the
previous stage. Similarly, C, has to wait for C; and so on down to C. Thus, only after
the carry propagates and ripples through all stages will the last output S5 and carry C,
settle to their final correct value.

The number of gate levels for the carry propagation can be found from the circuit
of the full adder. The circuit is redrawn with different labels in Fig. 4.10 for convenience.
The input and output variables use the subscript i to denote a typical stage of the adder.
The signals at P; and G; settle to their steady-state values after they propagate through
their respective gates. These two signals are common to all half adders and depend on
only the input augend and addend bits. The signal from the input carry C; to the output
carry C;1 propagates through an AND gate and an OR gate, which constitute two gate
levels. If there are four full adders in the adder, the output carry C, would have
2 X 4 = 8 gate levels from C to C,. For an n-bit adder, there are 2n gate levels for the
carry to propagate from input to output.

Uploaded By: Malak Dar Obaid

Section 4.5 Binary Adder-Subtractor 139

Half adder Half adder
[mm e ———— =
|
A -l——W\ P
| 1
B; ! /1__/ : S;
|
| |
| G 1
L]
I I Civ1
|
|

FIGURE 4.10
Full adder with P and G shown

The carry propagation time is an important attribute of the adder because it limits
the speed with which two numbers are added. Although the adder —or, for that matter,
any combinational circuit—will always have some value at its output terminals, the
outputs will not be correct unless the signals are given enough time to propagate through
the gates connected from the inputs to the outputs. Since all other arithmetic operations
are implemented by successive additions, the time consumed during the addition process
is critical. An obvious solution for reducing the carry propagation delay time is to
employ faster gates with reduced delays. However, physical circuits have a limit to their
capability. Another solution is to increase the complexity of the equipment in such a
way that the carry delay time is reduced. There are several techniques for reducing the
carry propagation time in a parallel adder. The most widely used technique employs the
principle of carry lookahead logic.

Consider the circuit of the full adder shown in Fig. 4.10. If we define two new binary
variables

Pi = A,@ Bi
Gi - AiBi
the output sum and carry can respectively be expressed as
Si - Pi D Ci
Civ1 = G + PG
G, is called a carry generate, and it produces a carry of 1 when both A; and B; are 1,
regardless of the input carry C;. P; is called a carry propagate, because it determines
whether a carry into stage i will propagate into stage i + 1 (i.e., whether an assertion of
C; will propagate to an assertion of C;).
We now write the Boolean functions for the carry outputs of each stage and substitute
the value of each C; from the previous equations:
Cy = input carry
Ci = Gy + PyCy

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

140 Chapter 4 Combinational Logic

C2:G1+P1C1:G1+P1(G0+POC0):G1+P1G0+P1POC0
C3:G2+P2C2:G2+P2G1+P2P1G0:P2P1POCO

Since the Boolean function for each output carry is expressed in sum-of-products form,
each function can be implemented with one level of AND gates followed by an OR gate
(or by a two-level NAND). The three Boolean functions for C;, C,, and C; are imple-
mented in the carry lookahead generator shown in Fig. 4.11. Note that this circuit can
add in less time because C3 does not have to wait for C, and C; to propagate;in fact, C;
is propagated at the same time as C; and C,. This gain in speed of operation is achieved
at the expense of additional complexity (hardware).

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12.
Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR
gate generates the P; variable, and the AND gate generates the G, variable. The carries
are propagated through the carry lookahead generator (similar to that in Fig. 4.11) and
applied as inputs to the second exclusive-OR gate. All output carries are generated after

G

P,

Gy

&)

%;%W

Py

G

PO Cl

Gy

Co

FIGURE 4.11
Logic diagram of carry lookahead generator

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.5 Binary Adder-Subtractor 141

C4 C4
1>
2
un ey D
A
_ﬁ G, G 7
.
1>
2
Ay /L_/ 2 s \)DiS
L — C ?
| G2 ’ !
Carry
Lookahead
B Generator
D>
Ay /[__/ ! .P;’Dis
c 1
_ﬂ - 1 7
L
B
' _W\ Po Py
S >
0
L7 Gy
C() CO
FIGURE 4.12

Four-bit adder with carry lookahead

a delay through two levels of gates. Thus, outputs §; through S3 have equal propagation
delay times. The two-level circuit for the output carry Cy is not shown. This circuit can
easily be derived by the equation-substitution method.

Binary Subtractor

The subtraction of unsigned binary numbers can be done most conveniently by means
of complements, as discussed in Section 1.5. Remember that the subtraction A — B can
be done by taking the 2’s complement of B and adding it to A. The 2’s complement can
be obtained by taking the 1’s complement and adding 1 to the least significant pair of
bits. The 1’s complement can be implemented with inverters, and a 1 can be added to
the sum through the input carry.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

142 Chapter 4 Combinational Logic

BS AS BZ A2 Bl Al B() A()

C4 C3 C2 C] C 0

FIGURE 4.13
Four-bit adder-subtractor (with overflow detection)

The circuit for subtracting A — B consists of an adder with inverters placed between
each data input B and the corresponding input of the full adder. The input carry Cy must
be equal to 1 when subtraction is performed. The operation thus performed becomes A,
plus the 1’s complement of B, plus 1. This is equal to A plus the 2’s complement of B.
For unsigned numbers, that gives A — B if A = B or the 2’s complement of (B — A)
if A < B. For signed numbers, the resultis A — B, provided that there is no overflow.
(See Section 1.6.)

The addition and subtraction operations can be combined into one circuit with one
common binary adder by including an exclusive-OR gate with each full adder. A four-bit
adder—subtractor circuit is shown in Fig. 4.13. The mode input M controls the operation.
When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor.
Each exclusive-OR gate receives input M and one of the inputs of B.When M = 0, we
have B® 0 = B. The full adders receive the value of B, the input carry is 0, and the
circuit performs A plus B.When M = 1, wehave B®1 = B’ and C;, = 1. The B inputs
are all complemented and a 1 is added through the input carry. The circuit performs the
operation A plus the 2’s complement of B. (The exclusive-OR with output V is for
detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added
and subtracted by the same basic addition and subtraction rules as are unsigned num-
bers. Therefore, computers need only one common hardware circuit to handle both types
of arithmetic. The user or programmer must interpret the results of such addition or
subtraction differently, depending on whether it is assumed that the numbers are signed
or unsigned.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.5 Binary Adder-Subtractor 143

Overflow

When two numbers with n digits each are added and the sum is a number occupying
n + 1 digits, we say that an overflow occurred. This is true for binary or decimal num-
bers, signed or unsigned. When the addition is performed with paper and pencil, an
overflow is not a problem, since there is no limit by the width of the page to write down
the sum. Overflow is a problem in digital computers because the number of bits that
hold the number is finite and a result that contains n + 1 bits cannot be accommodated
by an n-bit word. For this reason, many computers detect the occurrence of an overflow,
and when it occurs, a corresponding flip-flop is set that can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on
whether the numbers are considered to be signed or unsigned. When two unsigned
numbers are added, an overflow is detected from the end carry out of the most signifi-
cant position. In the case of signed numbers, two details are important: the leftmost bit
always represents the sign, and negative numbers are in 2’s-complement form. When
two signed numbers are added, the sign bit is treated as part of the number and the end
carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and the other
is negative, since adding a positive number to a negative number produces a result
whose magnitude is smaller than the larger of the two original numbers. An overflow
may occur if the two numbers added are both positive or both negative. To see how this
can happen, consider the following example: Two signed binary numbers, +70 and +80,
are stored in two eight-bit registers. The range of numbers that each register can accom-
modate is from binary +127 to binary —128. Since the sum of the two numbers is +150,
it exceeds the capacity of an eight-bit register. This is also true for —70 and —80. The two
additions in binary are shown next, together with the last two carries:

carries: 01 carries: 10
+70 0 1000110 -70 1 0111010
+80 0 1010000 —80 1 0110000
+150 1 0010110 —150 0 1101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.e.,
the eighth bit) and the eight-bit result that should have been negative has a positive sign
bit. If, however, the carry out of the sign bit position is taken as the sign bit of the result,
then the nine-bit answer so obtained will be correct. But since the answer cannot be
accommodated within eight bits, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit position
and the carry out of the sign bit position. If these two carries are not equal, an overflow
has occurred. This is indicated in the examples in which the two carries are explicitly
shown. If the two carries are applied to an exclusive-OR gate, an overflow is detected
when the output of the gate is equal to 1. For this method to work correctly, the 2’s comple-
ment of a negative number must be computed by taking the 1’s complement and adding 1.
This takes care of the condition when the maximum negative number is complemented.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

144 Chapter 4 Combinational Logic

The binary adder—subtractor circuit with outputs C and V is shown in Fig. 4.13.If the
two binary numbers are considered to be unsigned, then the C bit detects a carry after
addition or a borrow after subtraction. If the numbers are considered to be signed, then
the V bit detects an overflow. If V = 0 after an addition or subtraction, then no overflow
occurred and the n-bit result is correct. If V = 1, then the result of the operation contains
n + 1 bits, but only the rightmost n bits of the number fit in the space available, so an
overflow has occurred. The (xn + 1) th bit is the actual sign and has been shifted out of
position.

4.6 DECIMAL ADDER

Computers or calculators that perform arithmetic operations directly in the decimal
number system represent decimal numbers in binary coded form. An adder for such
a computer must employ arithmetic circuits that accept coded decimal numbers and
present results in the same code. For binary addition, it is sufficient to consider a
pair of significant bits together with a previous carry. A decimal adder requires a
minimum of nine inputs and five outputs, since four bits are required to code each
decimal digit and the circuit must have an input and output carry. There is a wide
variety of possible decimal adder circuits, depending upon the code used to repre-
sent the decimal digits. Here we examine a decimal adder for the BCD code. (See
Section 1.7.)

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with an input
carry from a previous stage. Since each input digit does not exceed 9, the output sum
cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Sup-
pose we apply two BCD digits to a four-bit binary adder. The adder will form the sum
in binary and produce a result that ranges from 0 through 19. These binary numbers
are listed in Table 4.5 and are labeled by symbols K, Zg, Z,4, Z,, and Z;. K is the carry,
and the subscripts under the letter Z represent the weights 8, 4,2, and 1 that can be
assigned to the four bits in the BCD code. The columns under the binary sum list the
binary value that appears in the outputs of the four-bit binary adder. The output sum
of two decimal digits must be represented in BCD and should appear in the form
listed in the columns under “BCD Sum.” The problem is to find a rule by which the
binary sum is converted to the correct BCD digit representation of the number in the
BCD sum.

In examining the contents of the table, it becomes apparent that when the binary sum
is equal to or less than 1001, the corresponding BCD number is identical, and therefore
no conversion is needed. When the binary sum is greater than 1001, we obtain an invalid
BCD representation. The addition of binary 6 (0110) to the binary sum converts it to
the correct BCD representation and also produces an output carry as required.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.6 Decimal Adder 145

Table 4.5
Derivation of BCD Adder
Binary Sum BCD Sum Decimal

K zg zZ, Z, I C S5 S S 5

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19

The logic circuit that detects the necessary correction can be derived from the
entries in the table. It is obvious that a correction is needed when the binary sum has
an output carry K = 1. The other six combinations from 1010 through 1111 that need
a correction have a 1 in position Zg. To distinguish them from binary 1000 and 1001,
which also have a 1 in position Zg, we specify further that either Z, or Z, must have
a 1. The condition for a correction and an output carry can be expressed by the Bool-
ean function

C=K-+ ZSZ4 + ZSZZ

When C = 1, itis necessary to add 0110 to the binary sum and provide an output carry
for the next stage.

A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown
in Fig. 4.14. The two decimal digits, together with the input carry, are first added in the
top four-bit adder to produce the binary sum. When the output carry is equal to 0, noth-
ing is added to the binary sum. When it is equal to 1, binary 0110 is added to the binary
sum through the bottom four-bit adder. The output carry generated from the bottom

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

146 Chapter 4 Combinational Logic

Addend Augend
Carr o Carr
outy K 4-bit binary adder ~ ¥

—
Output /7—
—e

4-bit binary adder

RN

Sg S4 Sz Sl

FIGURE 4.14
Block diagram of a BCD adder

adder can be ignored, since it supplies information already available at the output carry
terminal. A decimal parallel adder that adds n decimal digits needs n BCD adder stages.
The output carry from one stage must be connected to the input carry of the next higher
order stage.

4.7 BINARY MULTIPLIER

Multiplication of binary numbers is performed in the same way as multiplication of
decimal numbers. The multiplicand is multiplied by each bit of the multiplier, starting
from the least significant bit. Each such multiplication forms a partial product. Succes-
sive partial products are shifted one position to the left. The final product is obtained
from the sum of the partial products.

To see how a binary multiplier can be implemented with a combinational circuit,
consider the multiplication of two 2-bit numbers as shown in Fig. 4.15. The multiplicand

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.7 Binary Multiplier 147

A
By Bo ’ B, B,
A, Ay | |
ABy ABy
(& & G Co Ay B, B,
HA HA
G G ¢ Cy

FIGURE 4.15
Two-bit by two-bit binary multiplier

bits are By and B, the multiplier bits are A; and A, and the product is C3C,C;C,. The
first partial product is formed by multiplying BB, by A,. The multiplication of two bits
such as Ay and B produces a 1 if both bits are 1; otherwise, it produces a 0. This is iden-
tical to an AND operation. Therefore, the partial product can be implemented with
AND gates as shown in the diagram. The second partial product is formed by multiply-
ing BB, by A; and shifting one position to the left. The two partial products are added
with two half-adder (HA) circuits. Usually, there are more bits in the partial products
and it is necessary to use full adders to produce the sum of the partial products. Note
that the least significant bit of the product does not have to go through an adder, since
it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a
similar fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as
many levels as there are bits in the multiplier. The binary output in each level of AND
gates is added with the partial product of the previous level to form a new partial prod-
uct. The last level produces the product. For J multiplier bits and K multiplicand bits, we
need (J X K) AND gates and (J — 1) K-bit adders to produce a product of (/ + K)
bits.

As a second example, consider a multiplier circuit that multiplies a binary number
represented by four bits by a number represented by three bits. Let the multiplicand be
represented by B3;B,BB, and the multiplier by A,AA,. Since K = 4 and J = 3, we
need 12 AND gates and two 4-bit adders to produce a product of seven bits. The logic
diagram of the multiplier is shown in Fig. 4.16.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

148 Chapter 4 Combinational Logic

Ay
A LJ
B; B, By By
0
Addend Augend
4-bit adder
Sum and output carry
Ay
Bs B, B, By
Addend Augend
4-bit adder
Sum and output carry
FIGURE 4.16

Four-bit by three-bit binary multiplier

4.8 MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that determines whether one number
is greater than, less than, or equal to the other number. A magnitude comparator is a
combinational circuit that compares two numbers A and B and determines their relative
magnitudes. The outcome of the comparison is specified by three binary variables that
indicate whether A > B,A = B,or A < B.

On the one hand, the circuit for comparing two n-bit numbers has 22" entries in the
truth table and becomes too cumbersome, even with n = 3. On the other hand, as one

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.8 Magnitude Comparator 149

may suspect, a comparator circuit possesses a certain amount of regularity. Digital func-
tions that possess an inherent well-defined regularity can usually be designed by means
of an algorithm—a procedure which specifies a finite set of steps that, if followed, give
the solution to a problem. We illustrate this method here by deriving an algorithm for
the design of a four-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the
relative magnitudes of two numbers. Consider two numbers, A and B, with four digits
each. Write the coefficients of the numbers in descending order of significance:

A= A3 A2A1 AO
B = BSBZBlBO

Each subscripted letter represents one of the digits in the number. The two numbers are
equal if all pairs of significant digits are equal: A; = B3, A, = B,, A; = By, and
Ay = Bjy. When the numbers are binary, the digits are either 1 or 0, and the equality of
each pair of bits can be expressed logically with an exclusive-NOR function as

x; = A;B; + AjB] fori=20,1,2,3

where x; = 1 only if the pair of bits in position i are equal (i.e., if both are 1 or both
are 0).

The equality of the two numbers A and B is displayed in a combinational circuit by
an output binary variable that we designate by the symbol (A = B).This binary vari-
able is equal to 1 if the input numbers, A and B, are equal, and is equal to 0 otherwise.
For equality to exist, all x; variables must be equal to 1,a condition that dictates an AND
operation of all variables:

(A = B) = X3XpX1X(

The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers
are equal.

To determine whether A is greater or less than B, we inspect the relative magnitudes
of pairs of significant digits, starting from the most significant position. If the two digits
of a pair are equal, we compare the next lower significant pair of digits. The comparison
continues until a pair of unequal digits is reached. If the corresponding digit of A is 1
and that of B is 0, we conclude that A > B. If the corresponding digit of A is 0 and that
of Bis 1,we have A < B. The sequential comparison can be expressed logically by the
two Boolean functions

(A > B) = A3B:’; + X3AzBé + X3X2AIBi + X3X2xleB(l)
(A < B) = AéB3 + X3AéB2 + X3XZA,1Bi + X3X2)C1A’n0B6
The symbols (A > B) and (A < B) are binary output variables that are equal to 1
when A > Band A < B, respectively.
The gate implementation of the three output variables just derived is simpler than it
seems because it involves a certain amount of repetition. The unequal outputs can use

the same gates that are needed to generate the equal output. The logic diagram of the
four-bit magnitude comparator is shown in Fig. 4.17 The four x outputs are generated

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

150 Chapter 4 Combinational Logic

Ay
X3
B
)
X2
T\ —:\D7 (A< B)
X1
BL -
T)
Ao 4
Yo (A>B)
By -
— A=B
} ()
FIGURE 4.17

Four-bit magnitude comparator

with exclusive-NOR circuits and are applied to an AND gate to give the output binary
variable (A = B).The other two outputs use the x variables to generate the Boolean
functions listed previously. This is a multilevel implementation and has a regular pattern.
The procedure for obtaining magnitude comparator circuits for binary numbers with
more than four bits is obvious from this example.

4.9 DECODERS

Discrete quantities of information are represented in digital systems by binary codes.
A binary code of n bits is capable of representing up to 2" distinct elements of coded
information. A decoder is a combinational circuit that converts binary information from

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.9 Decoders 151

n input lines to a maximum of 2" unique output lines. If the n-bit coded information has
unused combinations, the decoder may have fewer than 2" outputs.

The decoders presented here are called n-to-m-line decoders, where m = 2". Their
purpose is to generate the 2" (or fewer) minterms of n input variables. Each combination
of inputs will assert a unique output. The name decoder is also used in conjunction with
other code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-to-eight-line decoder circuit of Fig. 4.18. The three
inputs are decoded into eight outputs, each representing one of the minterms of the
three input variables. The three inverters provide the complement of the inputs, and each
one of the eight AND gates generates one of the minterms. A particular application of
this decoder is binary-to-octal conversion. The input variables represent a binary num-
ber, and the outputs represent the eight digits of a number in the octal number system.
However, a three-to-eight-line decoder can be used for decoding any three-bit code to
provide eight outputs, one for each element of the code.

Dy=x'y'z
L
DO } l)1 — x/yrz
z J
D, = x'yz'
> =
’)
D;=x'yz
L
} D4 — xyrzf
x L
Ds=xy'z
L
} D¢ = xyz’'
,‘ D; = xyz
FIGURE 4.18

Three-to-eight-line decoder

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

152 Chapter 4 Combinational Logic

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder
Inputs Outputs

X y z Do D] Dz D3 D4 Ds D6 D7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

The operation of the decoder may be clarified by the truth table listed in Table 4.6.
For each possible input combination, there are seven outputs that are equal to 0 and
only one that is equal to 1. The output whose value is equal to 1 represents the minterm
equivalent of the binary number currently available in the input lines.

Some decoders are constructed with NAND gates. Since a NAND gate produces the
AND operation with an inverted output, it becomes more economical to generate the
decoder minterms in their complemented form. Furthermore, decoders include one or
more enable inputs to control the circuit operation. A two-to-four-line decoder with an
enable input constructed with NAND gates is shown in Fig. 4.19. The circuit operates
with complemented outputs and a complement enable input. The decoder is enabled
when E is equal to O (i.e., active-low enable). As indicated by the truth table, only one

Bar
E A B Dy, D, D, D;
Dy
L 1 X X 1 1 1 1
A T[>O_ 0 0 0 0o 1 1 1
0o 0 1 10 1 1
} D, 0 1 0 1 1 0 1
B — >O 0 1 1 1 1 1 1
el
|
E {>c
(a) Logic diagram (b) Truth table

FIGURE 4.19
Two-to-four-line decoder with enable input

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.9 Decoders 153

output can be equal to 0 at any given time; all other outputs are equal to 1. The output
whose value is equal to 0 represents the minterm selected by inputs A and B.The circuit
is disabled when E is equal to 1, regardless of the values of the other two inputs. When
the circuit is disabled, none of the outputs are equal to 0 and none of the minterms are
selected. In general, a decoder may operate with complemented or uncomplemented
outputs. The enable input may be activated with a 0 or with a 1 signal. Some decoders
have two or more enable inputs that must satisfy a given logic condition in order to
enable the circuit.

A decoder with enable input can function as a demultiplexer—a circuit that receives
information from a single line and directs it to one of 2" possible output lines. The
selection of a specific output is controlled by the bit combination of # selection lines.
The decoder of Fig. 4.19 can function as a one-to-four-line demultiplexer when E is
taken as a data input line and A and B are taken as the selection inputs. The single
input variable £ has a path to all four outputs, but the input information is directed to
only one of the output lines, as specified by the binary combination of the two selection
lines A and B. This feature can be verified from the truth table of the circuit. For
example, if the selection lines AB = 10, output D, will be the same as the input value
E, while all other outputs are maintained at 1. Because decoder and demultiplexer
operations are obtained from the same circuit, a decoder with an enable input is
referred to as a decoder—demultiplexer.

Decoders with enable inputs can be connected together to form a larger decoder
circuit. Figure 4.20 shows two 3-to-8-line decoders with enable inputs connected to form
a4-to-16-line decoder. When w = 0, the top decoder is enabled and the other is disabled.
The bottom decoder outputs are all 0’s, and the top eight outputs generate minterms
0000 to 0111. When w = 1, the enable conditions are reversed: The bottom decoder
outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all
0’s. This example demonstrates the usefulness of enable inputs in decoders and other

X
3X8
Y decoder Dyto D
< E
w {>c
3X8
decoder Dgto Dis
E

FIGURE 4.20
4 X 16 decoder constructed with two 3 X 8 decoders

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

154 Chapter 4 Combinational Logic

combinational logic components. In general, enable inputs are a convenient feature for
interconnecting two or more standard components for the purpose of combining them
into a similar function with more inputs and outputs.

Combinational Logic Implementation

A decoder provides the 2" minterms of n input variables. Each asserted output of the
decoder is associated with a unique pattern of input bits. Since any Boolean function
can be expressed in sum-of-minterms form, a decoder that generates the minterms of
the function, together with an external OR gate that forms their logical sum, provides
a hardware implementation of the function. In this way, any combinational circuit with
n inputs and m outputs can be implemented with an n-to-2"-line decoder and m OR
gates.

The procedure for implementing a combinational circuit by means of a decoder and
OR gates requires that the Boolean function for the circuit be expressed as a sum of
minterms. A decoder is then chosen that generates all the minterms of the input vari-
ables. The inputs to each OR gate are selected from the decoder outputs according to
the list of minterms of each function. This procedure will be illustrated by an example
that implements a full-adder circuit.

From the truth table of the full adder (see Table 4.4), we obtain the functions for the
combinational circuit in sum-of-minterms form:

S(x,y, Z) = 2(192, 4’ 7)
C(x,y,z) = %(3,5,6,7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line
decoder. The implementation is shown in Fig. 4.21. The decoder generates the eight
minterms for x, y, and z. The OR gate for output S forms the logical sum of minterms 1,
2,4,and 7. The OR gate for output C forms the logical sum of minterms 3, 5, 6, and 7

0 —
1 \ : s
x —{ 22 2 J
y |y 3xs .
decoder 4
P 5 = >«
6
7
FIGURE 4.21

Implementation of a full adder with a decoder

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.10 Encoders 155

A function with a long list of minterms requires an OR gate with a large number of
inputs. A function having a list of k minterms can be expressed in its complemented form
F’ with 2" — k minterms. If the number of minterms in the function is greater than 2" /2,
then F’ can be expressed with fewer minterms. In such a case, it is advantageous to use
a NOR gate to sum the minterms of F’. The output of the NOR gate complements this
sum and generates the normal output F. If NAND gates are used for the decoder, as in
Fig. 4.19, then the external gates must be NAND gates instead of OR gates. This is
because a two-level NAND gate circuit implements a sum-of-minterms function and is
equivalent to a two-level AND-OR circuit.

4.10 ENCODERS

An encoder is a digital circuit that performs the inverse operation of a decoder. An
encoder has 2" (or fewer) input lines and » output lines. The output lines, as an aggregate,
generate the binary code corresponding to the input value. An example of an encoder
is the octal-to-binary encoder whose truth table is given in Table 4.7 It has eight inputs
(one for each of the octal digits) and three outputs that generate the corresponding
binary number. It is assumed that only one input has a value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are determined
directly from the truth table. Output z is equal to 1 when the input octal digitis 1, 3, 5,
or 7. Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5,6, or 7 These
conditions can be expressed by the following Boolean output functions:

Z:D1+D3+D5+D7
y=D2+D3+D6+D7
X:D4+D5+D6+D7

The encoder can be implemented with three OR gates.

Table 4.7
Truth Table of an Octal-to-Binary Encoder
Inputs Outputs

Do D'| Dz D3 D4 Ds D6 D7 X y z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

156 Chapter 4 Combinational Logic

The encoder defined in Table 4.7 has the limitation that only one input can be active
at any given time. If two inputs are active simultaneously, the output produces an unde-
fined combination. For example, if D3 and D¢ are 1 simultaneously, the output of the
encoder will be 111 because all three outputs are equal to 1. The output 111 does not
represent either binary 3 or binary 6. To resolve this ambiguity, encoder circuits must
establish an input priority to ensure that only one input is encoded. If we establish a
higher priority for inputs with higher subscript numbers, and if both D3 and Dg are 1 at
the same time, the output will be 110 because D¢ has higher priority than Dj.

Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is
generated when all the inputs are 0; but this output is the same as when Dy is equal to 1.
The discrepancy can be resolved by providing one more output to indicate whether at
least one input is equal to 1.

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. The operation
of the priority encoder is such that if two or more inputs are equal to 1 at the same time,
the input having the highest priority will take precedence. The truth table of a four-input
priority encoder is given in Table 4.8. In addition to the two outputs x and y, the circuit
has a third output designated by V; this is a valid bit indicator that is set to 1 when one or
more inputs are equal to 1. If all inputs are 0, there is no valid input and V is equal to 0.
The other two outputs are not inspected when V equals 0 and are specified as don’t-care
conditions. Note that whereas X’s in output columns represent don’t-care conditions, the
X’s in the input columns are useful for representing a truth table in condensed form.
Instead of listing all 16 minterms of four variables, the truth table uses an X to represent
either 1 or 0. For example, X100 represents the two minterms 0100 and 1100.

According to Table 4.8, the higher the subscript number, the higher the priority of
the input. Input D3 has the highest priority, so, regardless of the values of the other
inputs, when this input is 1, the output for xy is 11 (binary 3). D, has the next priority
level. The output is 10 if D, = 1, provided that D3 = 0, regardless of the values of the
other two lower priority inputs. The output for D is generated only if higher priority
inputs are 0, and so on down the priority levels.

Table 4.8
Truth Table of a Priority Encoder
Inputs Outputs

Do D-| Dz D3 X V4 v
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 1 0 1
X X X 1 1 1 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.10 Encoders 157

D, D,
D2D3 —_—— D2D3 —
DyD, 00 01 11 10 DoD, 00 01 11 10
my, m, my m, my, my my m,
001 X 1 1 1 001 X 1 1
m, ms m, myg my ms iy Mg
01 1 1 1 01 1 1 1
Dl Dl
My KCG s LCT my 3 s My
11 1 1 1 11 1 1 1
DU mg my Wi My DU mg my i My
10 1 1 X 10 1 1
- — - —
D D;
x=D,+ Ds y=D;+ DD
FIGURE 4.22

Maps for a priority encoder

The maps for simplifying outputs x and y are shown in Fig. 4.22. The minterms for the
two functions are derived from Table 4.8. Although the table has only five rows, when
each X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input com-
binations. For example, the fourth row in the table, with inputs XX10, represents the four
minterms 0010,0110,1010, and 1110. The simplified Boolean expressions for the priority
encoder are obtained from the maps. The condition for output V is an OR function of
all the input variables. The priority encoder is implemented in Fig. 4.23 according to the
following Boolean functions:

x=D2+D3
y=D;+ D D;
V:D0+D1+D2+D3

D;
D, {>O—_ Y
D,
D :
— .
D,]/
FIGURE 4.23

Four-input priority encoder

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

158 Chapter 4 Combinational Logic

4.11 MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of
many input lines and directs it to a single output line. The selection of a particular input
line is controlled by a set of selection lines. Normally, there are 2" input lines and # selec-
tion lines whose bit combinations determine which input is selected.

A two-to-one-line multiplexer connects one of two 1-bit sources to a common desti-
nation, as shown in Fig. 4.24. The circuit has two data input lines, one output line, and
one selection line S. When § = 0, the upper AND gate is enabled and /;, has a path to
the output. When § = 1, the lower AND gate is enabled and 7, has a path to the output.
The multiplexer acts like an electronic switch that selects one of two sources. The block
diagram of a multiplexer is sometimes depicted by a wedge-shaped symbol, as shown in
Fig. 4.24(b). It suggests visually how a selected one of multiple data sources is directed
into a single destination. The multiplexer is often labeled “MUX” in block diagrams.

A four-to-one-line multiplexer is shown in Fig. 4.25. Each of the four inputs, I,
through 7, is applied to one input of an AND gate. Selection lines S; and S are decoded
to select a particular AND gate. The outputs of the AND gates are applied to a single
OR gate that provides the one-line output. The function table lists the input that is
passed to the output for each combination of the binary selection values. To demonstrate
the operation of the circuit, consider the case when §;S, = 10. The AND gate associated
with input 7, has two of its inputs equal to 1 and the third input connected to /,. The
other three AND gates have at least one input equal to 0, which makes their outputs
equal to 0. The output of the OR gate is now equal to the value of I,, providing a path
from the selected input to the output. A multiplexer is also called a data selector, since
it selects one of many inputs and steers the binary information to the output line.

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,
they decode the selection input lines. In general, a 2"-to-1-line multiplexer is constructed
from an n-to-2" decoder by adding 2" input lines to it, one to each AND gate. The outputs
of the AND gates are applied to a single OR gate. The size of a multiplexer is specified by

) > M v

I

-
| -
> s

(a) Logic diagram (b) Block diagram

FIGURE 4.24
Two-to-one-line multiplexer

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.11 Multiplexers 159

Iy —\
L \
Y
L \
I \
AlA i
0 0| Iy
0 1| L
Sy 1 0| b
1 1| L
So —
(a) Logic diagram (b) Function table
FIGURE 4.25

Four-to-one-line multiplexer

the number 2" of its data input lines and the single output line. The # selection lines are
implied from the 2" data lines. As in decoders, multiplexers may have an enable input to
control the operation of the unit. When the enable input is in the inactive state, the outputs
are disabled, and when it is in the active state, the circuit functions as a normal multiplexer.

Multiplexer circuits can be combined with common selection inputs to provide
multiple-bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown
in Fig. 4.26. The circuit has four multiplexers, each capable of selecting one of two input
lines. Output Y|, can be selected to come from either input A or input B. Similarly,
output Y; may have the value of A; or By, and so on. Input selection line S selects one of
the lines in each of the four multiplexers. The enable input E must be active (i.e., asserted)
for normal operation. Although the circuit contains four 2-to-1-line multiplexers, we are
more likely to view it as a circuit that selects one of two 4-bit sets of data lines. As shown
in the function table, the unit is enabled when £ = 0. Then, if § = 0, the four A inputs
have a path to the four outputs. If, by contrast, S = 1, the four B inputs are applied to the
outputs. The outputs have all 0’s when E = 1, regardless of the value of S.

Boolean Function Implementation

In Section 4.9, it was shown that a decoder can be used to implement Boolean functions
by employing external OR gates. An examination of the logic diagram of a multiplexer
reveals that it is essentially a decoder that includes the OR gate within the unit. The

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

160 Chapter 4 Combinational Logic

Function table

B

A Y\
.) —_
Ay ﬁ
L/) Y,
A, ﬁ
L _D—Yz
A; ﬁ
L ‘Df)%
: -
B, E S | OutputY
/ 1 X | allO’s
0 0 | selectA
0 1 | selectB
)
L/
)
L/

N

(select)
E
(enable) {>O

FIGURE 4.26
Quadruple two-to-one-line multiplexer

minterms of a function are generated in a multiplexer by the circuit associated with the
selection inputs. The individual minterms can be selected by the data inputs, thereby
providing a method of implementing a Boolean function of n variables with a multi-
plexer that has # selection inputs and 2" data inputs, one for each minterm.

We will now show a more efficient method for implementing a Boolean function of
n variables with a multiplexer that has n — 1 selection inputs. The first » — 1 variables
of the function are connected to the selection inputs of the multiplexer. The remaining
single variable of the function is used for the data inputs. If the single variable is denoted

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.11 Multiplexers 161

by z, each data input of the multiplexer will be z, z’, 1, or 0. To demonstrate this proce-
dure, consider the Boolean function

F(x,y,z) = 2(1,2,6,7)

This function of three variables can be implemented with a four-to-one-line multiplexer
as shown in Fig. 4.27 The two variables x and y are applied to the selection lines in that
order; x is connected to the Sy input and y to the S, input. The values for the data input
lines are determined from the truth table of the function. When xy = 00, output F is
equal to z because F = Owhen z = Oand F = 1 when z = 1. This requires that variable
z be applied to data input 0. The operation of the multiplexer is such that when xy = 00,
data input 0 has a path to the output, and that makes F equal to z. In a similar fashion,
we can determine the required input to data lines 1, 2, and 3 from the value of F when
xy = 01,10,and 11, respectively. This particular example shows all four possibilities that
can be obtained for the data inputs.

The general procedure for implementing any Boolean function of » variables with a
multiplexer with n — 1 selection inputs and 2"~ ! data inputs follows from the previous
example. To begin with, Boolean function is listed in a truth table. Then first n — 1 vari-
ables in the table are applied to the selection inputs of the multiplexer. For each com-
bination of the selection variables, we evaluate the output as a function of the last
variable. This function can be 0, 1, the variable, or the complement of the variable. These
values are then applied to the data inputs in the proper order.

As a second example, consider the implementation of the Boolean function

F(A,B,C,D) = 3(1,3,4,11, 12, 13, 14, 15)

This function is implemented with a multiplexer with three selection inputs as shown in
Fig. 4.28. Note that the first variable A must be connected to selection input S, so that
A, B, and C correspond to selection inputs S, Sy, and S, respectively. The values for the

4 X 1 MUX
y —S
x y z|F
X — Sl
00 0|0 Fp=,
0 0 1|1
0 0 1 F=g Z 0 F
0 1 10 ,
7 —1
1 0 01]0 F=0
10 1]0 0 2
1 —3
1 1 01 —
F=1
1 1
(a) Truth table (b) Multiplexer implementation
FIGURE 4.27

Implementing a Boolean function with a multiplexer

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

162 Chapter 4 Combinational Logic

A B C D|F
0 0 0 0|0 F=p %
0 0 o 113 8 X 1 MUX
0 0 00 p=p ¢ So
00 1 11 B Sy
A S
01 0 01 p_py :
01 0 10
D 0
0 1 010 pog 1—1
0 1 110 —F
> |:
1 0 0 00 — 0 3
1 oo 10 F70 4
1 0 1 0/0 p_ 5
1 o1 11 7P 1 .
110 01 p_y I—7
1 0 1
11 1 01 ,_
11 11 F=1
FIGURE 4.28

Implementing a four-input function with a multiplexer

data inputs are determined from the truth table listed in the figure. The corresponding
data line number is determined from the binary combination of ABC. For example, the
table shows that when ABC = 101, F = D, so the input variable D is applied to data
input 5. The binary constants 0 and 1 correspond to two fixed signal values. When inte-
grated circuits are used, logic 0 corresponds to signal ground and logic 1 is equivalent to
the power signal, depending on the technology (e.g.,3 V).

Three-State Gates

A multiplexer can be constructed with three-state gates—digital circuits that exhibit
three states. Two of the states are signals equivalent to logic 1 and logic 0 as in a conven-
tional gate. The third state is a high-impedance state in which (1) the logic behaves like
an open circuit, which means that the output appears to be disconnected, (2) the circuit
has no logic significance, and (3) the circuit connected to the output of the three-state
gate is not affected by the inputs to the gate. Three-state gates may perform any con-
ventional logic, such as AND or NAND. However, the one most commonly used is the
buffer gate.

The graphic symbol for a three-state buffer gate is shown in Fig. 4.29. It is distinguished
from a normal buffer by an input control line entering the bottom of the symbol. The
buffer has a normal input, an output, and a control input that determines the state of the
output. When the control input is equal to 1, the output is enabled and the gate behaves
like a conventional buffer, with the output equal to the normal input. When the control

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.11 Multiplexers 163

Normal input A Output Y =AifC=1
High-impedance if C = 0
Control input C
FIGURE 4.29

Graphic symbol for a three-state buffer

input is 0, the output is disabled and the gate goes to a high-impedance state, regardless
of the value in the normal input. The high-impedance state of a three-state gate provides
a special feature not available in other gates. Because of this feature, a large number of
three-state gate outputs can be connected with wires to form a common line without
endangering loading effects.

The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30.
Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three-state
buffers and an inverter. The two outputs are connected together to form a single output
line. (Note that this type of connection cannot be made with gates that do not have
three-state outputs.) When the select input is 0, the upper buffer is enabled by its control
input and the lower buffer is disabled. Output Y is then equal to input A. When the select
input is 1, the lower buffer is enabled and Y is equal to B.

The construction of a four-to-one-line multiplexer is shown in Fig. 4.30(b). The out-
puts of 4 three-state buffers are connected together to form a single output line. The
control inputs to the buffers determine which one of the four normal inputs /, through

Iy

iyl

L
N
A 2 Y I
0 ——
—_ Sl
B NG Select 9 2% 4 1
2 0 decoder)
Enable EN
Select 3
(a) 2-to-1-line mux (b) 4-to-1-line mux
FIGURE 4.30

Multiplexers with three-state gates

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

164 Chapter 4 Combinational Logic

I; will be connected to the output line. No more than one buffer may be in the active
state at any given time. The connected buffers must be controlled so that only 1 three-
state buffer has access to the output while all other buffers are maintained in a high-
impedance state. One way to ensure that no more than one control input is active at any
given time is to use a decoder, as shown in the diagram. When the enable input of the
decoder is 0, all of its four outputs are 0 and the bus line is in a high-impedance state
because all four buffers are disabled. When the enable input is active, one of the three-
state buffers will be active, depending on the binary value in the select inputs of the
decoder. Careful investigation reveals that this circuit is another way of constructing a
four-to-one-line multiplexer.

4.12 HDL MODELS OF COMBINATIONAL
CIRCUITS

The Verilog HDL was introduced in Section 3.10. In the current section, we introduce
additional features of Verilog, present more elaborate examples, and compare alternative
descriptions of combinational circuits in Verilog. Sequential circuits are presented in
Chapter 5. As mentioned previously, the module is the basic building block for modeling
hardware with the Verilog HDL. The logic of a module can be described in any one (or a
combination) of the following modeling styles:

¢ Gate-level modeling using instantiations of predefined and user-defined primitive
gates.

e Dataflow modeling using continuous assignment statements with the keyword
assign.

¢ Behavioral modeling using procedural assignment statements with the keyword
always.

Gate-level (structural) modeling describes a circuit by specifying its gates and how they
are connected with each other. Dataflow modeling is used mostly for describing the
Boolean equations of combinational logic. We’ll also consider here behavioral modeling
that is used to describe combinational and sequential circuits at a higher level of abstrac-
tion. Combinational logic can be designed with truth tables, Boolean equations, and
schematics; Verilog has a construct corresponding to each of these “classical” approaches
to design: user-defined primitives, continuous assignments, and primitives, as shown in
Fig. 4.31. There is one other modeling style, called switch-level modeling. It is sometimes
used in the simulation of MOS transistor circuit models, but not in logic synthesis. We
will not consider switch-level modeling.

Gate-Level Modeling

Gate-level modeling was introduced in Section 3.10 with a simple example. In this type
of representation, a circuit is specified by its logic gates and their interconnections. Gate-
level modeling provides a textual description of a schematic diagram. The Verilog HDL

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 165

Verilog model
(combinational logic)

-
[=]
Q
=)
c
en
7]
£ &
g 2
S 3
2 g
T P
S =
g S
= O
S
) Boolean equation
o)

N

Truth table Schematic

FIGURE 4.31
Relationship of Verilog constructs to truth tables, Boolean equations, and schematics

includes 12 basic gates as predefined primitives. Four of these primitive gates are of the
three-state type. The other eight are the same as the ones listed in Section 2.8. They are
all declared with the lowercase keywords and, nand, or, nor, xor, xnor, not, and buf.
Primitives such as and are n-input primitives. They can have any number of scalar inputs
(e.g., a three-input and primitive). The buf and not primitives are n-output primitives.
A single input can drive multiple output lines distinguished by their identifiers.

The Verilog language includes a functional description of each type of gate, too. The
logic of each gate is based on a four-valued system. When the gates are simulated,
the simulator assigns one value to the output of each gate at any instant. In addition to
the two logic values of 0 and 1, there are two other values: unknown and high impedance.
An unknown value is denoted by x and a high impedance by z. An unknown value is
assigned during simulation when the logic value of a signal is ambiguous—for instance,
if it cannot be determined whether its value is 0 or 1 (e.g., a flip-flop without a reset
condition). A high-impedance condition occurs at the output of three-state gates that
are not enabled or if a wire is inadvertently left unconnected. The four-valued logic truth
tables for the and, or, xor, and not primitives are shown in Table 4.9. The truth table for
the other four gates is the same, except that the outputs are complemented. Note that
for the and gate, the output is 1 only when both inputs are 1 and the output is 0 if any
input is 0. Otherwise, if one input is x or z, the output is x. The output of the or gate is 0
if both inputs are 0, is 1 if any input is 1, and is x otherwise.

When a primitive gate is listed in a module, we say that it is instantiated in the module.
In general, component instantiations are statements that reference lower level compo-
nents in the design, essentially creating unique copies (or instances) of those components
in the higher level module. Thus, a module that uses a gate in its description is said to

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

166 Chapter 4 Combinational Logic

Table 4.9
Truth Table for Predefined Primitive Gates
and | 0 1 x z or 0 1 x z
0 0 0 0 O 0 0 1 x x
1 0 1 x x 1 1 1 1
X 0 x x x X x 1 x x
z 0 x x x V/ x 1 x x
xor | 0 1 x 1z not | input output
0 0 1 x x 0 1
1 1 0 x x 1 0
X X X X X X X
z X X X X Y/ X

instantiate the gate. Think of instantiation as the HDL counterpart of placing and
connecting parts on a circuit board.

We now present two examples of gate-level modeling. Both examples use identifiers
having multiple bit widths, called vectors. The syntax specifying a vector includes within
square brackets two numbers separated with a colon. The following Verilog statements

specify two vectors:

output [0: 3] D;
wire [7: 0] SUM;

The first statement declares an output vector D with four bits, 0 through 3. The second
declares a wire vector SUM with eight bits numbered 7 through 0. (Note: The first (left-
most) number (array index) listed is always the most significant bit of the vector.) The
individual bits are specified within square brackets,so D /2] specifies bit 2 of D. It is also
possible to address parts (contiguous bits) of vectors. For example, SUM/2: 0] specifies
the three least significant bits of vector SUM.

HDL Example 4.1 shows the gate-level description of a two-to-four-line decoder.
(See Fig. 4.19.) This decoder has two data inputs A and B and an enable input E. The
four outputs are specified with the vector D. The wire declaration is for internal connec-
tions. Three not gates produce the complement of the inputs, and four nand gates provide
the outputs for D. Remember that the output is always listed first in the port list of a
primitive, followed by the inputs. This example describes the decoder of Fig. 4.19 and
follows the procedures established in Section 3.10. Note that the keywords not and nand
are written only once and do not have to be repeated for each gate, but commas must
be inserted at the end of each of the gates in the series, except for the last statement,
which must be terminated with a semicolon.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 167

HDL Example 4.1 (Two-to-Four-Line Decoder)

/I Gate-level description of two-to-four-line decoder
/I Refer to Fig. 4.19 with symbol E replaced by enable, for clarity.

module decoder_2x4_gates (D, A, B, enable);
output [0: 3] D;
input A, B;
input enable;
wire A_not,B_not, enable_not;

not
G1 (A_not, A),
G2 (B_not, B),
G3 (enable_not, enable);
nand
G4 (D[0], A_not, B_not, enable_not),
G5 (D[1], A_not, B, enable_not),
G6 (D[2], A, B_not, enable_not),
G7 (D[3], A, B, enable_not);

endmodule

Two or more modules can be combined to build a hierarchical description of a design.
There are two basic types of design methodologies: top down and bottom up. In a
top-down design, the top-level block is defined and then the subblocks necessary to
build the top-level block are identified. In a bottom-up design, the building blocks are
first identified and then combined to build the top-level block. Take, for example, the
binary adder of Fig. 4.9. It can be considered as a top-block component built with four
full-adder blocks, while each full adder is built with two half-adder blocks. In a top-down
design, the four-bit adder is defined first, and then the two adders are described. In a
bottom-up design, the half adder is defined, then each full adder is constructed, and then
the four-bit adder is built from the full adders.

A bottom-up hierarchical description of a four-bit adder is shown in HDL
Example 4.2. The half adder is defined by instantiating primitive gates. The next mod-
ule describes the full adder by instantiating and connecting two half adders. The third
module describes the four-bit adder by instantiating and connecting four full adders.
Note that the first character of an identifier cannot be a number, but can be an under-
score, so the module name _4bitadder is valid. An alternative name that is meaningful,
but does not require a leading underscore, is adder_4_bit. The instantiation is done by
using the name of the module that is instantiated together with a new (or the same)
set of port names. For example, the half adder HAI inside the full adder module is
instantiated with ports S7, C1, x, and y. This produces a half adder with outputs S7 and
CI and inputs x and y.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

168 Chapter 4 Combinational Logic

HDL Example 4.2 (Ripple-Carry Adder)

/I Gate-level description of four-bit ripple carry adder
/I Description of half adder (Fig. 4.5b)

/l module half_adder (S, C, X, y); /I Verilog 1995 syntax
/l output S, C;
/l'input X, vy;

module half_adder (output S, C, input X, y); /I Verilog 2001, 2005 syntax
/I Instantiate primitive gates

xor (S, X, y);

and (C, x, y);
endmodule

/I Description of full adder (Fig. 4.8) /I Verilog 1995 syntax
/ module full_adder (S, C, x, y, z);

I/l output S, C;

/[input X, Y, Z;

module full_adder (output S, C, input X, y, z); /I Verilog 2001, 2005 syntax
wire S1, C1, C2;

/I Instantiate half adders
half_adder HA1 (S1, C1, x, y);
half_adder HA2 (S, C2, S1, z);
or G1 (C, C2, C1);

endmodule

/I Description of four-bit adder (Fig. 4.9) /I Verilog 1995 syntax
/ module ripple_carry_4_bit_adder (Sum, C4, A, B, C0O);
/I output [3: 0] Sum;

/l output C4;
/linput [3:0] A, B;
/l input Co;

/I Alternative Verilog 2001, 2005 syntax:

module ripple_carry_4_bit_adder (output [3: 0] Sum, output C4,
input [3: 0] A, B, input C0);

wire C1,C2, C3; /I Intermediate carries
/I Instantiate chain of full adders
full_adder FAO (Sum[0], C1, A[O], B[0], CO0),

)
FA1 (Sum[1], C2, A[1], B[1], C1),
FA2 (Sum[2], C3, A[2], B[2], C2),
FA3 (Sum[3], C4, A[3], B[3], C3)

)

endmodule

HDL Example 4.2 illustrates Verilog 2001, 2005 syntax, which eliminates extra typing
of identifiers declaring the mode (e.g., output), type (reg), and declaration of a vector range
(e.g.,[3:0]) of a port. The first version of the standard (1995) uses separate statements for
these declarations.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 169

Note that modules can be instantiated (nested) within other modules, but module
declarations cannot be nested; that is, a module definition (declaration) cannot be placed
within another module declaration. In other words, a module definition cannot be
inserted into the text between the module and endmodule keywords of another module.
The only way one module definition can be incorporated into another module is by
instantiating it. Instantiating modules within other modules creates a hierarchical
decomposition of a design. A description of a module is said to be a structural descrip-
tion if it is composed of instantiations of other modules. Note also that instance names
must be specified when defined modules are instantiated (such as FAO for the first full
adder in the third module), but using a name is optional when instantiating primitive
gates. Module ripple_carry_4_bit_adder is composed of instantiated and interconnected
full adders, each of which is itself composed of half adders and some glue logic. The top
level, or parent module, of the design hierarchy is the module ripple_carry_4_bit_adder.
Four copies of full_adder are its child modules, etc. C0 is an input of the cell forming the
least significant bit of the chain, and C4 is the output of the cell forming the most
significant bit.

Three-State Gates

As mentioned in Section 4.11, a three-state gate has a control input that can place the
gate into a high-impedance state. The high-impedance state is symbolized by z in Verilog.
There are four types of three-state gates, as shown in Fig. 4.32. The bufifl gate behaves
like a normal buffer if control = 1. The output goes to a high-impedance state z when
control = 0. The bufif(gate behaves in a similar fashion, except that the high-impedance
state occurs when control = 1. The two notif gates operate in a similar manner, except
that the output is the complement of the input when the gate is not in a high-impedance
state. The gates are instantiated with the statement

gatename (output,input,control);

' f N ' T N
control control

bufif1 bufifO
in T out in ?C? out
control control

notif1 notif0

FIGURE 4.32
Three-state gates

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

170 Chapter 4 Combinational Logic

The gate name can be that of any 1 of the 4 three-state gates. In simulation, the output
can result in 0, 1, x, or z. Two examples of gate instantiation are

bufifi (OUT, A, control);
notif0 (Y, B, enable);

In the first example, input A is transferred to OUT when control = 1. OUT goes to z
when control = 0. In the second example, output Y = z when enable = 1 and output
Y = B’ when enable = 0.

The outputs of three-state gates can be connected together to form a common output
line. To identify such a connection, Verilog HDL uses the keyword tri (for tristate) to
indicate that the output has multiple drivers. As an example, consider the two-to-one-
line multiplexer with three-state gates shown in Fig. 4.33.

The HDL description must use a tri data type for the output:

/I Mux with three-state output

module mux_tri (m_out, A, B, select);
output m_out;
input A, B, select;
tri m_out;

bufif1 (m_out, A, select);
bufif0 (m_out, B, select);
endmodule

The 2 three-state buffers have the same output. In order to show that they have a com-
mon connection, it is necessary to declare m_out with the keyword tri.

Keywords wire and tri are examples of a set of data types called nets, which represent
connections between hardware elements. In simulation, their value is determined by a
continuous assignment statement or by the device whose output they represent. The word
net is not a keyword, but represents a class of data types, such as wire, wor, wand, tri,
supplyl, and supply0. The wire declaration is used most frequently. In fact, if an identifier
is used, but not declared, the language specifies that it will be interpreted (by default) as
a wire. The net wor models the hardware implementation of the wired-OR configuration
(emitter-coupled logic). The wand models the wired-AND configuration (open-collector
technology; see Fig. 3.26). The nets supplyl and supply0 represent power supply and
ground, respectively. They are used to hardwire an input of a device to either 1 or 0.

A SN m_out

T

B %
select
FIGURE 4.33

Two-to-one-line multiplexer with three-state buffers

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 171

Dataflow Modeling

Dataflow modeling of combinational logic uses a number of operators that act on binary
operands to produce a binary result. Verilog HDL provides about 30 different operators.
Table 4.10 lists some of these operators, their symbols, and the operation that they per-
form. (A complete list of operators supported by Verilog 2001, 2005 can be found in
Table 8.1 in Section 8.2.) It is necessary to distinguish between arithmetic and logic
operations, so different symbols are used for each. The plus symbol (+) indicates the
arithmetic operation of addition; the bitwise logic AND operation (conjunction) uses
the symbol &. There are special symbols for bitwise logical OR (disjunction), NOT, and
XOR. The equality symbol uses two equals signs (without spaces between them) to
distinguish it from the equals sign used with the assign statement. The bitwise operators
operate bit by bit on a pair of vector operands to produce a vector result. The concat-
enation operator provides a mechanism for appending multiple operands. For example,
two operands with two bits each can be concatenated to form an operand with four bits.
The conditional operator acts like a multiplexer and is explained later, in conjunction
with HDL Example 4.6.

It should be noted that a bitwise operator (e.g., ~) and its corresponding logical
operator (e.g., !) may produce different results, depending on their operand. If the
operands are scalar the results will be identical; if the operands are vectors the result
will not necessarily match. For example, ~(1010) is (0101), and !(1010) is 0. A binary
value is considered to be logically true if it is not 0. In general, use the bitwise opera-
tors to describe arithmetic operations and the logical operators to describe logical
operations.

Dataflow modeling uses continuous assignments and the keyword assign. A continu-
ous assignment is a statement that assigns a value to a net. The data type family net is
used in Verilog HDL to represent a physical connection between circuit elements. A net

Table 4.10
Some Verilog HDL Operators
Symbol Operation Symbol Operation
+ binary addition
— binary subtraction
& bitwise AND && logical AND
[bitwise OR I| logical OR
A bitwise XOR
~ bitwise NOT ! logical NOT
== equality
> greater than
< less than
{} concatenation
IS conditional

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

172 Chapter 4 Combinational Logic

is declared explicitly by a net keyword (e.g., wire) or by declaring an identifier to be an
input port. The logic value associated with a net is determined by what the net is con-
nected to. If the net is connected to an output of a gate, the net is said to be driven by
the gate, and the logic value of the net is determined by the logic values of the inputs to
the gate and the truth table of the gate. If the identifier of a net is the left-hand side of
a continuous assignment statement or a procedural assignment statement, the value
assigned to the net is specified by a Boolean expression that uses operands and opera-
tors. As an example, assuming that the variables were declared, a two-to-one-line mul-
tiplexer with scalar data inputs A and B, select input S, and output Y is described with
the continuous assignment

assign Y = (A && S) || (B && S)

The relationship between Y, A, B, and S is declared by the keyword assign, followed by
the target output Y and an equals sign. Following the equals sign is a Boolean expres-
sion. In hardware terms, this assignment would be equivalent to connecting the output
of the OR gate to wire Y.

The next two examples show the dataflow models of the two previous gate-level
examples. The dataflow description of a two-to-four-line decoder with active-low output
enable and inverted output is shown in HDL Example 4.3. The circuit is defined with
four continuous assignment statements using Boolean expressions, one for each output.
The dataflow description of the four-bit adder is shown in HDL Example 4.4. The addi-
tion logic is described by a single statement using the operators of addition and concat-
enation. The plus symbol (+) specifies the binary addition of the four bits of A with the
four bits of B and the one bit of C_in. The target output is the concatenation of the
output carry C_out and the four bits of Sum. Concatenation of operands is expressed
within braces and a comma separating the operands. Thus, {C_out, Sum/ represents the
five-bit result of the addition operation.

HDL Example 4.3 (Dataflow: Two-to-Four Line Decoder)

/I Dataflow description of two-to-four-line decoder

/I See Fig. 4.19. Note: The figure uses symbol E, but the
/I Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (/I Verilog 2001, 2005 syntax
output [0: 3] D,
input A, B,
enable

);

assign D[0] = !(('A) && (!B) && (lenable)),
D[1] = !(*!A) && B && (lenable)),
D[2] = (A && B && (lenable)
D[3] = (A && B && (lenable))
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 173

HDL Example 4.4 (Dataflow: Four-Bit Adder)

/I Dataflow description of four-bit adder
/I Verilog 2001, 2005 module port syntax

module binary_adder (

output [3: 0] Sum,
output C_out,
input [3: 0] A, B,
input C_in

);

assign {C_out, Sum} = A + B + C_in;
endmodule

Dataflow HDL models describe combinational circuits by their function rather than
by their gate structure. To show how dataflow descriptions facilitate digital design, con-
sider the 4-bit magnitude comparator described in HDL Example 4.5. The module
specifies two 4-bit inputs A and B and three outputs. One output (A_It_B) is logic 1 if
A is less than B, a second output (A_gt_B) is logic 1 if A is greater than B, and a third
output (A_eqg_B) islogic 1 if A is equal to B. Note that equality (identity) is symbolized
with two equals signs (= =) to distinguish the operation from that of the assignment
operator (=). A Verilog HDL synthesis compiler can accept this module description as
input, execute synthesis algorithms, and provide an output netlist and a schematic of a
circuit equivalent to the one in Fig. 4.17 all without manual intervention! The designer
need not draw the schematic.

HDL Example 4.5 (Dataflow: Four-Bit Comparator)

/I Dataflow description of a four-bit comparator /V2001, 2005 syntax

module mag_compare

(output A It B, A _eq_B, A gt B,
input [3: 0] A B

).

assign A_It B = (A <B);
assign A_gt B = (A > B);
assign A_eq_B = (A = = B);
endmodule

The next example uses the conditional operator (? :). This operator takes three
operands:

condition ? true-expression : false-expression;

The condition is evaluated. If the result is logic 1, the true expression is evaluated and
used to assign a value to the left-hand side of an assignment statement. If the result is

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

174 Chapter 4 Combinational Logic

logic 0, the false expression is evaluated. The two conditions together are equivalent to
an if-else condition. HDL Example 4.6 describes a two-to-one-line multiplexer using
the conditional operator. The continuous assignment

assign OUT = select ? A : B;
specifies the condition that OUT = A if select = 1, else OUT = B if select = 0.

HDL Example 4.6 (Dataflow: Two-to-One Multiplexer)

/I Dataflow description of two-to-one-line multiplexer

module mux_2x1_df(m_out, A, B, select);

output m_out;
input A, B;
input select;

assign m_out = (select)? A : B;
endmodule

Behavioral Modeling

Behavioral modeling represents digital circuits at a functional and algorithmic level. It
is used mostly to describe sequential circuits, but can also be used to describe combina-
tional circuits. Here, we give two simple combinational circuit examples to introduce the
subject. Behavioral modeling is presented in more detail in Section 5.6, after the study
of sequential circuits.

Behavioral descriptions use the keyword always, followed by an optional event con-
trol expression and a list of procedural assignment statements. The event control expres-
sion specifies when the statements will execute. The target output of a procedural
assignment statement must be of the reg data type. Contrary to the wire data type,
whereby the target output of an assignment may be continuously updated, a reg data
type retains its value until a new value is assigned.

HDL Example 4.7 shows the behavioral description of a two-to-one-line multiplexer.
(Compare it with HDL Example 4.6.) Since variable m_out is a target output, it must
be declared as reg data (in addition to the output declaration). The procedural assign-
ment statements inside the always block are executed every time there is a change in
any of the variables listed after the @ symbol. (Note that there is no semicolon (;) at the
end of the always statement.) In this case, these variables are the input variables A, B,
and select. The statements execute if A, B, or select changes value. Note that the keyword
or, instead of the bitwise logical OR operator “|; is used between variables. The condi-
tional statement if-else provides a decision based upon the value of the select input. The
if statement can be written without the equality symbol:

if (select) OUT = A;

The statement implies that select is checked for logic 1.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 175

HDL Example 4.7 (Behavioral: Two-to-One Line Multiplexer)

/I Behavioral description of two-to-one-line multiplexer

module mux_2x1_beh (m_out, A, B, select);

output m_out;
input A, B, select;
reg m_out;
always @(A or B or select)
if (select == 1) m_out = A;
else m_out 5 B;
endmodule

HDL Example 4.8 describes the function of a four-to-one-line multiplexer. The select
input is defined as a two-bit vector, and output y is declared to have type reg. The always
statement, in this example, has a sequential block enclosed between the keywords case
and endcase. The block is executed whenever any of the inputs listed after the @ symbol
changes in value. The case statement is a multiway conditional branch construct. When-
ever in_0, in_I, in_2, in_3 or select change, the case expression (select) is evaluated and
its value compared, from top to bottom, with the values in the list of statements that
follow, the so-called case items. The statement associated with the first case item that
matches the case expression is executed. In the absence of a match, no statement is
executed. Since select is a two-bit number, it can be equal to 00, 01, 10, or 11. The case
items have an implied priority because the list is evaluated from top to bottom.

The list is called a sensitivity list (Verilog 2001, 2005) and is equivalent to the event
control expression (Verilog 1995) formed by “ORing” the signals. Combinational logic
is reactive—when an input changes an output may change.

HDL Example 4.8 (Behavioral: Four-to-One Line Multiplexer)

/I Behavioral description of four-to-one line multiplexer
/I Verilog 2001, 2005 port syntax

module mux_4x1_beh

(output reg m_out,
input in_0,in_1,in_2,in_3,
input [1: 0] select

always @ (in_0, in_1, in_2, in_3, select) /I Verilog 2001, 2005 syntax
case (select)

2’b00: m_out = in_0;
2’b01: m_out = in_1;
2'b10: m_out = in_2;
2’b11: m_out = in_3;
endcase
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

176 Chapter 4 Combinational Logic

Binary numbers in Verilog are specified and interpreted with the letter b preceded
by a prime. The size of the number is written first and then its value. Thus, 2'b01 speci-
fies a two-bit binary number whose value is 01. Numbers are stored as a bit pattern in
memory, but they can be referenced in decimal, octal, or hexadecimal formats with the
letters d'o; and h, respectively. For example, 4 HA = 4’d10 = 4’1010 and have the
same internal representation in a simulator. If the base of the number is not specified,
its interpretation defaults to decimal. If the size of the number is not specified, the
system assumes that the size of the number is at least 32 bits; if a host simulator has a
larger word length —say, 64 bits—the language will use that value to store unsized
numbers. The integer data type (keyword integer) is stored in a 32-bit representation.
The underscore (_) may be inserted in a number to improve readability of the code
(e.g.,16'b0101_1110_0101_0011). It has no other effect.

The case construct has two important variations: casex and casez. The first will treat
as don’t-cares any bits of the case expression or the case item that have logic value x or
z. The casez construct treats as don’t-cares only the logic value z, for the purpose of
detecting a match between the case expression and a case item.

The list of case items need not be complete. If the list of case items does not include
all possible bit patterns of the case expression, no match can be detected. Unlisted case
items, i.e., bit patterns that are not explicitly decoded can be treated by using the default
keyword as the last item in the list of case items. The associated statement will execute
when no other match is found. This feature is useful, for example, when there are more
possible state codes in a sequential machine than are actually used. Having a default
case item lets the designer map all of the unused states to a desired next state without
having to elaborate each individual state, rather than allowing the synthesis tool to
arbitrarily assign the next state.

The examples of behavioral descriptions of combinational circuits shown here are
simple ones. Behavioral modeling and procedural assignment statements require knowl-
edge of sequential circuits and are covered in more detail in Section 5.6.

Writing a Simple Test Bench

A test bench is an HDL program used for describing and applying a stimulus to an HDL
model of a circuit in order to test it and observe its response during simulation. Test
benches can be quite complex and lengthy and may take longer to develop than the
design that is tested. The results of a test are only as good as the test bench that is used
to test a circuit. Care must be taken to write stimuli that will test a circuit thoroughly,
exercising all of the operating features that are specified. However, the test benches
considered here are relatively simple, since the circuits we want to test implement only
combinational logic. The examples are presented to demonstrate some basic features of
HDL stimulus modules. Chapter 8 considers test benches in greater depth.

In addition to employing the always statement, test benches use the initial statement
to provide a stimulus to the circuit being tested. We use the term “always statement”
loosely. Actually, always is a Verilog language construct specifying ~ow the associated
statement is to execute (subject to the event control expression). The always statement

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 177

executes repeatedly in a loop. The initial statement executes only once, starting from
simulation time 0, and may continue with any operations that are delayed by a given
number of time units, as specified by the symbol #. For example, consider the initial

block
initial
begin
A=0;B=0;
#10A = 1;
#20A =0;B =1;
end

The block is enclosed between the keywords begin and end. At time 0, A and B are set
to 0. Ten time units later, A is changed to 1. Twenty time units after that (at = 30), A is
changed to 0 and B to 1. Inputs specified by a three-bit truth table can be generated with
the initial block:
initial
begin
D = 3'b000;
repeat (7)
#10D = D + 3'b001;
end

When the simulator runs, the three-bit vector D is initialized to 000 at time = 0. The
keyword repeat specifies a looping statement: D is incremented by 1 seven times, once
every 10 time units. The result is a sequence of binary numbers from 000 to 111.

A stimulus module has the following form:

module test_ module_name;
/I Declare local reg and wire identifiers.
/I Instantiate the design module under test.
/I Specify a stopwatch, using $finish to terminate the simulation.
/I Generate stimulus, using initial and always statements.
/I Display the output response (text or graphics (or both)).
endmodule

A test module is written like any other module, but it typically has no inputs or outputs.
The signals that are applied as inputs to the design module for simulation are declared
in the stimulus module as local reg data type. The outputs of the design module that are
displayed for testing are declared in the stimulus module as local wire data type. The
module under test is then instantiated, using the local identifiers in its port list.
Figure 4.34 clarifies this relationship. The stimulus module generates inputs for the
design module by declaring local identifiers # A and ¢_B as reg type and checks the
output of the design unit with the wire identifier #_C.The local identifiers are then used
to instantiate the design module being tested. The simulator associates the (actual) local
identifiers within the test bench, t_A, t_B, and ¢_C, with the formal identifiers of the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

Chapter 4 Combinational Logic

modaule t_circuit;
regt_A,t B;
wire t_C;

module circuit @

| _— | input A, B;

|
’ output @:

/I Stimulus generators for
/I t_A and t_B go here
initial # stop_time $finish;

parameter stop_time = 1000 ;

circuit M (

/I Description goes here
endmodule

endmodule

FIGURE 4.34
Interaction between stimulus and design modules

module (A, B, C). The association shown here is based on position in the port list, which
is adequate for the examples that we will consider. The reader should note, however,
that Verilog provides a more flexible name association mechanism for connecting ports
in larger circuits.

The response to the stimulus generated by the initial and always blocks will
appear in text format as standard output and as waveforms (timing diagrams) in
simulators having graphical output capability. Numerical outputs are displayed by
using Verilog system tasks. These are built-in system functions that are recognized
by keywords that begin with the symbol $. Some of the system tasks that are useful
for display are

$display — display a one-time value of variables or strings with an end-of-line return,
$write —same as $display, but without going to next line,

$monitor —display variables whenever a value changes during a simulation run,
$time —display the simulation time,

$finish— terminate the simulation.

The syntax for $display, $write, and $monitor is of the form
Task-name (format specification, argumentlist);

The format specification uses the symbol % to specity the radix of the numbers that are
displayed and may have a string enclosed in quotes (). The base may be binary, decimal,
hexadecimal, or octal, identified with the symbols %b, %d, %h, and %o, respectively
(%B, %D, %H, and %O are valid too). For example, the statement

$display ("%d %b %b", C, A, B);

specifies the display of C in decimal and of A and B in binary. Note that there are no
commas in the format specification, that the format specification and argument list

Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 179

are separated by a comma, and that the argument list has commas between the
variables. An example that specifies a string enclosed in quotes may look like the
statement

$display ("time = %0d A = %b", $time, A, B);

and will produce the display
time =3A=10B =1

where (time =), (A =), and (B =) are part of the string to be displayed. The format
specifiers %0d, %b, and %b specify the base for $time, A, and B, respectively. In display-
ing time values, it is better to use the format %0d instead of %d. This provides a display
of the significant digits without the leading spaces that %d will include. (%d will display
about 10 leading spaces because time is calculated as a 32-bit number.)

An example of a stimulus module is shown in HDL Example 4.9. The circuit to be
tested is the two-to-one-line multiplexer described in Example 4.6. The module
t_mux_2x1_dfhas no ports. The inputs for the mux are declared with a reg keyword and
the outputs with a wire keyword. The mux is instantiated with the local variables. The
initial block specifies a sequence of binary values to be applied during the simulation.
The output response is checked with the $monitor system task. Every time a variable in
its argument changes value, the simulator displays the inputs, output, and time. The result
of the simulation is listed under the simulation log in the example. It shows that
m_out = A when select = 1 and m_out = B when select = 0 verifying the operation of
the multiplexer.

HDL Example 4.9 (Test Bench)

/I Test bench with stimulus for mux_2x1_df

module t_mux_2x1_df;

wire t_mux_out;
reg t A tB;
reg t_select;

parameter stop_time = 50;
mux_2x1_df M1 (t_mux_out, t_A, t_B, t_select); /Il Instantiation of circuit to be tested
initial # stop_time $finish;

initial begin /I Stimulus generator
t select=1;t A=0;t B=1,
#10t A=1;t B=0;
#10 t_select = 0;
#10t A=0;t B=1;
end

initial begin /I Response monitor
// $display (" time Select A B m_out”);
// $monitor ($time,,” %b %b %b %b”, t_select, t_ A, t B, t_m_out);

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

180 Chapter 4 Combinational Logic

$monitor ("time =", $time,, "select = %b A = %b B = %b OUT = %b”,
t select, t_A, t B, t mux_out);
end
endmodule

/I Dataflow description of two-to-one-line multiplexer

[l from Example 4.6
module mux_2x1_df (m_out, A, B, select);

output m_out;
input A, B;
input select;

assign m_out = (select)? A : B;
endmodule

Simulation log:

select=1A=0B=10UT =0time =0
select=1A=1B=00UT = 1time = 10
select =0A=1B =00UT = 0time = 20
select =0A=0B =10UT = 1time = 30

Logic simulation is a fast and accurate method of verifying that a model of a
combinational circuit is correct. There are two types of verification: functional and
timing. In functional verification, we study the circuit logical operation indepen-
dently of timing considerations. This can be done by deriving the truth table of the
combinational circuit. In timing verification, we study the circuit’s operation by
including the effect of delays through the gates. This can be done by observing the
waveforms at the outputs of the gates when they respond to a given input. An exam-
ple of a circuit with gate delays was presented in Section 3.10 in HDL Example 3.3.
We next show an HDL example that produces the truth table of a combinational
circuit. A $monitor system task displays the output caused by the given stimulus.
A commented alternative statement having a $display task would create a header
that could be used with a $monitor statement to eliminate the repetition of names
on each line of output.

The analysis of combinational circuits was covered in Section 4.3. A multilevel
circuit of a full adder was analyzed, and its truth table was derived by inspection. The
gate-level description of this circuit is shown in HDL Example 4.10. The circuit has
three inputs, two outputs, and nine gates. The description of the circuit follows the
interconnections between the gates according to the schematic diagram of Fig. 4.2.
The stimulus for the circuit is listed in the second module. The inputs for simulating
the circuit are specified with a three-bit reg vector D. D[2] is equivalent to input A,
D[1] toinput B,and D/0] to input C. The outputs of the circuit F| and F, are declared
as wire. The complement of F2 is named F2_b to illustrate a common industry practice
for designating the complement of a signal (instead of appending _not). This procedure

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 4.12 HDL Models of Combinational Circuits 181

follows the steps outlined in Fig. 4.34. The repeat loop provides the seven binary num-
bers after 000 for the truth table. The result of the simulation generates the output
truth table displayed with the example. The truth table listed shows that the circuit is
a full adder.

HDL Example 4.10 (Gate-Level Circuit)

/I Gate-level description of circuit of Fig. 4.2

module Circuit_of Fig_ 4 2 (A, B, C, F1, F2);
input A, B, C;
output F1, F2;
wire T1,T2,T3,F2 b, E1, E2, ES3;
or g1(T1, A, B,C);
and g2 (T2, A, B, C);
and g3 (E1, A, B);
and g4 (E2, A, C);
and g5 (E3, B, C);
or g6 (F2, E1, E2, E3);
not g7 (F2_b, F2);
and g8 (T3, T1, F2_b);
or g9 (F1,T2, T3);
endmodule

/I Stimulus to analyze the circuit

module test_circuit;

reg [2: 0] D;
wire F1, F2;
Circuit_of _Fig_4 2 (D[2], D[1], D[0], F1, F2);
initial
begin
D = 3'b000;
repeat (7)#10D = D 1 1’b1;
end
initial

$monitor ("ABC = %b F1 = %b F2 =%b", D, F1, F2);
endmodule

Simulation log: ABC = 000 F1 =0F2 =0

ABC =001F1=1F2=0ABC =010F1=1F2=0
ABC =011F1=0F2=1ABC=100F1=1F2=0
ABC =101F1=0F2=1ABC =110F1 =0F2 =1
ABC =111F1=1F2=1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

182 Chapter 4 Combinational Logic

PROBLEMS

(Answers to problems marked with * appear at the end of the text. Where appropriate, a logic
design and its related HDL modeling problem are cross-referenced.)

4.1 Consider the combinational circuit shown in Fig. P4.1. (HDL —see Problem 4.49.)

A

g > 7 Df ;

)

T

£

FIGURE P4.1

(a)* Derive the Boolean expressions for T; through T,. Evaluate the outputs F; and F,
as a function of the four inputs.

(b) List the truth table with 16 binary combinations of the four input variables. Then list
the binary values for 7 through 7} and outputs F; and F, in the table.

(c) Plot the output Boolean functions obtained in part (b) on maps and show that the
simplified Boolean expressions are equivalent to the ones obtained in part (a).

4.2% QObtain the simplified Boolean expressions for output F and G in terms of the input
variables in the circuit of Fig. P4.2.

A—>o F}
— >
B

F

C — /

) D,

FIGURE P4.2

4.3 For the circuit shown in Fig. 4.26 (Section 4.11),
(a) Write the Boolean functions for the four outputs in terms of the input variables.
(b)* If the circuit is described in a truth table, how many rows and columns would there
be in the table?
4.4 Design a combinational circuit with three inputs and one output.
(a)* The outputis 1 when the binary value of the inputs is less than 3. The output is 0 otherwise.
(b) The output is 1 when the binary value of the inputs is an even number.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 183

4.5 Design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B, and C.
When the binary input is 0, 1,2, or 3, the binary output is one greater than the input. When
the binary input is 4, 5, 6, or 7, the binary output is two less than the input.

4.6 A majority circuit is a combinational circuit whose output is equal to 1 if the input variables
have more 1’s than 0’s. The output is 0 otherwise.
(a)* Design a 3-input majority circuit by finding the circuit’s truth table, Boolean equation,
and a logic diagram.
(b) Write and verify a Verilog gate-level model of the circuit.

4.7 Design a combinational circuit that converts a four-bit Gray code (Table 1.6) to a bit four-
binary number.
(a)* Implement the circuit with exclusive-OR gates.
(b) Using a case statement, write and verify a Verilog model of the circuit.

4.8 Design a code converter that converts a decimal digit from
(a)* The 8,4,-2,-1 code to BCD (see Table 1.5). (HDL—see Problem 4.50.)
(b) The 8,4,-2,-1 code to Gray code.

4.9 AnABCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit
in BCD to an appropriate code for the selection of segments in an indicator used to display
the decimal digit in a familiar form. The seven outputs of the decoder (a, b, ¢, d, e, |, g) select
the corresponding segments in the display, as shown in Fig. P4.9(a). The numeric display
chosen to represent the decimal digit is shown in Fig. P4.9(b). Using a truth table and
Karnaugh maps, design the BCD-to-seven-segment decoder using a minimum number of
gates. The six invalid combinations should result in a blank display. (HDL —see Problem 4.51.)

. .

4

— N T R A U T
e T e Tt T I I

(a) Segment designation (b) Numerical designation for display

FIGURE P4.9

4.10%* Design a four-bit combinational circuit 2’s complementer. (The output generates the 2’s
complement of the input binary number.) Show that the circuit can be constructed with
exclusive-OR gates. Can you predict what the output functions are for a five-bit 2’s com-
plementer?

4.11 Using four half-adders (HDL —see Problem 4.52),
(a) Design a full-subtractor circuit incrementer. (A circuit that adds one to a four-bit
binary number.)
(b)* Design a four-bit combinational decrementer (a circuit that subtracts 1 from a four-
bit binary number).

4.12 Design a half-subtractor circuit with inputs x and y and outputs Diff and B,,,. The circuit
subtracts the bits x — y and places the difference in D and the borrow in B,,,,.
(a) Design a full-subtractor circuit with three inputs x, y, B;, and two outputs Diff and
B, The circuit subtracts x — y — B;,, where B,, is the input borrow, B, is the output
borrow, and Diff is the difference.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

184 Chapter 4 Combinational Logic

4.13* The adder—subtractor circuit of Fig. 4.13 has the following values for mode input M and
data inputs A and B.

M A B

(a) 0 0111 0110
() 0 1000 1001
(c) 1 1100 1000
(d) 1 0101 1010
(e) 1 0000 0001

In each case, determine the values of the four SUM outputs, the carry C, and overflow V.
(HDL —see Problems 4.37 and 4.40.)

4.14* Assume that the exclusive-OR gate has a propagation delay of 10 ns and that the AND or
OR gates have a propagation delay of 5ns. What is the total propagation delay time in the
four-bit adder of Fig. 4.12?

4.15 Derive the two-level Boolean expression for the output carry C, shown in the lookahead
carry generator of Fig. 4.12.

4.16 Define the carry propagate and carry generate as
P;=A;+ B;
G;= AB;
respectively. Show that the output carry and output sum of a full adder becomes
Civ1 = (CiG} + P’
S; = (PGHSC
The logic diagram of the first stage of a four-bit parallel adder as implemented in IC type

74283 is shown in Fig. P4.16. Identify the P; and G| terminals and show that the circuit
implements a full-adder circuit.

m—p

2 >

FIGURE P4.16
First stage of a parallel adder

B D e iy S N
>

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 185

4.17 Show that the output carry in a full adder circuit can be expressed in the AND-OR-

INVERT form
Civ1 = G; + PC; = (GiP; + G,C))’

IC type 74182 is a lookahead carry generator circuit that generates the carries with AND-
OR-INVERT gates (see Section 3.8). The circuit assumes that the input terminals have
the complements of the G’s, the P’s, and of C;. Derive the Boolean functions for the
lookahead carries C, C3, and Cj in this IC. (Hint: Use the equation-substitution method
to derive the carries in terms of C/)

4.18 Design a combinational circuit that generates the 9’s complement of a
(a)* BCD digit. (HDL—see Problem 4.54(a).)
(b) Gray-code digit. (HDL —see Problem 4.54(b).)

4.19 Construct a BCD adder—subtractor circuit. Use the BCD adder of Fig. 4.14 and the 9’s
complementer of problem 4.18. Use block diagrams for the components. (HDL —see Prob-
lem 4.55.)

4.20 For a binary multiplier that multiplies two unsigned four-bit numbers,
(a) Using AND gates and binary adders (see Fig. 4.16), design the circuit.
(b) Write and verify a Verilog dataflow model of the circuit.

4.21 Design a combinational circuit that compares two 4-bit numbers to check if they are equal.
The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.

4.22% Design an excess-3-to-binary decoder using the unused combinations of the code as
don’t-care conditions. (HDL —see Problem 4.42.)

4.23 Draw the logic diagram of a 2-to-4-line decoder using (a) NOR gates only and (b) NAND
gates only. Include an enable input. (HDL—see Problems 4.36, 4.45.)

4.24 Design a BCD-to-decimal decoder using the unused combinations of the BCD code as
don’t-care conditions.

4.25 Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to-
4-line decoder. Use block diagrams for the components. (HDL —see Problem 4.63.)

4.26 Construct a 4-to-16-line decoder with five 2-to-4-line decoders with enable. (HDL—see
Problem 4.64.)

4.27 A combinational circuit is specified by the following three Boolean functions:
Fi(A,B,C) = %(1,4,6)
F,(A,B,C) = 3(3,5)
F3(A,B,C) = %(2,4,6,7)
Implement the circuit with a decoder constructed with NAND gates (similar to Fig. 4.19)

and NAND or AND gates connected to the decoder outputs. Use a block diagram for the
decoder. Minimize the number of inputs in the external gates.

4.28 Using a decoder and external gates, design the combinational circui defined by the
following three Boolean functions:

(a) F; = x'yz' + xz d) Fi = (y +x)z
F,=xy'z +x'y F=y'z7 +x'y +yz’
F;=x'y'z" + xy F;= (x +y)z

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

186 Chapter 4 Combinational Logic

4.29* Design a four-input priority encoder with inputs as in Table 4.8, but with input D having
the highest priority and input D3 the lowest priority.

4.30 Specify the truth table of an octal-to-binary priority encoder. Provide an output V to in-
dicate that at least one of the inputs is present. The input with the highest subscript num-
ber has the highest priority. What will be the value of the four outputs if inputs D, and Dy
are 1 at the same time? (HDL—see Problem 4.65.)

4.31 Constructa 16 X 1 multiplexer with two 8 X 1 and one 2 X 1 multiplexers. Use block dia-
grams. (HDL —see Problem 4.67)

4.32 TImplement the following Boolean function with a multiplexer (HDL —see Problem 4.46):

(a) F(A,B,C,D) =3(0,2,5,8,10,14)
(b) F(A,B,C,D) = T1(2,6,11)

4.33 Implement a full adder with two 4 X 1 multiplexers.
4.34 An 8 X 1 multiplexer has inputs A, B, and C connected to the selection inputs S,, §;, and
So, respectively. The data inputs I, through I; are as follows:
(a)*]1: 12: 17: 0, 13: 15: 1,]0: 14: D, and 16: D’
(b) 11=12=O;I3=I7=1;I4=15=D;and10=16=D’.
Determine the Boolean function that the multiplexer implements.
4.35 Implement the following Boolean function with a 4 X 1 multiplexer and external gates.

(a)* F{(A,B,C,D) = 3(1,3,4,11,12,13,14,15)
(b) F,(A,B,C,D) =3(1,2,5,7,8,10,11, 13, 15)

Connect inputs A and B to the selection lines. The input requirements for the four data
lines will be a function of variables C and D.These values are obtained by expressing F as
a function of C and D for each of the four cases when AB = 00,01, 10, and 11. These func-
tions may have to be implemented with external gates. (HDL—see Problem 4.47)

4.36 Write the HDL gate-level description of the priority encoder circuit shown in Fig. 4.23.
(HDL —see Problem 4.45.)

4.37 Write the HDL gate-level hierarchical description of a four-bit adder—subtractor for un-
signed binary numbers. The circuit is similar to Fig. 4.13 but without output V. You can
instantiate the four-bit full adder described in HDL Example 4.2. (HDL—see Problems
4.13 and 4.40.)

4.38 Write the HDL dataflow description of a quadruple 2-to-1-line multiplexer with enable
(see Fig. 4.26).

4.39* Write an HDL behavioral description of a four-bit comparator with a six-bit output Y[5:0].
Bit 5 of Y is for “equals,” bit 4 for “not equal to,” bit 3 for “greater than,” bit 2 for “less
than,” bit 1 for “greater than or equal,” and bit 0 for “less than or equal to.”

4.40 Using the conditional operator (?:), write an HDL dataflow description of a four-bit adder—
subtractor of unsigned numbers. (See Problems 4.13 and 4.37)

4.41 Repeat problem 4.40 using an always statement.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 187

4.42 (a) Write an HDL gate-level description of the BCD-to-excess-3 converter circuit shown
in Fig. 4.4 (see Problem 4.22).
(b) Write a dataflow description of the BCD-to-excess-3 converter using the Boolean
expressions listed in Fig. 4.3.
(c)* Write an HDL behavioral description of a BCD-to-excess-3 converter.
(d) Write a test bench to simulate and test the BCD-to-excess-3 converter circuit in order
to verify the truth table. Check all three circuits.

4.43 Explain the function of the circuit specified by the following HDL description:

module Prob4_43 (A, B, S, E, Q);
input [1:0] A, B;
input S, E;
output [1:0] Q;
assignQ=E?(S?A:B):'bz;
endmodule

4.44 Using a case statement, write an HDL behavioral description of a eight-bit arithmetic-
logic unit (ALU). The circuit has a three-bit select bus (Sel), sixteen-bit input datapaths
(A[15:0] and B[15:0]), an eight-bit output datapath (y[15:0]), and performs the arithmetic
and logic operations listed below.

Sel Operation Description

000 y = 8'b0

001 y=A&B Bitwise AND

010 y=A|B Bitwise OR

oM y=A"B Bitwise exclusive OR

100 y=~A Bitwise complement

101 y=A-B Subtract

110 y=A+B Add (Assume A and B are unsigned)
1M1 y = 8'hFF

4.45 Write an HDL behavioral description of a four-input priority encoder. Use a four-bit vector
for the D inputs and an always block with if-else statements. Assume that input D[3] has
the highest priority (see Problem 4.36).

4.46 Write a Verilog dataflow description of the logic circuit described by the Boolean function
in Problem 4.32.

4.47 Write a Verilog dataflow description of the logic circuit described by the Boolean function
in Problem 4.35.

4.48 Develop and modify the eight-bit ALU specified in Problem 4.44 so that it has three-state
output controlled by an enable input, En. Write a test bench and simulate the circuit.

4.49 For the circuit shown in Fig. P4.1,
(a) Write and verify a gate-level HDL model of the circuit.
(b) Compare your results with those obtained for Problem 4.1.

4.50 Using a case statement, develop and simulate a behavioral model of
(a)* The 8,4,-2,-1 to BCD code converter described in Problem 4.8(a).
(b) The 8,4,-2,-1 to Gray code converter described in Problem 4.8(b).

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

188 Chapter 4 Combinational Logic

4.51 Develop and simulate a behavioral model of the ABCD-to-seven-segment decoder
described in Problem 4.9.

4.52 Using a continuous assignment, develop and simulate a dataflow model of
(a) The four-bit incrementer described in Problem 4.11(a).
(b) The four-bit decrementer described in Problem 4.11(b).

4.53 Develop and simulate a structural model of the decimal adder shown in Fig. 4.14.

4.54 Develop and simulate a behavioral model of a circuit that generates the 9’s complement of
(a) aBCD digit (see Problem 4.18(a)).
(b) a Gray-code digit (see Problem 4.18(b).)

4.55 Construct a hierarchical model of the BCD adder—subtractor described in Problem 4.19.
The BCD adder and the 9’s complementer are to be described as behavioral models in
separate modules, and they are to be instantiated in a top-level module.

4.56* Write a continuous assignment statement that compares two 4-bit numbers to check if
their bit patterns match. The variable to which the assignment is made is to equal 1 if the
numbers match and 0 otherwise.

4.57* Develop and verify a behavioral model of the four-bit priority encoder described in
Problem 4.29.

4.58 Write a Verilog model of a circuit whose 32-bit output is formed by shifting its 32-bit input
three positions to the right and filling the vacant positions with the bit that was in the MSN
before the shift occurred (shift arithmetic right). Write a Verilog model of a circuit whose
32-bit output is formed by shifting its 32-bit input three positions to the left and filling the
vacant positions with O (shift logical left).

4.59 Write a Verilog model of a BCD-to-decimal decoder using the unused combinations of
the BCD code as don’t-care conditions (see Problem 4.24).

4.60 Using the port syntax of the IEEE 1364-2001 standard, write and verify a gate-level model
of the four-bit even parity checker shown in Fig. 3.34.

4.61 Using continuous assignment statements and the port syntax of the IEEE 1364-2001 standard,
write and verify a gate-level model of the four-bit even parity checker shown in Fig. 3.34.

4.62 Write and verify a gate-level hierarchical model of the circuit described in Problem 4.25.
4.63 Write and verify a gate-level hierarchical model of the circuit described in Problem 4.26.
4.64 Write and verify a Verilog model of the octal-to-binary circuit described in Problem 4.30.
4.65 Write a hierarchical gate-level model of the multiplexer described in Problem 4.31.

REFERENCES

1. BHASKER, J. 1997 A Verilog HD L Primer. Allentown, PA: Star Galaxy Press.
. BHASKER, J. 1998. Verilog HD L Synthesis. Allentown, PA: Star Galaxy Press.
3. CiLeTTL, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HD L. Upper
Saddle River, NJ: Prentice Hall.
4. DIETMEYER, D. L. 1988. Logic Design of Digital Systems,3rd ed. Boston: Allyn Bacon.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Web Search Topics 189

Gaskl, D. D. 1997 Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.

Haves, J. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

Karz, R.H.2005. Contemporary Logic Design. Upper Saddle River, NJ: Pearson Prentice Hall.

ManNo, M. M. and C. R. KiME. 2007. Logic and Computer Design Fundamentals, 4th ed.

Upper Saddle River, NJ: Prentice Hall.

NELsoN, V. P., H. T. NAGLE, J. D. IrwiN, and B. D. CarroLL. 1995. Digital Logic Circuit

Analysis and Design. Englewood Cliffs, NJ: Prentice Hall.

10. PALNITKAR, S. 1996. Verilog HD L: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

11. RotH, C. H. 2009. Fundamentals of Logic Design, 6th ed. St. Paul, MN: West.

12. TaowMmas, D. E. and P. R. MoorBy. 2002. The Verilog Hardware Description Language,
5th ed. Boston: Kluwer Academic Publishers.

13. WAKERLY, J. F. 2005. Digital Design: Principles and Practices, 4th ed. Upper Saddle River,

NIJ: Prentice Hall.

® N oW

©

WEB SEARCH TOPICS

Boolean equation
Combinational logic
Truth table
Exclusive-OR
Comparator
Multiplexer
Decoder

Priority encoder
Three-state inverter
Three-state buffer

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 5
Synchronous Sequential Logic

5.1 INTRODUCTION

Hand-held devices, cell phones, navigation receivers, personal computers, digital cameras,
personal media players, and virtually all electronic consumer products have the ability to
send, receive, store, retrieve, and process information represented in a binary format. The
technology enabling and supporting these devices is critically dependent on electronic
components that can store information, i.e., have memory. This chapter examines the
operation and control of these devices and their use in circuits and enables you to better
understand what is happening in these devices when you interact with them. The digital
circuits considered thus far have been combinational —their output depends only and
immediately on their inputs—they have no memory, i.e., dependence on past values of
their inputs. Sequential circuits, however, act as storage elements and have memory. They
can store, retain, and then retrieve information when needed at a later time. Our treatment
will distinguish sequential logic from combinational logic.

5.2 SEQUENTIAL CIRCUITS

A block diagram of a sequential circuit is shown in Fig. 5.1. It consists of a combinational
circuit to which storage elements are connected to form a feedback path. The storage
elements are devices capable of storing binary information. The binary information
stored in these elements at any given time defines the state of the sequential circuit at
that time. The sequential circuit receives binary information from external inputs that,
together with the present state of the storage elements, determine the binary value of
the outputs. These external inputs also determine the condition for changing the state

190

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.2 Sequential Circuits 191

Inputs ———> o Outputs
Combinational
circuit

Memory
elements

FIGURE 5.1
Block diagram of sequential circuit

in the storage elements. The block diagram demonstrates that the outputs in a sequen-
tial circuit are a function not only of the inputs, but also of the present state of the stor-
age elements. The next state of the storage elements is also a function of external inputs
and the present state. Thus, a sequential circuit is specified by a time sequence of inputs,
outputs, and internal states. In contrast, the outputs of combinational logic depend only
on the present values of the inputs.

There are two main types of sequential circuits, and their classification is a function of
the timing of their signals. A synchronous sequential circuit is a system whose behavior
can be defined from the knowledge of its signals at discrete instants of time. The behavior
of an asynchronous sequential circuit depends upon the input signals at any instant of time
and the order in which the inputs change. The storage elements commonly used in asyn-
chronous sequential circuits are time-delay devices. The storage capability of a time-delay
device varies with the time it takes for the signal to propagate through the device. In prac-
tice, the internal propagation delay of logic gates is of sufficient duration to produce the
needed delay, so that actual delay units may not be necessary. In gate-type asynchronous
systems, the storage elements consist of logic gates whose propagation delay provides the
required storage. Thus, an asynchronous sequential circuit may be regarded as a combina-
tional circuit with feedback. Because of the feedback among logic gates, an asynchronous
sequential circuit may become unstable at times. The instability problem imposes many
difficulties on the designer. These circuits will not be covered in this text.

A synchronous sequential circuit employs signals that affect the storage elements at
only discrete instants of time. Synchronization is achieved by a timing device called a
clock generator, which provides a clock signal having the form of a periodic train of clock
pulses. The clock signal is commonly denoted by the identifiers clock and clk. The clock
pulses are distributed throughout the system in such a way that storage elements are
affected only with the arrival of each pulse. In practice, the clock pulses determine when
computational activity will occur within the circuit, and other signals (external inputs
and otherwise) determine what changes will take place affecting the storage elements
and the outputs. For example, a circuit that is to add and store two binary numbers would
compute their sum from the values of the numbers and store the sum at the occurrence
of a clock pulse. Synchronous sequential circuits that use clock pulses to control storage
elements are called clocked sequential circuits and are the type most frequently encoun-
tered in practice. They are called synchronous circuits because the activity within the
circuit and the resulting updating of stored values is synchronized to the occurrence of

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

192 Chapter 5 Synchronous Sequential Logic

Inputs ———> Outputs
Combinational
circuit

Clock pulses 4,—>

(a) Block diagram

B S s I e s

(b) Timing diagram of clock pulses

Flip-flops

FIGURE 5.2
Synchronous clocked sequential circuit

clock pulses. The design of synchronous circuits is feasible because they seldom manifest
instability problems and their timing is easily broken down into independent discrete
steps, each of which can be considered separately.

The storage elements (memory) used in clocked sequential circuits are called flip-
flops. A flip-flop is a binary storage device capable of storing one bit of information. In
a stable state, the output of a flip-flop is either 0 or 1. A sequential circuit may use many
flip-flops to store as many bits as necessary. The block diagram of a synchronous clocked
sequential circuit is shown in Fig. 5.2. The outputs are formed by a combinational logic
function of the inputs to the circuit or the values stored in the flip-flops (or both). The
value that is stored in a flip-flop when the clock pulse occurs is also determined by the
inputs to the circuit or the values presently stored in the flip-flop (or both). The new
value is stored (i.e., the flip-flop is updated) when a pulse of the clock signal occurs.
Prior to the occurrence of the clock pulse, the combinational logic forming the next
value of the flip-flop must have reached a stable value. Consequently, the speed at
which the combinational logic circuits operate is critical. If the clock (synchronizing)
pulses arrive at a regular interval, as shown in the timing diagram in Fig. 5.2, the com-
binational logic must respond to a change in the state of the flip-flop in time to be
updated before the next pulse arrives. Propagation delays play an important role in
determining the minimum interval between clock pulses that will allow the circuit to
operate correctly. A change in state of the flip-flops is initiated only by a clock pulse
transition—for example, when the value of the clock signals changes from 0 to 1. When
a clock pulse is not active, the feedback loop between the value stored in the flip-flop
and the value formed at the input to the flip-flop is effectively broken because the flip-
flop outputs cannot change even if the outputs of the combinational circuit driving their
inputs change in value. Thus, the transition from one state to the next occurs only at
predetermined intervals dictated by the clock pulses.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.3 Storage Elements: Latches 193

5.3 STORAGE ELEMENTS: LATCHES

A storage element in a digital circuit can maintain a binary state indefinitely (as long
as power is delivered to the circuit), until directed by an input signal to switch states.
The major differences among various types of storage elements are in the number of
inputs they possess and in the manner in which the inputs affect the binary state. Storage
elements that operate with signal levels (rather than signal transitions) are referred to as
latches; those controlled by a clock transition are flip-flops. Latches are said to be level
sensitive devices; flip-flops are edge-sensitive devices. The two types of storage elements
are related because latches are the basic circuits from which all flip-flops are con-
structed. Although latches are useful for storing binary information and for the design
of asynchronous sequential circuits, they are not practical for use as storage elements
in synchronous sequential circuits. Because they are the building blocks of flip-flops,
however, we will consider the fundamental storage mechanism used in latches before
considering flip-flops in the next section.

SR Latch

The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND
gates, and two inputs labeled S for set and R for reset. The SR latch constructed with two
cross-coupled NOR gates is shown in Fig. 5.3. The latch has two useful states. When output
O = 1and Q' = 0, the latch is said to be in the set state. When Q = O and Q' = 1, it is
in the reset state. Outputs Q and Q' are normally the complement of each other. However,
when both inputs are equal to 1 at the same time, a condition in which both outputs are
equal to 0 (rather than be mutually complementary) occurs. If both inputs are then switched
to 0 simultaneously, the device will enter an unpredictable or undefined state or a meta-
stable state. Consequently, in practical applications, setting both inputs to 1 is forbidden.
Under normal conditions, both inputs of the latch remain at 0 unless the state has to be
changed. The application of a momentary 1 to the S input causes the latch to go to the set
state. The S input must go back to 0 before any other changes take place, in order to avoid
the occurrence of an undefined next state that results from the forbidden input condition.
As shown in the function table of Fig. 5.3(b), two input conditions cause the circuit to be in

L
S R !
0 R (reset) Qo
Q 1 0|1 0
0 0|1 O (afterS=1,R=0)
1 0 1]0 1
J_L 0 0|0 1 (afterS=0,R=1)
0 S (set) o 1 1|0 0 (forbidden)
(a) Logic diagram (b) Function table

FIGURE 5.3
SR latch with NOR gates

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

194 Chapter 5 Synchronous Sequential Logic

1

S R '
OU S (set) Q0
0 10/0 1
1 1{0 1 (afterS=1,R=0)
1 0110
U 1 1|1 0 (after§=0,R=1)
0 R (reset) Q' 0 0|1 1 (forbidden)
(a) Logic diagram (b) Function table

FIGURE 5.4
SR latch with NAND gates

the set state. The first condition (S = 1, R = 0) is the action that must be taken by input
S to bring the circuit to the set state. Removing the active input from S leaves the circuit in
the same state. After both inputs return to 0, it is then possible to shift to the reset state by
momentary applying a 1 to the R input.The 1 can then be removed from R, whereupon the
circuit remains in the reset state. Thus, when both inputs S and R are equal to 0, the latch
can be in either the set or the reset state, depending on which input was most recently a 1.

If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0. This
action produces an undefined next state, because the state that results from the input
transitions depends on the order in which they return to 0. It also violates the require-
ment that outputs be the complement of each other. In normal operation, this condition
is avoided by making sure that 1’s are not applied to both inputs simultaneously.

The SR latch with two cross-coupled NAND gates is shown in Fig. 5.4. It operates with
both inputs normally at 1, unless the state of the latch has to be changed. The application
of 0 to the S input causes output Q to go to 1, putting the latch in the set state. When the S
input goes back to 1, the circuit remains in the set state. After both inputs go back to 1, we
are allowed to change the state of the latch by placing a 0 in the R input. This action causes
the circuit to go to the reset state and stay there even after both inputs return to 1. The
condition that is forbidden for the NAND latch is both inputs being equal to 0 at the same
time, an input combination that should be avoided.

In comparing the NAND with the NOR latch, note that the input signals for the
NAND require the complement of those values used for the NOR latch. Because the
NAND Ilatch requires a 0 signal to change its state, it is sometimes referred to as an S'R’
latch. The primes (or, sometimes, bars over the letters) designate the fact that the inputs
must be in their complement form to activate the circuit.

The operation of the basic SR latch can be modified by providing an additional input
signal that determines (controls) when the state of the latch can be changed by determining
whether S and R (or S’ and R’) can affect the circuit. An SR latch with a control input is
shown in Fig. 5.5. It consists of the basic SR latch and two additional NAND gates. The
control input En acts as an enable signal for the other two inputs. The outputs of the NAND
gates stay at the logic-1 level as long as the enable signal remains at 0. This is the quiescent
condition for the SR latch. When the enable input goes to 1, information from the S or R
input is allowed to affect the latch. The set state is reached with S = 1, R = 0,and En = 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

En

T
—

Section 5.3 Storage Elements: Latches 195

—— 0
Next state of Q

No change

No change

O = 0; reset state
Q = 1; set state
Indeterminate

—_m e = O
—— oo X |

AT

(a) Logic diagram (b) Function table

FIGURE 5.5
SR latch with control input

(active-high enabled). To change to the reset state, the inputs must be S = 0, R = 1, and
En = 1. In either case, when En returns to 0, the circuit remains in its current state. The
control input disables the circuit by applying 0 to En, so that the state of the output does
not change regardless of the values of S and R. Moreover, when En = 1 and both the §
and R inputs are equal to 0, the state of the circuit does not change. These conditions are
listed in the function table accompanying the diagram.

An indeterminate condition occurs when all three inputs are equal to 1. This condition
places 0’s on both inputs of the basic SR latch, which puts it in the undefined state. When
the enable input goes back to 0, one cannot conclusively determine the next state, because
it depends on whether the S or R input goes to 0 first. This indeterminate condition makes
this circuit difficult to manage, and it is seldom used in practice. Nevertheless, the SR latch
is an important circuit because other useful latches and flip-flops are constructed from it.

D Latch (Transparent Latch)

One way to eliminate the undesirable condition of the indeterminate state in the SR
latch is to ensure that inputs S and R are never equal to 1 at the same time. This is
done in the D latch, shown in Fig. 5.6. This latch has only two inputs: D (data) and

Next state of Q

En

STUDENTS-HUB.com

D
X | No change
0
1

TAY

i
o P

0
1 Q = 0; reset state
, 1 Q = 1; set state
— 0
(a) Logic diagram (b) Function table
FIGURE 5.6
D latch

Uploaded By: Malak Dar Obaid

196 Chapter 5 Synchronous Sequential Logic

—S — —Fq S — —D —
—R o— —R o— ——En o——
SR SR D

FIGURE 5.7

Graphic symbols for latches

En (enable). The D input goes directly to the S input, and its complement is applied
to the R input. As long as the enable input is at 0, the cross-coupled SR latch has both
inputs at the 1 level and the circuit cannot change state regardless of the value of D.
The D input is sampled when En = 1. If D = 1, the Q output goes to 1, placing the
circuit in the set state. If D = 0, output Q goes to 0, placing the circuit in the reset
state.

The D latch receives that designation from its ability to hold data in its internal stor-
age. It is suited for use as a temporary storage for binary information between a unit
and its environment. The binary information present at the data input of the D latch is
transferred to the Q output when the enable input is asserted. The output follows
changes in the data input as long as the enable input is asserted. This situation provides
a path from input D to the output, and for this reason, the circuit is often called a trans-
parent latch. When the enable input signal is de-asserted, the binary information that
was present at the data input at the time the transition occurred is retained (i.e., stored)
at the O output until the enable input is asserted again. Note that an inverter could be
placed at the enable input. Then, depending on the physical circuit, the external enabling
signal will be a value of 0 (active low) or 1 (active high).

The graphic symbols for the various latches are shown in Fig. 5.7 A latch is designated
by a rectangular block with inputs on the left and outputs on the right. One output
designates the normal output, and the other (with the bubble designation) designates
the complement output. The graphic symbol for the SR latch has inputs S and R indi-
cated inside the block. In the case of a NAND gate latch, bubbles are added to the inputs
to indicate that setting and resetting occur with a logic-0 signal. The graphic symbol for
the D latch has inputs D and En indicated inside the block.

5.4 STORAGE ELEMENTS: FLIP-FLOPS

The state of a latch or flip-flop is switched by a change in the control input. This momentary
change is called a trigger, and the transition it causes is said to trigger the flip-flop. The D
latch with pulses in its control input is essentially a flip-flop that is triggered every time the
pulse goes to the logic-1 level. As long as the pulse input remains at this level, any changes
in the data input will change the output and the state of the latch.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.4 Storage Elements: Flip-Flops 197

As seen from the block diagram of Fig. 5.2, a sequential circuit has a feedback path
from the outputs of the flip-flops to the input of the combinational circuit. Conse-
quently, the inputs of the flip-flops are derived in part from the outputs of the same and
other flip-flops. When latches are used for the storage elements, a serious difficulty
arises. The state transitions of the latches start as soon as the clock pulse changes to the
logic-1 level. The new state of a latch appears at the output while the pulse is still active.
This output is connected to the inputs of the latches through the combinational circuit.
If the inputs applied to the latches change while the clock pulse is still at the logic-1
level, the latches will respond to new values and a new output state may occur. The
result is an unpredictable situation, since the state of the latches may keep changing for
as long as the clock pulse stays at the active level. Because of this unreliable operation,
the output of a latch cannot be applied directly or through combinational logic to the
input of the same or another latch when all the latches are triggered by a common clock
source.

Flip-flop circuits are constructed in such a way as to make them operate properly
when they are part of a sequential circuit that employs a common clock. The problem
with the latch is that it responds to a change in the level of a clock pulse. As shown in
Fig. 5.8(a), a positive level response in the enable input allows changes in the output
when the D input changes while the clock pulse stays at logic 1. The key to the proper
operation of a flip-flop is to trigger it only during a signal transition. This can be accom-
plished by eliminating the feedback path that is inherent in the operation of the sequen-
tial circuit using latches. A clock pulse goes through two transitions: from 0 to 1 and the
return from 1 to 0. As shown in Fig. 5.8, the positive transition is defined as the positive
edge and the negative transition as the negative edge. There are two ways that a latch
can be modified to form a flip-flop. One way is to employ two latches in a special con-
figuration that isolates the output of the flip-flop and prevents it from being affected
while the input to the flip-flop is changing. Another way is to produce a flip-flop that

(a) Response to positive level

(b) Positive-edge response

(c) Negative-edge response

FIGURE 5.8
Clock response in latch and flip-flop

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

198 Chapter 5 Synchronous Sequential Logic

triggers only during a signal transition (from 0 to 1 or from 1 to 0) of the synchronizing
signal (clock) and is disabled during the rest of the clock pulse. We will now proceed to
show the implementation of both types of flip-flops.

Edge-Triggered D Flip-Flop

The construction of a D flip-flop with two D latches and an inverter is shown in Fig. 5.9.
The first latch is called the master and the second the slave. The circuit samples the D
input and changes its output Q only at the negative edge of the synchronizing or control-
ling clock (designated as Clk). When the clock is 0, the output of the inverter is 1. The
slave latch is enabled, and its output Q is equal to the master output Y. The master latch
is disabled because Clk = 0. When the input pulse changes to the logic-1 level, the data
from the external D input are transferred to the master. The slave, however, is disabled
as long as the clock remains at the 1 level, because its enable input is equal to 0. Any
change in the input changes the master output at Y, but cannot affect the slave output.
When the clock pulse returns to 0, the master is disabled and is isolated from the D
input. At the same time, the slave is enabled and the value of Y is transferred to the
output of the flip-flop at Q. Thus, a change in the output of the flip-flop can be triggered
only by and during the transition of the clock from 1 to 0.

The behavior of the master—slave flip-flop just described dictates that (1) the output
may change only once, (2) a change in the output is triggered by the negative edge of
the clock, and (3) the change may occur only during the clock’s negative level. The value
that is produced at the output of the flip-flop is the value that was stored in the master
stage immediately before the negative edge occurred. It is also possible to design the
circuit so that the flip-flop output changes on the positive edge of the clock. This hap-
pens in a flip-flop that has an additional inverter between the Clk terminal and the
junction between the other inverter and input En of the master latch. Such a flip-flop is
triggered with a negative pulse, so that the negative edge of the clock affects the master
and the positive edge affects the slave and the output terminal.

Another construction of an edge-triggered D flip-flop uses three SR latches as shown
in Fig. 5.10. Two latches respond to the external D (data) and Clk (clock) inputs. The
third latch provides the outputs for the flip-flop. The S and R inputs of the output latch

D
D latch D latch

(master) (slave)
En En

Clk {>c

FIGURE 5.9
Master-slave D flip-flop

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.4 Storage Elements: Flip-Flops 199

D;
Bans .
=

D-type positive-edge-triggered flip-flop

are maintained at the logic-1 level when Clk = 0. This causes the output to remain in
its present state. Input D may be equal to 0 or 1. If D = 0 when Clk becomes 1, R
changes to 0. This causes the flip-flop to go to the reset state, making Q = 0. If there is
a change in the D input while Clk = 1, terminal R remains at 0 because Q is 0. Thus, the
flip-flop is locked out and is unresponsive to further changes in the input. When the
clock returns to 0, R goes to 1, placing the output latch in the quiescent condition with-
out changing the output. Similarly, if D = 1 when Clk goes from 0 to 1, § changes to 0.
This causes the circuit to go to the set state, making QO = 1. Any change in D while
Clk = 1 does not affect the output.

In sum, when the input clock in the positive-edge-triggered flip-flop makes a positive
transition, the value of D is transferred to Q. A negative transition of the clock (i.e., from
1 to 0) does not affect the output, nor is the output affected by changes in D when Clk
is in the steady logic-1 level or the logic-0 level. Hence, this type of flip-flop responds to
the transition from 0 to 1 and nothing else.

The timing of the response of a flip-flop to input data and to the clock must be taken
into consideration when one is using edge-triggered flip-flops. There is a minimum time
called the sefup time during which the D input must be maintained at a constant value prior
to the occurrence of the clock transition. Similarly, there is a minimum time called the hold
time during which the D input must not change after the application of the positive transi-
tion of the clock. The propagation delay time of the flip-flop is defined as the interval
between the trigger edge and the stabilization of the output to a new state. These and other
parameters are specified in manufacturers’ data books for specific logic families.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

200 Chapter 5 Synchronous Sequential Logic

— P Clk o— —> Clk o—

(a) Positive-edge (a) Negative-edge

FIGURE 5.11
Graphic symbol for edge-triggered D flip-flop

The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 5.11. It is simi-
lar to the symbol used for the D latch, except for the arrowhead-like symbol in front of
the letter Clk, designating a dynamic input. The dynamic indicator (>) denotes the fact
that the flip-flop responds to the edge transition of the clock. A bubble outside the block
adjacent to the dynamic indicator designates a negative edge for triggering the circuit.
The absence of a bubble designates a positive-edge response.

Other Flip-Flops

Very large-scale integration circuits contain several thousands of gates within one pack-
age. Circuits are constructed by interconnecting the various gates to provide a digital
system. Each flip-flop is constructed from an interconnection of gates. The most eco-
nomical and efficient flip-flop constructed in this manner is the edge-triggered D flip-
flop, because it requires the smallest number of gates. Other types of flip-flops can be
constructed by using the D flip-flop and external logic. Two flip-flops less widely used
in the design of digital systems are the JK and T flip-flops.

There are three operations that can be performed with a flip-flop: Set it to 1, reset it
to 0, or complement its output. With only a single input, the D flip-flop can set or reset
the output, depending on the value of the D input immediately before the clock transi-
tion. Synchronized by a clock signal, the JK flip-flop has two inputs and performs all
three operations. The circuit diagram of a JK flip-flop constructed with a D flip-flop and
gates is shown in Fig. 5.12(a). The J input sets the flip-flop to 1, the K input resets it to
0, and when both inputs are enabled, the output is complemented. This can be verified
by investigating the circuit applied to the D input:

D=J0 +K'Q

WhenJ =1land K = 0,D = Q' + Q = 1, so the next clock edge sets the output to 1.
When J = 0 and K = 1, D = 0, so the next clock edge resets the output to 0. When
both/ = K = 1and D = Q’, the next clock edge complements the output. When both
J =K = 0and D = Q, the clock edge leaves the output unchanged. The graphic sym-
bol for the JK flip-flop is shown in Fig. 5.12(b). It is similar to the graphic symbol of the
D flip-flop, except that now the inputs are marked J and K.

The T (toggle) flip-flop is a complementing flip-flop and can be obtained from a JK
flip-flop when inputs J and K are tied together. This is shown in Fig. 5.13(a). When

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.4 Storage Elements: Flip-Flops 201

)
J L
D he
K——>o——\ —> ik
Clk —> Clk o Q' —K o——
(a) Circuit diagram (b) Graphic symbol
FIGURE 5.12
JK flip-flop

T

—> Clk
K p— — P> Clk P Clk P——
(a) From JK flip-flop (b) From D flip-flop (¢) Graphic symbol
FIGURE 5.13
T flip-flop

T =0 (J = K = 0), aclock edge does not change the output. When 7= 1 (J/ = K = 1),
a clock edge complements the output. The complementing flip-flop is useful for design-
ing binary counters.

The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as
shown in Fig. 5.13(b). The expression for the D input is

D=T®Q=TQ +T'Q

When 7' = 0, D = Q and there is no change in the output. When 7"= 1, D = Q' and
the output complements. The graphic symbol for this flip-flop has a 7'symbol in the input.

Characteristic Tables

A characteristic table defines the logical properties of a flip-flop by describing its oper-
ation in tabular form. The characteristic tables of three types of flip-flops are presented
in Table 5.1. They define the next state (i.e., the state that results from a clock transition)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

202 Chapter 5 Synchronous Sequential Logic

Table 5.1
Flip-Flop Characteristic Tables
JK Flip-Flop
J K |Qt+1)
0 0 o(1) No change
0 1 0 Reset
1 0 |1 Set
1 1 Q' Complement
D Flip-Flop T Flip-Flop
D |Q(t+1) T | Qit+ 1)
0 |0 Reset 0 o) No change
1 |1 Set 1 Q'(1) Complement

as a function of the inputs and the present state. Q(¢) refers to the present state (i.e., the
state present prior to the application of a clock edge). O(¢ + 1) is the next state one
clock period later. Note that the clock edge input is not included in the characteristic
table, but is implied to occur between times ¢ and ¢ + 1. Thus, Q(?) denotes the state of
the flip-flop immediately before the clock edge, and Q(¢ + 1) denotes the state that
results from the clock transition.

The characteristic table for the JK flip-flop shows that the next state is equal to the
present state when inputs J and K are both equal to 0. This condition can be expressed
as Q(t + 1) = Q(1), indicating that the clock produces no change of state. When K = 1
and J = 0, the clock resets the flip-flop and Q(¢ + 1) = 0. WithJ = 1 and K = 0, the
flip-flop sets and Q(¢t + 1) = 1. When both J and K are equal to 1, the next state changes
to the complement of the present state, a transition that can be expressed as
ot + 1) = Q'(0).

The next state of a D flip-flop is dependent only on the D input and is independent
of the present state. This can be expressed as Q(¢ + 1) = D. It means that the next-state
value is equal to the value of D. Note that the D flip-flop does not have a “no-change”
condition. Such a condition can be accomplished either by disabling the clock or by
operating the clock by having the output of the flip-flop connected into the D input.
Either method effectively circulates the output of the flip-flop when the state of the
flip-flop must remain unchanged.

The characteristic table of the T flip-flop has only two conditions: When T = 0, the
clock edge does not change the state; when 7" = 1, the clock edge complements the state
of the flip-flop.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.4 Storage Elements: Flip-Flops 203

Characteristic Equations

The logical properties of a flip-flop, as described in the characteristic table, can be
expressed algebraically with a characteristic equation. For the D flip-flop, we have the
characteristic equation

Qt+1)=D

which states that the next state of the output will be equal to the value of input D in the
present state. The characteristic equation for the JK flip-flop can be derived from the
characteristic table or from the circuit of Fig. 5.12. We obtain

Ot+1)=JO"+K'Q

where Q is the value of the flip-flop output prior to the application of a clock edge. The
characteristic equation for the T flip-flop is obtained from the circuit of Fig. 5.13:

Ot+1)=T®Q=T0' +TQ

Direct Inputs

Some flip-flops have asynchronous inputs that are used to force the flip-flop to a par-
ticular state independently of the clock. The input that sets the flip-flop to 1 is called
preset or direct set. The input that clears the flip-flop to 0 is called clear or direct reset.
When power is turned on in a digital system, the state of the flip-flops is unknown. The
direct inputs are useful for bringing all flip-flops in the system to a known starting state
prior to the clocked operation.

A positive-edge-triggered D flip-flop with active-low asynchronous reset is shown
in Fig. 5.14. The circuit diagram is the same as the one in Fig. 5.10, except for the
additional reset input connections to three NAND gates. When the reset input is 0,
it forces output Q' to stay at 1, which, in turn, clears output Q to 0, thus resetting the
flip-flop. Two other connections from the reset input ensure that the S input of the
third SR latch stays at logic 1 while the reset input is at 0, regardless of the values of
D and Clk.

The graphic symbol for the D flip-flop with a direct reset has an additional input
marked with R. The bubble along the input indicates that the reset is active at the logic-0
level. Flip-flops with a direct set use the symbol S for the asynchronous set input.

The function table specifies the operation of the circuit. When R = 0, the output
is reset to 0. This state is independent of the values of D or Clk. Normal clock opera-
tion can proceed only after the reset input goes to logic 1. The clock at Clk is shown
with an upward arrow to indicate that the flip-flop triggers on the positive edge of
the clock. The value in D is transferred to Q with every positive-edge clock signal,
provided that R = 1.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

204 Chapter 5 Synchronous Sequential Logic

%<S
0]
Clock /
R
D = o
v D
Reset
(a) Circuit diagram
Data D —20
R Cik D|QQ
Clock Clk -
So— 0 X X |01
R o T o0/01
T o T 1|10
Reset B
(b) Graphic symbol (b) Function table
FIGURE 5.14

D flip-flop with asynchronous reset

5.5 ANALYSIS OF CLOCKED
SEQUENTIAL CIRCUITS

Analysis describes what a given circuit will do under certain operating conditions. The
behavior of a clocked sequential circuit is determined from the inputs, the outputs, and
the state of its flip-flops. The outputs and the next state are both a function of the inputs
and the present state. The analysis of a sequential circuit consists of obtaining a table or
a diagram for the time sequence of inputs, outputs, and internal states. It is also possible

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.5 Analysis of Clocked Sequential Circuits 205

to write Boolean expressions that describe the behavior of the sequential circuit. These
expressions must include the necessary time sequence, either directly or indirectly.

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops
with clock inputs. The flip-flops may be of any type, and the logic diagram may or may
not include combinational logic gates. In this section, we introduce an algebraic repre-
sentation for specifying the next-state condition in terms of the present state and inputs.
A state table and state diagram are then presented to describe the behavior of the
sequential circuit. Another algebraic representation is introduced for specifying the logic
diagram of sequential circuits. Examples are used to illustrate the various procedures.

State Equations

The behavior of a clocked sequential circuit can be described algebraically by means of
state equations. A state equation (also called a transition equation) specifies the next
state as a function of the present state and inputs. Consider the sequential circuit shown
in Fig. 5.15. We will later show that it acts as a O-detector by asserting its output when a

X

—> Clk

) D B—

Clk

Clock

:Dij—y
o

FIGURE 5.15
Example of sequential circuit

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

206 Chapter 5 Synchronous Sequential Logic

0 is detected in a stream of 1s. It consists of two D flip-flops A and B, an input x and an
output y. Since the D input of a flip-flop determines the value of the next state (i.e., the
state reached after the clock transition), it is possible to write a set of state equations
for the circuit:

A(t + 1) = A()x(t) + B()x(t)
B(t+ 1) = A'(t)x(¢)

A state equation is an algebraic expression that specifies the condition for a flip-flop
state transition. The left side of the equation, with (¢ + 1), denotes the next state of the
flip-flop one clock edge later. The right side of the equation is a Boolean expression that
specifies the present state and input conditions that make the next state equal to 1. Since
all the variables in the Boolean expressions are a function of the present state, we can
omit the designation (¢) after each variable for convenience and can express the state
equations in the more compact form

A(t + 1) — Ax + Bx
B(t+1) — A'x

The Boolean expressions for the state equations can be derived directly from the gates
that form the combinational circuit part of the sequential circuit, since the D values of
the combinational circuit determine the next state. Similarly, the present-state value of
the output can be expressed algebraically as

y(0) = [A@) + BO)]x' (1)
By removing the symbol () for the present state, we obtain the output Boolean equation:

y=(A+ B)x'

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state
table (sometimes called a transition table). The state table for the circuit of Fig. 5.15 is
shown in Table 5.2. The table consists of four sections labeled present state, input, next
state, and output. The present-state section shows the states of flip-flops A and B at
any given time ¢. The input section gives a value of x for each possible present state.
The next-state section shows the states of the flip-flops one clock cycle later, at time
t + 1. The output section gives the value of y at time ¢ for each present state and input
condition.

The derivation of a state table requires listing all possible binary combinations of
present states and inputs. In this case, we have eight binary combinations from 000 to
111. The next-state values are then determined from the logic diagram or from the state
equations. The next state of flip-flop A must satisfy the state equation

A(t + 1) = Ax + Bx

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.5 Analysis of Clocked Sequential Circuits 207

Table 5.2
State Table for the Circuit of Fig. 5.15
Present Next
State Input State Output
A B X A B y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

The next-state section in the state table under column A has three 1’s where the present
state of A and input x are both equal to 1 or the present state of B and input x are both
equal to 1. Similarly, the next state of flip-flop B is derived from the state equation

B(t+1)=A'x

and is equal to 1 when the present state of A is 0 and input x is equal to 1. The output
column is derived from the output equation

y = Ax' + Bx'

The state table of a sequential circuit with D-type flip-flops is obtained by the same
procedure outlined in the previous example. In general, a sequential circuit with m flip-
flops and n inputs needs 2" rows in the state table. The binary numbers from 0 through
2t — 1 are listed under the present-state and input columns. The next-state section
has m columns, one for each flip-flop. The binary values for the next state are derived
directly from the state equations. The output section has as many columns as there are
output variables. Its binary value is derived from the circuit or from the Boolean func-
tion in the same manner as in a truth table.

It is sometimes convenient to express the state table in a slightly different form hav-
ing only three sections: present state, next state, and output. The input conditions are
enumerated under the next-state and output sections. The state table of Table 5.2 is
repeated in Table 5.3 in this second form. For each present state, there are two possible
next states and outputs, depending on the value of the input. One form may be prefer-
able to the other, depending on the application.

State Diagram

The information available in a state table can be represented graphically in the form
of a state diagram. In this type of diagram, a state is represented by a circle, and the
(clock-triggered) transitions between states are indicated by directed lines connecting

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

208 Chapter 5 Synchronous Sequential Logic

Table 5.3
Second Form of the State Table
Next State Output
Present - -
State x=0 x=1 x=0 x=1
A B A B A B y y
0 0 0O 0 0 1 0 0
0 1 0 0 1 1 1 0
1 0 0O 0 1 0 1 0
1 1 0O 0 1 0 1 0

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

the circles. The state diagram of the sequential circuit of Fig. 5.15 is shown in Fig. 5.16.
The state diagram provides the same information as the state table and is obtained
directly from Table 5.2 or Table 5.3. The binary number inside each circle identifies the
state of the flip-flops. The directed lines are labeled with two binary numbers separated
by aslash. The input value during the present state is labeled first, and the number after
the slash gives the output during the present state with the given input. (It is important
to remember that the bit value listed for the output along the directed line occurs dur-
ing the present state and with the indicated input, and has nothing to do with the
transition to the next state.) For example, the directed line from state 00 to 01 is labeled
1/0, meaning that when the sequential circuit is in the present state 00 and the input is
1, the output is 0. After the next clock cycle, the circuit goes to the next state, 01. If the
input changes to 0, then the output becomes 1, but if the input remains at 1, the output
stays at 0. This information is obtained from the state diagram along the two directed
lines emanating from the circle with state 01. A directed line connecting a circle with
itself indicates that no change of state occurs.
The steps presented in this example are summarized below:

Circuit diagram — Equations — State table — State diagram

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.5 Analysis of Clocked Sequential Circuits 209

This sequence of steps begins with a structural representation of the circuit and proceeds
to an abstract representation of its behavior. An HDL model can be in the form of a
gate-level description or in the form of a behavioral description. It is important to note
that a gate-level approach requires that the designer understands how to select and
connect gates and flip-flops to form a circuit having a particular behavior. That under-
standing comes with experience. On the other hand, an approach based on behavioral
modeling does not require the designer to know how to invent a schematic—the designer
needs only to know how to describe behavior using the constructs of the HDL, because
the circuit is produced automatically by a synthesis tool. Therefore, one does not have
to accumulate years of experience in order to become a productive designer of digital
circuits; nor does one have to acquire an extensive background in electrical engineering.

There is no difference between a state table and a state diagram, except in the manner
of representation. The state table is easier to derive from a given logic diagram and the
state equation. The state diagram follows directly from the state table. The state diagram
gives a pictorial view of state transitions and is the form more suitable for human interpre-
tation of the circuit’s operation. For example, the state diagram of Fig. 5.16 clearly shows
that, starting from state 00, the output is O as long as the input stays at 1. The first 0 input
after a string of 1’s gives an output of 1 and transfers the circuit back to the initial state,
00.The machine represented by this state diagram acts to detect a zero in the bit stream
of data. It corresponds to the behavior of the circuit in Fig. 5.15. Other circuits that detect
a zero in a stream of data may have a simpler circuit diagram and state diagram.

Flip-Flop Input Equations

The logic diagram of a sequential circuit consists of flip-flops and gates. The interconnec-
tions among the gates form a combinational circuit and may be specified algebraically
with Boolean expressions. The knowledge of the type of flip-flops and a list of the Bool-
ean expressions of the combinational circuit provide the information needed to draw the
logic diagram of the sequential circuit. The part of the combinational circuit that gener-
ates external outputs is described algebraically by a set of Boolean functions called
output equations. The part of the circuit that generates the inputs to flip-flops is described
algebraically by a set of Boolean functions called flip-flop input equations (or,sometimes,
excitation equations). We will adopt the convention of using the flip-flop input symbol to
denote the input equation variable and a subscript to designate the name of the flip-flop
output. For example, the following input equation specifies an OR gate with inputs x and
y connected to the D input of a flip-flop whose output is labeled with the symbol QO:

DQ:.X“r‘y

The sequential circuit of Fig. 5.15 consists of two D flip-flops A and B, an input x, and
an output y. The logic diagram of the circuit can be expressed algebraically with two
flip-flop input equations and an output equation:

D, = Ax + Bx
DB:A’X
y= (A + B)x’

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

210 Chapter 5 Synchronous Sequential Logic

The three equations provide the necessary information for drawing the logic diagram
of the sequential circuit. The symbol D 4 specifies a D flip-flop labeled A. Dy specifies
asecond D flip-flop labeled B.The Boolean expressions associated with these two vari-
ables and the expression for output y specify the combinational circuit part of the
sequential circuit.

The flip-flop input equations constitute a convenient algebraic form for specifying
the logic diagram of a sequential circuit. They imply the type of flip-flop from the letter
symbol, and they fully specify the combinational circuit that drives the flip-flops. Note
that the expression for the input equation for a D flip-flop is identical to the expression
for the corresponding state equation. This is because of the characteristic equation that
equates the next state to the value of the D input: Q(¢ + 1) = D,

Analysis with D Flip-Flops

We will summarize the procedure for analyzing a clocked sequential circuit with D flip-
flops by means of a simple example. The circuit we want to analyze is described by the
input equation

D,=A®x®y

The D 4 symbol implies a D flip-flop with output A.The x and y variables are the inputs
to the circuit. No output equations are given, which implies that the output comes from
the output of the flip-flop. The logic diagram is obtained from the input equation and is
drawn in Fig. 5.17(a).

The state table has one column for the present state of flip-flop A, two columns for
the two inputs, and one column for the next state of A. The binary numbers under Axy
are listed from 000 through 111 as shown in Fig. 5.17(b). The next-state values are
obtained from the state equation

AG+1) = ADx®y

The expression specifies an odd function and is equal to 1 when only one variable is 1
or when all three variables are 1. This is indicated in the column for the next state of A.

The circuit has one flip-flop and two states. The state diagram consists of two circles,
one for each state as shown in Fig. 5.17(c). The present state and the output can be either
0 or 1, as indicated by the number inside the circles. A slash on the directed lines is not
needed, because there is no output from a combinational circuit. The two inputs can
have four possible combinations for each state. Two input combinations during each
state transition are separated by a comma to simplify the notation.

Analysis with JK Flip-Flops

A state table consists of four sections: present state, inputs, next state, and outputs. The
first two are obtained by listing all binary combinations. The output section is deter-
mined from the output equations. The next-state values are evaluated from the state
equations. For a D-type flip-flop, the state equation is the same as the input equation.
When a flip-flop other than the D type is used, such as JK or 7, it is necessary to refer

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.5 Analysis of Clocked Sequential Circuits 211

Present Next
state Inputs state

A Xy A
0 00 0
0 01 1
X L A 0 10 1
y 0 11 0
Clk 1 00 1
1 01 0
1 10 0
Clock ! ti !
(a) Circuit diagram (b) State table
00,11 01,10 00,11
01,10

(c) State diagram

FIGURE 5.17
Sequential circuit with D flip-flop

to the corresponding characteristic table or characteristic equation to obtain the next-
state values. We will illustrate the procedure first by using the characteristic table and
again by using the characteristic equation.

The next-state values of a sequential circuit that uses JK- or T-type flip-flops can be
derived as follows:

1. Determine the flip-flop input equations in terms of the present state and input
variables.

2. List the binary values of each input equation.

3. Use the corresponding flip-flop characteristic table to determine the next-state
values in the state table.

As an example, consider the sequential circuit with two JK flip-flops A and B and
one input x, as shown in Fig. 5.18. The circuit has no outputs; therefore, the state table
does not need an output column. (The outputs of the flip-flops may be considered as
the outputs in this case.) The circuit can be specified by the flip-flop input equations

J.=B K, = Bx'
Jp=x'" Kg=A'x+Ax' = A®Px

The state table of the sequential circuit is shown in Table 5.4. The present-state and
input columns list the eight binary combinations. The binary values listed under the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

212 Chapter 5 Synchronous Sequential Logic

7 A
Clk
X {>o \ %
L
J B
Clk
IL_/
Clock
FIGURE 5.18

Sequential circuit with JK flip-flop

columns labeled flip-flop inputs are not part of the state table, but they are needed for
the purpose of evaluating the next state as specified in step 2 of the procedure. These
binary values are obtained directly from the four input equations in a manner similar
to that for obtaining a truth table from a Boolean expression. The next state of each
flip-flop is evaluated from the corresponding J and K inputs and the characteristic table
of the JK flip-flop listed in Table 5.1. There are four cases to consider. When J = 1 and

Table 5.4

State Table for Sequential Circuit with JK Flip-Flops
Present Next Flip-Flop

State Input State Inputs

A B A B Ja K, Js Kg
0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1
0 1 0 1 1 1 1 1 0
0 1 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1 1
1 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.5 Analysis of Clocked Sequential Circuits 213

K = 0, the next stateis 1. When J = 0 and K = 1, the next state is 0. WhenJ = K = 0,
there is no change of state and the next-state value is the same as that of the present
state. When J = K = 1, the next-state bit is the complement of the present-state bit.
Examples of the last two cases occur in the table when the present state AB is 10 and
input x is 0. JA and KA are both equal to 0 and the present state of A is 1. Therefore, the
next state of A remains the same and is equal to 1. In the same row of the table, /B and
KB are both equal to 1. Since the present state of B is 0, the next state of B is comple-
mented and changes to 1.

The next-state values can also be obtained by evaluating the state equations from the
characteristic equation. This is done by using the following procedure:

1. Determine the flip-flop input equations in terms of the present state and input
variables.

2. Substitute the input equations into the flip-flop characteristic equation to obtain
the state equations.

3. Use the corresponding state equations to determine the next-state values in the
state table.

The input equations for the two JK flip-flops of Fig. 5.18 were listed a couple of para-
graphs ago. The characteristic equations for the flip-flops are obtained by substituting
A or B for the name of the flip-flop, instead of Q:

At +1)=JA + K'A
B(t +1)=JB' + K'B

Substituting the values of /4 and K4 from the input equations, we obtain the state equa-
tion for A:

A(t+1)=BA' + (Bx')' A=A'B + AB' + Ax

The state equation provides the bit values for the column headed “Next State” for A in
the state table. Similarly, the state equation for flip-flop B can be derived from the char-
acteristic equation by substituting the values of Jgz and Kp:

B(t+1)=x'B' + (A®x)B = B'x’ + ABx + A'Bx’

The state equation provides the bit values for the column headed “Next State” for B in
the state table. Note that the columns in Table 5.4 headed “Flip-Flop Inputs” are not
needed when state equations are used.

The state diagram of the sequential circuit is shown in Fig. 5.19. Note that since the
circuit has no outputs, the directed lines out of the circles are marked with one binary
number only, to designate the value of input x.

Analysis with T Flip-Flops

The analysis of a sequential circuit with T flip-flops follows the same procedure outlined
for JK flip-flops. The next-state values in the state table can be obtained by using either

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 5 Synchronous Sequential Logic

1
S0 @ S3

1

1

FIGURE 5.19
State diagram of the circuit of Fig. 5.18

the characteristic table listed in Table 5.1 or the characteristic equation

Qi+ 1) =TeQ=T0 + TQ'

Now consider the sequential circuit shown in Fig. 5.20. It has two flip-flops A and B, one
input x, and one output y and can be described algebraically by two input equations and
an output equation:

TA:BX
TB:x
y = AB

The state table for the circuit is listed in Table 5.5. The values for y are obtained from
the output equation. The values for the next state can be derived from the state equa-
tions by substituting 74 and T in the characteristic equations, yielding

A(t + 1) = (Bx)'A + (Bx)A’ = AB' + Ax' + A'Bx
B(t+1)=x®B

The next-state values for A and B in the state table are obtained from the expressions
of the two state equations.

The state diagram of the circuit is shown in Fig. 5.20(b). As long as input x is equal to 1, the
circuit behaves as a binary counter with a sequence of states 00, 01, 10, 11, and back to 00.
When x = 0, the circuit remains in the same state. Output y is equal to 1 when the present
state is 11. Here, the output depends on the present state only and is independent of the input.
The two values inside each circle and separated by a slash are for the present state and output.

Mealy and Moore Models of Finite State Machines

STUDENTS-HUB.com

The most general model of a sequential circuit has inputs, outputs, and internal states. It
is customary to distinguish between two models of sequential circuits: the Mealy model
and the Moore model. Both are shown in Fig. 5.21. They differ only in the way the output

Uploaded By: Malak Dar Obaid

Section 5.5 Analysis of Clocked Sequential Circuits 215

: — 5

Clk
R

A

]

Clk
R

L]

Clock reset
(a) Circuit diagram

FIGURE 5.20

(b) State diagram

Sequential circuit with T flip-flops (Binary Counter)

Table 5.5

State Table for Sequential Circuit with T Flip-Flops
Present Next

State Input State Output

A B X A B y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 1

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

216 Chapter 5 Synchronous Sequential Logic

Mealy Machine
Inputs e———> Next State State O.utp%tt Outputs
Combinational > Reoi —t1—> Combinational (Mealy-type)
Logic egister) y-typ
> 8 Logic
Clock -j

(a)

Moore Machine

Inputs e——— Next State Output o
tput.
Combinational — RStqtf . —t—> Combinational (I\Lllol;ures—type)
—> Logic esiste Logic
Clock J
(b)
FIGURE 5.21

Block diagrams of Mealy and Moore state machines

is generated. In the Mealy model, the output is a function of both the present state and
the input. In the Moore model, the output is a function of only the present state. A circuit
may have both types of outputs. The two models of a sequential circuit are commonly
referred to as a finite state machine, abbreviated FSM. The Mealy model of a sequential
circuit is referred to as a Mealy FSM or Mealy machine. The Moore model is referred
to as a Moore FSM or Moore machine.

The circuit presented previously in Fig. 5.15 is an example of a Mealy machine. Out-
put y is a function of both input x and the present state of A and B. The corresponding
state diagram in Fig. 5.16 shows both the input and output values, separated by a slash
along the directed lines between the states.

An example of a Moore model is given in Fig. 5.18. Here, the output is a function of
the present state only. The corresponding state diagram in Fig. 5.19 has only inputs marked
along the directed lines. The outputs are the flip-flop states marked inside the circles.
Another example of a Moore model is the sequential circuit of Fig. 5.20. The output
depends only on flip-flop values, and that makes it a function of the present state only.
The input value in the state diagram is labeled along the directed line, but the output
value is indicated inside the circle together with the present state.

In a Moore model, the outputs of the sequential circuit are synchronized with the
clock, because they depend only on flip-flop outputs that are synchronized with the
clock. In a Mealy model, the outputs may change if the inputs change during the clock

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.6 Synthesizable HDL Models of Sequential Circuits 217

cycle. Moreover, the outputs may have momentary false values because of the delay
encountered from the time that the inputs change and the time that the flip-flop outputs
change. In order to synchronize a Mealy-type circuit, the inputs of the sequential circuit
must be synchronized with the clock and the outputs must be sampled immediately
before the clock edge. The inputs are changed at the inactive edge of the clock to ensure
that the inputs to the flip-flops stabilize before the active edge of the clock occurs. Thus,
the output of the Mealy machine is the value that is present immediately before the
active edge of the clock.

5.6 SYNTHESIZABLE HDL MODELS
OF SEQUENTIAL CIRCUITS

The Verilog HDL was introduced in Section 3.9. Combinational circuits were described
in Section 4.12, and behavioral modeling with Verilog was introduced in that section
as well. Behavioral models are abstract representations of the functionality of digi-
tal hardware. That is, they describe how a circuit behaves, but don’t specify the internal
details of the circuit. Historically, the abstraction has been described by truth tables,
state tables, and state diagrams. An HDL describes the functionality differently,
by language constructs that represent the operations of registers in a machine.
This representation has “added value,” i.e., it is important for you to know how to use,
because it can be simulated to produce waveforms demonstrating the behavior of the
machine.

Behavioral Modeling

There are two kinds of abstract behaviors in the Verilog HDL. Behavior declared by
the keyword initial is called single-pass behavior and specifies a single statement or
a block statement (i.e., a list of statements enclosed by either a begin . .. end or a
fork ... join keyword pair). A single-pass behavior expires after the associated state-
ment executes. In practice, designers use single-pass behavior primarily to prescribe
stimulus signals in a test bench—never to model the behavior of a circuit—because
synthesis tools do not accept descriptions that use the initial statement. The always
keyword declares a cyclic behavior. Both types of behaviors begin executing when
the simulator launches at time ¢ = 0. The initial behavior expires after its statement
executes; the always behavior executes and reexecutes indefinitely, until the simula-
tion is stopped. A module may contain an arbitrary number of initial or always behav-
ioral statements. They execute concurrently with respect to each other, starting at
time 0, and may interact through common variables. Here’s a word description of how
an always statement works for a simple model of a D flip-flop: Whenever the rising
edge of the clock occurs, if the reset input is asserted, the output g gets 0; otherwise
the output Q gets the value of the input D. The execution of statements triggered by
the clock is repeated until the simulation ends. We'll see shortly how to write this
description in Verilog.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

218 Chapter 5 Synchronous Sequential Logic

An initial behavioral statement executes only once. It begins its execution at the start
of simulation and expires after all of its statements have completed execution. As men-
tioned at the end of Section 4.12, the initial statement is useful for generating input
signals to simulate a design. In simulating a sequential circuit, it is necessary to generate
a clock source for triggering the flip-flops. The following are two possible ways to pro-
vide a free-running clock that operates for a specified number of cycles:

initial initial
begin begin
clock = 1'b0; clock = 1'b0;
repeat (30) end
#10 clock = ~clock;
end initial 300 $finish;

always #10 clock = ~clock;

In the first version, the initial block contains two statements enclosed within the begin
and end keywords. The first statement sets clock to 0 at time = 0. The second statement
specifies a loop that reexecutes 30 times to wait 10 time units and then complement the
value of clock. This produces 15 clock cycles, each with a cycle time of 20 time units. In
the second version, the first initial behavior has a single statement that sets clock to 0 at
time = 0, and it then expires (causes no further simulation activity). The second single-
pass behavior declares a stopwatch for the simulation. The system task finish causes the
simulation to terminate unconditionally after 300 time units have elapsed. Because this
behavior has only one statement associated with it, there is no need to write the begin . . .
end keyword pair. After 10 time units, the always statement repeatedly complements clock,
providing a clock generator having a cycle time of 20 time units. The three behavioral
statements in the second example can be written in any order.
Here is another way to describe a free-running clock:

initial begin clock = 0; forever #10 clock = ~clock; end

This version, with two statements in one block statement, initializes the clock and then
executes an indefinite loop (forever) in which the clock is complemented after a delay
of 10 time steps. Note that the single-pass behavior never finishes executing and so does
not expire. Another behavior would have to terminate the simulation.

The activity associated with either type of behavioral statement can be controlled by
a delay operator that waits for a certain time or by an event control operator that waits
for certain conditions to become true or for specified events (changes in signals) to
occur. Time delays specified with the # delay control operator are commonly used in
single-pass behaviors. The delay control operator suspends execution of statements until
a specified time has elapsed. We’ve already seen examples of its use to specify signals in
a test bench. Another operator @ is called the event control operator and is used to
suspend activity until an event occurs. An event can be an unconditional change in a
signal value (e.g., @ A) or a specified transition of a signal value (e.g., @ (posedge
clock)). The general form of this type of statement is

always @ (event control expression) begin
/I Procedural assignment statements that execute when the condition is met
end

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.6 Synthesizable HDL Models of Sequential Circuits 219

The event control expression specifies the condition that must occur to launch execu-
tion of the procedural assignment statements. The variables in the left-hand side of the
procedural statements must be of the reg data type and must be declared as such. The
right-hand side can be any expression that produces a value using Verilog-defined
operators.

The event control expression (also called the sensitivity list) specifies the events that
must occur to initiate execution of the procedural statements associated with the always
block. Statements within the block execute sequentially from top to bottom. After
the last statement executes, the behavior waits for the event control expression to be
satisfied. Then the statements are executed again. The sensitivity list can specify level-
sensitive events, edge-sensitive events, or a combination of the two. In practice, design-
ers do not make use of the third option, because this third form is not one that synthesis
tools are able to translate into physical hardware. Level-sensitive events occur in com-
binational circuits and in latches. For example, the statement

always @ (AorBor C)

will initiate execution of the procedural statements in the associated always block if a
change occurs in A, B, or C. In synchronous sequential circuits, changes in flip-flops
occur only in response to a transition of a clock pulse. The transition may be either a
positive edge or a negative edge of the clock, but not both. Verilog HDL takes care of
these conditions by providing two keywords: posedge and negedge. For example, the
expression

always @(posedge clock or negedge reset) /I Verilog 1995

will initiate execution of the associated procedural statements only if the clock goes
through a positive transition or if reset goes through a negative transition. The 2001 and
2005 revisions to the Verilog language allow a comma-separated list for the event con-
trol expression (or sensitivity list):

always @(posedge clock, negedge reset) /I Verilog 2001, 2005

A procedural assignment is an assignment of a logic value to a variable within an
initial or always statement. This is in contrast to a continuous assignment discussed in
Section 4.12 with dataflow modeling. A continuous assignment has an implicit level-
sensitive sensitivity list consisting of all of the variables on the right-hand side of its
assignment statement. The updating of a continuous assignment is triggered whenever
an event occurs in a variable included on the right-hand side of its expression. In con-
trast, a procedural assignment is made only when an assignment statement is executed
and assigns value to it within a behavioral statement. For example, the clock signal in
the preceding example was complemented only when the statement clock = ~clock
executed; the statement did not execute until 10 time units after the simulation began.
It is important to remember that a variable having type reg remains unchanged until a
procedural assignment is made to give it a new value.

There are two kinds of procedural assignments: blocking and nonblocking. The two
are distinguished by the symbols that they use. Blocking assignments use the symbol (=)
as the assignment operator, and nonblocking assignments use (< =) as the operator.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

220 Chapter 5 Synchronous Sequential Logic

Blocking assignment statements are executed sequentially in the order they are listed
in a block of statements. Nonblocking assignments are executed concurrently by evalu-
ating the set of expressions on the right-hand side of the list of statements; they do not
make assignments to their left-hand sides until all of the expressions are evaluated. The
two types of assignments may be better understood by means of an illustration. Consider
these two procedural blocking assignments:

B=A
C=B+1

The first statement transfers the value of A into B.The second statement increments the
value of B and transfers the new value to C. At the completion of the assignments, C
contains the value of A + 1.

Now consider the two statements as nonblocking assignments:

B<=A
C<=B+1

When the statements are executed, the expressions on the right-hand side are evaluated
and stored in a temporary location. The value of A is kept in one storage location and
the value of B + 1 in another. After all the expressions in the block are evaluated and
stored, the assignment to the targets on the left-hand side is made. In this case, C will
contain the original value of B, plus 1. A general rule is to use blocking assignments when
sequential ordering is imperative and in cyclic behavior that is level sensitive (i.c., in
combinational logic). Use nonblocking assignments when modeling concurrent execu-
tion (e.g., edge-sensitive behavior such as synchronous, concurrent register transfers)
and when modeling latched behavior. Nonblocking assignments are imperative in deal-
ing with register transfer level design, as shown in Chapter 8. They model the concurrent
operations of physical hardware synchronized by a common clock. Today’s designers
are expected to know what features of an HDL are useful in a practical way and how to
avoid features that are not. Following these rules for using the assignment operators will
prevent conditions that lead synthesis tools astray and create mismatches between
the behavior of a model and the behavior of physical hardware that is produced by a
synthesis tool.

HDL Models of Flip-Flops and Latches

HDL Examples 5.1 through 5.4 show Verilog descriptions of various flip-flops and a D
latch. The D latch is said to be transparent because it responds to a change in data input
with a change in the output as long as the enable input is asserted —viewing the output
is the same as viewing the input. The description of a D latch is shown in HDL Example
5.1 It has two inputs, D and enable, and one output, Q. Since Q is assigned value in a
behavior, its type must be declared to be reg. Hardware latches respond to input signal
levels, so the two inputs are listed without edge qualifiers in the sensitivity list following
the @ symbol in the always statement. In this model, there is only one blocking proce-
dural assignment statement, and it specifies the transfer of input D to output Q if enable

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.6 Synthesizable HDL Models of Sequential Circuits 221

is true (logic 1).! Note that this statement is executed every time there is a change in D
if enable is 1.

A D-type flip-flop is the simplest example of a sequential machine. HDL Example
5.2 describes two positive-edge D flip-flops in two modules. The first responds only to
the clock; the second includes an asynchronous reset input. Output Q must be declared
as a reg data type in addition to being listed as an output. This is because it is a target
output of a procedural assignment statement. The keyword posedge ensures that the
transfer of input D into Q is synchronized by the positive-edge transition of Clk.
A change in D at any other time does not change Q.

HDL Example 5.1 (D-Latch)

/I Description of D latch (See Fig. 5.6)
module D_latch (Q, D, enable);

output Q;

input D, enable;

reg Q;

always @ (enable or D)

if (enable) Q <= D; /I Same as: if (enable == 1)

endmodule

/I Alternative syntax (Verilog 2001, 2005)
module D_latch (output reg Q, input enable, D);
always @ (enable, D)
if (enable) Q <= D; /I No action if enable not asserted
endmodule

HDL Example 5.2 (D-Type Flip-Flop)

/I D flip-flop without reset
module D_FF (Q, D, CIk);
output Q;
input D, CIk;
reg Q;
always @ (posedge Clk)
Q<=D;
endmodule

/I D flip-flop with asynchronous reset (V2001, V2005)

module DFF (output reg Q, input D, CIk, rst);
always @ (posedge Clk, negedge rst)
if (Irst) Q <= 1'b0; /I Same as: if (rst == 0)
else Q <=D;

endmodule

!The statement (single or block) associated with if (Boolean expression) executes if the Boolean expression
is true.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

222 Chapter 5 Synchronous Sequential Logic

The second module includes an asynchronous reset input in addition to the synchro-
nous clock. A specific form of an if statement is used to describe such a flip-flop so that
the model can be synthesized by a software tool. The event expression after the @ sym-
bol in the always statement may have any number of edge events, either posedge or
negedge. For modeling hardware, one of the events must be a clock event. The remain-
ing events specify conditions under which asynchronous logic is to be executed. The
designer knows which signal is the clock, but clock is not an identifier that software tools
automatically recognize as the synchronizing signal of a circuit. The tool must be able
to infer which signal is the clock, so you need to write the description in a way that enables
the tool to infer the clock correctly. The rules are simple to follow: (1) Each if or else if
statement in the procedural assignment statements is to correspond to an asynchronous
event, (2) the last else statement corresponds to the clock event, and (3) the asynchro-
nous events are tested first. There are two edge events in the second module of HDL
Example 5.2. The negedge rst (reset) event is asynchronous, since it matches the if (!rst)
statement. As long as rst is 0, Q is cleared to 0. If Clk has a positive transition, its effect
is blocked. Only if rst = 1 can the posedge clock event synchronously transfer D into Q.

Hardware always has a reset signal. It is strongly recommended that all models of
edge-sensitive behavior include a reset (or preset) input signal; otherwise, the initial
state of the flip-flops of the sequential circuit cannot be determined. A sequential circuit
cannot be tested with HDL simulation unless an initial state can be assigned with an
input signal.

HDL Example 5.3 describes the construction of a T or JK flip-flop from a D flip-flop
and gates. The circuit is described with the characteristic equations of the flip-flops:

ot+1) =0T for a T flip-flop
Qt+1)=JO" +K'Q for a JK flip-flop

The first module, TFE describes a T flip-flop by instantiating DFF. (Instantiation is
explained in Section 4.12.) The declared wire, DT, is assigned the exclusive-OR of QO
and 7, as is required for building a T flip-flop with a D flip-flop. The instantiation with
the value of DT replacing D in module DFF produces the required 7 flip-flop. The JK
flip-flop is specified in a similar manner by using its characteristic equation to define a
replacement for D in the instantiated DFF.

HDL Example 5.3 (Alternative Flip-Flop Models)

/I'T flip-flop from D flip-flop and gates
module TFF (Q, T, CIK, rst);

output Q;

input T, CIk, rst;

wire DT,

assignDT=Q"T; /I Continuous assignment

/I Instantiate the D flip-flop
DFF TF1 (Q, DT, CIk, rst);
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.6 Synthesizable HDL Models of Sequential Circuits 223

/I IK flip-flop from D flip-flop and gates (V2001, 2005)
module JKFF (output reg Q, input J, K, CIk, rst);
wire JK;
assign JK=(J & ~Q) | (~K & Q);
/I Instantiate D flip-flop
DFF JK1 (Q, JK, CIk, rst);
endmodule

/I D flip-flop (V2001, V2005)
module DFF (output reg Q, input D, CIk, rst);
always @ (posedge Clk, negedge rst)
if (Irst) Q <= 1'b0;
else Q<=D;
endmodule

HDL Example 5.4 shows another way to describe a JK flip-flop. Here, we describe
the flip-flop by using the characteristic table rather than the characteristic equation. The
case multiway branch condition checks the two-bit number obtained by concatenating
the bits of J and K. The case expression ({/, K}) is evaluated and compared with the
values in the list of statements that follows. The first value that matches the true condi-
tion is executed. Since the concatenation of J and K produces a two-bit number, it can
be equal to 00,01, 10, or 11. The first bit gives the value of J and the second the value of
K. The four possible conditions specify the value of the next state of Q after the applica-
tion of a positive-edge clock.

HDL Example 5.4 (JK Flip-Flop)

/I Functional description of JK flip-flop (V2001, 2005)
module JK_FF (input J, K, CIk, output reg Q, output Q_b);
assignQ_b=~Q;
always @ (posedge Clk)
case ({J,K})
2'b00: Q <= Q;
2'b01: Q <= 1'b0;
2'b10: Q <= 1'b1;
2'b11: Q <=1Q;
endcase
endmodule

State diagram-Based HDL Models

An HDL model of the operation of a sequential circuit can be based on the format of the
circuit’s state diagram. A Mealy HDL model is presented in HDL Example 5.5 for the
zero-detector machine described by the sequential circuit in Fig. 5.15 and its state diagram
shown in Fig. 5.16. The input, output, clock, and reset are declared in the usual manner.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

224 Chapter 5 Synchronous Sequential Logic

The state of the flip-flops is declared with identifiers state and next_state. These variables
hold the values of the present state and the next value of the sequential circuit. The state’s
binary assignment is done with a parameter statement. (Verilog allows constants to be
defined in a module by the keyword parameter.) The four states SO through S3 are assigned
binary 00 through 11. The notation S2 = 2'b10is preferable to the alternative S2 = 2. The
former uses only two bits to store the constant, whereas the latter results in a binary num-
ber with 32 (or 64) bits because an unsized number is interpreted and sized as an integer.

HDL Example 5.5 (Mealy Machine: Zero Detector)

/l Mealy FSM zero detector (See Fig. 5.15 and Fig. 5.16)

module Mealy Zero_Detector (
output reg y_out,
input x_in, clock, reset
);
reg [1: 0]
parameter
always @ (posedge clock, negedge reset)
if (reset == 0) state <= S0;
else state <= next_state;

state, next_state;

always @ (state, x_in)
case (state)

Verilog 2001, 2005 syntax

S0 = 2'b00, S1 =2'b01, S2 = 2'b10, S3 = 2'b11;
Verilog 2001, 2005 syntax

/I Form the next state

SO: if (x_in) next_state = S1; else next_state = S0;

S1: if (x_in) next_state = S3; else next_state = SO;

S2: if (~x_in) next_state = SO; else next_state = S2;

S3: if (x_in) next_state = S2; else next_state = SO;
endcase

always @ (state, x_in)
case (state)

/I Form the Mealy output

SO: y_out = 0;
S1, S2, S3:y_out =~x_in;
endcase
endmodule

module t_Mealy_Zero_Detector;
wire t y_out;
reg t_x_in, t_clock, t_reset;

Mealy Zero_Detector MO (t_y_out, t_x_in, t_clock, t_reset);
initial #200 $finish;
initial begin t_clock = 0; forever #5 t_clock = ~t_clock; end

initial fork
t_reset=0;
#2 1 reset=1;

#87 t_reset = 0;
#891t reset=1;

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Section 5.6 Synthesizable HDL Models of Sequential Circuits 225

#10t x_in=1;
#30t x_in=0;
#40t x_in=1;
#50 t_x_in =0;
#52t x_in=1;
#54t x_in=0;
#70t x_in=1;
#80t x_in=1;
#70t x_in=0;
#90 t_x_in=1;
#100t_x_in =0;
#120t x_in=1;
#160t x_in=0;
#170t x_in=1;
join
endmodule

The circuit Il HDL Example 5.5 detects a 0 following a sequence of 1s in a serial bit
stream. Its Verilog model uses three always blocks that execute concurrently and inter-
act through common variables. The first always statement resets the circuit to the initial
state SO = 00 and specifies the synchronous clocked operation. The statement state <=
next_state is synchronized to a positive-edge transition of the clock. This means that any
change in the value of next_state in the second always block can affect the value of state
only as a result of a posedge event of clock. The second always block determines the
value of the next state transition as a function of the present state and input. The value
assigned to state by the nonblocking assignment is the value of next_state immediately
before the rising edge of clock. Notice how the multiway branch condition implements
the state transitions specified by the annotated edges in the state diagram of Fig. 5.16.
The third always block specifies the output as a function of the present state and the
input. Although this block is listed as a separate behavior for clarity, it could be com-
bined with the second block. Note that the value of output y_out may change if the value
of input x_in changes while the circuit is in any given state.

So let’s summarize how the model describes the behavior of the machine: At every ris-
ing edge of clock, if reset is not asserted, the state of the machine is updated by the first
always block; when state is updated by the first always block, the change in state is detected
by the sensitivity list mechanism of the second always block; then the second always block
updates the value of next_state (it will be used by the first always block at the next tick of
the clock); the third always block also detects the change in state and updates the value of
the output. In addition, the second and third always blocks detect changes in x_in and
update next_state and y_out accordingly. The test bench provided with Mealy_Zero_
Detector provides some waveforms to stimulate the model, producing the results shown in
Fig. 5.22. Notice how ¢_y_out responds to changes in both the state and the input, and has
a glitch (a transient logic value). We display both to state[1:0] and next_state[1:0] to illus-
trate how changes in ¢_x_in influence the value of next_state and z_y_out. The Mealy glitch
in ¢_y_out is due to the (intentional) dynamic behavior of ¢_x_in. The input, t_x_in, settles

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

226 Chapter 5 Synchronous Sequential Logic

Stream of 1s

0\ 30 60 90
TR T VO T T T T T T I T T T T T T I T T S N S S N A S S S B

t_clock | | !
t_reset u : | : U
o
|
tx_in Wﬁw

state[1:0] 0 1 1o
1

)
next_state[1:0] 0 0

! (00
\5%; . .
NIZIAN

valid Mealy output Mealy glitch

—<
—_

—
o

[en)
=

FIGURE 5.22
Simulation output of Mealy_Zero_Detector

to a value of 0 immediately before the clock, and at the clock, the state makes a transition
from 0 to 1, which is consistent with Fig. 5.16. The output is 1 in state S1 immediately before
the clock, and changes to 0 as the state enters S0.

The description of waveforms in the test bench uses the fork ... join construct. State-
ments with the fork ... join block execute in parallel, so the time delays are relative to
a common reference of ¢ = 0, the time at which the block begins execution.? It is usually
more convenient to use the fork . .. join block instead of the begin . .. end block in
describing waveforms. Notice that the waveform of reset is triggered “on the fly” to
demonstrate that the machine recovers from an unexpected (asynchronous) reset con-
dition during any state.

How does our Verilog model Mealy_Zero_Detector correspond to hardware? The first
always block corresponds to a D flip-flop implementation of the state register in Fig. 5.21;
the second always block is the combinational logic block describing the next state; the
third always block describes the output combinational logic of the zero-detecting Mealy
machine. The register operation of the state transition uses the nonblocking assignment
operator (< =) because the (edge-sensitive) flip-flops of a sequential machine are updated
concurrently by a common clock. The second and third always blocks describe combina-
tional logic, which is level sensitive, so they use the blocking (=) assignment operator.

2A fork . .. join block completes execution when the last executing statement within it completes its
execution.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.6 Synthesizable HDL Models of Sequential Circuits 227

Their sensitivity lists include both the state and the input because their logic must respond
to a change in either or both of them.

Note: The modeling style illustrated by Mealy_Zero_Detector is commonly used by
designers because it has a close relationship to the state diagram of the machine that is
being described. Notice that the reset signal is associated with the always block that
synchronizes the state transitions. In this example, it is modeled as an active-low reset.
Because the reset condition is included in the description of the state transitions, there
is no need to include it in the combinational logic that specifies the next state and the
output, and the resulting description is less verbose, simpler, and more readable.

HDL Example 5.6 presents the Verilog behavioral model of the Moore FSM shown
in Fig. 5.18 and having the state diagram given in Fig. 5.19. The model illustrates an
alternative style in which the state transitions of the machine are described by a single
clocked (i.e., edge-sensitive) cyclic behavior, i.e., by one always block. The present state
of the circuit is identified by the variable state, and its transitions are triggered by the
rising edge of the clock according to the conditions listed in the case statement. The
combinational logic that determines the next state is included in the nonblocking assign-
ment to state. In this example, the output of the circuits is independent of the input and
is taken directly from the outputs of the flip-flops. The two-bit output y_out is specified
with a continuous assignment statement and is equal to the value of the present state
vector. Figure 5.23 shows some simulation results for Moore_Model_Fig 5 19. Here
are some important observations: (1) the output depends on only the state, (2) reset
“on-the-fly” forces the state of the machine back to SO (00), and (3) the state transitions
are consistent with Fig. 5.19.

HDL Example 5.6 (Moore Machine: Zero Detector)

/I Moore model FSM (see Fig. 5.19) Verilog 2001, 2005 syntax
module Moore_Model_Fig_5 19 (
output [1: 0] y_out,
input x_in, clock, reset
);
reg [1: 0] state;
parameter S0 =2'b00, S1 =2'b01, S2 =2'b10, S3 = 2'b11;
always @ (posedge clock, negedge reset)

if (reset == 0) state <= S0; /I Initialize to state SO

else case (state)

SO: if (~x_in) state <= S1; else state <= S0;

S1: if (x_in) state <= S2; else state <= S3;

S2: if (~x_in) state <= S3; else state <= S2;

S3: if (~x_in) state <= S0O; else state <= S3;
endcase

assign y_out = state; /I Output of flip-flops
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

228 Chapter 5 Synchronous Sequential Logic

0 30 60 90
P S N N N N T T T T T T T T T I T T YT N T T S SO S S B B
¢ clock A)) e I)) I O
L LI
t reset
reset on-the-fly —
t_x_in I [o 1 |

state[1:0] 0 1 23 o 1) o J1
ty_out[1:0] 0 1 23 o 1) o J1fs

FIGURE 5.23
Simulation output of HDL Example 5.6

Structural Description of Clocked Sequential Circuits

Combinational logic circuits can be described in Verilog by a connection of gates
(primitives and UDPs), by dataflow statements (continuous assignments), or by level-
sensitive cyclic behaviors (always blocks). Sequential circuits are composed of com-
binational logic and flip-flops, and their HDL models use sequential UDPs and
behavioral statements (edge-sensitive cyclic behaviors) to describe the operation of
flip-flops. One way to describe a sequential circuit uses a combination of dataflow
and behavioral statements. The flip-flops are described with an always statement. The
combinational part can be described with assign statements and Boolean equations.
The separate modules can be combined to form a structural model by instantiation
within a module.

The structural description of a Moore-type zero detector sequential circuit is shown
in HDL Example 5.7 We want to encourage the reader to consider alternative ways to
model a circuit, so as a point of comparison, we first present Moore_Model_Fig_5_20,
a Verilog behavioral description of a binary counter having the state diagram examined
earlier shown in Fig. 5.20(b). This style of modeling follows directly from the state dia-
gram. An alternative style, used in Moore_Model STR_Fig 5_20, represents the struc-
ture shown in Fig. 5.20(a). This style uses two modules. The first describes the circuit of
Fig.5.20(a). The second describes the T flip-flop that will be used by the circuit. We also
show two ways to model the T flip-flop. The first asserts that, at every clock tick, the
value of the output of the flip-flop toggles if the toggle input is asserted. The second
model describes the behavior of the toggle flip-flop in terms of its characteristic equa-
tion. The first style is attractive because it does not require the reader to remember the
characteristic equation. Nonetheless, the models are interchangeable and will synthesize
to the same hardware circuit. A test bench module provides a stimulus for verifying the
functionality of the circuit. The sequential circuit is a two-bit binary counter controlled
by input x_in. The output, y_out, is enabled when the count reaches binary 11. Flip-flops

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.6 Synthesizable HDL Models of Sequential Circuits 229

A and B are included as outputs in order to check their operation. The flip-flop input
equations and the output equation are evaluated with continuous assignment (assign)
statements having the corresponding Boolean expressions. The instantiated 7 flip-flops
use TA and TB as defined by the input equations.

The second module describes the T flip-flop. The reset input resets the flip-flop to 0
with an active-low signal. The operation of the flip-flop is specified by its characteristic
equation, Q(t + 1) = O T.

The test bench includes both models of the machine. The stimulus module provides
common inputs to the circuits to simultaneously display their output responses. The
first initial block provides eight clock cycles with a period of 10 ns. The second initial
block specifies a toggling of input x_in that occurs at the negative edge transition of
the clock. The result of the simulation is shown in Fig. 5.24. The pair (A, B) goes
through the binary sequence 00,01, 10, 11, and back to 00. The change in the count is
triggered by a positive edge of the clock, provided that x_in = 1. If x_in = 0, the
count does not change. y_out is equal to 1 when both A and B are equal to 1. This
verifies the main functionality of the circuit, but not a recovery from an unexpected
reset event.

HDL Example 5.7 (Binary Counter_Moore Model)

/I State-diagram-based model (V2001, 2005)
module Moore_Model_Fig_5_ 20 (

output y_ out,

input x_in, clock, reset

)

reg [1: 0] state;
parameter S0 = 2'b00, S1 =2'b01, S2 =2'b10, S3 = 2'b11;
always @ (posedge clock, negedge reset)

if (reset == 0) state <= S0; /I Initialize to state SO

else case (state)
S0: if (x_in) state <= S1; else state <= S0;
S1: if (x_in) state <= S2; else state <= S1;
S2: if (x_in) state <= S3; else state <= S2;
S3: if (x_in) state <= SO; else state <= S3;
endcase
assign y_out = (state == S3); /I Output of flip-flops
endmodule

/I Structural model

module Moore_Model_STR_Fig_5 20 (
output y_out, A, B,

input X_in, clock, reset

)
wire TA, TB;

/I Flip-flop input equations
assign TA = x_in & B;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

230 Chapter 5 Synchronous Sequential Logic

assign TB = x_in;

/I Output equation
assigny _out=A &B;

/I Instantiate Toggle flip-flops
Toggle_flip_flop_3 M_A (A, TA, clock, reset);
Toggle_flip_flop_3 M_B (B, TB, clock, reset);

endmodule

module Toggle flip_flop (Q, T, CLK, RST_b);
output Q;
input T, CLK, RST_b;
reg Q;

always @ (posedge CLK, negedge RST_b)
if (RST_b ==0) Q <= 1'b0;
else if (T) Q <= ~Q;
endmodule

/I Alternative model using characteristic equation
/I module Toggle flip_flop (Q, T, CLK, RST_b);

/I output Q;
/I input T, CLK, RST_b;
/Il reg Q;

/I always @ (posedge CLK, negedge RST)
/I if (RST_b ==0) Q <= 1'b0;

Il elseQ<=Q"T,

/I endmodule

module t Moore_Fig_5 20;

wire tyout2ty out1;
reg t x_in, t _clock, t_reset;
Moore_Model_Fig_5_20 M1(t_y_out_1,t x_in, t_clock, t_reset);
Moore_Model_STR_Fig_5 20 M2 (t_y out 2, A, B,t x_in, t_clock, t_reset);
initial #200 $finish;
initial begin
t reset =0;
t_clock = 0;
#51t reset=1;

repeat (16)
#5t_clock = ~t_clock;
end
initial begin
t x in=0;
#15t x_in=1;
repeat (8)
#10 t_x_in = ~t_x_in;

end

endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.7 State Reduction and Assignment 231

5.

7

Name 0 1 1 1 1 1 1 1 1 1 SIO 1 1 1 1 1 1?0 1 1 1 1 1 1 1 1 1 15|0 1
t_clock [N N Y O O O
t_reset -
t x_in | | | |] | |
t y_out I
t y_out 2
A |
B I N I
FIGURE 5.24

Simulation output of HDL Example 5.7

STATE REDUCTION AND ASSIGNMENT

The analysis of sequential circuits starts from a circuit diagram and culminates in a state
table or diagram. The design (synthesis) of a sequential circuit starts from a set of
specifications and culminates in a logic diagram. Design procedures are presented in
Section 5.8. Two sequential circuits may exhibit the same input—output behavior, but
have a different number of internal states in their state diagram. The current section
discusses certain properties of sequential circuits that may simplify a design by reduc-
ing the number of gates and flip-flops it uses. In general, reducing the number of flip-
flops reduces the cost of a circuit.

State Reduction

STUDENTS-HUB.com

The reduction in the number of flip-flops in a sequential circuit is referred to as the
state-reduction problem. State-reduction algorithms are concerned with procedures for
reducing the number of states in a state table, while keeping the external input—output
requirements unchanged. Since m flip-flops produce 2" states, a reduction in the number
of states may (or may not) result in a reduction in the number of flip-flops. An unpre-
dictable effect in reducing the number of flip-flops is that sometimes the equivalent
circuit (with fewer flip-flops) may require more combinational gates to realize its next
state and output logic.

We will illustrate the state-reduction procedure with an example. We start with a sequen-
tial circuit whose specification is given in the state diagram of Fig. 5.25. In our example, only
the input—output sequences are important; the internal states are used merely to provide
the required sequences. For that reason, the states marked inside the circles are denoted

Uploaded By: Malak Dar Obaid

232 Chapter 5 Synchronous Sequential Logic

0/0

FIGURE 5.25
State diagram

by letter symbols instead of their binary values. This is in contrast to a binary counter,
wherein the binary value sequence of the states themselves is taken as the outputs.

There are an infinite number of input sequences that may be applied to the circuit;
each results in a unique output sequence. As an example, consider the input sequence
01010110100 starting from the initial state a. Each input of 0 or 1 produces an output
of 0 or 1 and causes the circuit to go to the next state. From the state diagram, we obtain
the output and state sequence for the given input sequence as follows: With the circuit
in initial state a, an input of 0 produces an output of 0 and the circuit remains in state a.
With present state a and an input of 1, the output is 0 and the next state is b. With pres-
ent state b and an input of 0, the output is 0 and the next state is ¢. Continuing this
process, we find the complete sequence to be as follows:

state a a b c d e f f g f g a
input 0 1 0 1 0 1 1 0 1 0 0
output 0 0 0 0 0 1 1 0 1 0 0

In each column, we have the present state, input value, and output value. The next state
is written on top of the next column. It is important to realize that in this circuit the states
themselves are of secondary importance, because we are interested only in output
sequences caused by input sequences.

Now let us assume that we have found a sequential circuit whose state diagram has
fewer than seven states, and suppose we wish to compare this circuit with the circuit
whose state diagram is given by Fig. 5.25. If identical input sequences are applied to the
two circuits and identical outputs occur for all input sequences, then the two circuits are
said to be equivalent (as far as the input—output is concerned) and one may be replaced
by the other. The problem of state reduction is to find ways of reducing the number of
states in a sequential circuit without altering the input—output relationships.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.7 State Reduction and Assignment 233

We now proceed to reduce the number of states for this example. First, we need the
state table; it is more convenient to apply procedures for state reduction with the use of
a table rather than a diagram. The state table of the circuit is listed in Table 5.6 and is
obtained directly from the state diagram.

The following algorithm for the state reduction of a completely specified state table
is given here without proof: “Two states are said to be equivalent if, for each member of
the set of inputs, they give exactly the same output and send the circuit either to the
same state or to an equivalent state.” When two states are equivalent, one of them can
be removed without altering the input—output relationships.

Now apply this algorithm to Table 5.6. Going through the state table, we look for two
present states that go to the same next state and have the same output for both input
combinations. States e and g are two such states: They both go to states a and fand have
outputs of 0 and 1 for x = O and x = 1, respectively. Therefore, states g and e are equiv-
alent, and one of these states can be removed. The procedure of removing a state and
replacing it by its equivalent is demonstrated in Table 5.7 The row with present state g
is removed, and state g is replaced by state e each time it occurs in the columns headed
“Next State.”

Present state f now has next states e and fand outputs O and 1 forx = Oand x = 1,
respectively. The same next states and outputs appear in the row with present state d.
Therefore, states f and d are equivalent, and state f can be removed and replaced by d.
The final reduced table is shown in Table 5.8. The state diagram for the reduced table
consists of only five states and is shown in Fig. 5.26. This state diagram satisfies the
original input—output specifications and will produce the required output sequence for
any given input sequence. The following list derived from the state diagram of Fig. 5.26
is for the input sequence used previously (note that the same output sequence results,
although the state sequence is different):

state a a b c d e d d e d e a
input 0 1 0 1 0 1
output 0 0 0 0 0 1 1 0 1 0 0

—
o
—_
(]

Table 5.6
State Table
Next State Output
Present State x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0
c a d 0 0
d e f 0 1
e a f 0 1
f g f 0 1
g a f 0 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

234

Chapter 5 Synchronous Sequential Logic

Table 5.7
Reducing the State Table
Next State Output
Present State x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0
c a d 0 0
d e f 0 1
e a f 0 1
f e f 0 1
Table 5.8
Reduced State Table
Next State Output
Present State x=0 x=1 X = x =1
a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

In fact, this sequence is exactly the same as that obtained for Fig. 5.25 if we replace g by

e and fby d.

Checking each pair of states for equivalency can be done systematically by means of
a procedure that employs an implication table, which consists of squares, one for every
suspected pair of possible equivalent states. By judicious use of the table, it is possible
to determine all pairs of equivalent states in a state table.

0/0
0/0 0/0
1/0
0/0
o\ 1\ MO
1/0
11

FIGURE 5.26
Reduced state diagram

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Section 5.7 State Reduction and Assignment 235

The sequential circuit of this example was reduced from seven to five states. In
general, reducing the number of states in a state table may result in a circuit with
less equipment. However, the fact that a state table has been reduced to fewer states
does not guarantee a saving in the number of flip-flops or the number of gates. In
actual practice designers may skip this step because target devices are rich in
resources.

State Assignment

In order to design a sequential circuit with physical components, it is necessary to assign
unique coded binary values to the states. For a circuit with m states, the codes must con-
tain n bits, where 2" = m. For example, with three bits, it is possible to assign codes to
eight states, denoted by binary numbers 000 through 111. If the state table of Table 5.6 is
used, we must assign binary values to seven states; the remaining state is unused. If the
state table of Table 5.8 is used, only five states need binary assignment, and we are left
with three unused states. Unused states are treated as don’t-care conditions during the
design. Since don’t-care conditions usually help in obtaining a simpler circuit, it is more
likely but not certain that the circuit with five states will require fewer combinational
gates than the one with seven states.

The simplest way to code five states is to use the first five integers in binary counting
order, as shown in the first assignment of Table 5.9. Another similar assignment is the
Gray code shown in assignment 2. Here, only one bit in the code group changes when
going from one number to the next. This code makes it easier for the Boolean functions
to be placed in the map for simplification. Another possible assignment often used in
the design of state machines to control data-path units is the one-hot assignment. This
configuration uses as many bits as there are states in the circuit. At any given time, only
one bit is equal to 1 while all others are kept at 0. This type of assignment uses one flip-
flop per state, which is not an issue for register-rich field-programmable gate arrays. (See
Chapter 7) One-hot encoding usually leads to simpler decoding logic for the next state
and output. One-hot machines can be faster than machines with sequential binary
encoding, and the silicon area required by the extra flip-flops can be offset by the area

Table 5.9
Three Possible Binary State Assignments

Assignment 1, Assignment 2, Assignment 3,

State Binary Gray Code One-Hot
a 000 000 00001
b 001 001 00010
c 010 011 00100
d 011 010 01000
e 100 110 10000

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

236 Chapter 5 Synchronous Sequential Logic

Table 5.10
Reduced State Table with Binary Assignment 1
Next State Output

Present State x=0 x=1 x=0 x=1
000 000 001 0 0
001 010 011 0 0
010 000 011 0 0
011 100 011 0 1
100 000 011 0 1

saved by using simpler decoding logic. This trade-off is not guaranteed, so it must be
evaluated for a given design.

Table 5.10 is the reduced state table with binary assignment 1 substituted for the let-
ter symbols of the states. A different assignment will result in a state table with different
binary values for the states. The binary form of the state table is used to derive the next-
state and output-forming combinational logic part of the sequential circuit. The com-
plexity of the combinational circuit depends on the binary state assignment chosen.

Sometimes, the name transition table is used for a state table with a binary assignment.
This convention distinguishes it from a state table with symbolic names for the states.
In this book, we use the same name for both types of state tables.

5.8 DESIGN PROCEDURE

Design procedures or methodologies specify hardware that will implement a desired
behavior. The design effort for small circuits may be manual, but industry relies on
automated synthesis tools for designing massive integrated circuits. The sequential build-
ing block used by synthesis tools is the D flip-flop. Together with additional logic, it can
implement the behavior of JK and T flip-flops. In fact, designers generally do not con-
cern themselves with the type of flip-flop; rather, their focus is on correctly describing
the sequential functionality that is to be implemented by the synthesis tool. Here we
will illustrate manual methods using D, JK, and T flip-flops.

The design of a clocked sequential circuit starts from a set of specifications and cul-
minates in a logic diagram or a list of Boolean functions from which the logic diagram
can be obtained. In contrast to a combinational circuit, which is fully specified by a truth
table, a sequential circuit requires a state table for its specification. The first step in the
design of sequential circuits is to obtain a state table or an equivalent representation,
such as a state diagram.?

A synchronous sequential circuit is made up of flip-flops and combinational gates. The
design of the circuit consists of choosing the flip-flops and then finding a combinational

3We will examine later another important representation of a machine’s behavior —the algorithmic state
machine (ASM) chart.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.8 Design Procedure 237

gate structure that, together with the flip-flops, produces a circuit which fulfills the stated
specifications. The number of flip-flops is determined from the number of states needed
in the circuit and the choice of state assignment codes. The combinational circuit is
derived from the state table by evaluating the flip-flop input equations and output equa-
tions. In fact, once the type and number of flip-flops are determined, the design process
involves a transformation from a sequential circuit problem into a combinational circuit
problem. In this way, the techniques of combinational circuit design can be applied.

The procedure for designing synchronous sequential circuits can be summarized by
a list of recommended steps:

1. From the word description and specifications of the desired operation, derive a
state diagram for the circuit.

2. Reduce the number of states if necessary.

3. Assign binary values to the states.

4. Obtain the binary-coded state table.

5. Choose the type of flip-flops to be used.

6. Derive the simplified flip-flop input equations and output equations.
7. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is famil-
iar with digital logic terminology. It is necessary that the designer use intuition and expe-
rience to arrive at the correct interpretation of the circuit specifications, because word
descriptions may be incomplete and inexact. Once such a specification has been set down
and the state diagram obtained, it is possible to use known synthesis procedures to com-
plete the design. Although there are formal procedures for state reduction and assign-
ment (steps 2 and 3), they are seldom used by experienced designers. Steps 4 through 7
in the design can be implemented by exact algorithms and therefore can be automated.
The part of the design that follows a well-defined procedure is referred to as synthesis.
Designers using logic synthesis tools (software) can follow a simplified process that devel-
ops an HDL description directly from a state diagram, letting the synthesis tool deter-
mine the circuit elements and structure that implement the description.

The first step is a critical part of the process, because succeeding steps depend on it.
We will give one simple example to demonstrate how a state diagram is obtained from
a word specification.

Suppose we wish to design a circuit that detects a sequence of three or more con-
secutive 1’s in a string of bits coming through an input line (i.e., the input is a serial bit
stream). The state diagram for this type of circuit is shown in Fig. 5.27 It is derived by
starting with state S, the reset state. If the input is 0, the circuit stays in Sy, but if the
input is 1, it goes to state S; to indicate that a 1 was detected. If the next input is 1, the
change is to state S, to indicate the arrival of two consecutive 1’s, but if the input is 0,
the state goes back to §,. The third consecutive 1 sends the circuit to state S3. If more
1’s are detected, the circuit stays in S3. Any 0 input sends the circuit back to Sy. In this
way, the circuit stays in S5 as long as there are three or more consecutive 1’s received.
This is a Moore model sequential circuit, since the output is 1 when the circuit is in state
S5 and is 0 otherwise.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

238 Chapter 5 Synchronous Sequential Logic

0

FIGURE 5.27
State diagram for sequence detector

Synthesis Using D Flip-Flops

Once the state diagram has been derived, the rest of the design follows a straight-
forward synthesis procedure. In fact, we can design the circuit by using an HDL
description of the state diagram and the proper HDL synthesis tools to obtain a
synthesized netlist. (The HDL description of the state diagram will be similar to
HDL Example 5.6 in Section 5.6.) To design the circuit by hand, we need to assign
binary codes to the states and list the state table. This is done in Table 5.11. The table
is derived from the state diagram of Fig. 5.27 with a sequential binary assignment.
We choose two D flip-flops to represent the four states, and we label their outputs
A and B. There is one input x and one output y. The characteristic equation of the
D flip-flop is Q(t + 1) = Dy, which means that the next-state values in the state
table specify the D input condition for the flip-flop. The flip-flop input equations

Table 5.11

State Table for Sequence Detector
Present Next

State Input State Output

A B X A B y
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 1 1 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.8 Design Procedure 239

Bx B Bx B Bx B
A 00 01 11 10 A 00 01 11 10 A 00 01 11 10
m() "11 m3 mz mo ml WL3 mz m“ m\ W13 mz
0 1 0 1 0
my mg my mg my ms my mg my ms my Mg
Adl 1 1 A1 1 1 Adl 1 1
— — —
X X X
D, =Ax + Bx Dy =Ax + B'x y=AB
FIGURE 5.28

K-Maps for sequence detector

can be obtained directly from the next-state columns of A and B and expressed in
sum-of-minterms form as

A(t + 1) = Dy(A, B, x) = 3(3,5,7)
B(t + 1) = Dy(A,B, x) = 2(1,5,7)
y(A,B,x) = 2(6,7)

where A and B are the present-state values of flip-flops A and B, x is the input, and D4
and Dy are the input equations. The minterms for output y are obtained from the output
column in the state table.

The Boolean equations are simplified by means of the maps plotted in Fig. 5.28. The
simplified equations are

Dy = Ax + Bx
Dy = Ax + B'x
y = AB

The advantage of designing with D flip-flops is that the Boolean equations describing
the inputs to the flip-flops can be obtained directly from the state table. Software tools
automatically infer and select the D-type flip-flop from a properly written HDL model.
The schematic of the sequential circuit is drawn in Fig. 5.29.

Excitation Tables

STUDEN

The design of a sequential circuit with flip-flops other than the D type is complicated
by the fact that the input equations for the circuit must be derived indirectly from the
state table. When D-type flip-flops are employed, the input equations are obtained
directly from the next state. This is not the case for the JK and T types of flip-flops. In
order to determine the input equations for these flip-flops, it is necessary to derive a
functional relationship between the state table and the input equations.

The flip-flop characteristic tables presented in Table 5.1 provide the value of the
next state when the inputs and the present state are known. These tables are useful

TS-HUB.com Uploaded By: Malak Dar Obaid

240 Chapter 5 Synchronous Sequential Logic

Clk

7Y

Clk

Clock

g

FIGURE 5.29
Logic diagram of a Moore-type sequence detector

for analyzing sequential circuits and for defining the operation of the flip-flops. Dur-
ing the design process, we usually know the transition from the present state to the
next state and wish to find the flip-flop input conditions that will cause the required
transition. For this reason, we need a table that lists the required inputs for a given
change of state. Such a table is called an excitation table.

Table 5.12 shows the excitation tables for the two flip-flops (/K and T'). Each table
has a column for the present state Q(¢), a column for the next state Q(¢ + 1), and a
column for each input to show how the required transition is achieved. There are four
possible transitions from the present state to the next state. The required input condi-
tions for each of the four transitions are derived from the information available in the
characteristic table. The symbol X in the tables represents a don’t-care condition, which
means that it does not matter whether the input is 1 or 0.

The excitation table for the JK flip-flop is shown in part (a). When both present state
and next state are 0, the J input must remain at 0 and the K input can be either 0 or 1.
Similarly, when both present state and next state are 1, the K input must remain at 0,

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.8 Design Procedure 241

Table 5.12
Flip-Flop Excitation Tables
Q) Qt=1)) K Qt) Q=1 T
0 0 0 X 0 0 0
0 1 1 X 0 1 1
1 0 X 1 1 0 1
1 1 X 0 1 1 0
(a) JK Flip-Flop (b) T Flip-Flop

while the J input can be 0 or 1. If the flip-flop is to have a transition from the O-state
to the 1-state,J must be equal to 1, since the J input sets the flip-flop. However, input
K may be either 0 or 1. If K = 0, the / = 1 condition sets the flip-flop as required; if
K =1 and J = 1, the flip-flop is complemented and goes from the O-state to the
1-state as required. Therefore, the K input is marked with a don’t-care condition for the
0-to-1 transition. For a transition from the 1-state to the O-state, we must have K = 1,
since the K input clears the flip-flop. However, the J input may be either 0 or 1, since
J = 0 has no effect and J = 1 together with K = 1 complements the flip-flop with a
resultant transition from the 1-state to the O-state.

The excitation table for the T flip-flop is shown in part (b). From the characteristic
table, we find that when input 7" = 1, the state of the flip-flop is complemented, and
when T = 0, the state of the flip-flop remains unchanged. Therefore, when the state of
the flip-flop must remain the same, the requirement is that 7 = 0. When the state of the
flip-flop has to be complemented, 7 must equal 1.

Synthesis Using JK Flip-Flops

The manual synthesis procedure for sequential circuits with JK flip-flops is the same as
with D flip-flops, except that the input equations must be evaluated from the present-
state to the next-state transition derived from the excitation table. To illustrate the pro-
cedure, we will synthesize the sequential circuit specified by Table 5.13. In addition to
having columns for the present state, input, and next state, as in a conventional state table,
the table shows the flip-flop input conditions from which the input equations are derived.
The flip-flop inputs are derived from the state table in conjunction with the excitation
table for the JK flip-flop. For example, in the first row of Table 5.13, we have a transition
for flip-flop A from 0 in the present state to 0 in the next state. In Table 5.12, for the JK
flip-flop, we find that a transition of states from present state 0 to next state 0 requires
that inputJ be 0 and input K be a don’t-care. So 0 and X are entered in the first row under
J 4 and K 4, respectively. Since the first row also shows a transition for flip-flop B from 0
in the present state to 0 in the next state, 0 and X are inserted into the first row under Jp
and K3, respectively. The second row of the table shows a transition for flip-flop B from
01in the present state to 1 in the next state. From the excitation table, we find that a tran-
sition from 0 to 1 requires that J be 1 and K be a don’t-care, so 1 and X are copied into

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

242 Chapter 5 Synchronous Sequential Logic

Table 5.13

State Table and JK Flip-Flop Inputs
Present Next

State Input State Flip-Flop Inputs

A B X A B Jao Ki Jsg Kg
0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X 1 X
0 1 0 1 0 1 X X 1
0 1 1 0 1 0 X X 0
1 0 0 1 0 X 0 0 X
1 0 1 1 1 X 0 1 X
1 1 0 1 1 X 0 X 0
1 1 1 0 0 X 1 X 1

the second row under Ji and Kp, respectively. The process is continued for each row in
the table and for each flip-flop, with the input conditions from the excitation table copied
into the proper row of the particular flip-flop being considered.

The flip-flop inputs in Table 5.13 specify the truth table for the input equations as a
function of present state A, present state B, and input x. The input equations are simpli-
fied in the maps of Fig. 5.30. The next-state values are not used during the simplification,

B B
Bx —_— Bx _
A 00 01 11 10 A 00 01 11 10
my m ny ny my m ms m,
0 1 0 X X X X
my ms m, myg my ms m, mg
A4l X X X X A4l 1
—_— —_—
X X
JA = Bx' KA = Bx
B B
Bx —_—— Bx _
A 00 01 11 10 A 00 01 11 10
ny my s n, g ny ny my
0 1 X X 0 X X 1
my g m, my my ms my myg
Aql 1 X X Aql X X 1
R A —_—
X
Jp=x Kp=(ASx)

FIGURE 5.30
Maps for J and K input equations

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 5.8 Design Procedure 243

Clk

Y
Ukﬁ

Clk

> Koop—— ¥

Clock

FIGURE 5.31
Logic diagram for sequential circuit with JK flip-flops

since the input equations are a function of the present state and the input only. Note the
advantage of using JK-type flip-flops when sequential circuits are designed manually.
The fact that there are so many don’t-care entries indicates that the combinational cir-
cuit for the input equations is likely to be simpler, because don’t-care minterms usually
help in obtaining simpler expressions. If there are unused states in the state table, there
will be additional don’t-care conditions in the map. Nonetheless, D-type flip-flops are
more amenable to an automated design flow.

The four input equations for the pair of JK flip-flops are listed under the maps of
Fig. 5.30. The logic diagram (schematic) of the sequential circuit is drawn in Fig. 5.31.

Synthesis Using T Flip-Flops

The procedure for synthesizing circuits using 7 flip-flops will be demonstrated by design-
ing a binary counter. An n-bit binary counter consists of #n flip-flops that can count in
binary from 0 to 2" — 1. The state diagram of a three-bit counter is shown in Fig. 5.32. As

%

State diagram of three-bit binary counter

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

244 Chapter 5 Synchronous Sequential Logic

seen from the binary states indicated inside the circles, the flip-flop outputs repeat the
binary count sequence with a return to 000 after 111. The directed lines between circles
are not marked with input and output values as in other state diagrams. Remember that
state transitions in clocked sequential circuits are initiated by a clock edge; the flip-flops
remain in their present states if no clock is applied. For that reason, the clock does not
appear explicitly as an input variable in a state diagram or state table. From this point of
view, the state diagram of a counter does not have to show input and output values along
the directed lines. The only input to the circuit is the clock, and the outputs are specified
by the present state of the flip-flops. The next state of a counter depends entirely on its
present state, and the state transition occurs every time the clock goes through a transition.

Table 5.14 is the state table for the three-bit binary counter. The three flip-flops are
symbolized by A,, A, and A. Binary counters are constructed most efficiently with T
flip-flops because of their complement property. The flip-flop excitation for the 7 inputs
is derived from the excitation table of the T flip-flop and by inspection of the state
transition of the present state to the next state. As an illustration, consider the flip-flop
input entries for row 001. The present state here is 001 and the next state is 010, which
is the next count in the sequence. Comparing these two counts, we note that A, goes
from 0 to 0, so 7, is marked with 0 because flip-flop A, must not change when a clock
occurs. Also, Ay goes from 0 to 1, so Ty, is marked with a 1 because this flip-flop must
be complemented in the next clock edge. Similarly, A, goes from 1 to 0, indicating that
it must be complemented, so Ty, is marked with a 1. The last row, with present state 111,
is compared with the first count 000, which is its next state. Going from all 1’s to all 0’s
requires that all three flip-flops be complemented.

The flip-flop input equations are simplified in the maps of Fig. 5.33. Note that Ty
has 1’s in all eight minterms because the least significant bit of the counter is comple-
mented with each count. A Boolean function that includes all minterms defines a
constant value of 1. The input equations listed under each map specify the combina-
tional part of the counter. Including these functions with the three flip-flops, we obtain

Table 5.14

State Table for Three-Bit Counter
Present State Next State Flip-Flop Inputs
A2 A A A, A A Taa Tar Tao

i i e R e B e i)
_ -0 O = = O O
_ o = O = O = O
[= R e R)
S PR PR O O Rk = O
SO PR O Rk O~k O
-0 O O = O O O
el e = e = =)
el e e e

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 245

AA, Ay AA, Ay AA, Ay
Az 00 01 11 10 Ay 00 01 11 10 A 00 01 11 10
m, m; my m, m, m, ny m, mg m, my m,
0 1 0 1 1 0 1 1 1 1
m, ms m, me m, ms m, mg m, ms m, mg
Ayql 1 Ayq 1 1 1 Aydl 1 1 1 1
—_— _— —_—
A A X
Ty = A1Ay T4 = Ag Typo=1
FIGURE 5.33

Maps for three-bit binary counter

Ay Ay Ay
Clk Clk Clk
T T T
Clock l J'
—_| 1

FIGURE 5.34
Logic diagram of three-bit binary counter

the logic diagram of the counter, as shown in Fig. 5.34. For simplicity, the reset signal
is not shown, but be aware that every design should include a reset signal.

PROBLEMS

(Answers to problems marked with * appear at the end of the book. Where appropriate, a logic
design and its related HDL modeling problem are cross-referenced.)

Note: For each problem that requires writing and verifying an HDL model, a test plan should be
written to identify which functional features are to be tested during the simulation and how they
will be tested. For example, a reset on the fly could be tested by asserting the reset signal while
the simulated machine is in a state other than the reset state. The test plan is to guide development
of a test bench that will implement the plan. Simulate the model, using the test bench, and verify
that the behavior is correct. If synthesis tools and an ASIC cell library are available, the Verilog
descriptions developed for Problems 5.34-5.42 can be assigned as synthesis exercises. The gate-
level circuit produced by the synthesis tools should be simulated and compared to the simulation
results for the pre-synthesis model. The same exercises can be assigned if an FPGA tool suite is
available.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

246 Chapter 5 Synchronous Sequential Logic

5.1

5.2

53

5.4

5.5

5.6

5.7%

STUDENTS-HUB.com

The D latch of Fig. 5.6 is constructed with four NAND gates and an inverter. Consider the

following three other ways for obtaining a D latch. In each case, draw the logic diagram

and verify the circuit operation.

(a) Use NOR gates for the SR latch part and AND gates for the other two. An inverter
may be needed.

(b) Use NOR gates for all four gates. Inverters may be needed.

(¢) Use four NAND gates only (without an inverter). This can be done by connecting
the output of the upper gate in Fig. 5.6 (the gate that goes to the SR latch) to the input
of the lower gate (instead of the inverter output).

Construct a JK flip-flop using a D flip-flop, a two-to-one-line multiplexer, and an inverter.
(HDL—see Problem 5.34.)

Show that the characteristic equation for the complement output of a JK flip-flop is
Q't+1)=JQ" + KQ

A PN flip-flop has four operations: clear to 0, no change, complement, and set to 1, when

inputs P and N are 00,01, 10, and 11, respectively.

(a) Tabulate the characteristic table. (b)* Derive the characteristic equation.

(c) Tabulate the excitation table. (d) Show how the PN flip-flop can be con-
verted to a D flip-flop.

Explain the differences among a truth table, a state table, a characteristic table, and an
excitation table. Also, explain the difference among a Boolean equation, a state equation,
a characteristic equation, and a flip-flop input equation.

A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z
is specified by the following next-state and output equations (HDL —see Problem 5.35):
A(t+ 1) =xy' +xB
B(t+ 1) = xA + xB’
z=A
(a) Draw the logic diagram of the circuit.

(b) List the state table for the sequential circuit.
(¢) Draw the corresponding state diagram.

A sequential circuit has one flip-flop Q, two inputs x and y, and one output S. It consists
of a full-adder circuit connected to a D flip-flop, as shown in Fig. P5.7 Derive the state
table and state diagram of the sequential circuit.

X ————> S
y Full
adder C
Q
D
Clk <}—— Clock
FIGURE P5.7

Uploaded By: Malak Dar Obaid

Problems 247

5.8% Derive the state table and the state diagram of the sequential circuit shown in Fig. P5.8.
Explain the function that the circuit performs. (HDL —see Problem 5.36.)

lA' A (LB’ B
Clk Clk
T g
| l Clock
FIGURE P5.8

5.9 Asequential circuit has two JK flip-flops A and B and one input x. The circuit is described
by the following flip-flop input equations:

JA =X KA =B
]B =X KB =A'
(a) Derive the state equations A(f + 1) and B(t + 1) by substituting the input equations

for the J and K variables.
(b) Draw the state diagram of the circuit.

5.10 A sequential circuit has two JK flip-flops A and B, two inputs x and y, and one output z.
The flip-flop input equations and circuit output equation are

Ja = Bx + B'y’' K, = B'xy’
Jp=A'x Kg=A +xy'
z = Ax'y' + Bx'y’

(a) Draw the logic diagram of the circuit.

(b) Tabulate the state table.

(c) Derive the state equations for A and B.

5.11 For the circuit described by the state diagram of Fig. 5.16,

(a)* Determine the state transitions and output sequence that will be generated when an
input sequence of 010110111011110 is applied to the circuit and it is initially in the
state 00.

(b) Find all of the equivalent states in Fig. 5.16 and draw a simpler, but equivalent, state
diagram.

(c) Using D flip-flops, design the equivalent machine (including its logic diagram)
described by the state diagram in (b).

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

248 Chapter 5 Synchronous Sequential Logic

5.12 For the following state table

Next State Output
Present State x=0 x=1 x=0 x=1
a f b 0 0
b d c 0 0
c f e 0 0
d g a 1 0
e d c 0 0
f f b 1 1
g g h 0 1
h g a 1 0

(a) Draw the corresponding state diagram.
(b)* Tabulate the reduced state table.
(c) Draw the state diagram corresponding to the reduced state table.

5.13 Starting from state a, and the input sequence 01110010011, determine the output
sequence for
(a) The state table of the previous problem.
(b) The reduced state table from the previous problem. Show that the same output
sequence is obtained for both.

5.14 Substitute the one-hot assignment 2 from Table 5.9 to the states in Table 5.8 and obtain
the binary state table.

5.15 List a state table for the JK flip-flop using Q as the present and next state and J and K as
inputs. Design the sequential circuit specified by the state table and show that it is equiva-
lent to Fig. 5.12(a).

5.16 Design a sequential circuit with two D flip-flops A and B, and one input x_in.
(a)* When x_in = 0, the state of the circuit remains the same. When x_in = 1, the circuit
goes through the state transitions from 00 to 01, to 11, to 10, back to 00, and repeats.
(b) When x_in = 0, the state of the circuit remains the same. When x_in =1, the circuit
goes through the state transitions from 00 to 11,to 01, to 10, back to 00, and repeats.
(HDL —see Problem 5.38.)

5.17 Design a one-input, one-output serial 2’s complementer. The circuit accepts a string of bits
from the input and generates the 2’s complement at the output. The circuit can be reset
asynchronously to start and end the operation. (HDL —see Problem 5.39.)

5.18% Design a sequential circuit with two JK flip-flops A and B and two inputs £ and F.If E =0,
the circuit remains in the same state regardless of the value of F.When E =1 and F =1, the
circuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats.
When E =1 and F = 0, the circuit goes through the state transitions from 00 to 11, to 10, to
01, back to 00, and repeats. (HDL—see Problem 5.40.)

5.19 A sequential circuit has three flip-flops A, B, C; one input x_in; and one output y_out. The
state diagram is shown in Fig. P5.19. The circuit is to be designed by treating the unused
states as don’t-care conditions. Analyze the circuit obtained from the design to determine
the effect of the unused states. (HDL—see Problem 5.41.)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 249

(a)* Use D flip-flops in the design.
(b) Use JK flip-flops in the design.

FIGURE P5.19

5.20 Design the sequential circuit specified by the state diagram of Fig. 5.19, using T flip-flops.

5.21 What is the main difference between an initial statement and an always statement in
Verilog HDL?

5.22 Draw the waveform generated by the statements below:
(a) initial begin
w=0;#10w=1;#40w=0; #20w=1; #15w =0;
end
(b) initial fork
w=0; #10w=1; #40w=0; #20w=1; #15w =0;
join
5.23* Consider the following statements assuming that RegA contains the value of 50 initially.
(a) RegA =125; (b) RegA <=125;
RegB = RegA; RegB <= RegA;
What are the values of RegA and RegB after execution?

5.24 Write and verify an HDL behavioral description of a positive-edge-sensitive D flip-flop
with asynchronous preset and clear.

5.25 A special positive-edge-triggered flip-flop circuit component has four inputs D1, D2, D3,
and D4, and a two-bit control input that chooses between them. Write and verify an HDL
behavioral description of this component.

5.26 Write and verify an HDL behavioral description of the JK flip-flop using an if-else statement
based on the value of the present state.
(a)* Obtain the characteristic equation when Q =0or Q = 1.
(b) Specify how the J and K inputs affect the output of the flip-flop at each clock tick.

5.27 Rewrite and verify the description of HDL Example 5.5 by combining the state transitions
and output into one always block.

5.28 Simulate the sequential circuit shown in Fig. 5.17

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

250 Chapter 5 Synchronous Sequential Logic

(a) Write the HDL description of the state diagram (i.e., behavioral model).
(b) Write the HDL description of the logic (circuit) diagram (i.e., a structural model).
(c) Write an HDL stimulus with a sequence of inputs: 00, 01, 11, 10. Verify that the
response is the same for both descriptions.
5.29 Write a behavioral description of the state machine described by the state diagram shown
in Fig. P5.19. Write a test bench and verify the functionality of the description.

5.30 Draw the logic diagram for the sequential circuit described by the following HDL module:

module Seq_Ckt (input A, B, C, E output reg Q,input CLK));
reg E;

always @ (posedge CLK)
begin
E<=AllB;
Q<=E &&C;
end
endmodule
5.31 How should the description in problem 5.30 be written to have the same behavior when
the assignments are made with = instead of with <= ?

5.32 Using an initial statement with a begin . . . end block write a Verilog description of the
waveforms shown in Fig. P5.32. Repeat using a fork . . . join block.

enable

A L

B [1 [[1 r

c—— L]

D

E—1 |

F L
T T T T T T T T 1t
0 10 20 30 40 50 60 70 80

FIGURE P5.32
Waveforms for Problem 5.32

5.33 Explain why it is important that the stimulus signals in a test bench be synchronized to the
inactive edge of the clock of the sequential circuit that is to be tested.

5.34 Write and verify an HDL structural description of the machine having the circuit diagram
(schematic) shown in Fig. 5.5.

5.35 Write and verify an HDL model of the sequential circuit described in Problem 5.6.

5.36 Write and verify an HDL structural description of the machine having the circuit diagram
(schematic) shown in Fig. P5.8.

5.37 Write and verify HDL behavioral descriptions of the state machines shown in Figs. 5.25

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 251

and 5.26. Write a test bench to compare the state sequences and input—output behaviors
of the two machines.

5.38 Write and verify an HDL behavioral description of the machine described in Problem 5.16.

5.39 Write and verify a behavioral description of the machine specified in Problem 5.17

5.40 Write and verify a behavioral description of the machine specified in Problem 5.18.

5.47 Write and verify a behavioral description of the machine specified in Problem 5.19.
(Hint: See the discussion of the default case item preceding HDL Example 4.8 in
Chapter 4.)

5.42 Write and verify an HDL structural description of the circuit shown in Fig. 5.29.

5.43 Write and verify an HDL behavioral description of the three-bit binary counter in Fig. 5.34.

5.44 Write and verify a Verilog model of a D flip-flop having asynchronous reset.

5.45 Write and verify an HDL behavioral description of the sequence detector described in Fig. 5.27

5.46 A synchronous finite state machine has an input x_in and an output y_out. When x_in
changes from 0 to 1, the output y_out is to assert for three cycles, regardless of the value
of x_in, and then de-assert for two cycles before the machine will respond to another
assertion of x_in. The machine is to have active-low synchronous reset.

(a) Draw the state diagram of the machine.
(b) Write and verify a Verilog model of the machine.

5.47 Write a Verilog model of a synchronous finite state machine whose output is the sequence
0,2,4,6,810,12,14,0The machine is controlled by a single input, Run, so that counting
occurs while Run is asserted, suspends while Run is de-asserted, and resumes the count
when Run is re-asserted. Clearly state any assumptions that you make.

5.48 Write a Verilog model of the Mealy FSM described by the state diagram in Fig. P5.48.
Develop a test bench and demonstrate that the machine state transitions and output cor-
respond to its state diagram.

0/0

1/0

0/1

FIGURE P5.48

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

252 Chapter 5 Synchronous Sequential Logic

5.49 Write a Verilog model of the Moore FSM described by the state diagram in Fig. P5.49.
Develop a test bench and demonstrate that the machine's state transitions and output
correspond to its state diagram.

FIGURE P5.49

5.50 A synchronous Moore FSM has a single input, x_in, and a single output y_out. The machine
is to monitor the input and remain in its initial state until a second sample of x_in is detected
to be 1. Upon detecting the second assertion of x_in y_out is to asserted and remain asserted
until a fourth assertion of x_in is detected. When the fourth assertion of x_in is detected the
machine is to return to its initial state and resume monitoring of x_in.

(a) Draw the state diagram of the machine.
(b) Write and verify a Verilog model of the machine.

5.57 Draw the state diagram of the machine described by the Verilog model given below.

module Prob_5 51 (output reg y_out, input x_in, clk, reset);

parameter sO = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;

reg [1:0] state, next_state;

always @ (posedge clk, negedge reset) begin
if (reset == 1'b0) state <= s0;
else state <= next_state;

always @(state, x_in) begin
y_out=0;
next_state = s0;
case (state)
s0: if x_in = 1 begin y_out = 0; if (x_in) next_state = s1; else next_state = s0O; end
s1:if x_in = 1 begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 253

s2:if x_in = 1 begin y_out = 1; if (x_in) next_state = s3; else next_state = s2; end
s3: if x_in = 1 begin y_out = 1; if (x_in) next_state = s0; else next_state = s3; end
default: next_state = s0;
endcase
end
endmodule

5.52 Draw the state diagram of the machine described by the Verilog model given below.

module Prob_5 52 (output reg y_out, input x_in, clk, reset);
parameter sO = 2'b00, s1 =2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1:0] state, next_state;
always @ (posedge clk, negedge reset) begin
if (reset == 1'b0) state <= s0;
else state <= next_state;
always @(state, x_in) begin
y_out = 0;
next_state = s0;
case (state)
s0: if x_in = 1 begin y_out = 0; if (x_in) next_state = s1; else next_state = s0; end
s1:if x_in = 1 begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end
s2: if x_in = 1 if (x_in) begin next_state = s3; y_out = 0;
else begin next_state = s2; y_out =1; end
s3: if x_in = 1 begin y_out = 1; if (x_in) next_state = s0; else next_state = s3; end
default: next_state = s0;
endcase
end
endmodule

5.53 Draw a state diagram and write a Verilog model of a Mealy synchronous state machine
having a single input, x_in, and a single output y_out, such that y_out is asserted if the total
number of 1’s received is a multiple of 3.

5.54 A synchronous Moore machine has two inputs, x1, and x2, and output y_out. If both inputs
have the same value the output is asserted for one cycle; otherwise the output is 0. Develop
a state diagram and a write a Verilog behavioral model of the machine. Demonstrate that
the machine operates correctly.

5.55 Develop the state diagram for a Mealy state machine that detects a sequence of three or
more consecutive 1's in a string of bits coming through an input line.

5.56 Using manual methods, obtain the logic diagram of a three-bit counter that counts in the
sequence 0,2,4,6,0,....

5.57 Write and verify a Verilog behavioral model of a three-bit counter that counts in the
sequence 0,2,4,6,0,....

5.58 Write and verify a Verilog behavioral model of the counter designed in Problem 5.55.
5.59 Write and verify a Verilog structural model of the counter described in Problem 5.56.

5.60 Write and verify a Verilog behavioral model of a four-bit counter that counts in the
sequence 0,1,...,9,0,1,2,....

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

254 Chapter 5 Synchronous Sequential Logic

REFERENCES

-l

BHASKER, J. 1997 A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

BHASKER, J. 1998. Verilog HD L Synthesis. Allentown, PA: Star Galaxy Press.

CILETTI, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HD L. Upper

Saddle River, NJ: Prentice Hall.

DIETMEYER, D. L. 1988. Logic Design of Digital Systems,3rd ed. Boston: Allyn Bacon.

Gaisski, D. D. 1997 Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.

Haves, J. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

Karz, R. H. 2005. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

ManNo, M. M. and C. R. KimE. 2007 Logic and Computer Design Fundamentals & Xilinx

6.3 Student Edition, 4th ed. Upper Saddle River, NJ: Prentice Hall.

NELsoN, V. P., H. T. NAGLE, J. D. IrwiN, and B. D. CArRroLL. 1995. Digital Logic Circuit

Analysis and Design. Englewood Cliffs, NJ: Prentice Hall.

10. PALNITKAR, S. 1996. Verilog HD L: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

11. Rorth, C. H. 2009. Fundamentals of Logic Design, 6th ed. St. Paul, MN: Brooks/Cole.

12. Taomas, D. E. and P. R. MoorBy, 2002. The Verilog Hardware Description Language, 6th
ed. Boston: Kluwer Academic Publishers.

13. WAKERLY, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River,

NIJ: Prentice Hall.

w N

PN WA

©

WEB SEARCH TOPICS

Finite State Machine
Synchronous state machine
Asynchronous state machine
D-type flip-flop

Toggle flip-flop

J-K type flip-flop

Binary counter

State diagram

Mealy state machine
Moore state machine
One-hot/cold codes

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 6
Registers and Counters

6.1 REGISTERS

A clocked sequential circuit consists of a group of flip-flops and combinational gates. The
flip-flops are essential because, in their absence, the circuit reduces to a purely combinational
circuit (provided that there is no feedback among the gates). A circuit with flip-flops is
considered a sequential circuit even in the absence of combinational gates. Circuits that
include flip-flops are usually classified by the function they perform rather than by the name
of the sequential circuit. Two such circuits are registers and counters.

A register is a group of flip-flops, each one of which shares a common clock and is
capable of storing one bit of information. An n-bit register consists of a group of n
flip-flops capable of storing n bits of binary information. In addition to the flip-flops, a
register may have combinational gates that perform certain data-processing tasks. In
its broadest definition, a register consists of a group of flip-flops together with gates
that affect their operation. The flip-flops hold the binary information, and the gates
determine how the information is transferred into the register.

A counter is essentially a register that goes through a predetermined sequence of
binary states. The gates in the counter are connected in such a way as to produce the
prescribed sequence of states. Although counters are a special type of register, it is
common to differentiate them by giving them a different name.

Various types of registers are available commercially. The simplest register is one that
consists of only flip-flops, without any gates. Figure 6.1 shows such a register constructed
with four D-type flip-flops to form a four-bit data storage register. The common clock
input triggers all flip-flops on the positive edge of each pulse, and the binary data available
at the four inputs are transferred into the register. The value of (3, I, I,) immediately
before the clock edge determines the value of (A3, A5, A, Ag) after the clock edge. The four

255

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

256 Chapter 6 Registers and Counters

ly——D Ag
C
R
Il D Al
C
R
I D Ay
C
R
I D Aj
C
R

Clock Clear_b

FIGURE 6.1
Four-bit register

outputs can be sampled at any time to obtain the binary information stored in the register.
The input Clear_b goes to the active-low R (reset) input of all four flip-flops. When this
input goes to 0, all flip-flops are reset asynchronously. The Clear_b input is useful for clear-
ing the register to all 0’s prior to its clocked operation. The R inputs must be maintained

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.1 Registers 257

atlogic 1 (i.e.,de-asserted) during normal clocked operation. Note that, depending on the
flip-flop, either Clear, Clear_b, reset, or reset_b can be used to indicate the transfer of the
register to an all 0’s state.

Register with Parallel Load

Registers with parallel load are a fundamental building block in digital systems. It is
important that you have a thorough understanding of their behavior. Synchronous dig-
ital systems have a master clock generator that supplies a continuous train of clock
pulses. The pulses are applied to all flip-flops and registers in the system. The master
clock acts like a drum that supplies a constant beat to all parts of the system. A separate
control signal must be used to decide which register operation will execute at each clock
pulse. The transfer of new information into a register is referred to as loading or updat-
ing the register. If all the bits of the register are loaded simultaneously with a common
clock pulse, we say that the loading is done in parallel. A clock edge applied to the C
inputs of the register of Fig. 6.1 will load all four inputs in parallel. In this configuration,
if the contents of the register must be left unchanged, the inputs must be held constant
or the clock must be inhibited from the circuit. In the first case, the data bus driving the
register would be unavailable for other traffic. In the second case, the clock can be
inhibited from reaching the register by controlling the clock input signal with an enabling
gate. However, inserting gates into the clock path is ill advised because it means that
logic is performed with clock pulses. The insertion of logic gates produces uneven prop-
agation delays between the master clock and the inputs of flip-flops. To fully synchronize
the system, we must ensure that all clock pulses arrive at the same time anywhere in the
system, so that all flip-flops trigger simultaneously. Performing logic with clock pulses
inserts variable delays and may cause the system to go out of synchronism. For this
reason, it is advisable to control the operation of the register with the D inputs, rather
than controlling the clock in the C inputs of the flip-flops. This creates the effect of a
gated clock, but without affecting the clock path of the circuit.

A four-bit data-storage register with a load control input that is directed through gates
and into the D inputs of the flip-flops is shown in Fig. 6.2. The additional gates implement
a two-channel mux whose output drives the input to the register with either the data bus
or the output of the register. The load input to the register determines the action to be
taken with each clock pulse. When the load input is 1, the data at the four external inputs
are transferred into the register with the next positive edge of the clock. When the load
input is 0, the outputs of the flip-flops are connected to their respective inputs. The feed-
back connection from output to input is necessary because a D flip-flop does not have
a “no change” condition. With each clock edge, the D input determines the next state of
the register. To leave the output unchanged, it is necessary to make the D input equal to
the present value of the output (i.e., the output circulates to the input at each clock
pulse). The clock pulses are applied to the C inputs without interruption. The load input
determines whether the next pulse will accept new information or leave the information
in the register intact. The transfer of information from the data inputs or the outputs of
the register is done simultaneously with all four bits in response to a clock edge.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

258 Chapter 6 Registers and Counters

Load [>o [>o

D Ag
D A
I
—> C
D Ay
L
> C
D As
I
> C
Clock
FIGURE 6.2

Four-bit register with parallel load

6.2 SHIFT REGISTERS

A register capable of shifting the binary information held in each cell to its neighboring
cell, in a selected direction, is called a shift register. The logical configuration of a shift
register consists of a chain of flip-flops in cascade, with the output of one flip-flop con-
nected to the input of the next flip-flop. All flip-flops receive common clock pulses,
which activate the shift of data from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 6.3.
The output of a given flip-flop is connected to the D input of the flip-flop at its right. This
shift register is unidirectional (left-to-right). Each clock pulse shifts the contents of the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.2 Shift Registers 259

Serial SI D D D D SO Serial
input output
F C F C F C F C
CLK e e e
FIGURE 6.3

Four-bit shift register

register one bit position to the right. The configuration does not support a left shift. The
serial input determines what goes into the leftmost flip-flop during the shift. The serial
output is taken from the output of the rightmost flip-flop. Sometimes it is necessary to
control the shift so that it occurs only with certain pulses, but not with others. As with the
data register discussed in the previous section, the clock’s signal can be suppressed by gat-
ing the clock signal to prevent the register from shifting. A preferred alternative in high-
speed circuits is to suppress the clock action, rather than gate the clock signal, by leaving
the clock path unchanged, but recirculating the output of each register cell back through a
two-channel mux whose output is connected to the input of the cell. When the clock action
is not suppressed, the other channel of the mux provides a datapath to the cell.

It will be shown later that the shift operation can be controlled through the D inputs of
the flip-flops rather than through the clock input. If, however, the shift register of Fig. 6.3
is used, the shift can be controlled with an input by connecting the clock through an AND
gate. This is not a preferred practice. Note that the simplified schematics do not show a
reset signal, but such a signal is required in practical designs.

Serial Transfer

The datapath of a digital system is said to operate in serial mode when information
is transferred and manipulated one bit at a time. Information is transferred one bit at
a time by shifting the bits out of the source register and into the destination register.
This type of transfer is in contrast to parallel transfer, whereby all the bits of the
register are transferred at the same time.

The serial transfer of information from register A to register B is done with shift
registers, as shown in the block diagram of Fig. 6.4(a). The serial output (SO) of register
A is connected to the serial input (S7) of register B. To prevent the loss of information
stored in the source register, the information in register A is made to circulate by con-
necting the serial output to its serial input. The initial content of register B is shifted out
through its serial output and is lost unless it is transferred to a third shift register. The
shift control input determines when and how many times the registers are shifted. For
illustration here, this is done with an AND gate that allows clock pulses to pass into the
CLK terminals only when the shift control is active. (This practice can be problematic
because it may compromise the clock path of the circuit, as discussed earlier.)

Suppose the shift registers in Fig. 6.4 have four bits each. Then the control unit that
supervises the transfer of data must be designed in such a way that it enables the shift

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

260 Chapter 6 Registers and Counters

SI, SO, | Sp SOp
Shift register A Shift register B [—>
CLK CLK
Clock \
Shift — /
control

(a) Block diagram

Shift .

control - -

o L L L

T, T, T; T,

(b) Timing diagram

FIGURE 6.4
Serial transfer from register A to register B

registers, through the shift control signal, for a fixed time of four clock pulses in order
to pass an entire word. This design is shown in the timing diagram of Fig. 6.4(b). The shift
control signal is synchronized with the clock and changes value just after the negative
edge of the clock. The next four clock pulses find the shift control signal in the active
state, so the output of the AND gate connected to the CLK inputs produces four pulses:
T,, T,, T5, and T,. Each rising edge of the pulse causes a shift in both registers. The
fourth pulse changes the shift control to 0, and the shift registers are disabled.

Assume that the binary content of A before the shift is 1011 and that of B is 0010.
The serial transfer from A to B occurs in four steps, as shown in Table 6.1. With the first
pulse, Ty, the rightmost bit of A is shifted into the leftmost bit of B and is also circulated
into the leftmost position of A. At the same time, all bits of A and B are shifted one
position to the right. The previous serial output from B in the rightmost position is lost,
and its value changes from 0 to 1. The next three pulses perform identical operations,
shifting the bits of A into B, one at a time. After the fourth shift, the shift control goes
to 0, and registers A and B both have the value 1011. Thus, the contents of A are copied
into B, so that the contents of A remain unchanged i.e., the contents of A are restored
to their original value.

The difference between the serial and the parallel mode of operation should be appar-
ent from this example. In the parallel mode, information is available from all bits of a
register and all bits can be transferred simultaneously during one clock pulse. In the serial

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.2 Shift Registers 261

Table 6.1

Serial-Transfer Example
Timing Pulse Shift Register A Shift Register B
Initial value 1 0 1 1 0 0 1 0
After Ty 1 1 0 1 1 0 0 1
After T, 1 1 1 0 1 1 0 O
After T; 0 1 1 1 0 1 1 0
After T, 10 1 1 1 0 1 1

mode, the registers have a single serial input and a single serial output. The information
is transferred one bit at a time while the registers are shifted in the same direction.

Serial Addition

Operations in digital computers are usually done in parallel because that is a faster
mode of operation. Serial operations are slower because a datapath operation takes
several clock cycles, but serial operations have the advantage of requiring fewer hard-
ware components. In VLSI circuits, they require less silicon area on a chip. To demon-
strate the serial mode of operation, we present the design of a serial adder. The parallel
counterpart was presented in Section 4.4.

The two binary numbers to be added serially are stored in two shift registers. Begin-
ning with the least significant pair of bits, the circuit adds one pair at a time through a
single full-adder (FA) circuit, as shown in Fig. 6.5. The carry out of the full adder is trans-
ferred to a D flip-flop, the output of which is then used as the carry input for the next
pair of significant bits. The sum bit from the S output of the full adder could be trans-
ferred into a third shift register. By shifting the sum into A while the bits of A are shifted
out, it is possible to use one register for storing both the augend and the sum bits. The
serial input of register B can be used to transfer a new binary number while the addend
bits are shifted out during the addition.

The operation of the serial adder is as follows: Initially, register A holds the augend,
register B holds the addend, and the carry flip-flop is cleared to 0. The outputs (SO) of A
and B provide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop
provides the input carry at z. The shift control enables both registers and the carry flip-flop,
so at the next clock pulse, both registers are shifted once to the right, the sum bit from §
enters the leftmost flip-flop of A, and the output carry is transferred into flip-flop Q. The
shift control enables the registers for a number of clock pulses equal to the number of bits
in the registers. For each succeeding clock pulse, a new sum bit is transferred to A, a new
carry is transferred to Q, and both registers are shifted once to the right. This process con-
tinues until the shift control is disabled. Thus, the addition is accomplished by passing each
pair of bits together with the previous carry through a single full-adder circuit and transfer-
ring the sum, one bit at a time, into register A.

Initially, register A and the carry flip-flop are cleared to 0, and then the first number
is added from B. While B is shifted through the full adder, a second number is transferred

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

262 Chapter 6 Registers and Counters

Shift SI SO
control Shift register A
CLK (Augend)
X S
y FA
Serial SI SO < ¢
Input Shift register B
(Addend)
o
D
C
Clear J

FIGURE 6.5
Serial adder

to it through its serial input. The second number is then added to the contents of register
A, while a third number is transferred serially into register B. This can be repeated to
perform the addition of two, three, or more four-bit numbers and accumulate their sum
in register A.

Comparing the serial adder with the parallel adder described in Section 4.4, we note
several differences. The parallel adder uses registers with a parallel load, whereas the
serial adder uses shift registers. The number of full-adder circuits in the parallel adder
is equal to the number of bits in the binary numbers, whereas the serial adder requires
only one full-adder circuit and a carry flip-flop. Excluding the registers, the parallel
adder is a combinational circuit, whereas the serial adder is a sequential circuit which
consists of a full adder and a flip-flop that stores the output carry. This design is typical
in serial operations because the result of a bit-time operation may depend not only on
the present inputs, but also on previous inputs that must be stored in flip-flops.

To show that serial operations can be designed by means of sequential circuit proce-
dure, we will redesign the serial adder with the use of a state table. First, we assume that
two shift registers are available to store the binary numbers to be added serially. The
serial outputs from the registers are designated by x and y. The sequential circuit to
be designed will not include the shift registers, but they will be inserted later to show
the complete circuit. The sequential circuit proper has the two inputs, x and y, that
provide a pair of significant bits, an output S that generates the sum bit, and flip-flop
Q for storing the carry. The state table that specifies the sequential circuit is listed in
Table 6.2. The present state of Q is the present value of the carry. The present carry in

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.2 Shift Registers 263

Table 6.2
State Table for Serial Adder
Present State Inputs Next State Output Flip-Flop Inputs

Q X y Q s Ja Kq
0 0 0 0 0 0 X
0 0 1 0 1 0 X
0 1 0 0 1 0 X
0 1 1 1 0 1 X
1 0 0 0 1 X 1
1 0 1 1 0 X 0
1 1 0 1 0 X 0
1 1 1 1 1 X 0

Q is added together with inputs x and y to produce the sum bit in output S. The next
state of Q is equal to the output carry. Note that the state table entries are identical
to the entries in a full-adder truth table, except that the input carry is now the present
state of Q and the output carry is now the next state of Q.

If a D flip-flop is used for Q, the circuit reduces to the one shown in Fig. 6.5. If a JK flip-
flop is used for Q, it is necessary to determine the values of inputs J and K by referring to
the excitation table (Table 5.12). This is done in the last two columns of Table 6.2. The two
flip-flop input equations and the output equation can be simplified by means of maps to

Jo = xy
Ko=xy' = (x+y)
S=xdy®Q

The circuit diagram is shown in Fig. 6.6. The circuit consists of three gates and a JK
flip-flop. The two shift registers are included in the diagram to show the complete serial
adder. Note that output S is a function not only of x and y, but also of the present state
of Q. The next state of Q is a function of the present state of Q and of the values of x
and y that come out of the serial outputs of the shift registers.

Universal Shift Register

If the flip-flop outputs of a shift register are accessible, then information entered serially
by shifting can be taken out in parallel from the outputs of the flip-flops. If a parallel
load capability is added to a shift register, then data entered in parallel can be taken out
in serial fashion by shifting the data stored in the register.

Some shift registers provide the necessary input and output terminals for parallel
transfer. They may also have both shift-right and shift-left capabilities. The most general
shift register has the following capabilities:

1. A clear control to clear the register to 0.
2. A clock input to synchronize the operations.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

264 Chapter 6 Registers and Counters

Shift SI SO .
control Shift register A 1)
CLK

Serial
: SI SO a)
mput Shift register B Y /

)
L
Clear
FIGURE 6.6

Second form of serial adder

3. A shift-right control to enable the shift-right operation and the serial input and
output lines associated with the shift right.

4. A shift-left control to enable the shift-left operation and the serial input and output
lines associated with the shift left.

5. A parallel-load control to enable a parallel transfer and the » input lines associ-
ated with the parallel transfer.

6. n parallel output lines.

7. A control state that leaves the information in the register unchanged in response
to the clock. Other shift registers may have only some of the preceding functions,
with at least one shift operation.

A register capable of shifting in one direction only is a unidirectional shift register.
One that can shift in both directions is a bidirectional shift register. If the register has
both shifts and parallel-load capabilities, it is referred to as a universal shift register.

The block diagram symbol and the circuit diagram of a four-bit universal shift register
that has all the capabilities just listed are shown in Fig. 6.7 The circuit consists of four D
flip-flops and four multiplexers. The four multiplexers have two common selection inputs
s1 and 5. Input 0 in each multiplexer is selected when s;s, = 00, input 1 is selected when
5189 = 01, and similarly for the other two inputs. The selection inputs control the mode
of operation of the register according to the function entries in Table 6.3. When 5157 = 00,
the present value of the register is applied to the D inputs of the flip-flops. This condition
forms a path from the output of each flip-flop into the input of the same flip-flop, so that
the output recirculates to the input in this mode of operation. The next clock edge trans-
fers into each flip-flop the binary value it held previously, and no change of state occurs.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.2 Shift Registers 265

A_par
v J(4
s0 —
MSB_in —> Shift_Register «— [.SB_in

ek ——] J(

I_par

(2)

Parallel outputs

A; Ay Ay A
0 o o ¢
Clear_b e
C € @ €
D D D D
CLK
y y y y
51 —>
4 %1 4 %1 41 4 X1
MUX MUX MUX MUX
So —>
3210 3210 3210 3210
Serial Serial
inp ut .for —— input for
shift-right shift-left
L I, I Iy
Parallel inputs
(b)
FIGURE 6.7

Four-bit universal shift register

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

266 Chapter 6 Registers and Counters

Table 6.3
Function Table for the Register of Fig. 6.7

Mode Control

5 So Register Operation
0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

When 5157 = 01, terminal 1 of the multiplexer inputs has a path to the D inputs of the
flip-flops. This causes a shift-right operation, with the serial input transferred into flip-flop
Aj. When 559 = 10, a shift-left operation results, with the other serial input going into
flip-flop A,. Finally, when sys, = 11, the binary information on the parallel input lines is
transferred into the register simultaneously during the next clock edge. Note that data
enters MSB_in for a shift-right operation and enters LSB_in for a shift-left operation.
Clear_b is an active-low signal that clears all of the flip-flops.

Shift registers are often used to interface digital systems situated remotely from each
other. For example, suppose it is necessary to transmit an n-bit quantity between two
points. If the distance is far, it will be expensive to use n lines to transmit the # bits in
parallel. It is more economical to use a single line and transmit the information serially,
one bit at a time. The transmitter accepts the n-bit data in parallel into a shift register
and then transmits the data serially along the common line. The receiver accepts the
data serially into a shift register. When all n bits are received, they can be taken from
the outputs of the register in parallel. Thus, the transmitter performs a parallel-to-serial
conversion of data and the receiver does a serial-to-parallel conversion.

6.3 RIPPLE COUNTERS

A register that goes through a prescribed sequence of states upon the application of input
pulses is called a counter. The input pulses may be clock pulses, or they may originate
from some external source and may occur at a fixed interval of time or at random. The
sequence of states may follow the binary number sequence or any other sequence of
states. A counter that follows the binary number sequence is called a binary counter. An
n-bit binary counter consists of # flip-flops and can count in binary from 0 through 2" — 1.

Counters are available in two categories: ripple counters and synchronous counters.
In a ripple counter, a flip-flop output transition serves as a source for triggering other
flip-flops. In other words, the C input of some or all flip-flops are triggered, not by the
common clock pulses, but rather by the transition that occurs in other flip-flop outputs.
In a synchronous counter, the C inputs of all flip-flops receive the common clock.
Synchronous counters are presented in the next two sections. Here, we present the
binary and BCD ripple counters and explain their operation.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.3 Ripple Counters 267

Binary Ripple Counter

A binary ripple counter consists of a series connection of complementing flip-flops, with
the output of each flip-flop connected to the C input of the next higher order flip-flop.
The flip-flop holding the least significant bit receives the incoming count pulses. A com-
plementing flip-flop can be obtained from a JK flip-flop with the J and K inputs tied
together or from a T flip-flop. A third possibility is to use a D flip-flop with the complement
output connected to the D input. In this way, the D input is always the complement of
the present state, and the next clock pulse will cause the flip-flop to complement. The
logic diagram of two 4-bit binary ripple counters is shown in Fig. 6.8. The counter is con-
structed with complementing flip-flops of the T type in part (a) and D type in part (b).
The output of each flip-flop is connected to the C input of the next flip-flop in sequence.
The flip-flop holding the least significant bit receives the incoming count pulses. The T
inputs of all the flip-flops in (a) are connected to a permanent logic 1, making each flip-
flop complement if the signal in its C input goes through a negative transition. The bub-
ble in front of the dynamic indicator symbol next to C indicates that the flip-flops respond
to the negative-edge transition of the input. The negative transition occurs when the
output of the previous flip-flop to which C is connected goes from 1 to 0.

To understand the operation of the four-bit binary ripple counter, refer to the first
nine binary numbers listed in Table 6.4. The count starts with binary 0 and increments
by 1 with each count pulse input. After the count of 15, the counter goes back to 0 to
repeat the count. The least significant bit, Ay, is complemented with each count pulse
input. Every time that A, goes from 1 to 0, it complements A;. Every time that A, goes
from 1 to 0, it complements A,. Every time that A, goes from 1 to 0, it complements Aj,
and so on for any other higher order bits of a ripple counter. For example, consider the
transition from count 0011 to 0100. A is complemented with the count pulse. Since A
goes from 1 to 0, it triggers A, and complements it. As a result, A goes from 1 to 0, which
in turn complements A,, changing it from 0 to 1. A, does not trigger As, because A,
produces a positive transition and the flip-flop responds only to negative transitions.
Thus, the count from 0011 to 0100 is achieved by changing the bits one at a time, so the

Table 6.4
Binary Count Sequence

A3 A

>
>
S

—_ 0 O O OO o oo
O R PR R R OOCOoO

SO = = O O = = O O
SO = O = O = O = O

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

268 Chapter 6 Registers and Counters

Count

o

—J =

Logic 1

Reset

(a) With T flip-flops

FIGURE 6.8
Four-bit binary ripple counter

STUDENTS-HUB.com

Ao

Ay

A

Count —> C

I:D Ay

I:D A,

|:D Az

Reset

(b) With D flip-flops

Uploaded By: Malak Dar Obaid

Section 6.3 Ripple Counters 269

count goes from 0011 to 0010, then to 0000, and finally to 0100. The flip-flops change
one at a time in succession, and the signal propagates through the counter in a ripple
fashion from one stage to the next.

A binary counter with a reverse count is called a binary countdown counter. In a
countdown counter, the binary count is decremented by 1 with every input count pulse.
The count of a four-bit countdown counter starts from binary 15 and continues to binary
counts 14, 13,12, ..., 0 and then back to 15. A list of the count sequence of a binary
countdown counter shows that the least significant bit is complemented with every count
pulse. Any other bit in the sequence is complemented if its previous least significant bit
goes from 0 to 1. Therefore, the diagram of a binary countdown counter looks the same
as the binary ripple counter in Fig. 6.8, provided that all flip-flops trigger on the positive
edge of the clock. (The bubble in the C inputs must be absent.) If negative-edge-triggered
flip-flops are used, then the C input of each flip-flop must be connected to the comple-
mented output of the previous flip-flop. Then, when the true output goes from 0 to 1, the
complement will go from 1 to 0 and complement the next flip-flop as required.

BCD Ripple Counter

A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9.
Such a counter must have at least four flip-flops to represent each decimal digit, since
a decimal digit is represented by a binary code with at least four bits. The sequence of
states in a decimal counter is dictated by the binary code used to represent a decimal
digit. If BCD is used, the sequence of states is as shown in the state diagram of Fig. 6.9.
A decimal counter is similar to a binary counter, except that the state after 1001 (the
code for decimal digit 9) is 0000 (the code for decimal digit 0).

The logic diagram of a BCD ripple counter using JK flip-flops is shown in Fig. 6.10.
The four outputs are designated by the letter symbol Q, with a numeric subscript equal
to the binary weight of the corresponding bit in the BCD code. Note that the output of
0 is applied to the C inputs of both O, and Qg and the output of Q, is applied to the
C input of Q,. The J and K inputs are connected either to a permanent 1 signal or to
outputs of other flip-flops.

A ripple counter is an asynchronous sequential circuit. Signals that affect the flip-flop
transition depend on the way they change from 1 to 0. The operation of the counter can

1001 1000 0111 0110 0101
N O O

FIGURE 6.9
State diagram of a decimal BCD counter

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

270 Chapter 6 Registers and Counters

Count ——— > C

Logic 1

FIGURE 6.10
BCD ripple counter

be explained by a list of conditions for flip-flop transitions. These condi-
tions are derived from the logic diagram and from knowledge of how a
JK flip-flop operates. Remember that when the C input goes from 1 to 0,
the flip-flop is set if J = 1, is cleared if K = 1, is complemented if
J = K = 1, and is left unchanged if J = K = 0.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.4 Synchronous Counters 271

Qs Os O Oi Os Oy O O Qs Oy Oy Oy
BCD BCD BCD Count
Counter Counter Counter < pulses
107 digit 10" digit 10° digit
FIGURE 6.11

Block diagram of a three-decade decimal BCD counter

To verify that these conditions result in the sequence required by a BCD ripple coun-
ter, it is necessary to verify that the flip-flop transitions indeed follow a sequence of
states as specified by the state diagram of Fig. 6.9. O changes state after each clock
pulse. O, complements every time Q; goes from 1 to 0, as long as Qg = 0. When Qg
becomes 1, O, remains at 0. Q, complements every time O, goes from 1 to 0. Qg remains
at 0 as long as Q, or Q4 is 0. When both O, and Q4 become 1, Qg complements when O,
goes from 1 to 0. Qg is cleared on the next transition of Q.

The BCD counter of Fig. 6.10 is a decade counter, since it counts from 0 to 9. To
count in decimal from 0 to 99, we need a two-decade counter. To count from 0 to 999,
we need a three-decade counter. Multiple decade counters can be constructed by con-
necting BCD counters in cascade, one for each decade. A three-decade counter is
shown in Fig. 6.11. The inputs to the second and third decades come from Qg of the
previous decade. When Qg in one decade goes from 1 to 0, it triggers the count for the
next higher order decade while its own decade goes from 9 to 0.

6.4 SYNCHRONOUS COUNTERS

Synchronous counters are different from ripple counters in that clock pulses are applied
to the inputs of all flip-flops. A common clock triggers all flip-flops simultaneously,
rather than one at a time in succession as in a ripple counter. The decision whether a
flip-flop is to be complemented is determined from the values of the data inputs, such
as T orJ and K at the time of the clock edge. If 7= 0 or J = K = 0, the flip-flop does
not change state. If T = 1 or J = K = 1, the flip-flop complements.

The design procedure for synchronous counters was presented in Section 5.8, and the
design of a three-bit binary counter was carried out in conjunction with Fig. 5.31. In this
section, we present some typical synchronous counters and explain their operation.

Binary Counter

The design of a synchronous binary counter is so simple that there is no need to go
through a sequential logic design process. In a synchronous binary counter, the flip-flop
in the least significant position is complemented with every pulse. A flip-flop in any other

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

272 Chapter 6 Registers and Counters

position is complemented when all the bits in the lower significant positions are equal to 1.
For example, if the present state of a four-bit counter is A3A4,A1A, = 0011, the next
count is 0100. A, is always complemented. A; is complemented because the present
state of Aj = 1. A, is complemented because the present state of A;A; = 11. However,
Aj is not complemented, because the present state of A,A;A, = 011, which does not
give an all-1’s condition.

Synchronous binary counters have a regular pattern and can be constructed with
complementing flip-flops and gates. The regular pattern can be seen from the four-bit
counter depicted in Fig. 6.12. The C inputs of all flip-flops are connected to a common
clock. The counter is enabled by Count_enable. If the enable input is 0,all J and K inputs
are equal to 0 and the clock does not change the state of the counter. The first stage,
Ay, has its J and K equal to 1 if the counter is enabled. The other J and K inputs are
equal to 1 if all previous least significant stages are equal to 1 and the count is enabled.
The chain of AND gates generates the required logic for the J and K inputs in each
stage. The counter can be extended to any number of stages, with each stage having an
additional flip-flop and an AND gate that gives an output of 1 if all previous flip-flop
outputs are 1.

Note that the flip-flops trigger on the positive edge of the clock. The polarity of the
clock is not essential here, but it is with the ripple counter. The synchronous counter can
be triggered with either the positive or the negative clock edge. The complementing
flip-flops in a binary counter can be of either the /K type, the T type, or the D type with
XOR gates. The equivalency of the three types is indicated in Fig. 5.13.

Up-Down Binary Counter

A synchronous countdown binary counter goes through the binary states in reverse order,
from 1111 down to 0000 and back to 1111 to repeat the count. It is possible to design a
countdown counter in the usual manner, but the result is predictable by inspection of the
downward binary count. The bit in the least significant position is complemented with each
pulse. A bit in any other position is complemented if all lower significant bits are equal to 0.
For example, the next state after the present state of 0100 is 0011. The least significant
bit is always complemented. The second significant bit is complemented because the first
bit is 0. The third significant bit is complemented because the first two bits are equal to 0.
But the fourth bit does not change, because not all lower significant bits are equal to 0.
A countdown binary counter can be constructed as shown in Fig. 6.12, except that
the inputs to the AND gates must come from the complemented outputs, instead of
the normal outputs, of the previous flip-flops. The two operations can be combined in
one circuit to form a counter capable of counting either up or down. The circuit of an
up—down binary counter using 7 flip-flops is shown in Fig. 6.13. It has an up control
input and a down control input. When the up input is 1, the circuit counts up, since the
T inputs receive their signals from the values of the previous normal outputs of the
flip-flops. When the down input is 1 and the up input is 0, the circuit counts down,
since the complemented outputs of the previous flip-flops are applied to the T inputs.
When the up and down inputs are both 0, the circuit does not change state and remains

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.4 Synchronous Counters 273

J A

C
Count_enable K

J Ay
C

K

J Ay
C

K

J As
C

K

} To next stage

CLK

FIGURE 6.12
Four-bit synchronous binary counter

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

274 Chapter 6 Registers and Counters

Down

Up o
L

UL

Ay

5

CLK

FIGURE 6.13
Four-bit up-down binary counter

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.4 Synchronous Counters 275

in the same count. When the up and down inputs are both 1, the circuit counts up. This
set of conditions ensures that only one operation is performed at any given time. Note
that the up input has priority over the down input.

BCD Counter

A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000.
Because of the return to 0 after a count of 9, a BCD counter does not have a regular
pattern, unlike a straight binary count. To derive the circuit of a BCD synchronous
counter, it is necessary to go through a sequential circuit design procedure.

The state table of a BCD counter is listed in Table 6.5. The input conditions for the
T flip-flops are obtained from the present- and next-state conditions. Also shown in the
table is an output y, which is equal to 1 when the present state is 1001. In this way, y can
enable the count of the next-higher significant decade while the same pulse switches the
present decade from 1001 to 0000.

The flip-flop input equations can be simplified by means of maps. The unused states
for minterms 10 to 15 are taken as don’t-care terms. The simplified functions are

To =1

TQ2 = 030,

Tos = 020

Tos = 03071 + 040,04
y = 030

The circuit can easily be drawn with four T flip-flops, five AND gates, and one OR
gate. Synchronous BCD counters can be cascaded to form a counter for decimal numbers
of any length. The cascading is done as in Fig. 6.11, except that output y must be con-
nected to the count input of the next-higher significant decade.

Table 6.5
State Table for BCD Counter
Present State Next State Output Flip-Flop Inputs

Qs Q, Q; Q, Qs Q, Q. Q, y TQs TQs TQ, TQ
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 1 1 0 0 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

276 Chapter 6 Registers and Counters

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel-load capability for
transferring an initial binary number into the counter prior to the count operation.
Figure 6.14 shows the top-level block diagram symbol and the logic diagram of a four-bit
register that has a parallel load capability and can operate as a counter. When equal to
1, the input load control disables the count operation and causes a transfer of data from
the four data inputs into the four flip-flops. If both control inputs are 0, clock pulses do
not change the state of the register.

The carry output becomes a 1 if all the flip-flops are equal to 1 while the count input is
enabled. This is the condition for complementing the flip-flop that holds the next significant
bit. The carry output is useful for expanding the counter to more than four bits. The speed
of the counter is increased when the carry is generated directly from the outputs of all four
flip-flops, because the delay to generate the carry bit is reduced. In going from state 1111
to 0000, only one gate delay occurs, whereas four gate delays occur in the AND gate chain
shown in Fig. 6.12. Similarly, each flip-flop is associated with an AND gate that receives all
previous flip-flop outputs directly instead of connecting the AND gates in a chain.

The operation of the counter is summarized in Table 6.6. The four control inputs—
Clear, CLK, Load, and Count—determine the next state. The Clear input is asynchro-
nous and, when equal to 0, causes the counter to be cleared regardless of the presence
of clock pulses or other inputs. This relationship is indicated in the table by the X entries,
which symbolize don’t-care conditions for the other inputs. The Clear input must be in
the 1 state for all other operations. With the Load and Count inputs both at 0, the out-
puts do not change, even when clock pulses are applied. A Load input of 1 causes a
transfer from inputs I, — I3 into the register during a positive edge of CLK. The input
data are loaded into the register regardless of the value of the Count input, because the
Count input is inhibited when the Load input is enabled. The Load input must be 0 for
the Count input to control the operation of the counter.

A counter with a parallel load can be used to generate any desired count sequence.
Figure 6.15 shows two ways in which a counter with a parallel load is used to generate
the BCD count. In each case, the Count control is set to 1 to enable the count through
the CLK input. Also, recall that the Load control inhibits the count and that the clear
operation is independent of other control inputs.

The AND gate in Fig. 6.15(a) detects the occurrence of state 1001. The counter is
initially cleared to 0, and then the Clear and Count inputs are set to 1, so the counter is
active at all times. As long as the output of the AND gate is 0, each positive-edge clock

Table 6.6
Function Table for the Counter of Fig. 6.14

Clear CLK Load Count Function

0 X X X Clear to 0

1 1 1 X Load inputs

1 1 0 1 Count next binary state
1 1 0 0 No change

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.4 Synchronous Counters 277

Count ———
Load—l
Data_in 7“ 4-Bit Binary Counter T» A_count
Clearg I—C_oul
CLK
(a)
Count)
Load —DO——Do—
Iy o J D J Ay
T\ <
>) D =
9
N I == Y5 mgm= A
C
—) K
), — S
T HE R T
C
»-ﬂ K
) — | L
TR T
C
_ﬂ K
) 1 T
Clear
CLK —
} C_out

(®)

FIGURE 6.14
Four-bit binary counter with parallel load

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

278 Chapter 6 Registers and Counters

A3 A2 Al AO A3 A2 Al A()
Load <— Count = 1 Clear l<— Count =1
Counter - Counter _
of Fig.6.14 |< Clear=1 ofFig.614 [< Lead=0
<— CLK <— CLK

B I N

Inputs = 0
Inputs have no effect
(a) Using the load input (b) Using the clear input
FIGURE 6.15

Two ways to achieve a BCD counter using a counter with parallel load

increments the counter by 1. When the output reaches the count of 1001, both A, and
Aj become 1, making the output of the AND gate equal to 1. This condition activates
the Load input; therefore, on the next clock edge the register does not count, but is
loaded from its four inputs. Since all four inputs are connected to logic 0, an all-0’s value
is loaded into the register following the count of 1001. Thus, the circuit goes through the
count from 0000 through 1001 and back to 0000, as is required in a BCD counter.

In Fig. 6.15(b), the NAND gate detects the count of 1010, but as soon as this count
occurs, the register is cleared. The count 1010 has no chance of staying on for any appre-
ciable time, because the register goes immediately to 0. A momentary spike occurs in
output A as the count goes from 1010 to 1011 and immediately to 0000. The spike may
be undesirable, and for that reason, this configuration is not recommended. If the coun-
ter has a synchronous clear input, it is possible to clear the counter with the clock after
an occurrence of the 1001 count.

6.5 OTHER COUNTERS

Counters can be designed to generate any desired sequence of states. A divide-by-N
counter (also known as a modulo-N counter) is a counter that goes through a repeated
sequence of N states. The sequence may follow the binary count or may be any other
arbitrary sequence. Counters are used to generate timing signals to control the sequence
of operations in a digital system. Counters can also be constructed by means of shift
registers. In this section, we present a few examples of nonbinary counters.

Counter with Unused States

A circuit with 7 flip-flops has 2" binary states. There are occasions when a sequential
circuit uses fewer than this maximum possible number of states. States that are not used

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.5 Other Counters 279

in specifying the sequential circuit are not listed in the state table. In simplifying the
input equations, the unused states may be treated as don’t-care conditions or may be
assigned specific next states. It is important to realize that once the circuit is designed
and constructed, outside interference during its operation may cause the circuit to enter
one of the unused states. In that case, it is necessary to ensure that the circuit eventually
goes into one of the valid states so that it can resume normal operation. Otherwise, if the
sequential circuit circulates among unused states, there will be no way to bring it back to
its intended sequence of state transitions. If the unused states are treated as don’t-care
conditions, then once the circuit is designed, it must be investigated to determine the
effect of the unused states. The next state from an unused state can be determined from
the analysis of the circuit after it is designed.

As an illustration, consider the counter specified in Table 6.7. The count has a
repeated sequence of six states, with flip-flops B and C repeating the binary count 00,
01, 10, and flip-flop A alternating between 0 and 1 every three counts. The count
sequence of the counter is not straight binary, and two states, 011 and 111, are not
included in the count. The choice of JK flip-flops results in the flip-flop input conditions
listed in the table. Inputs Kz and K have only 1’s and X’s in their columns, so these
inputs are always equal to 1. The other flip-flop input equations can be simplified by
using minterms 3 and 7 as don’t-care conditions. The simplified equations are

]A:B KA:B
JB:C Kle
Jo=B Kc=1

The logic diagram of the counter is shown in Fig. 6.16(a). Since there are two unused
states, we analyze the circuit to determine their effect. If the circuit happens to be in
state 011 because of an error signal, the circuit goes to state 100 after the application of
a clock pulse. This action may be determined from an inspection of the logic diagram by
noting that when B = 1, the next clock edge complements A and clears C to 0,and when
C =1, the next clock edge complements B. In a similar manner, we can evaluate the
next state from present state 111 to be 000.

Table 6.7

State Table for Counter
Present State Next State Flip-Flop Inputs
A B C A B C Ja Kia Jg Kg Jo K¢
0 0 0 0 0 1 0 X 0 X 1 X
0 0 1 0 1 0 0 X 1 X X 1
0 1 0 1 0 0 1 X X 1 0 X
1 0 0 1 0 1 X 0 o X 1 X
1 0 1 1 1 0 X 0 1 X X 1
1 1 0 0 0 0 X 1 X 1 0 X

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

280 Chapter 6 Registers and Counters

J ——oA
—1> C

K

J B
—> C

—]

J o
‘\

(a) Logic circuit diagram (b) State transition diagram

FIGURE 6.16
Counter with unused states

The state diagram including the effect of the unused states is shown in Fig. 6.16(b). If
the circuit ever goes to one of the unused states because of outside interference, the next
count pulse transfers it to one of the valid states and the circuit continues to count cor-
rectly. Thus, the counter is self-correcting. In a self-correcting counter, if the counter
happens to be in one of the unused states, it eventually reaches the normal count
sequence after one or more clock pulses. An alternative design could use additional logic
to direct every unused state to a specific next state.

Ring Counter

Timing signals that control the sequence of operations in a digital system can be gener-
ated by a shift register or by a counter with a decoder. A ring counter is a circular shift
register with only one flip-flop being set at any particular time; all others are cleared.
The single bit is shifted from one flip-flop to the next to produce the sequence of timing
signals. Figure 6.17(a) shows a four-bit shift register connected as a ring counter. The
initial value of the register is 1000 and requires Preset/Clear flip-flops. The single bit is

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.5 Other Counters 281

Shift
—| T T T T:
right 0 1 2 3

(a) Ring-counter (initial value = 1000)

we) LI LT
.]

T,

T,

T3

(b) Sequence of four timing signals

Iy T, T, T;s
2 X4
decoder

Count

2-bit counter
enable

(c) Counter and decoder

FIGURE 6.17
Generation of timing signals

shifted right with every clock pulse and circulates back from 75 to T,. Each flip-flop is
in the 1 state once every four clock cycles and produces one of the four timing signals
shown in Fig. 6.17(b). Each output becomes a 1 after the negative-edge transition of a
clock pulse and remains 1 during the next clock cycle.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

282 Chapter 6 Registers and Counters

For an alternative design, the timing signals can be generated by a two-bit counter
that goes through four distinct states. The decoder shown in Fig. 6.17(c) decodes the four
states of the counter and generates the required sequence of timing signals.

To generate 2" timing signals, we need either a shift register with 2" flip-flops or an
n-bit binary counter together with an n-to-2"-line decoder. For example, 16 timing sig-
nals can be generated with a 16-bit shift register connected as a ring counter or with a
4-bit binary counter and a 4-to-16-line decoder. In the first case, we need 16 flip-flops.
In the second, we need 4 flip-flops and 16 four-input AND gates for the decoder. It is
also possible to generate the timing signals with a combination of a shift register and a
decoder. That way, the number of flip-flops is less than that in a ring counter, and the
decoder requires only two-input gates. This combination is called a Johnson counter.

Johnson Counter

A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguish-
able states. The number of states can be doubled if the shift register is connected as a
switch-tail ring counter. A switch-tail ring counter is a circular shift register with the
complemented output of the last flip-flop connected to the input of the first flip-flop.
Figure 6.18(a) shows such a shift register. The circular connection is made from the

A B C
— D D D D — E
—>cC C > cC C
£
o— A’ o— B’ o— C' o——

CLK : S
(a) Four-stage switch-tail ring counter
Flip-flop outputs
Sequence _ AND gate required
number A B C E for output
1 0 0 0 0 A'E'
2 1 0 0 0 AB'’
3 1 1 0 0 BC’
4 1 1 1 0 CE'
S 1 1 1 1 AE
6 0 1 1 1 A'B
7 0 0 1 1 B'C
8 0 0 0 1 C'E
(b) Count sequence and required decoding
FIGURE 6.18

Construction of a Johnson counter

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.6 HDL for Registers and Counters 283

complemented output of the rightmost flip-flop to the input of the leftmost flip-flop.
The register shifts its contents once to the right with every clock pulse, and at the same
time, the complemented value of the E flip-flop is transferred into the A flip-flop.
Starting from a cleared state, the switch-tail ring counter goes through a sequence of
eight states, as listed in Fig. 6.18(b). In general, a k-bit switch-tail ring counter will go
through a sequence of 2k states. Starting from all 0’s, each shift operation inserts 1’s from
the left until the register is filled with all 1’s. In the next sequences, 0’s are inserted from
the left until the register is again filled with all 0’s.

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to pro-
vide outputs for 2k timing signals. The decoding gates are not shown in Fig. 6.18, but are
specified in the last column of the table. The eight AND gates listed in the table, when
connected to the circuit, will complete the construction of the Johnson counter. Since
each gate is enabled during one particular state sequence, the outputs of the gates gen-
erate eight timing signals in succession.

The decoding of a k-bit switch-tail ring counter to obtain 2k timing signals follows a
regular pattern. The all-0’s state is decoded by taking the complement of the two extreme
flip-flop outputs. The all-1’s state is decoded by taking the normal outputs of the two extreme
flip-flops. All other states are decoded from an adjacent 1,0 or 0, 1 pattern in the sequence.
For example, sequence 7 has an adjacent 0, 1 pattern in flip-flops B and C. The decoded
output is then obtained by taking the complement of B and the normal output of C, or B'C.

One disadvantage of the circuit in Fig. 6.18(a) is that if it finds itself in an unused state,
it will persist in moving from one invalid state to another and never find its way to a valid
state. The difficulty can be corrected by modifying the circuit to avoid this undesirable
condition. One correcting procedure is to disconnect the output from flip-flop B that goes
to the D input of flip-flop C and instead enable the input of flip-flop C by the function

Dc= (A + O)B

where D is the flip-flop input equation for the D input of flip-flop C.

Johnson counters can be constructed for any number of timing sequences. The num-
ber of flip-flops needed is one-half the number of timing signals. The number of decod-
ing gates is equal to the number of timing signals, and only two-input gates are needed.

6.6 HDL FOR REGISTERS AND COUNTERS

Registers and counters can be described in Verilog at either the behavioral or the struc-
tural level. Behavioral modeling describes only the operations of the register, as pre-
scribed by a function table, without a preconceived structure. A structural-level
description shows the circuit in terms of a collection of components such as gates, flip-
flops, and multiplexers. The various components are instantiated to form a hierarchical
description of the design similar to a representation of a multilevel logic diagram. The
examples in this section will illustrate both types of descriptions. Both are useful. When
a machine is complex, a hierarchical description creates a physical partition of the
machine into simpler and more easily described units.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

284 Chapter 6 Registers and Counters

Shift Register

The universal shift register presented in Section 6.2 is a bidirectional shift register with a
parallel load. The four clocked operations that are performed with the register are speci-
fied in Table 6.6. The register also can be cleared asynchronously. Our chosen name for a
behavioral description of the four-bit universal shift register shown in Fig. 6.7(a), the name
Shift_Register_4_beh,signifies the behavioral model of the internal detail of the top-level
block diagram symbol and distinguishes that model from a structural one. The behavioral
model is presented in HDL Example 6.1, and the structural model is given in HDL Exam-
ple 6.2. The top-level block diagram symbol in Fig. 6.7(a) indicates that the four-bit uni-
versal shift register has two selection inputs (s/, s0), two serial inputs (shift_left, shift_right),
for controlling the shift register, two serial datapath inputs (MSB_in and LSB_in), a four-
bit parallel input (/_par), and a four-bit parallel output (A_par). The elements of vector
I_par[3: 0] correspond to the bits I3, . . ., [in Fig. 6.7, and similarly for A_par/3: 0].
The always block describes the five operations that can be performed with the register.
The Clear input clears the register asynchronously with an active-low signal. Clear
must be high for the register to respond to the positive edge of the clock. The four
clocked operations of the register are determined from the values of the two select
inputs in the case statement. (s/ and s0 are concatenated into a two-bit vector and are used
as the expression argument of the case statement.) The shifting operation is specified by the
concatenation of the serial input and three bits of the register. For example, the statement

A _par <= {MSB_in, A_par [3: 1]}

specifies a concatenation of the serial data input for a right shift operation (MSB_in)
with bits A_par/[3: 1] of the output data bus. A reference to a contiguous range of bits
within a vector is referred to as a part select. The four-bit result of the concatenation is
transferred to register A_par [3: 0] when the clock pulse triggers the operation. This
transfer produces a shift-right operation and updates the register with new information.
The shift operation overwrites the contents of A_par/0] with the contents of A_par[1].
Note that only the functionality of the circuit has been described, irrespective of any
particular hardware. A synthesis tool would create a netlist of ASIC cells to implement
the shift register in the structure of Fig. 6.7(b).

HDL Example 6.1 (Universal Shift Register-Behavioral Model)

/I Behavioral description of a 4-bit universal shift register
/l Fig. 6.7 and Table 6.3

module Shift_Register_4_beh (/I'V2001, 2005
output reg [3: 0] A_par, /I Register output
input [3:0] I_par, /[Parallel input
input s1, s0, /I Select inputs

MSB_in, LSB_in, /I Serial inputs
CLK, Clear_b /I Clock and Clear

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.6 HDL for Registers and Counters 285

always @ (posedge CLK, negedge Clear_b) // V2001, 2005
if (Clear_b == 0) A_par <= 4’b0000;
else
case ({s1, s0})
2'b00: A_par <= A_par; /I No change
2'b01: A_par <= {MSB_in, A_par[3: 1]}; /I Shift right
2'b10: A_par <= {A_par[2: 0], LSB_in}; /I Shift left
2'b11: A_par <= |_par; /[Parallel load of input
endcase
endmodule

Variables of type reg retain their value until they are assigned a new value by an
assignment statement. Consider the following alternative case statement for the shift
register model:

case ({s1, s0})

//2'b00: A_par <= A_par; /I No change

2'b01: A_par <= {MSB_in, A_par [3: 1]}; // Shift right

2'b10: A_par <={A_par [2: 0], LSB_in}; /I Shift left

2'b11: A_par <= |_par; /[Parallel load of input
endcase

Without the case item 2’'b00, the case statement would not find a match between
{s1,s0} and the case items, so register A_par would be left unchanged.

A structural model of the universal shift register can be described by referring to the
logic diagram of Fig. 6.7(b). The diagram shows that the register has four multiplexers and
four D flip-flops. A mux and flip-flop together are modeled as a stage of the shift register.
The stage is a structural model, too, with an instantiation and interconnection of a module
for a mux and another for a D flip-flop. For simplicity, the lowest-level modules of the
structure are behavioral models of the multiplexer and flip-flop. Attention must be paid
to the details of connecting the stages correctly. The structural description of the register
is shown in HDL Example 6.2. The top-level module declares the inputs and outputs and
then instantiates four copies of a stage of the register. The four instantiations specify the
interconnections between the four stages and provide the detailed construction of the
register as specified in the logic diagram. The behavioral description of the flip-flop uses
a single edge-sensitive cyclic behavior (an always block). The assignment statements use
the nonblocking assignment operator (<=) the model of the mux employs a single level-
sensitive behavior, and the assignments use the blocking assignment operator (=).

HDL Example 6.2 (Universal Shift Register-Structural Model)

/I Structural description of a 4-bit universal shift register (see Fig. 6.7)

module Shift_Register_4_str (//'V2001, 2005
output [3: 0] A_pair, // Parallel output
input [3: 0] |_par, [/l Parallel input

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

286 Chapter 6 Registers and Counters

input s1, s0, // Mode select
input MSB _in, LSB_in, CLK, Clear_b // Serial inputs, clock, clear
)

// bus for mode control
assign [1:0] select ={s1, s0};

/I Instantiate the four stages
stage STO (A_par[0], A_par[1], LSB_in, |_par[0], A_par[0], select, CLK, Clear_b);
stage ST1 (A_par[1], A_par[2], A_par[0], |_par[1], A_par[1], select, CLK, Clear_b);
stage ST2 (A_par[2], A_par[3], A_par[1], |_par[2], A_par[2], select, CLK, Clear_b);
stage ST3

endmodule

—_~ o~~~

A_par[3], MSB_in, A_par[2], |_par[3], A_par[3], select, CLK, Clear_b);

/I One stage of shift register
module stage (i0, i1, i2, i3, Q, select, CLK, CIr_b);

input i0, /I circulation bit selection
i1, /I data from left neighbor or serial input for shift-right
i2, /I data from right neighbor or serial input for shift-left
i3; /l data from parallel input

output Q;

input [1: 0] select; /I stage mode control bus

input CLK, ClIr_b; /I Clock, Clear for flip-flops

wire mux_out;

/ instantiate mux and flip-flop
Mux_4 x 1 MO (mux_out, i0, i1, i2, i3, select);
D _flip_flop M1 (Q, mux_out, CLK, CIr_b);
endmodule

/I 4x1 multiplexer /I behavioral model
module Mux_4_x_1 (mux_out, i0, i1, i2, i3, select);
output mux_out;
input i0, i1, i2, i3;
input [1: 0] select;
reg mux_out;
always @ (select, i0, i1, i2, i3)
case (select)
2'b00: mux_out = i0;
2'b01: mux_out = i1;
2'b10: mux_out = i2;
2'b11: mux_out = i3;
endcase
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.6 HDL for Registers and Counters 287

/I Behavioral model of D flip-flop
module D_flip_flop (Q, D, CLK, CIr_b);

output Q;
input D, CLK, ClIr;
reg Q;

always @ (posedge CLK, negedge Cir_b)
if (ICIr_b) Q <= 1'b0; else Q <= D;
endmodule

The above examples presented two descriptions of a universal shift register to illus-
trate the different styles for modeling a digital circuit. A simulation should verify that
the models have the same functionality. In practice, a designer develops only the behav-
ioral model, which is then synthesized. The function of the synthesized circuit can be
compared with the behavioral description from which it was compiled. Eliminating the
need for the designer to develop a structural model produces a huge improvement in
the efficiency of the design process.

Synchronous Counter

HDL Example 6.3 presents Binary_Counter_4_Par_Load, a behavioral model of the
synchronous counter with a parallel load from Fig. 6.14. Count, Load, CLK,and Clear_b
are inputs that determine the operation of the counter according to the function speci-
fied in Table 6.6. The counter has four data inputs, four data outputs, and a carry output.
The internal data lines (I3, 12, 11, 10) are bundled as Data_in/3: 0] in the behavioral
model. Likewise, the register that holds the bits of the count (A3, A2, Al, A0) is A_
count[3: 0]. It is good practice to have identifiers in the HDL model of a circuit corre-
spond exactly to those in the documentation of the model. That is not always feasible,
however, if the circuit-level identifiers are those found in a handbook, for they are often
short and cryptic and do not exploit the text that is available with an HDL. The top-level
block diagram symbol in Fig. 6.14(a) serves as an interface between the names used in
a circuit diagram and the expressive names that can be used in the HDL model. The
carry output C_out is generated by a combinational circuit and is specified with an assign
statement. C_out = 1when the count reaches 15 and the counter is in the count state.
Thus, C_out = 1if Count = 1, Load = 0, and A = 1111; otherwise C_out = 0. The
always block specifies the operation to be performed in the register, depending on the
values of Clear_b, Load, and Count. A 0 (active-low signal) at Clear_b resets A to 0.
Otherwise, if Clear_b = 1, one out of three operations is triggered by the positive edge
of the clock. The if, else if, and else statements establish a precedence among the control
signals Clear, Load, and Count corresponding to the specification in Table 6.6. Clear_b
overrides Load and Count; Load overrides Count. A synthesis tool will produce the
circuit of Fig. 6.14(b) from the behavioral model.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

288 Chapter 6 Registers and Counters

HDL Example 6.3 (Synchronous Counter)

/I Four-bit binary counter with parallel load (V2001, 2005)
/I See Figure 6.14 and Table 6.6
module Binary_Counter_4_Par_Load (

output reg [3: 0] A_count, /I Data output

output C_out, /I Output carry

input [3: 0] Data_in, // Data input

input Count, /I Active high to count
Load, /I Active high to load
CLK, // Positive-edge sensitive
Clear_b /I Active low

);
assign C_out = Count && (~Load) && (A_count == 4'b1111);
always @ (posedge CLK, negedge Clear_b)

if (~Clear_b) A_count <= 4'b0000;

else if (Load) A_count <= Data_in;

else if (Count) A_count <= A_count + 1'b1;

else A_count <= A_count; // redundant statement
endmodule

Ripple Counter

The structural description of a ripple counter is shown in HDL Example 6.4. The first
module instantiates four internally complementing flip-flops defined in the second mod-
ule as Comp_D_flip_flop (Q, CLK, Reset). The clock (input CLK) of the first flip-flop
is connected to the external control signal Count. (Count replaces CLK in the port list
of instance F0.) The clock input of the second flip-flop is connected to the output of the
first. (A0 replaces CLK in instance F1.) Similarly, the clock of each of the other flip-flops
is connected to the output of the previous flip-flop. In this way, the flip-flops are chained
together to create a ripple counter as shown in Fig. 6.8(Db).

The second module describes a complementing flip-flop with delay. The circuit of a
complementing flip-flop is constructed by connecting the complement output to the D
input. A reset input is included with the flip-flop in order to be able to initialize the
counter; otherwise the simulator would assign the unknown value (x) to the output of
the flip-flop and produce useless results. The flip-flop is assigned a delay of two time
units from the time that the clock is applied to the time that the flip-flop complements
its output. The delay is specified by the statement Q <= #2 ~(. Notice that the delay
operator is placed to the right of the nonblocking assignment operator. This form of
delay, called intra-assignment delay, has the effect of postponing the assignment of the
complemented value of O to Q. The effect of modeling the delay will be apparent in
the simulation results. This style of modeling might be useful in simulation, but it is to
be avoided when the model is to be synthesized. The results of synthesis depend on the
ASIC cell library that is accessed by the tool, not on any propagation delays that might
appear within the model that is to be synthesized.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 6.6 HDL for Registers and Counters 289

HDL Example 6.4 (Ripple Counter)

/I Ripple counter (See Fig. 6.8(b))

'timescale 1ns / 100 ps

module Ripple_Counter_4bit (A3, A2, A1, A0, Count, Reset);
output A3, A2, A1, AO;
input Count, Reset;

/I Instantiate complementing flip-flop
Comp_D_flip_flop FO (A0, Count, Reset);
Comp_D_flip_flop F1 (A1, AO, Reset);
Comp_D_flip_flop F2 (A2, A1, Reset);
Comp_D_flip_flop F3 (A3, A2, Reset);

endmodule

/I Complementing flip-flop with delay

/I Input to D flip-flop = Q'

module Comp_D_flip_flop (Q, CLK, Reset);

output Q;
input CLK, Reset;
reg Q;

always @ (negedge CLK, posedge Reset)
if (Reset) Q <= 1'b0;
else Q <=#2 ~Q; Il intra-assignment delay
endmodule
/I Stimulus for testing ripple counter
module t_Ripple_Counter_4bit;
reg Count;
reg Reset;
wire A0, A1, A2, A3;
/I Instantiate ripple counter
Ripple_Counter_4bit MO (A3, A2, A1, A0, Count, Reset);
always
#5 Count = ~Count;
initial
begin
Count = 1'b0;
Reset = 1'b1;
#4 Reset = 1'b0;
end

initial #170 $finish;

endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

290 Chapter 6 Registers and Counters

The test bench module in HDL Example 6.4 provides a stimulus for simulating and
verifying the functionality of the ripple counter. The always statement generates a free-
running clock with a cycle of 10 time units. The flip-flops trigger on the negative edge of
the clock, which occurs at ¢ = 10, 20, 30, and every 10 time units thereafter. The waveforms
obtained from this simulation are shown in Fig. 6.19. The control signal Count goes negative
every 10 ns. A0 is complemented with each negative edge of Count, but is delayed by 2 ns.
Each flip-flop is complemented when its previous flip-flop goes from 1 to 0. After t = 80 ns,
all four flip-flops complement because the counter goes from 0111 to 1000. Each output is
delayed by 2 ns, and because of that, A3 goes from 0 to 1 at t = 88 ns and from 1 to 0 at
168 ns. Notice how the propagation delays accumulate to the last bit of the counter, result-
ing in very slow counter action. This limits the practical utility of the counter.

0.0 ns 57.0 ns 114.0 ns 171.0 ns
T T T T T T M [N T T T T YT T TN T N T T M TN T YT AT T TN TR N S M
Reset ml
Count UL L L L L L L L L L
A0 A I I I) I N B O
Al L 1 —
-’
A2
A3 ¢\ |
t =88 ns t = 168 ns
(a) From 0 to 180 ns
70.0 ns 77.0 ns 91.0 ns 98.0 ns
TN T T T T T I T T T T M T T S T AT T N Y T S T
Reset
e O e
Count
A0] !
Al
A2
A3 |

(b) From 70 to 98 ns

FIGURE 6.19

Simulation output of HDL Example 6.4

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Problems 291

PROBLEMS

(Answers to problems marked with * appear at the end of the book. Where appropriate, a logic
design and its related HDL modeling problem are cross-referenced.)
Note: For each problem that requires writing and verifying a Verilog description, a test plan is to
be written to identify which functional features are to be tested during the simulation and how
they will be tested. For example, a reset on the fly could be tested by asserting the reset signal
while the simulated machine is in a state other than the reset state. The test plan is to guide the
development of a test bench that will implement the plan. Simulate the model using the test bench
and verify that the behavior is correct. If synthesis tools and an ASIC cell library or a field pro-
grammable gate array (FPGA) tool suite are available, the Verilog descriptions developed for
Problems 6.34-6.51 can be assigned as synthesis exercises. The gate-level circuit produced by the
synthesis tools should be simulated and compared to the simulation results for the pre-synthesis
model.

In some of the HDL problems, there may be a need to deal with the issue of unused states (see
the discussion of the default case item preceding HDL Example 4.8 in Chapter 4).

6.1 Include a 2-input NAND gate in the register of Fig. 6.1 and connect the gate output to the
C inputs of all the flip-flops. One input of the NAND gate receives the clock pulses from
the clock generator, and the other input of the NAND gate provides a parallel load control.
Explain the operation of the modified register. Explain why this circuit might have opera-
tional problems.

6.2 Include a synchronous clear input to the register of Fig. 6.2. The modified register will have
a parallel load capability and a synchronous clear capability. The register is cleared syn-
chronously when the clock goes through a positive transition and the clear input is equal
to 1. (HDL—see Problem 6.35(a), (b).)

6.3 What is the difference between serial and parallel transfer? Explain how to convert serial
data to parallel and parallel data to serial. What type of register is needed?

6.4* The contents of a four-bit register is initially 0110. The register is shifted six times to the
right with the serial input being 1011100. What is the content of the register after each
shift?

6.5 The four-bit universal shift register shown in Fig. 6.7 is enclosed within one IC component
package. (HDL —see Problem 6.52.)
(a) Draw a block diagram of the IC showing all inputs and outputs. Include two pins for
the power supply.
(b) Draw a block diagram using two of these ICs to produce an eight-bit universal shift
register.

6.6 Design a four-bit shift register with parallel load using D flip-flops. There are two control
inputs: shift and load. When shift = 1, the content of the register is shifted by one posi-
tion. New data are transferred into the register when load = 1 and shift = 0. If both
control inputs are equal to 0, the content of the register does not change. (HDL —see
Problem 6.35(c), (d).)

6.7 Draw the logic diagram of a four-bit register with four D flip-flops and four 4 x 1 mul-
tiplexers with mode selection inputs s; and s,. The register operates according to the
following function table. (HDL—see Problem 6.35(e), (f).)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

292 Chapter 6 Registers and Counters

5 So Register Operation

0 0 No change

1 0 Complement the four outputs

0 1 Clear register to 0 (synchronous with the clock)
1 1 Load parallel data

6.8% The serial adder of Fig. 6.6 uses two four-bit registers. Register A holds the binary number
0101 and register B holds 0111. The carry flip-flop is initially reset to 0. List the binary
values in register A and the carry flip-flop after each shift. (HDL—see Problem 6.54).

6.9 Two ways for implementing a serial adder (A + B) is shown in Section 6.2. It is necessary
to modify the circuits to convert them to serial subtractors (A — B).
(a) Using the circuit of Fig. 6.5, show the changes needed to perform A +2’s complement
of B. (HDL —see Problem 6.35(h).)
(b) *Using the circuit of Fig. 6.6, show the changes needed by modifying Table 6.2 from an
adder to a subtractor circuit. (See Problem 4.12). (HDL —see Problem 6.35(i).)

6.10 Design a serial 2’s complementer with a shift register and a flip-flop. The binary number
is shifted out from one side and it’s 2’s complement shifted into the other side of the shift
register. (HDL—see Problem 6.35(j).)

6.11 A binary ripple counter uses flip-flops that trigger on the positive-edge of the clock. What
will be the count if
(a) the normal outputs of the flip-flops are connected to the clock and
(b) the complement outputs of the flip-flops are connected to the clock?

6.12 Draw the logic diagram of a four-bit binary ripple countdown counter using
(a) flip-flops that trigger on the positive-edge of the clock and
(b) flip-flops that trigger on the negative-edge of the clock.

6.13 Show that a BCD ripple counter can be constructed using a four-bit binary ripple counter
with asynchronous clear and a NAND gate that detects the occurrence of count 1010.
(HDL—see Problem 6.35(k).)

6.14 How many flip-flop will be complemented in a 10-bit binary ripple counter to reach the
next count after the following counts?
(a) 1001100111
(b) 1111000111
(c) 0000001111

6.15* A flip-flops has a 3 ns delay from the time the clock edge occurs to the time the output
is complemented. What is the maximum delay in a 10-bit binary ripple counter that uses
these flip-flops? What is the maximum frequency at which the counter can operate
reliably?

6.16* The BCD ripple counter shown in Fig. 6.10 has four flip-flops and 16 states, of which only
10 are used. Analyze the circuit and determine the next state for each of the other six
unused states. What will happen if a noise signal sends the circuit to one of the unused
states? (HDL—see Problem 6.54.)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 293

6.17% Design a four-bit binary synchronous counter with D flip-flops.

6.18 What operation is performed in the up—down counter of Fig. 6.13 when both the up and
down inputs are enabled? Modify the circuit so that when both inputs are equal to 1, the
counter does not change state. (HDL—see Problem 6.35(1).)

6.19 The flip-flop input equations for a BCD counter using 7T flip-flops are given in Section 6.4.
Obtain the input equations for a BCD counter that uses (a) JK flip-flops and (b)* D flip-
flops. Compare the three designs to determine which one is the most efficient.

6.20 Enclose the binary counter with parallel load of Fig. 6.14 in a block diagram showing, all
inputs and outputs.

(a) Show the connections of four such blocks to produce a 16-bit counter with parallel
load.
(b) Construct a binary counter that counts from 0 through binary 127,

6.21% The counter of Fig. 6.14 has two control inputs— Load (L) and Count (C)—and a data
input, (1;).

(a) Derive the flip-flop input equations for J and K of the first stage in terms of L, C,
and 1.

(b) The logic diagram of the first stage of an equivalent circuit is shown in Fig. P6.21.
Verify that this circuit is equivalent to the one in (a).

Load (L)
D— O

T
Count (C) D{ CLK
S D

Data (T)

FIGURE P6.21

6.22 For the circuit of Fig. 6.14, give three alternatives for a mod-10 counter (i.e., the count
evolves through a sequence of 12 distinct states).
(a) Using an AND gate and the load input.
(b) Using the output carry.
(c) Using a NAND gate and the asynchronous clear input.

6.23 Design a timing circuit that provides an output signal that stays on for exactly twelve clock
cycles. A start signal sends the output to the 1 state, and after twelve clock cycles the signal
returns to the O state. (HDL—see Problem 6.45.)

6.24* Design a counter with T flip-flops that goes through the following binary repeated se-
quence: 0, 1, 3,7, 6, 4. Show that when binary states 010 and 101 are considered as don’t
care conditions, the counter may not operate properly. Find a way to correct the design.
(HDL—see Problem 6.55.)

6.25 It is necessary to generate six repeated timing signals 7| through 75 similar to the ones
shown in Fig. 6.17(c). Design the circuit using (HDL —see Problem 6.46.):
(a) flip-flops only.
(b) acounter and a decoder.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

294 Chapter 6 Registers and Counters

6.26* A digital system has a clock generator that produces pulses at a frequency of 80 MHz.
Design a circuit that provides a clock with a cycle time of 50 ns.

6.27 Using JK flip-flops,
(a) Design a counter with the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6.
(HDL—see Problem 6.50(a), 6.51.).
(b) Draw the logic diagram of the counter.

6.28 Using D flip-flops,
(a) *Design a counter with the following repeated binary sequence:0,1,2,4,6. (HDL—see
Problem 6.50(b).)
(b) Draw the logic diagram of the counter.
(c) Design a counter with the following repeated binary sequence: 0, 2, 4,6, 8.
(d) Draw the logic diagram of the counter.

6.29 List the eight unused states in the switch-tail ring counter of Fig. 6.18(a). Determine the
next state for each of these states and show that, if the counter finds itself in an invalid
state, it does not return to a valid state. Modify the circuit as recommended in the text and
show that the counter produces the same sequence of states and that the circuit reaches a
valid state from any one of the unused states.

6.30 Show that a Johnson counter with #n flip-flops produces a sequence of 2n states. List the
10 states produced with five flip-flops and the Boolean terms of each of the 10 AND gate
outputs.

6.31 Write and verify the HDL behavioral and structural descriptions of the four-bit register
Fig.6.1.

6.32 (a) Write and verify an HDL behavioral description of a four-bit register with parallel
load and asynchronous clear.

(b) Write and verify the HDL structural description of the four-bit register with parallel
load shown in Fig. 6.2. Use a 2 X 1 multiplexer for the flip-flop inputs. Include an
asynchronous clear input.

(c) Verify both descriptions, using a test bench.

6.33 The following stimulus program is used to simulate the binary counter with parallel load
described in HDL Example 6.3. Draw waveforms showing the output of the counter and
the carry output from =0 to t=155 ns.

/I Stimulus for testing the binary counter of Example 6.3
module testcounter;
reg Count, Load, CLK, Clr;
reg [3: 0] IN;
wire CO;
wire [3: 0] A;
counter cnt (Count, Load, IN, CLK, ClIr, A, CO);
always
#5 CLK = ~CLK;
initial
begin
Clr=0;
CLK =1;
Load = 0; Count = 1;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 295

#5 Clr=1;
#40 Load = 1; IN = 4'b1001;
#10 Load = 0;
#70 Count = 0;
#20 $finish;
end
endmodule

6.34* Write and verify the HDL behavioral description of a four-bit shift register (see Fig. 6.3).

6.35 Write and verify
(a) A structural HDL model for the register described in Problem 6.2
(b) *A behavioral HDL model for the register described in Problem 6.2
(c) A structural HDL model for the register described in Problem 6.6
(d) A behavioral HDL model for the register described in Problem 6.6
(e) A structural HDL model for the register described in Problem 6.7
(f) A behavioral HDL model for the register described in Problem 6.7
(g) A behavioral HDL model of the binary counter described in Fig. 6.8(b)
(h) A behavioral HDL model of the serial subtractor described in Problem 6.9(a)
(i) A behavioral HDL model of the serial subtractor described in Problem 6.9(b)
(j) A behavioral HDL model of the serial 2’s complementer described in Problem 6.10
(k) A behavioral HDL model of the BCD ripple counter described in Problem 6.13
() A behavioral HDL model of the up—down counter described in Problem 6.18.

6.36 Write and verify the HDL behavioral and structural descriptions of the four-bit up—down
counter whose logic diagram is described by Fig. 6.13, Table 6.5, and Table 6.6.

6.37 Write and verify a behavioral description of the counter described in Problem 6.24.
(a) *Using an if ... else statement
(b) Using a case statement
(c) A finite state machine.

6.38 Write and verify the HDL behavioral description of a four-bit up—down counter with
parallel load using the following control inputs:
(a) *The counter has three control inputs for the three operations: Up, Down, and Load.
The order of precedence is: Load, Up, and Down.
(b) The counter has two selection inputs to specify four operations: Load, Up, Down, and
no change.

6.39 Write and verify HDL behavioral and structural descriptions of the counter of Fig. 6.16.

6.40 Write and verify the HDL description of an eight-bit ring-counter similar to the one shown
in Fig. 6.17(a).

6.41 Write and verify the HDL description of a four-bit switch-tail ring (Johnson) counter
(Fig. 6.18a).

6.42% The comment with the last clause of the if statement in Binary_Counter_4_Par_Load in
HDL Example 6.3 notes that the statement is redundant. Explain why this statement can
be removed without changing the behavior implemented by the description.

6.43 The scheme shown in Fig. 6.4 gates the clock to control the serial transfer of data from shift
register A to shift register B. Using multiplexers at the input of each cell of the shift registers,
develop a structural model of an alternative circuit that does not alter the clock path. The

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

296 Chapter 6 Registers and Counters

top level of the design hierarchy is to instantiate the shift registers. The module describing
the shift registers is to have instantiations of flip-flops and muxes. Describe the mux and
flip-flop modules with behavioral models. Be sure to consider the need to reset the machine.
Develop a test bench to simulate the circuit and demonstrate the transfer of data.

6.44 Modify the design of the serial adder shown in Fig. 6.5 by removing the gated clock to the D
flip-flop and supplying the clock signal to it directly. Augment the D flip-flop with a mux to
recirculate the contents of the flip-flop when shifting is suspended and provide the carry out
of the full adder when shifting is active. The shift registers are to incorporate this feature also,
rather than use a gated clock. The top-level of the design is to instantiate modules using
behavioral models for the shift registers, full adder, D flip-flop, and mux. Assume asynchro-
nous reset. Develop a test bench to simulate the circuit and demonstrate the transfer of data.

6.45%* Write and verify a behavioral description of a finite state machine to implement the coun-
ter described in Problem 6.24.

6.46 Problem 6.25 specifies an implementation of a circuit to generate timing signals using
(a) Only flip-flops.
(b) A counter and a decoder.

As an alternative, write a behavioral description (without consideration of the actual hard-
ware) of a state machine whose output generates the timing signals 7} through 7.

6.47 Write a behavioral description of the circuit shown in Fig. P6.47 and verify that the circuit’s
output is asserted if successive samples of the input have an odd number of 1s.

D_in ._—A)Di D (@) P_odd

CLK CLK

reset

FIGURE P6.47
Circuit for Problem 6.47

6.48 Write and verify a behavioral description of the counter shown in Fig. P6.48(a); repeat for
the counter in Fig. P6.43(Db).

6.49 Write a test plan for verifying the functionality of the universal shift register described in
HDL Example 6.1. Using the test plan, simulate the model given in HDL Example 6.1.

6.50 Write and verify a behavioral model of the counter described in
(a) Problem 6.27
(b) Problem 6.28

6.51 Without requiring a state machine, and using a shift register and additional logic, write and
verify a model of an alternative to the sequence detector described in Fig. 5.27. Compare
the implementations.

6.52 Write a Verilog structural model of the universal shift register in Fig. 6.7 Verify all modes
of its operation.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 297

count [7:0] count [7:0]
ofofofofofofoOo]|1 1100100010710
ofofofofofoOo|1]O ojt1jojofjofofofo
ofofofofoflOo]O]1 11000000710
ofofofofof1|O]O ojoj1rjofjofofofo

t
ofofofofofofoOo]|1 110]J0]0]0]0]071]0
ofofofof1fOoO|O]O ojojoj1|jofofofo
ofofofofofloOo]oO]1 11000000710
ofofof1rfofo|lO]O ojojojofj1rfofofo
ofofofofofofoOo]|1 110]J0]J0]0]0]07]0
ofof1rf{fofofOo|O]O ojojojofjof1f|ofo
ofofofofofloOo]oO]1 11000000710
ofrfofofofo|lO]O ojojojojofof1fo
ofofofofofofoOo]|1 110]J0]J0]0]0]07]0
110]l0]J0]JO0O]O0O]0]O ojojojofjofofof1
(a) (b)

FIGURE P6.48
Circuit for Problem 6.48

6.53

6.54
6.55
6.56
6.57
6.58

6.59

Verify that the serial adder in Fig. 6.5 operates as an accumulator when words are shifted
into the addend register repeatedly.

Write and verify a structural model of the serial adder in Fig. 6.6.

Write and verify a structural model of the BCD ripple counter in Fig. 6.10.

Write and verify a structural model of the synchronous binary counter in Fig. 6.12.
Write and verify a structural model of the up—down counter in Fig. 6.13.

Write and verify all modes of operation of
(a) A structural model of the binary counter in Fig. 6.14
(b) A behavioral model of the binary counter in Fig. 6.14.

Write and verify
(a) A structural model of the switch-tail ring counter in Fig. 6.18(a)
(b) A behavioral model of the switch-tail ringer counter in Fig. 6.18(a)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

298 Chapter 6 Registers and Counters

REFERENCES

1. ManNo,M. M. and C.R. KIME. 2007. Logic and Computer Design Fundamentals,4th ed. Upper
Saddle River, NJ: Prentice Hall.

2. NEersoN V. P, H. T. NAGLE, J. D. IrwiN, and B. D. CarroLL. 1995. Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

3. HAaves, J. P.1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

4. WAaKERLY, J. F. 2000. Digital Design: Principles and Practices, 3rd ed. Upper Saddle River,
NIJ: Prentice Hall.

5. DIETMEYER, D. L. 1988. Logic Design of Digital Systems, 3rd ed. Boston: Allyn Bacon.

6. Garsski, D. D. 1997 Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.

7. Rorn, C. H. 2009. Fundamentals of Logic Design, 6th ed. St. Paul: West.

8. Karz,R.H.1994. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

9. CiLert, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HD L. Upper

Saddle River, NJ: Prentice Hall.

10. BHASKER,J. 1997 A Verilog HD L Primer. Allentown, PA: Star Galaxy Press.

11. Taowmas, D. E. and P. R. Moorby. 2002. The VeriLog Hardware Description Language, Sth
ed. Boston: Kluwer Academic Publishers.

12. BHASKER, J. 1998. Verilog HD L Synthesis. Allentown, PA: Star Galaxy Press.

13. PALNITKAR, S. 1996. Verilog HD L: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (A Prentice Hall Title).

14. Cierti, M. D. 2010. Advanced Digital Design with the Verilog HDL, 2e. Upper Saddle
River, NJ: Prentice Hall.

15. CiLert, M. D.2004. Starter’s Guide to Verilog 2001. Upper Saddle River, NJ: Prentice Hall.

WEB SEARCH TOPICS

BCD counter

Johnson counter

Ring counter

Sequence detector
Synchronous counter
Switch-tail ring counter
Up-down counter

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 7
Memory and Programmable Logic

7.1 INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is retrieved when needed for processing. When data processing takes
place, information from memory is transferred to selected registers in the processing unit.
Intermediate and final results obtained in the processing unit are transferred back to be
stored in memory. Binary information received from an input device is stored in memory,
and information transferred to an output device is taken from memory. A memory unit
is a collection of cells capable of storing a large quantity of binary information.

There are two types of memories that are used in digital systems: random-access
memory (RAM) and read-only memory (ROM). RAM stores new information for later
use. The process of storing new information into memory is referred to as a memory
write operation. The process of transferring the stored information out of memory is
referred to as a memory read operation. RAM can perform both write and read opera-
tions. ROM can perform only the read operation. This means that suitable binary infor-
mation is already stored inside memory and can be retrieved or read at any time.
However, that information cannot be altered by writing.

ROM is a programmable logic device (PLD). The binary information that is stored
within such a device is specified in some fashion and then embedded within the hard-
ware in a process is referred to as programming the device. The word “programming”
here refers to a hardware procedure which specifies the bits that are inserted into the
hardware configuration of the device.

ROM is one example of a PLD. Other such units are the programmable logic array
(PLA), programmable array logic (PAL), and the field-programmable gate array (FPGA).
A PLD is an integrated circuit with internal logic gates connected through electronic

299

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

300 Chapter 7 Memory and Programmable Logic

= HHD

(a) Conventional symbol (b) Array logic symbol

FIGURE 7.1
Conventional and array logic diagrams for OR gate

paths that behave similarly to fuses. In the original state of the device, all the fuses are
intact. Programming the device involves blowing those fuses along the paths that must
be removed in order to obtain the particular configuration of the desired logic function.
In this chapter, we introduce the configuration of PLDs and indicate procedures for their
use in the design of digital systems. We also present CMOS FPGA s, which are configured
by downloading a stream of bits into the device to configure transmission gates to estab-
lish the internal connectivity required by a specified logic function (combinational or
sequential).

A typical PLD may have hundreds to millions of gates interconnected through hun-
dreds to thousands of internal paths. In order to show the internal logic diagram of such
a device in a concise form, it is necessary to employ a special gate symbology applicable
to array logic. Figure 71 shows the conventional and array logic symbols for a multiple-
input OR gate. Instead of having multiple input lines into the gate, we draw a single line
entering the gate. The input lines are drawn perpendicular to this single line and are
connected to the gate through internal fuses. In a similar fashion, we can draw the array
logic for an AND gate. This type of graphical representation for the inputs of gates will
be used throughout the chapter in array logic diagrams.

7.2 RANDOM-ACCESS MEMORY

A memory unit is a collection of storage cells, together with associated circuits needed
to transfer information into and out of a device. The architecture of memory is such that
information can be selectively retrieved from any of its internal locations. The time it
takes to transfer information to or from any desired random location is always the
same —hence the name random-access memory, abbreviated RAM. In contrast, the time
required to retrieve information that is stored on magnetic tape depends on the location
of the data.

A memory unit stores binary information in groups of bits called words. A word in
memory is an entity of bits that move in and out of storage as a unit. A memory word
is a group of 1’s and 0’s and may represent a number, an instruction, one or more
alphanumeric characters, or any other binary-coded information. A group of 8 bits is
called a byte. Most computer memories use words that are multiples of 8 bits in length.
Thus, a 16-bit word contains two bytes, and a 32-bit word is made up of four bytes. The
capacity of a memory unit is usually stated as the total number of bytes that the unit
can store.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.2 Random-Access Memory 301

ln data input lines

k address lines —>
Memory unit
Read —> 2% words

) n bit per word
Write ——>

ln data output lines

FIGURE 7.2
Block diagram of a memory unit

Communication between memory and its environment is achieved through data input
and output lines, address selection lines, and control lines that specify the direction of
transfer. A block diagram of a memory unit is shown in Fig. 72. The n data input lines
provide the information to be stored in memory, and the n data output lines supply the
information coming out of memory. The k address lines specify the particular word
chosen among the many available. The two control inputs specify the direction of trans-
fer desired: The Write input causes binary data to be transferred into the memory, and
the Read input causes binary data to be transferred out of memory.

The memory unit is specified by the number of words it contains and the number of
bits in each word. The address lines select one particular word. Each word in memory
is assigned an identification number, called an address, starting from 0 up to 28 — 1,
where k is the number of address lines. The selection of a specific word inside memory
is done by applying the k-bit address to the address lines. An internal decoder accepts
this address and opens the paths needed to select the word specified. Memories vary
greatly in size and may range from 1,024 words, requiring an address of 10 bits, to 23
words, requiring 32 address bits. It is customary to refer to the number of words (or
bytes) in memory with one of the letters K (kilo), M (mega), and G (giga). K is equal to
219 M is equal to 2%°, and G is equal to 2°°. Thus, 64K = 2'6,2M = 22! and 4G = 232,

Consider, for example, a memory unit with a capacity of 1K words of 16 bits each.
Since 1K = 1,024 = 2'° and 16 bits constitute two bytes, we can say that the memory
can accommodate 2,048 = 2K bytes. Figure 7.3 shows possible contents of the first
three and the last three words of this memory. Each word contains 16 bits that can be
divided into two bytes. The words are recognized by their decimal address from 0 to
1,023.The equivalent binary address consists of 10 bits. The first address is specified with
ten 0’s; the last address is specified with ten 1’s, because 1,023 in binary is equal to
1111111111. A word in memory is selected by its binary address. When a word is read or
written, the memory operates on all 16 bits as a single unit.

The 1K X 16 memory of Fig. 73 has 10 bits in the address and 16 bits in each word.
As another example, a 64K X 10 memory will have 16 bits in the address (since
64K = 2'°) and each word will consist of 10 bits. The number of address bits needed in

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

302 Chapter 7 Memory and Programmable Logic

Memory address

Binary Decimal Memory content

0000000000 0 1011010101011101
0000000001 1 1010101110001001

0000000010 2 0000110101000110

1111111101 1021 1001110100010100
1111111110 1022 0000110100011110

1111111111 1023 1101111000100101

FIGURE 7.3
Contents of a 1024 X 16 memory

amemory is dependent on the total number of words that can be stored in the memory
and is independent of the number of bits in each word. The number of bits in the address
is determined from the relationship 2€ = m, where m is the total number of words and
k is the number of address bits needed to satisfy the relationship.

Write and Read Operations

The two operations that RAM can perform are the write and read operations. As alluded
to earlier, the write signal specifies a transfer-in operation and the read signal specifies
a transfer-out operation. On accepting one of these control signals, the internal circuits
inside the memory provide the desired operation.

The steps that must be taken for the purpose of transferring a new word to be stored
into memory are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Apply the data bits that must be stored in memory to the data input lines.

3. Activate the write input.
The memory unit will then take the bits from the input data lines and store them in the
word specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word out of
memory are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Activate the read input.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.2 Random-Access Memory 303

Table 7.1
Control Inputs to Memory Chip
Memory Enable Read/Write Memory Operation
0 X None
1 0 Write to selected word
1 1 Read from selected word

The memory unit will then take the bits from the word that has been selected by the
address and apply them to the output data lines. The contents of the selected word do
not change after the read operation, i.e., the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes
provide the two control inputs for reading and writing in a somewhat different configu-
ration. Instead of having separate read and write inputs to control the two operations,
most integrated circuits provide two other control inputs: One input selects the unit and
the other determines the operation. The memory operations that result from these
control inputs are specified in Table 71.

The memory enable (sometimes called the chip select) is used to enable the particu-
lar memory chip in a multichip implementation of a large memory. When the memory
enable is inactive, the memory chip is not selected and no operation is performed. When
the memory enable input is active, the read/write input determines the operation to be
performed.

Memory Description in HDL

Memory is modeled in the Verilog hardware description language (HDL) by an array
of registers. It is declared with a reg keyword, using a two-dimensional array. The first
number in the array specifies the number of bits in a word (the word length) and the
second gives the number of words in memory (memory depth). For example, a memory
of 1,024 words with 16 bits per word is declared as

reg[15: 0] memword [0: 1023];

This statement describes a two-dimensional array of 1,024 registers, each containing 16
bits. The second array range in the declaration of memword specifies the total number
of words in memory and is equivalent to the address of the memory. For example,
memword[512] refers to the 16-bit memory word at address 512.

The operation of a memory unit is illustrated in HDL Example 71. The memory has
64 words of four bits each. There are two control inputs: Enable and ReadWrite. The
Dataln and DataOut lines have four bits each. The input Address must have six bits
(since 2° = 64). The memory is declared as a two-dimensional array of registers, with
Mem used as an identifier that can be referenced with an index to access any of the
64 words. A memory operation requires that the Enable input be active. The ReadWrite
input determines the type of operation. If ReadWrite is 1, the memory performs a read
operation symbolized by the statement

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

304 Chapter 7 Memory and Programmable Logic

DataOut < Mem [Address];

Execution of this statement causes a transfer of four bits from the selected memory word
specified by Address onto the DataOut lines. If ReadWrite is 0, the memory performs a
write operation symbolized by the statement

Mem [Address] < Dataln;

Execution of this statement causes a transfer from the four-bit Dataln lines into the
memory word selected by Address. When Enable is equal to 0, the memory is disabled
and the outputs are assumed to be in a high-impedance state, indicated by the symbol z.
Thus, the memory has three-state outputs.

HDL Example 7.1

/I Read and write operations of memory
/l Memory size is 64 words of four bits each.

module memory (Enable, ReadWrite, Address, Dataln, DataOut);
input Enable, ReadWrite;
input [3: 0] Dataln;
input [5: 0] Address;
output [3: 0] DataOut;
reg [3: 0] DataOut;

reg [3: 0] Mem [0: 63]; /] 64 x 4 memory
always @ (Enable or ReadWrite)
if (Enable)
if (ReadWrite) DataOut = Mem [Address]; /I Read
else Mem [Address] = Dataln; /I Write
else DataOut = 4'bz; /I High impedance state
endmodule

Timing Waveforms

The operation of the memory unit is controlled by an external device such as a central
processing unit (CPU). The CPU is usually synchronized by its own clock. The memory,
however, does not employ an internal clock. Instead, its read and write operations are
specified by control inputs. The access time of memory is the time required to select a
word and read it. The cycle time of memory is the time required to complete a write
operation. The CPU must provide the memory control signals in such a way as to syn-
chronize its internal clocked operations with the read and write operations of memory.
This means that the access time and cycle time of the memory must be within a time
equal to a fixed number of CPU clock cycles.

Suppose as an example that a CPU operates with a clock frequency of 50 MHz, giv-
ing a period of 20 ns for one clock cycle. Suppose also that the CPU communicates with
a memory whose access time and cycle time do not exceed 50 ns. This means that the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Clock

Memory ><
address
Memory /

enable

Read/ \ /
Write

e X
input

Clock

Memory
address

Memory / \

enable

Read/

<— 20 nsec

Section 7.2 Random-Access Memory 305

T3 T1

Address valid >C

Initiate writing

Data valid >C

~<«— 5S0mnsec

(a) Write cycle

_ >

T3 T1

Address valid

[

Write

Data

Data valid

output

FIGURE 7.4

Memory cycle timing waveforms

(b) Read cycle

write cycle terminates the storage of the selected word within a 50-ns interval and that
the read cycle provides the output data of the selected word within 50 ns or less. (The
two numbers are not always the same.) Since the period of the CPU cycle is 20 ns, it will
be necessary to devote at least two-and-a-half, and possibly three, clock cycles for each

memory request.

The memory timing shown in Fig. 7.4 is for a CPU with a 50-MHz clock and a memory
with 50 ns maximum cycle time. The write cycle in part (a) shows three 20-ns cycles: T'1,

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

306 Chapter 7 Memory and Programmable Logic

T2,and T3.For a write operation, the CPU must provide the address and input data to
the memory. This is done at the beginning of 7'1. (The two lines that cross each other in
the address and data waveforms designate a possible change in value of the multiple
lines.) The memory enable and the read/write signals must be activated after the signals
in the address lines are stable in order to avoid destroying data in other memory words.
The memory enable signal switches to the high level and the read/write signal switches
to the low level to indicate a write operation. The two control signals must stay active
for at least 50 ns. The address and data signals must remain stable for a short time after
the control signals are deactivated. At the completion of the third clock cycle, the mem-
ory write operation is completed and the CPU can access the memory again with the
next T'1 cycle.

The read cycle shown in Fig. 7.4(b) has an address for the memory provided by the
CPU. The memory-enable and read/write signals must be in their high level for a read
operation. The memory places the data of the word selected by the address into the out-
put data lines within a 50-ns interval (or less) from the time that the memory enable is
activated. The CPU can transfer the data into one of its internal registers during the
negative transition of 7°3. The next 7’1 cycle is available for another memory request.

Types of Memories

The mode of access of a memory system is determined by the type of components used.
In a random-access memory, the word locations may be thought of as being separated
in space, each word occupying one particular location. In a sequential-access memory,
the information stored in some medium is not immediately accessible, but is available
only at certain intervals of time. A magnetic disk or tape unit is of this type. Each
memory location passes the read and write heads in turn, but information is read out
only when the requested word has been reached. In a random-access memory, the access
time is always the same regardless of the particular location of the word. In a sequential-
access memory, the time it takes to access a word depends on the position of the word
with respect to the position of the read head; therefore, the access time is variable.

Integrated circuit RAM units are available in two operating modes: static and
dynamic. Static RAM (SRAM) consists essentially of internal latches that store the
binary information. The stored information remains valid as long as power is applied to
the unit. Dynamic RAM (DRAM) stores the binary information in the form of electric
charges on capacitors provided inside the chip by MOS transistors. The stored charge
on the capacitors tends to discharge with time, and the capacitors must be periodically
recharged by refreshing the dynamic memory. Refreshing is done by cycling through the
words every few milliseconds to restore the decaying charge. DRAM offers reduced
power consumption and larger storage capacity in a single memory chip. SRAM is
easier to use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be
volatile. CMOS integrated circuit RAMs, both static and dynamic, are of this category, since
the binary cells need external power to maintain the stored information. In contrast, a
nonvolatile memory,such as magnetic disk, retains its stored information after the removal

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.3 Memory Decoding 307

of power. This type of memory is able to retain information because the data stored on
magnetic components are represented by the direction of magnetization, which is retained
after power is turned off. ROM is another nonvolatile memory. A nonvolatile memory
enables digital computers to store programs that will be needed again after the computer
is turned on. Programs and data that cannot be altered are stored in ROM, while other
large programs are maintained on magnetic disks. The latter programs are transferred into
the computer RAM as needed. Before the power is turned off, the binary information from
the computer RAM is transferred to the disk so that the information will be retained.

7.3 MEMORY DECODING

In addition to requiring storage components in a memory unit, there is a need for decod-
ing circuits to select the memory word specified by the input address. In this section, we
present the internal construction of a RAM and demonstrate the operation of the
decoder. To be able to include the entire memory in one diagram, the memory unit
presented here has a small capacity of 16 bits, arranged in four words of 4 bits each. An
example of a two-dimensional coincident decoding arrangement is presented to show a
more efficient decoding scheme that is used in large memories. We then give an example
of address multiplexing commonly used in DRAM integrated circuits.

Internal Construction

The internal construction of a RAM of m words and n bits per word consists of m X n
binary storage cells and associated decoding circuits for selecting individual words. The
binary storage cell is the basic building block of a memory unit. The equivalent logic of
a binary cell that stores one bit of information is shown in Fig. 7.5. The storage part of
the cell is modeled by an SR latch with associated gates to form a D latch. Actually, the

Select
Select
Input -) 1S } Output Input BC Output
__/\ R
Read/Write
o<} Read/Write
(a) Logic diagram (b) Block diagram

FIGURE 7.5

Memory cell

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

308 Chapter 7 Memory and Programmable Logic

cell is an electronic circuit with four to six transistors. Nevertheless, it is possible and
convenient to model it in terms of logic symbols. A binary storage cell must be very small
in order to be able to pack as many cells as possible in the small area available in the
integrated circuit chip. The binary cell stores one bit in its internal latch. The select input
enables the cell for reading or writing, and the read/write input determines the operation
of the cell when itis selected. A 1 in the read/write input provides the read operation by
forming a path from the latch to the output terminal. A 0 in the read/write input provides
the write operation by forming a path from the input terminal to the latch.

The logical construction of a small RAM is shown in Fig. 7.6. This RAM consists of
four words of four bits each and has a total of 16 binary cells. The small blocks labeled
BC represent the binary cell with its three inputs and one output, as specified in
Fig. 7.5(b). A memory with four words needs two address lines. The two address inputs
go through a2 X 4 decoder to select one of the four words. The decoder is enabled with

Input data
Word 0
Y Y Y Y
> BC >~ > BC > > BC > »—>| BC >
3 3 1)
Address
inputs Word 1 ; ; ; +
2X4 > BC > > BC > > BC > > BC >
decoder
3 3 1)
Word 2 + + + +
> BC > > BC > > BC > »—>| BC (>
Memory EN f f T *
enable
Word 3 + + + +
—>(BC > —>{ BC > —>-(BC > —>[BC >
Read/Write f T T *
Output data

FIGURE 7.6
Diagram of a 4 X4 RAM

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.3 Memory Decoding 309

the memory-enable input. When the memory enable is 0, all outputs of the decoder are
0 and none of the memory words are selected. With the memory select at 1, one of the
four words is selected, dictated by the value in the two address lines. Once a word has
been selected, the read/write input determines the operation. During the read opera-
tion, the four bits of the selected word go through OR gates to the output terminals.
(Note that the OR gates are drawn according to the array logic established in Fig. 7.1.)
During the write operation, the data available in the input lines are transferred into the
four binary cells of the selected word. The binary cells that are not selected are disabled,
and their previous binary values remain unchanged. When the memory select input that
goes into the decoder is equal to 0, none of the words are selected and the contents of
all cells remain unchanged regardless of the value of the read/write input.

Commercial RAMs may have a capacity of thousands of words, and each word may
range from 1 to 64 bits. The logical construction of a large-capacity memory would be a
direct extension of the configuration shown here. A memory with 2¥ words of n bits per
word requires k address lines that go into a k X 2¥ decoder. Each one of the decoder
outputs selects one word of n bits for reading or writing.

Coincident Decoding

A decoder with k inputs and 2¥ outputs requires 2 AND gates with k inputs per gate.
The total number of gates and the number of inputs per gate can be reduced by
employing two decoders in a two-dimensional selection scheme. The basic idea in
two-dimensional decoding is to arrange the memory cells in an array that is close as
possible to square. In this configuration, two k/2-input decoders are used instead of
one k-input decoder. One decoder performs the row selection and the other the col-
umn selection in a two-dimensional matrix configuration.

The two-dimensional selection pattern is demonstrated in Fig. 7.7 for a 1K-word
memory. Instead of using a single 10 X 1,024 decoder, we use two 5 X 32 decoders.
With the single decoder, we would need 1,024 AND gates with 10 inputs in each. In the
two-decoder case, we need 64 AND gates with S inputs in each. The five most significant
bits of the address go to input X and the five least significant bits go to input Y. Each
word within the memory array is selected by the coincidence of one X line and one Y
line. Thus, each word in memory is selected by the coincidence between 1 of 32 rows and
1 of 32 columns, for a total of 1,024 words. Note that each intersection represents a word
that may have any number of bits.

As an example, consider the word whose address is 404. The 10-bit binary equivalent
of 404 is 01100 10100. This makes X = 01100 (binary 12) and Y = 10100 (binary 20).
The n-bit word that is selected lies in the X decoder output number 12 and the Y decoder
output number 20. All the bits of the word are selected for reading or writing.

Address Multiplexing

The SRAM memory cell modeled in Fig. 7.5 typically contains six transistors. In order to
build memories with higher density, it is necessary to reduce the number of transistors in
a cell. The DRAM cell contains a single MOS transistor and a capacitor. The charge stored

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

310 Chapter 7 Memory and Programmable Logic

5 X 32 decoder

2 ~ 3—
I . binary address
S5X32 ’ 01100 10100
X decoder
12 X Y

31

FIGURE 7.7
Two-dimensional decoding structure for a 1K-word memory

on the capacitor discharges with time, and the memory cells must be periodically recharged
by refreshing the memory. Because of their simple cell structure, DRAM:s typically have
four times the density of SRAMs. This allows four times as much memory capacity to be
placed on a given size of chip. The cost per bit of DRAM storage is three to four times
less than that of SRAM storage. A further cost savings is realized because of the lower
power requirement of DRAM cells. These advantages make DRAM the preferred tech-
nology for large memories in personal digital computers. DRAM chips are available in
capacities from 64K to 256M bits. Most DRAMSs have a 1-bit word size, so several chips
have to be combined to produce a larger word size.

Because of their large capacity, the address decoding of DRAMs is arranged in a
two-dimensional array, and larger memories often have multiple arrays. To reduce the
number of pins in the IC package, designers utilize address multiplexing whereby one
set of address input pins accommodates the address components. In a two-dimensional
array, the address is applied in two parts at different times, with the row address first and
the column address second. Since the same set of pins is used for both parts of the
address, the size of the package is decreased significantly.

We will use a 64K-word memory to illustrate the address-multiplexing idea.
A diagram of the decoding configuration is shown in Fig. 7.8. The memory consists of

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.3 Memory Decoding 311

- 8-bit column
CAS 9 register
8 X 256
decoder
RAS (L l
. 8-bit 256 X 256
8-bit row & X 2 memory [<— Read/Write
address . decoder
register cell array
Data Data
in out
FIGURE 7.8

Address multiplexing for a 64K DRAM

a two-dimensional array of cells arranged into 256 rows by 256 columns, for a total of
28 x 28 = 21 = 64K words. There is a single data input line, a single data output line,
and a read/write control, as well as an eight-bit address input and two address strobes,
the latter included for enabling the row and column address into their respective regis-
ters. The row address strobe (RAS) enables the eight-bit row register, and the column
address strobe (CAS) enables the eight-bit column register. The bar on top of the name
of the strobe symbol indicates that the registers are enabled on the zero level of the
signal.

The 16-bit address is applied to the DRAM in two steps using RAS and CAS. Initially,
both strobes are in the 1 state. The 8-bit row address is applied to the address inputs and
RAS is changed to 0. This loads the row address into the row address register. RAS also
enables the row decoder so that it can decode the row address and select one row of the
array. After a time equivalent to the settling time of the row selection, RAS goes back
to the 1 level. The 8-bit column address is then applied to the address inputs, and CAS
is driven to the 0 state. This transfers the column address into the column register and

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

312 Chapter 7 Memory and Programmable Logic

enables the column decoder. Now the two parts of the address are in their respective
registers, the decoders have decoded them to select the one cell corresponding to the
row and column address, and a read or write operation can be performed on that cell.
CAS must go back to the 1 level before initiating another memory operation.

7.4 ERROR DETECTION AND CORRECTION

The dynamic physical interaction of the electrical signals affecting the data path of a
memory unit may cause occasional errors in storing and retrieving the binary informa-
tion. The reliability of a memory unit may be improved by employing error-detecting
and error-correcting codes. The most common error detection scheme is the parity bit.
(See Section 3.9.) A parity bit is generated and stored along with the data word in
memory. The parity of the word is checked after reading it from memory. The data word
is accepted if the parity of the bits read out is correct. If the parity checked results in an
inversion, an error is detected, but it cannot be corrected.

An error-correcting code generates multiple parity check bits that are stored with
the data word in memory. Each check bit is a parity over a group of bits in the data
word. When the word is read back from memory, the associated parity bits are also
read from memory and compared with a new set of check bits generated from the data
that have been read. If the check bits are correct, no error has occurred. If the check
bits do not match the stored parity, they generate a unique pattern, called a syndrome,
that can be used to identify the bit that is in error. A single error occurs when a bit
changes in value from 1 to 0 or from O to 1 during the write or read operation. If the
specific bit in error is identified, then the error can be corrected by complementing
the erroneous bit.

Hamming Code

One of the most common error-correcting codes used in RAMs was devised by R. W.
Hamming. In the Hamming code, k parity bits are added to an n-bit data word, forming
anew word of n + k bits. The bit positions are numbered in sequence from 1 ton + k.
Those positions numbered as a power of 2 are reserved for the parity bits. The remain-
ing bits are the data bits. The code can be used with words of any length. Before giving
the general characteristics of the code, we will illustrate its operation with a data word
of eight bits.

Consider, for example, the 8-bit data word 11000100. We include 4 parity bits with
the 8-bit word and arrange the 12 bits as follows:

Bit position: 1 2 3 4 5 6 7 8 9 10 11 12
P, P, 1 P, 1 0 0 Py 0 1 0 0

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.4 Error Detection and Correction 313

The 4 parity bits, Py, P,, P4, and Pg, are in positions 1, 2, 4, and 8, respectively. The 8 bits
of the data word are in the remaining positions. Each parity bit is calculated as follows:

P, = XOR of bits (3,5,7,9,11) = 1 ®1©0S0S0 = 0
P, = XOR of bits (3,5,7,10,11) = 1 ®0©0S1®0 = 0
P, = XOR of bits (5,6,7,12) = 1®0©00 = 1

Py = XOR of bits (9,10,11,12) = 0@ 1©0®0 = 1

Remember that the exclusive-OR operation performs the odd function: It is equal to 1
for an odd number of 1’s in the variables and to O for an even number of 1’s. Thus, each
parity bit is set so that the total number of 1’s in the checked positions, including the
parity bit, is always even.

The 8-bit data word is stored in memory together with the 4 parity bits as a 12-bit
composite word. Substituting the 4 P bits in their proper positions, we obtain the 12-bit
composite word stored in memory:

0 0 1 1 1 0 0 1 0 1 0 0
Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

When the 12 bits are read from memory, they are checked again for errors. The parity is
checked over the same combination of bits, including the parity bit. The 4 check bits are
evaluated as follows:

C, = XOR of bits (1,3,5,7,9, 11)

C, = XOR of bits (2,3, 6,7, 10, 11)
C, = XOR of bits (4,5, 6,7, 12)

Cs = XOR of bits (8,9, 10, 11, 12)

A 0 check bit designates even parity over the checked bits and a 1 designates odd parity.
Since the bits were stored with even parity, the result, C = C3C,C,C; = 0000, indicates
that no error has occurred. However,if C # 0, then the 4-bit binary number formed by
the check bits gives the position of the erroneous bit. For example, consider the following
three cases:

Bit position: 1 2 3 4 5 6 7 8 9 10 11 12
0O 0 1 1 1 0O 0 1 0 1 0 0 Noerror
i o 1 1 1 0 O 1 0 1 0 O Errorinbitl
o o 1 1 o0 O O 1T O 1 0 0 Errorinbit5s

In the first case, there is no error in the 12-bit word. In the second case, there is an
error in bit position number 1 because it changed from 0 to 1. The third case shows

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

314 Chapter 7 Memory and Programmable Logic

an error in bit position 5, with a change from 1 to 0. Evaluating the XOR of the corre-
sponding bits, we determine the 4 check bits to be as follows:

Cg Cy G, C
For no error: 0 0 0 0
With error in bit 1: 0
With error in bit 5: 0 1 0 1

Thus, for no error, we have C = 0000; with an error in bit 1, we obtain C = 0001; and with
an error in bit 5, we get C = 0101. When the binary number C is not equal to 0000, it gives
the position of the bit in error. The error can be corrected by complementing the corre-
sponding bit. Note that an error can occur in the data word or in one of the parity bits.

The Hamming code can be used for data words of any length. In general, the Ham-
ming code consists of k check bits and n data bits, for a total of n + k bits. The syndrome
value C consists of k bits and has a range of 2 values between 0 and 2 — 1. One of
these values, usually zero, is used to indicate that no error was detected, leaving 2k —1
values to indicate which of the n + k bits was in error. Each of these 2¢ — 1 values can
be used to uniquely describe a bit in error. Therefore, the range of k must be equal to
or greater than n + k, giving the relationship

—1=n+k
Solving for n in terms of k, we obtain
2 ~1-k=n

This relationship gives a formula for establishing the number of data bits that can be
used in conjunction with k check bits. For example, when k = 3, the number of data bits
thatcanbe usedisn = (2> — 1 — 3) = 4. Fork = 4, we have2* — 1 — 4 = 11, giving
n = 11. The data word may be less than 11 bits, but must have at least 5 bits; otherwise,
only 3 check bits will be needed. This justifies the use of 4 check bits for the 8 data bits
in the previous example. Ranges of n for various values of k are listed in Table 72.

The grouping of bits for parity generation and checking can be determined from a
list of the binary numbers from 0 through 2% — 1. The least significant bit is a 1 in the
binary numbers 1,3, 5,7 and so on. The second significant bit is a 1 in the binary numbers

Table 7.2
Range of Data Bits for k Check Bits
Number of Check Bits, k Range of Data Bits, n

3 2-4
4 5-11
5 12-26
6 27-57
7 58-120

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.5 Read-Only Memory 315

2,3, 6,7 and so on. Comparing these numbers with the bit positions used in generating
and checking parity bits in the Hamming code, we note the relationship between the bit
groupings in the code and the position of the 1-bits in the binary count sequence. Note
that each group of bits starts with a number that is a power of 2: 1,2, 4, §, 16, etc. These
numbers are also the position numbers for the parity bits.

Single-Error Correction, Double-Error Detection

The Hamming code can detect and correct only a single error. By adding another parity
bit to the coded word, the Hamming code can be used to correct a single error and detect
double errors. If we include this additional parity bit, then the previous 12-bit coded
word becomes 001110010100P;3, where P35 is evaluated from the exclusive-OR of the
other 12 bits. This produces the 13-bit word 0011100101001 (even parity). When the
13-bit word is read from memory, the check bits are evaluated, as is the parity P over
the entire 13 bits. If P = 0, the parity is correct (even parity), but if P = 1, then the
parity over the 13 bits is incorrect (odd parity). The following four cases can arise:

If C = 0and P = 0, no error occurred.
If C # 0and P = 1, a single error occurred that can be corrected.

If C # 0and P = 0, a double error occurred that is detected, but that cannot be
corrected.

If C = 0and P = 1, an error occurred in the Py bit.

This scheme may detect more than two errors, but is not guaranteed to detect all such
errors.

Integrated circuits use a modified Hamming code to generate and check parity bits
for single-error correction and double-error detection. The modified Hamming code
uses a more efficient parity configuration that balances the number of bits used to cal-
culate the XOR operation. A typical integrated circuit that uses an 8-bit data word and
a 5-bit check word is IC type 74637 Other integrated circuits are available for data words
of 16 and 32 bits. These circuits can be used in conjunction with a memory unit to correct
a single error or detect double errors during write and read operations.

7.5 READ-ONLY MEMORY

A read-only memory (ROM) is essentially a memory device in which permanent binary
information is stored. The binary information must be specified by the designer and is
then embedded in the unit to form the required interconnection pattern. Once the pat-
tern is established, it stays within the unit even when power is turned off and on again.

A block diagram of a ROM consisting of k inputs and » outputs is shown in Fig. 7.9.
The inputs provide the address for memory, and the outputs give the data bits of the
stored word that is selected by the address. The number of words in a ROM is deter-
mined from the fact that k address input lines are needed to specify 2¥ words. Note that
ROM does not have data inputs, because it does not have a write operation. Integrated

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

316 Chapter 7 Memory and Programmable Logic

2k X n

k inputs (address) —>
ROM

—> n outputs (data)

FIGURE 7.9
ROM block diagram

circuit ROM chips have one or more enable inputs and sometimes come with three-state
outputs to facilitate the construction of large arrays of ROM.

Consider, for example, a 32 X 8§ ROM. The unit consists of 32 words of 8 bits each.
There are five input lines that form the binary numbers from 0 through 31 for the
address. Figure 710 shows the internal logic construction of this ROM. The five inputs
are decoded into 32 distinct outputs by means of a 5 X 32 decoder. Each output of the
decoder represents a memory address. The 32 outputs of the decoder are connected to
each of the eight OR gates. The diagram shows the array logic convention used in com-
plex circuits. (See Fig. 6.1.) Each OR gate must be considered as having 32 inputs. Each
output of the decoder is connected to one of the inputs of each OR gate. Since each OR
gate has 32 input connections and there are 8 OR gates, the ROM contains 32 X 8§ = 256
internal connections. In general, a 2 X n ROM will have an internal k X 2% decoder
and n OR gates. Each OR gate has 2¥ inputs, which are connected to each of the outputs
of the decoder.

0

1
I 5
I 3
L 5X32 ’

decoder

I 28
n 29

30

31

A, Ay As A, Ay A, AL A

FIGURE 7.10

Internal logic of a 32 X 8 ROM

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.5 Read-Only Memory 317

The 256 intersections in Fig. 710 are programmable. A programmable connection
between two lines is logically equivalent to a switch that can be altered to be either
closed (meaning that the two lines are connected) or open (meaning that the two
lines are disconnected). The programmable intersection between two lines is some-
times called a crosspoint. Various physical devices are used to implement crosspoint
switches. One of the simplest technologies employs a fuse that normally connects the
two points, but is opened or “blown” by the application of a high-voltage pulse into
the fuse.

The internal binary storage of a ROM is specified by a truth table that shows the
word content in each address. For example, the content of a 32 X 8§ ROM may be
specified with a truth table similar to the one shown in Table 7.3. The truth table shows
the five inputs under which are listed all 32 addresses. Each address stores a word of
8 bits, which is listed in the outputs columns. The table shows only the first four and
the last four words in the ROM. The complete table must include the list of all
32 words.

The hardware procedure that programs the ROM blows fuse links in accordance with
a given truth table. For example, programming the ROM according to the truth table
given by Table 73 results in the configuration shown in Fig. 7.11. Every 0 listed in the
truth table specifies the absence of a connection, and every 1 listed specifies a path that
is obtained by a connection. For example, the table specifies the eight-bit word 10110010
for permanent storage at address 3. The four 0’s in the word are programmed by blowing
the fuse links between output 3 of the decoder and the inputs of the OR gates associated
with outputs Ag, A3, Ay, and A. The four 1’s in the word are marked with a X to denote
a temporary connection, in place of a dot used for a permanent connection in logic
diagrams. When the input of the ROM is 00011, all the outputs of the decoder are 0
except for output 3, which is at logic 1. The signal equivalent to logic 1 at decoder output
3 propagates through the connections to the OR gate outputs of A7, As, A4, and A;. The
other four outputs remain at 0. The result is that the stored word 10110010 is applied to
the eight data outputs.

Table 7.3
ROM Truth Table (Partial)
Inputs Outputs

L I L LI A, As As Ay A A, A A
0 0 0 0 0 1 0 1 1 0 1 1 0
0 0 0 0 1 0 0 0 1 1 1 0 1
0 0 0 1 0 1 1 0 0 0 1 0 1
0 0 0 1 1 1 0 1 1 0 0 1 0
1 1 1 0 0 o o o 0o 1 0o 0o 1
1 1 1 0 1 1 1 1 0 0 0 1 0
1 1 1 1 0 0 1 0 0 1 0 1 0
1 1 1 1 1 0 0 1 1 0 0 1 1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

318 Chapter 7 Memory and Programmable Logic

0
1 !
2 %S %S %S
I — 3 I K
I —] 5X32
decoder
I — 28
I, — 29 2N K
30
31
Ay Ag As Ay As A, Ay A
FIGURE 7.11

Programming the ROM according to Table 7.3

Combinational Circuit Implementation

In Section 4.9, it was shown that a decoder generates the 2% minterms of the k input
variables. By inserting OR gates to sum the minterms of Boolean functions, we were
able to generate any desired combinational circuit. The ROM is essentially a device that
includes both the decoder and the OR gates within a single device to form a minterm
generator. By choosing connections for those minterms which are included in the func-
tion, the ROM outputs can be programmed to represent the Boolean functions of the
output variables in a combinational circuit.

The internal operation of a ROM can be interpreted in two ways. The first interpreta-
tion is that of a memory unit that contains a fixed pattern of stored words. The second
interpretation is that of a unit which implements a combinational circuit. From this point
of view, each output terminal is considered separately as the output of a Boolean func-
tion expressed as a sum of minterms. For example, the ROM of Fig. 711 may be consid-
ered to be a combinational circuit with eight outputs, each a function of the five input
variables. Output A5 can be expressed in sum of minterms as

A7(I4, 13, 12, I], Io) = E(O, 2, 3, ey 29)

(The three dots represent minterms 4 through 27 which are not specified in the figure.)
A connection marked with X in the figure produces a minterm for the sum. All other
crosspoints are not connected and are not included in the sum.

In practice, when a combinational circuit is designed by means of a ROM, it is not
necessary to design the logic or to show the internal gate connections inside the unit. All
that the designer has to do is specify the particular ROM by its IC number and provide
the applicable truth table. The truth table gives all the information for programming the
ROM. No internal logic diagram is needed to accompany the truth table.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.5 Read-Only Memory 319

EXAMPLE 7.1

Design a combinational circuit using a ROM. The circuit accepts a three-bit number and
outputs a binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases,
this is all that is needed. In other cases, we can use a partial truth table for the ROM by
utilizing certain properties in the output variables. Table 74 is the truth table for the
combinational circuit. Three inputs and six outputs are needed to accommodate all
possible binary numbers. We note that output B, is always equal to input A, so there
is no need to generate B, with a ROM, since it is equal to an input variable. Moreover,
output By is always 0, so this output is a known constant. We actually need to generate
only four outputs with the ROM; the other two are readily obtained. The minimum size
of ROM needed must have three inputs and four outputs. Three inputs specify eight
words, so the ROM must be of size 8§ X 4. The ROM implementation is shown in
Fig. 712. The three inputs specify eight words of four bits each. The truth table in
Fig. 712(b) specifies the information needed for programming the ROM. The block
diagram of Fig. 712(a) shows the required connections of the combinational circuit.

Table 7.4
Truth Table for Circuit of Example 7.1

Inputs Outputs
A B; B,

Decimal

>
N
>
°
o
n
o
N
o
-
[~}
]

el el e R e B e R an)
R OOR P, OO
—_ o RO R ORO
R, OO0 OO0
—OoO R PR OO OoOO
SO RPR O OOO
OSOR,r OO O RrR OO
[N eBeloNoNeNel el
—_ o R ORORO
O

®
(=]
S
(8]
e
>
(=}
>
®
S
>
®
(8]

B

B,

8 X 4 ROM

B,

F
R m oo OO
—_,OoOOoOR PR OO
HORORORO
[allaplies N e NNl Nan]
—OoORROoOOoOoO
OCOROROOO
O OO, OO

Bs

(a) Block diagram (b) ROM truth table

FIGURE 7.12
ROM implementation of Example 7.1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

320 Chapter 7 Memory and Programmable Logic

Types of ROMs

The required paths in a ROM may be programmed in four different ways. The first
is called mask programming and is done by the semiconductor company during the
last fabrication process of the unit. The procedure for fabricating a ROM requires
that the customer fill out the truth table he or she wishes the ROM to satisfy. The
truth table may be submitted in a special form provided by the manufacturer or in
a specified format on a computer output medium. The manufacturer makes the cor-
responding mask for the paths to produce the 1’s and 0’s according to the customer’s
truth table. This procedure is costly because the vendor charges the customer a
special fee for custom masking the particular ROM. For this reason, mask program-
ming is economical only if a large quantity of the same ROM configuration is to be
ordered.

For small quantities, it is more economical to use a second type of ROM called pro-
grammable read-only memory, or PROM. When ordered, PROM units contain all the
fuses intact, giving all 1’s in the bits of the stored words. The fuses in the PROM are
blown by the application of a high-voltage pulse to the device through a special pin.
A blown fuse defines a binary 0 state and an intact fuse gives a binary 1 state. This pro-
cedure allows the user to program the PROM in the laboratory to achieve the desired
relationship between input addresses and stored words. Special instruments called
PROM programmers are available commercially to facilitate the procedure. In any case,
all procedures for programming ROMs are hardware procedures, even though the word
programming is used.

The hardware procedure for programming ROMs or PROMs is irreversible, and once
programmed, the fixed pattern is permanent and cannot be altered. Once a bit pattern
has been established, the unit must be discarded if the bit pattern is to be changed. A
third type of ROM is the erasable PROM, or EPROM, which can be restructured to the
initial state even though it has been programmed previously. When the EPROM is
placed under a special ultraviolet light for a given length of time, the shortwave radiation
discharges the internal floating gates that serve as the programmed connections. After
erasure, the EPROM returns to its initial state and can be reprogrammed to a new set
of values.

The fourth type of ROM is the electrically erasable PROM (EEPROM or E?PROM).
This device is like the EPROM, except that the previously programmed connections can
be erased with an electrical signal instead of ultraviolet light. The advantage is that the
device can be erased without removing it from its socket.

Flash memory devices are similar to EEPROMSs, but have additional built-in circuitry
to selectively program and erase the device in-circuit, without the need for a special
programmer. They have widespread application in modern technology in cell phones,
digital cameras, set-top boxes, digital TV, telecommunications, nonvolatile data storage,
and microcontrollers. Their low consumption of power makes them an attractive storage
medium for laptop and notebook computers. Flash memories incorporate additional
circuitry, too, allowing simultaneous erasing of blocks of memory, for example, of size
16 to 64 K bytes. Like EEPROMs, flash memories are subject to fatigue, typically having
about 10° block erase cycles.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.6 Programmable Logic Array 321

Fixed bl
Inputs —————————>| AND array programmable {6y
OR array
(decoder)

(a) Programmable read-only memory (PROM)

Inputs ——— >

programmable
AND array

Fixed
OR array

——> Outputs

(b) Programmable array logic (PAL)

Inputs ———

programmable
AND array

programmable
OR array

——> Outputs

(c) Programmable logic array (PLA)
FIGURE 7.13
Basic configuration of three PLDs

Combinational PLDs

The PROM is a combinational programmable logic device (PLD)—an integrated circuit
with programmable gates divided into an AND array and an OR array to provide an
AND-OR sum-of-product implementation. There are three major types of combina-
tional PLDs, differing in the placement of the programmable connections in the AND-
OR array. Figure 7.13 shows the configuration of the three PLDs. The PROM has a fixed
AND array constructed as a decoder and a programmable OR array. The programmable
OR gates implement the Boolean functions in sum-of-minterms form. The PAL has a
programmable AND array and a fixed OR array. The AND gates are programmed to
provide the product terms for the Boolean functions, which are logically summed in each
OR gate. The most flexible PLD is the PLA, in which both the AND and OR arrays can
be programmed. The product terms in the AND array may be shared by any OR gate
to provide the required sum-of-products implementation. The names PAL and PLA
emerged from different vendors during the development of PLDs. The implementation
of combinational circuits with PROM was demonstrated in this section. The design of
combinational circuits with PLA and PAL is presented in the next two sections.

7.6 PROGRAMMABLE LOGIC ARRAY

The PLA is similar in concept to the PROM, except that the PLA does not provide full
decoding of the variables and does not generate all the minterms. The decoder is
replaced by an array of AND gates that can be programmed to generate any product

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

322 Chapter 7 Memory and Programmable Logic

term of the input variables. The product terms are then connected to OR gates to pro-
vide the sum of products for the required Boolean functions.

The internal logic of a PLA with three inputs and two outputs is shown in Fig. 7.14.
Such a circuit is too small to be useful commercially, but is presented here to demonstrate
the typical logic configuration of a PLA.The diagram uses the array logic graphic symbols
for complex circuits. Each input goes through a buffer—inverter combination, shown in the
diagram with a composite graphic symbol, that has both the true and complement outputs.
Each input and its complement are connected to the inputs of each AND gate, as indicated
by the intersections between the vertical and horizontal lines. The outputs of the AND
gates are connected to the inputs of each OR gate. The output of the OR gate goes to an
XOR gate, where the other input can be programmed to receive a signal equal to either
logic 1 or logic 0. The output is inverted when the XOR input is connected to 1 (since
x®1 = x'). The output does not change when the XOR input is connected to 0 (since
x @0 = x).The particular Boolean functions implemented in the PLA of Fig. 714 are

F, = AB' + AC + A'BC’
F, = (AC + BC)’

AB'’

A'BC’

SISICAE

T

C CB B A A

Fy

0
1
-
H — F
7

FIGURE 7.14
PLA with three inputs, four product terms, and two outputs

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.6 Programmable Logic Array 323

The product terms generated in each AND gate are listed along the output of the gate
in the diagram. The product term is determined from the inputs whose crosspoints are
connected and marked with a X. The output of an OR gate gives the logical sum of
the selected product terms. The output may be complemented or left in its true form,
depending on the logic being realized.

The fuse map of a PLA can be specified in a tabular form. For example, the program-
ming table that specifies the PLA of Fig. 714 is listed in Table 75. The PLA programming
table consists of three sections. The first section lists the product terms numerically. The
second section specifies the required paths between inputs and AND gates. The third
section specifies the paths between the AND and OR gates. For each output variable,
we may have a T (for true) or C (for complement) for programming the XOR gate. The
product terms listed on the left are not part of the table; they are included for reference
only. For each product term, the inputs are marked with 1,0, or — (dash). If a variable
in the product term appears in the form in which it is true, the corresponding input vari-
able is marked with a 1. If it appears complemented, the corresponding input variable
is marked with a 0. If the variable is absent from the product term, it is marked with a
dash.

The paths between the inputs and the AND gates are specified under the column head
“Inputs” in the programming table. A 1 in the input column specifies a connection from
the input variable to the AND gate. A 0 in the input column specifies a connection from
the complement of the variable to the input of the AND gate. A dash specifies a blown
fuse in both the input variable and its complement. It is assumed that an open terminal
in the input of an AND gate behaves like a 1.

The paths between the AND and OR gates are specified under the column head
“Outputs.” The output variables are marked with 1’s for those product terms which
are included in the function. Each product term that has a 1 in the output column
requires a path from the output of the AND gate to the input of the OR gate. Those
marked with a dash specify a blown fuse. It is assumed that an open terminal in the
input of an OR gate behaves like a 0. Finally, a T (true) output dictates that the other
input of the corresponding XOR gate be connected to 0, and a C (complement)
specifies a connection to 1.

Table 7.5
PLA Programming Table
Outputs
Inputs (M (©
Product Term A B C F, F,
AB' 1 1 0 — 1 —
AC 2 1 — 1 1 1
BC 3 — 1 1 — 1
A'BC’ 4 0 1 0 1 —

Note: See text for meanings of dashes.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

324 Chapter 7 Memory and Programmable Logic

The size of a PLA is specified by the number of inputs, the number of product terms,
and the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48
product terms, and eight outputs. For # inputs, k product terms, and m outputs, the inter-
nal logic of the PLA consists of n buffer—inverter gates, k AND gates, m OR gates, and
m XOR gates. There are 2n X k connections between the inputs and the AND array,
k X m connections between the AND and OR arrays, and m connections associated
with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal con-
nections of the unit as was done in Fig. 7.14. All that is needed is a PLA programming
table from which the PLA can be programmed to supply the required logic. As with a
ROM, the PLA may be mask programmable or field programmable. With mask pro-
gramming, the customer submits a PLA program table to the manufacturer. This table
is used by the vendor to produce a custom-made PLA that has the required internal
logic specified by the customer. A second type of PLA that is available is the field-
programmable logic array, or FPLA, which can be programmed by the user by means
of a commercial hardware programmer unit.

In implementing a combinational circuit with a PLA, careful investigation must be
undertaken in order to reduce the number of distinct product terms, since a PLA has a
finite number of AND gates. This can be done by simplifying each Boolean function to
a minimum number of terms. The number of literals in a term is not important, since all
the input variables are available anyway. Both the true value and the complement of
each function should be simplified to see which one can be expressed with fewer prod-
uct terms and which one provides product terms that are common to other functions.

EXAMPLE 7.2

Implement the following two Boolean functions with a PLA:
Fi(A,B,C) = 2(0,1,2,4)
F,(A,B,C) = 2(0,5,6,7)

The two functions are simplified in the maps of Fig. 715. Both the true value and the
complement of the functions are simplified into sum-of-products form. The combination
that gives the minimum number of product terms is

F, = (AB + AC + BC)’
and
F,=AB + AC + A'B'C’

This combination gives four distinct product terms: AB, AC, BC,and A'B’'C’'.The PLA
programming table for the combination is shown in the figure. Note that output Fj is
the true output, even though a C is marked over it in the table. This is because F; is
generated with an AND-OR circuit and is available at the output of the OR gate. The
XOR gate complements the function to produce the true F; output.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.7 Programmable Array Logic 325

PLA programming table BC B BC B
Outputs 00 01 11 10 A 00 01 11 10
Product Inputs (©) () 0 ’"“1 ’"11 m30 ’”zl . mol m.O m30 mZO
term 4 BpCc F F
my ms my mg my ms m, mg
AB 1 11 - 1 1 441 1 0 0 0 A<l1 0 . . |
AC 2 1 -1 1 1
BC 3 - 11 1 - S — S —;
A'B'C' 4 000 - 1 C C
FIGURE 7.15

Solution to Example 7.2
|

The combinational circuit used in Example 7.2 is too simple for implementing with
a PLA. It was presented merely for purposes of illustration. A typical PLA has a large
number of inputs and product terms. The simplification of Boolean functions with so
many variables should be carried out by means of computer-assisted simplification pro-
cedures. The computer-aided design (CAD) program simplifies each function and its
complement to a minimum number of terms. The program then selects a minimum
number of product terms that cover all functions in the form in which they are true or
in their complemented form. The PLA programming table is then generated and the
required fuse map obtained. The fuse map is applied to an FPLA programmer that goes
through the hardware procedure of blowing the internal fuses in the integrated circuit.

7.7 PROGRAMMABLE ARRAY LOGIC

The PAL is a programmable logic device with a fixed OR array and a programmable
AND array. Because only the AND gates are programmable, the PAL is easier to pro-
gram than, but is not as flexible as, the PLA. Figure 716 shows the logic configuration of
a typical PAL with four inputs and four outputs. Each input has a buffer—inverter gate,
and each output is generated by a fixed OR gate. There are four sections in the unit,
each composed of an AND-OR array that is three wide, the term used to indicate that
there are three programmable AND gates in each section and one fixed OR gate. Each
AND gate has 10 programmable input connections, shown in the diagram by 10 vertical
lines intersecting each horizontal line. The horizontal line symbolizes the multiple-input
configuration of the AND gate. One of the outputs is connected to a buffer—inverter
gate and then fed back into two inputs of the AND gates.

Commercial PAL devices contain more gates than the one shown in Fig. 7.16. A typical
PAL integrated circuit may have eight inputs, eight outputs, and eight sections, each con-
sisting of an eight-wide AND-OR array. The output terminals are sometimes driven by
three-state buffers or inverters.

In designing with a PAL, the Boolean functions must be simplified to fit into each
section. Unlike the situation with a PLA, a product term cannot be shared among two
or more OR gates. Therefore, each function can be simplified by itself, without regard

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

326 Chapter 7 Memory and Programmable Logic

AND gates inputs
Product 1 2 3 45 6 7 8 9 10
term _l
1
3 j_ru
- — .
4 jlm
5 B
6 j_ru
s
7 jlm
9 j_ru
3
” S
: B
. j_r//
—

1 2 3 4 5 6 7 8 9 10

FIGURE 7.16
PAL with four inputs, four outputs, and a three-wide AND-OR structure

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.7 Programmable Array Logic 327

to common product terms. The number of product terms in each section is fixed, and if
the number of terms in the function is too large, it may be necessary to use two sections
to implement one Boolean function.

As an example of using a PAL in the design of a combinational circuit, consider the
following Boolean functions, given in sum-of-minterms form:

w(A, B, C,D) = 3(2,12,13)

x(A,B,C,D) = 3(7,8,9, 10, 11, 12, 13, 14, 15)
y(A,B,C,D) = 3(0,2,3,4,5,6,7,8,10, 11, 15)
z(A, B,C,D) = 3(1,2,8,12,13)

Simplifying the four functions to a minimum number of terms results in the following
Boolean functions:

w = ABC' + A'B'CD’

x=A + BCD

y=A'B+CD + B'D'

z=ABC' + A'B'CD' + AC'D' + A'B'C'D
=w+ AC'D' + A'B'C'D

Note that the function for z has four product terms. The logical sum of two of these terms
is equal to w. By using wj, it is possible to reduce the number of terms for z from four to
three.

The PAL programming table is similar to the one used for the PLA, except that
only the inputs of the AND gates need to be programmed. Table 7.6 lists the PAL

Table 7.6
PAL Programming Table
AND Inputs
Product Term A B C D w Outputs

1 1 1 0 - - w = ABC' + A'B'CD’
2 0 0 1 0 —
3 - - o _
4 1 - - = = x=A+ BCD
5 — 1 1 1 —
6 - - o _
7 o 1 - - - y=AB+ CD + B'D'
8 — 1 1 —
9 — 0 — 0 —
10 - - = 1 z=w+ AC'D' + A'B'C'D
11 1 — 0 0 —
12 0 0 0 1 —

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

328 Chapter 7 Memory and Programmable Logic

AND gates inputs

Product A A B B C C D D w w

term _l
1

ﬁ
o

All fuses intact
(always = 0)

’
.

l =1

8 S * y
9

I3
” =
11— X 2 Z
L J
pe L jf/

D ;\6 X Fuse intact

+ Fuse blown

A A B B C C D D w w
FIGURE 7.17
Fuse map for PAL as specified in Table 7.6

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.8 Sequential Programmable Devices 329

programming table for the four Boolean functions. The table is divided into four sec-
tions with three product terms in each, to conform with the PAL of Fig. 7.16. The first
two sections need only two product terms to implement the Boolean function. The
last section, for output z, needs four product terms. Using the output from w, we can
reduce the function to three terms.

The fuse map for the PAL as specified in the programming table is shown in Fig. 717
For each 1 or 0 in the table, we mark the corresponding intersection in the diagram with
the symbol for an intact fuse. For each dash, we mark the diagram with blown fuses in both
the true and complement inputs. If the AND gate is not used, we leave all its input fuses
intact. Since the corresponding input receives both the true value and the complement of
each input variable, we have AA’ = 0 and the output of the AND gate is always 0.

As with all PLDs, the design with PALs is facilitated by using CAD techniques. The
blowing of internal fuses is a hardware procedure done with the help of special elec-
tronic instruments.

7.8 SEQUENTIAL PROGRAMMABLE DEVICES

Digital systems are designed with flip-flops and gates. Since the combinational PLD
consists of only gates, it is necessary to include external flip-flops when they are used in
the design. Sequential programmable devices include both gates and flip-flops. In this
way, the device can be programmed to perform a variety of sequential-circuit functions.
There are several types of sequential programmable devices available commercially, and
each device has vendor-specific variants within each type. The internal logic of these
devices is too complex to be shown here. Therefore, we will describe three major types
without going into their detailed construction:

1. Sequential (or simple) programmable logic device (SPLD)
2. Complex programmable logic device (CPLD)
3. Field-programmable gate array (FPGA)

The sequential PLD is sometimes referred to as a simple PLD to differentiate it from
the complex PLD. The SPLD includes flip-flops, in addition to the AND-OR array,
within the integrated circuit chip. The result is a sequential circuit as shown in Fig. 7.18.
A PAL or PLA is modified by including a number of flip-flops connected to form a
register. The circuit outputs can be taken from the OR gates or from the outputs of the

Inputs

AND-OR array o
(PAL or PLA) utputs
Flip-flops

FIGURE 7.18
Sequential programmable logic device

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

330 Chapter 7 Memory and Programmable Logic

flip-flops. Additional programmable connections are available to include the flip-flop
outputs in the product terms formed with the AND array. The flip-flops may be of the
D or the JK type.

The first programmable device developed to support sequential circuit implementation
is the field-programmable logic sequencer (FPLS). A typical FPLS is organized around a
PLA with several outputs driving flip-flops. The flip-flops are flexible in that they can be
programmed to operate as either the JK or the D type. The FPLS did not succeed com-
mercially, because it has too many programmable connections. The configuration mostly
used in an SPLD is the combinational PAL together with D flip-flops. A PAL that includes
flip-flops is referred to as a registered PAL, to signify that the device contains flip-flops in
addition to the AND-OR array. Each section of an SPLD is called a macrocell, which is
a circuit that contains a sum-of-products combinational logic function and an optional
flip-flop. We will assume an AND-OR sum-of-products function, but in practice, it can be
any one of the two-level implementations presented in Section 3.7

Figure 7.19 shows the logic of a basic macrocell. The AND-OR array is the same as
in the combinational PAL shown in Fig. 7.16. The output is driven by an edge-triggered
D flip-flop connected to a common clock input and changes state on a clock edge. The
output of the flip-flop is connected to a three-state buffer (or inverter) controlled by an
output-enable signal marked in the diagram as OFE. The output of the flip-flop is fed
back into one of the inputs of the programmable AND gates to provide the present-state
condition for the sequential circuit. A typical SPLD has from 8 to 10 macrocells within

CLK OE

JUUJUU
-

- r CLK
—=

N
i

FIGURE 7.19
Basic macrocell logic

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.8 Sequential Programmable Devices 331

one IC package. All the flip-flops are connected to the common CLK input, and all
three-state buffers are controlled by the OF input.

In addition to programming the AND array, a macrocell may have other program-
ming features. Typical programming options include the ability to either use or bypass
the flip-flop, the selection of clock edge polarity, the selection of preset and clear for the
register, and the selection of the true value or complement of an output. An XOR gate
is used to program a true/complement condition. Multiplexers select between two or
four distinct paths by programming the selection inputs.

The design of a digital system using PLDs often requires the connection of several
devices to produce the complete specification. For this type of application, it is more
economical to use a complex programmable logic device (CPLD), which is a collection
of individual PLDs on a single integrated circuit. A programmable interconnection
structure allows the PLDs to be connected to each other in the same way that can be
done with individual PLDs.

Figure 7.20 shows the general configuration of a CPLD. The device consists of mul-
tiple PLDs interconnected through a programmable switch matrix. The input—-output
(I/O) blocks provide the connections to the IC pins. Each I/O pin is driven by a three-
state buffer and can be programmed to act as input or output. The switch matrix receives
inputs from the I/O block and directs them to the individual macrocells. Similarly,
selected outputs from macrocells are sent to the outputs as needed. Each PLD typically
contains from 8 to 16 macrocells, usually fully connected. If a macrocell has unused
product terms, they can be used by other nearby macrocells. In some cases the macrocell
flip-flop is programmed to act as a D, JK, or T flip-flop.

Different manufacturers have taken different approaches to the general architecture
of CPLDs. Areas in which they differ include the individual PLDs (sometimes called

PLD PLD PLD PLD

1/0 1/0

Programmable switch matrix

block block

PLD PLD PLD PLD

FIGURE 7.20
General CPLD configuration

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

332 Chapter 7 Memory and Programmable Logic

function blocks), the type of macrocells, the I/O blocks, and the programmable intercon-
nection structure. The best way to investigate a vendor-specific device is to look at the
manufacturer’s literature.

The basic component used in VLSI design is the gate array, which consists of a pattern
of gates, fabricated in an area of silicon, that is repeated thousands of times until the entire
chip is covered with gates. Arrays of one thousand to several hundred thousand gates are
fabricated within a single IC chip, depending on the technology used. The design with
gate arrays requires that the customer provide the manufacturer the desired interconnec-
tion pattern. The first few levels of the fabrication process are common and independent
of the final logic function. Additional fabrication steps are required to interconnect the
gates according to the specifications given by the designer.

A field-programmable gate array (FPGA) is a VLSI circuit that can be programmed
at the user’s location. A typical FPGA consists of an array of millions of logic blocks,
surrounded by programmable input and output blocks and connected together via pro-
grammable interconnections. There is a wide variety of internal configurations within
this group of devices. The performance of each type of device depends on the circuit
contained in its logic blocks and the efficiency of its programmed interconnections.

A typical FPGA logic block consists of lookup tables, multiplexers, gates, and
flip-flops. A lookup table is a truth table stored in an SRAM and provides the com-
binational circuit functions for the logic block. These functions are realized from the
lookup table, in the same way that combinational circuit functions are implemented
with ROM, as described in Section 7.5. For example, a 16 X 2 SRAM can store the
truth table of a combinational circuit that has four inputs and two outputs. The
combinational logic section, along with a number of programmable multiplexers, is
used to configure the input equations for the flip-flop and the output of the logic
block.

The advantage of using RAM instead of ROM to store the truth table is that the table
can be programmed by writing into memory. The disadvantage is that the memory is
volatile and presents the need for the lookup table’s content to be reloaded in the event
that power is disrupted. The program can be downloaded either from a host computer
or from an onboard PROM. The program remains in SRAM until the FPGA is repro-
grammed or the power is turned off. The device must be reprogrammed every time
power is turned on. The ability to reprogram the FPGA can serve a variety of applica-
tions by using different logic implementations in the program.

The design with PLD, CPLD, or FPGA requires extensive computer-aided design
(CAD) tools to facilitate the synthesis procedure. Among the tools that are available
are schematic entry packages and hardware description languages (HDLs), such as
ABEL, VHDL, and Verilog. Synthesis tools are available that allocate, configure, and
connect logic blocks to match a high-level design description written in HDL. As an
example of CMOS FPGA technology, we will discuss the Xilinx FPGA..!

!'See www.Altera.com for an alternative CMOS FPGA architecture.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

www.Altera.com

Section 7.8 Sequential Programmable Devices 333

Xilinx FPGAs

Xilinx launched the world’s first commercial FPGA in 1985, with the vintage XC2000
device family.? The XC3000 and XC4000 families soon followed, setting the stage for
today’s Spartan™, and Virtex™ device families. Each evolution of devices brought
improvements in density, performance, power consumption, voltage levels, pin counts, and
functionality. For example, the Spartan family of devices initially offered a maximum of
40K system gates, but today’s Spartan-6 offers 150,000 logic cells plus 4.8Mb block RAM.

Basic Xilinx Architecture

The basic architecture of Spartan and earlier device families consists of an array of
configurable logic blocks (CLBs), a variety of local and global routing resources, and
input—output (I/O) blocks (IOBs), programmable I/O buffers, and an SRAM-based
configuration memory, as shown in Fig. 7.21.

10B 10B 10B 10B 10B
Switch Switch Switch
L Matrix Matrix Matrix oL
10B CLB CLB 10B
Switch Switch \ Switch
10B Matrix Matrix Matrix ow
10B CLB CLB 10B
Vertical
4 long line
Switch £ Switch Switch
e Matrix £ Matrix Matrix 118
10B 10B 10B 10B 10B
Horizontal
long line

FIGURE 7.21
Basic architecture of Xilinx Spartan and predecessor devices

2See www.Xilinx.com for detailed, up-to-date information about Xilinx products.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

www.Xilinx.com

334 Chapter 7 Memory and Programmable Logic

Configurable Logic Block (CLB)

Each CLB consists of a programmable lookup table, multiplexers, registers, and paths for
control signals, as shown in Fig. 722.Two of the function generators (F and G) of the lookup
table can generate any arbitrary function of four inputs, and the third (H) can generate any
Boolean function of three inputs. The H-function block can get its inputs from the F and
G lookup tables or from external inputs. The three function generators can be programmed
to generate (1) three different functions of three independent sets of variables (two with
four inputs and one with three inputs—one function must be registered within the CLB),
(2) an arbitrary function of five variables, (3) an arbitrary function of four variables together
with some functions of six variables, and (4) some functions of nine variables.

Each CLB has two storage devices that can be configured as edge-triggered flip-flops
with a common clock, or, in the XC4000X, they can be configured as flip-flops or as
transparent latches with a common clock (programmed for either edge and separately
invertible) and an enable. The storage elements can get their inputs from the function
generators or from the D;, input. The other element can get an external input from the
HI input. The function generators can also drive two outputs (X and Y) directly and
independently of the outputs of the storage elements. All of these outputs can be con-
nected to the interconnect network. The storage elements are driven by a global set/
reset during power-up; the global set/reset is programmed to match the programming
of the local S/R control for a given storage element.

Distributed RAM

The three function generators within a CLB can be used as either a 16 X 2 dual-port
RAM or a 32 X 1 single-port RAM. The XC4000 devices do not have block RAM, but
a group of their CLBs can form an array of memory. Spartan devices have block RAM
in addition to distributed RAM.

Interconnect Resources

A grid of switch matrices overlays the architecture of CLBs to provide general-purpose
interconnect for branching and routing throughout the device. The interconnect has
three types of general-purpose interconnects: single-length lines, double-length lines,
and long lines. A grid of horizontal and vertical single-length lines connects an array of
switch boxes that provide a reduced number of connections between signal paths within
each box, not a full crossbar switch. Each CLB has a pair of three-state buffers that can
drive signals onto the nearest horizontal lines above or below the CLB.

Direct (dedicated) interconnect lines provide routing between adjacent vertical and
horizontal CLBs in the same column or row. These are relatively high speed local con-
nections through metal, but are not as fast as a hardwired metal connection because of
the delay incurred by routing the signal paths through the transmission gates that con-
figure the path. Direct interconnect lines do not use the switch matrices, thus eliminating
the delay incurred on paths going through a matrix.’

3See Xilinx documentation for the pin-out conventions to establish local interconnects between CLBs.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Cl...C4

(1
s
~
/

H1 Dp/H2 SR/H, EC
g
o S/R
G4 o—] Losi % control
ogic F'
G3 e Function G’ _ . D sSD YO
G2 | of 7 Q
Gl & Gl1..G4 .=
) wn
c a
, E
L_| Logic N LD g
Function H' y — =
of F/, G', 1 N
and H1 %
o Y
w
S/R _8
At o] DI control K %
Logic F X0
F3 ®Function 4 Lo p SP 0 =
F2 e of [>—l>0—\ o
F1 «— F1...F4 v
| g
0
\| ECRrp S
L — :
3
1 o
. =3
(Clock) Note: Muxes without a select line o X)
are configured by the program memory. g
<
FIGURE 7.22 A
CLB architecture 2

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

GEE

336 Chapter 7 Memory and Programmable Logic

Configuration Control
Write

Read

Static RAM
Cell

Interconnect path

FIGURE 7.23
RAM cell controlling a PIP transmission gate

Double-length lines traverse the distance of two CLBs before entering a switch
matrix, skipping every other CLB. These lines provide a more efficient implementation
of intermediate-length connections by eliminating a switch matrix from the path, thereby
reducing the delay of the path.

Long lines span the entire array vertically and horizontally. They drive low-skew,
high-fan-out control signals. Long vertical lines have a programmable splitter that seg-
ments the lines and allows two independent routing channels spanning one-half of the
array, but located in the same column. The routing resources are exploited automatically
by the routing software. There are eight low-skew global buffers for clock distribution.

The signals that drive long lines are buffered. Long lines can be driven by adjacent
CLBs or IOBs and may connect to three-state buffers that are available to CLBs. Long
lines provide three-state buses within the architecture and implement wired-AND logic.
Each horizontal long line is driven by a three-state buffer and can be programmed to
connect to a pull-up resistor, which pulls the line to a logical 1 if no driver is asserted on
the line.

The programmable interconnect resources of the device connect CLBs and IOBs, either
directly or through switch boxes. These resources consist of a grid of two layers of metal
segments and programmable interconnect points (PIPs) within switch boxes. A PIP is a
CMOS transmission gate whose state (on or off) is determined by the content of a static
RAM cell in the programmable memory, as shown in Fig. 7.23. The connection is estab-
lished when the transmission gate is on (i.e., when a 1 is applied at the gate of the n-channel
transistor), and a 0 is applied at the gate of the p-channel transistor. Thus, the device can
be reprogrammed simply by changing the contents of the controlling memory cell.

The architecture of a PIP-based interconnection in a switch box is shown in Fig. 7.24,
which shows possible signal paths through a PIP. The configuration of CMOS transmis-
sion gates determines the connection between a horizontal line and the opposite hori-
zontal line and between the vertical lines at the connection. Each switch matrix PIP
requires six pass transistors to establish full connectivity.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.8 Sequential Programmable Devices 337

L

AR

|

FIGURE 7.24
Circuit for a programmable PIP

1/0 Block (10B)

Each programmable I/O pin has a programmable IOB having buffers for compatibility
with TTL and CMOS signal levels. Figure 7.25 shows a simplified schematic for a pro-
grammable IOB. It can be used as an input, an output, or a bidirectional port. An IOB
that is configured as an input can have direct, latched, or registered input. In an output
configuration, the IOB has direct or registered output. The output buffer of an IOB has
skew and slew control. The registers available to the input and output path of an IOB
are driven by separate, invertible clocks. There is a global set/reset.

Internal delay elements compensate for the delay induced when a clock signal passes
through a global buffer before reaching an IOB. This strategy eliminates the hold condi-
tion on the data at an external pin. The three-state output of an IOB puts the output
buffer in a high-impedance state. The output and the enable for the output can be
inverted. The slew rate of the output buffer can be controlled to minimize transients on
the power bus when noncritical signals are switched. The IOB pin can be programmed
for pull-up or pull-down to prevent needless power consumption and noise.

The devices have embedded logic to support the IEEE 1149.1 (JTAG) boundary scan
standard. There is an on-chip test access port (TAP) controller, and the I/O cells can be
configured as a shift register. Under testing, the device can be checked to verify that all
the pins on a PC board are connected and operate properly by creating a serial chain of
all of the I/O pins of the chips on the board. A master three-state control signal puts all
of the IOBs in high-impedance mode for board testing.

Enhancements

Spartan chips can accommodate embedded soft cores, and their on-chip distributed, dual-
port,synchronous RAM (SelectRAM) can be used to implement first-in, first-out register

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

338 Chapter 7 Memory and Programmable Logic

Slew rate Passive Vee
control pull-up

pull-down g

[>°] D O 1 1/0
0 I/ Ollgm PAD

il e | L

Input
buffer
] 3

I N
)

L

Input

clock {>C I
FIGURE 7.25
XC4000 series IOB

]
z . 5
Salel 3xi .
Aln=10] n i 2’ Ram arra E §
- e ST &
2 .
2
=
o
|
WE Write Read SPO
DO or DI control out
WCLK
FIGURE 7.26

Distributed RAM cell formed from a lookup table
files (FIFOs), shift registers, and scratchpad memories. The blocks can be cascaded to any
width and depth and located anywhere in the part, but their use reduces the CLBs avail-
able for logic. Figure 7.26 displays the structure of the on-chip RAM that is formed by

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.8 Sequential Programmable Devices 339
4
H
z
, =3 G : 8
AR =7 -‘qé 0 1 rRAM array % 0
Yos = : o
z D
an
L
=
o
=
WE Write Read ﬂ»
control out
D
WCLK ®7
H
E _ 16-) £ _ | DPRA[3:0]
-0 X - Q
O Q
-‘qé 5| | RAMarray % 5[
= : |4
L]
Write Read SPO
control out

FIGURE 7.27
Spartan dual-port RAM

programming a lookup table to implement a single-port RAM with synchronous write
and asynchronous read. Each CLB can be programmed as a 16 X 2 or 32 X 1 memory.

Dual-port RAMs are emulated in a Spartan device by the structure shown in Fig. 7.27,
which has a single (common) write port and two asynchronous read ports. A CLB can
form a memory having a maximum size of 16 X 1.

Xilinx Spartan XL FPGAs

Spartan XL chips are a further enhancement of Spartan chips, offering higher speed and
density (40,000 system gates, approximately 6,000 of which are usable) and on-chip,
distributed SelectR AM memory.* The lookup tables of the devices can implement 2%
different functions of » inputs.

The maximum number of logic gates for a Xilinx FPGA is an estimate of the maximum number of logic gates that
could be realized in a design consisting of only logic functions (no memory). Logic capacity is expressed in terms
of the number of two-input NAND gates that would be required to implement the same number and type of logic
functions (Xilinx App. Note).

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 7 Memory and Programmable Logic

Table 7.7

Attributes of the Xilinx Spartan XL Device Family
Spartan XL XCSO5/XL XCST10/XL XCS20/XL XCS30/XL XCS40/XL
System Gates' 2K-5K 3K-10K 7K-20K 10K-30K 13K—40K
Logic Cells 238 466 950 1,368 1,862
Max Logic Gates 3,000 5,000 10,000 13,000 20,000
Flip-Flops 360 616 1,120 1,536 2,016
Max RAM Bits 3,200 6,272 12,800 18,432 25,088
Max Avail I/O 77 112 160 192 224

120-30% of CLBs as RAM.
21 Logic cell = four-input lookup table + flip-flop.

The XL series is targeted for applications for which low cost,low power, low packag-
ing, and low test cost are important factors constraining the design. Spartan XL devices
offer up to 80-MHz system performance, depending on the number of cascaded lookup
tables, which reduce performance by introducing longer paths. Table 7.7 presents sig-
nificant attributes of devices in the Spartan XL family.

The architecture of the Spartan XL and earlier devices consists of an array of CLB
tiles mingled within an array of switch matrices, surrounded by a perimeter of IOBs.
These devices support only distributed memory, whose use reduces the number of
CLBs that could be used for logic. The relatively small amount of on-chip memory
limits the devices to applications in which operations with off-chip memory devices do
not compromise performance objectives. Beginning with the Spartan II series, Xilinx
supported configurable embedded block memory, as well as distributed memory in a
new architecture.

Xilinx Spartan Il FPGAs

STUDENTS-HUB.com

Aside from improvements in speed (200-MHz I/O switching frequency), density (up to
200,000 system gates) and operating voltage (2.5 V), four other features distinguish the
Spartan II devices from the Spartan devices: (1) on-chip block memory, (2) a novel
architecture, (3) support for multiple I/O standards, and (4) delay locked loops (DLLs).’

The Spartan II device family, manufactured in 0.22/0.18-um CMOS technology with
six layers of metal for interconnect, incorporates configurable block memory in addition
to the distributed memory of the previous generations of devices, and the block memory
does not reduce the amount of logic or distributed memory that is available for the

5 Spartan IT devices do not support low-voltage differential signaling (LVDS) or low-voltage positive emitter-coupled
logic (LVPECL) I/O standards.

Uploaded By: Malak Dar Obaid

Section 7.8 Sequential Programmable Devices 341
application. A large on-chip memory can improve system performance by eliminating
or reducing the need to access off-chip storage.

Reliable clock distribution is the key to the synchronous operation of high-speed
digital circuits. If the clock signal arrives at different times at different parts of a circuit,
the device may fail to operate correctly. Clock skew reduces the available time budget
of a circuit by lengthening the setup time at registers. It can also shorten the effective
hold-time margin of a flip-flop in a shift register and cause the register to shift incor-
rectly. At high clock frequencies (shorter clock periods), the effect of skew is more
significant because it represents a larger fraction of the clock cycle time. Buffered clock
trees are commonly used to minimize clock skew in FPGAs. Xilinx provides all-digital
DLLs for clock synchronization or management in high-speed circuits. DLLs eliminate
the clock distribution delay and provide frequency multipliers, frequency dividers, and
clock mirrors.

Spartan II devices are suitable for applications such as implementing the glue logic
of a video capture system and the glue logic of an ISDN modem. Device attributes are
summarized in Table 78, and the evolution of technology in the Spartan series is evident
in the data in Table 79.

Table 7.8
Spartan Il Device Attributes

Spartan Il FPGAs XC2$15 XC2530 XC2S50 XC2S100 XC25150 XC25200

System Gates' 6K-15K 13K-30K 23K-50K 37K-100K 52K-150K 71K-200K
Logic Cells® 432 972 1,728 2,700 3,888 5,292
Block RAM Bits 16,384 24,576 32,768 40,960 49,152 57344
Max Avail /O 86 132 176 196 260 284
120-30% of CLBs as RAM.
21 Logic cell = four-input lookup table + flip-flop.
Table 7.9
Comparison of the Spartan Device Families
Part Spartan Spartan XL Spartan Il
Architecture XC4000 Based XC4000 Based Virtex Based
Max # System Gates SK—-40K 5K—-40K 15K-200K
Memory Distributed RAM Distributed RAM Block + Distributed
1/0O Performance 80 MHz 100 MHz 200 MHz
1/O Standards 4 4 16
Core Voltage 5V 33V 25V
DLLs No No Yes

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

342 Chapter 7 Memory and Programmable Logic

000000000000 000000000000

o [LI ||
— ?: ::DD:: ::DD:: ?: —
H | 0] 1] Al
—— % — CLBs - —— —— CLBs — % — —
- w %] | |
o 2 S S -0 1
E N O O
/== § ::DD:: ::DD:: § —
H 1| = 1] 1] = 1[5
— ;f — — CBs — — — — CLBs — —— ;f ——
— 2] 5] —
) | | | o =
S 0 I ¢

o ool ool ol el e (][] 101 o

000000000000 000000000000

FIGURE 7.28

Spartan Il architecture

The top-level tiled architecture of the Spartan II device, shown in Fig. 7.28, marks
a new organization structure of the Xilinx parts. Each of four quadrants of CLBs is
supported by a DLL and is flanked by a 4,096-bit block® of RAM, and the periphery
of the chip is lined with IOBs.

Each CLB contains four logic cells, organized as a pair of slices. Each logic cell, shown
in Fig. 7.29, has a four-input lookup table, logic for carry and control, and a D-type
flip-flop. The CLB contains additional logic for configuring functions of five or six inputs.

The Spartan II part family provides the flexibility and capacity of an on-chip block
RAM;in addition, each lookup table can be configured as a 16 X 1 RAM (distributed),
and the pair of lookup tables in a logic cell can be configured as a 16 X 2 bit RAM or
a 32 X 1bit RAM.

The IOBs of the Spartan II family are individually programmable to support the
reference, output voltage, and termination voltages of a variety of high-speed memory

SParts are available with up to 14 blocks (56K bits).

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.8 Sequential Programmable Devices 343

Logic Cell
[cour
YB
B
G4 14 S
Lookup D Q YO
G3 I3 Table Ly
O and CK
62— oo
— EC R
Gl 11 T
F5IN
BY i
SR
XB
| x
D S
F4 14 Ciniy Q X0
Lookup and
F3 I3 Table CK
Control
1) I Logic L EC R
FI 11 !
BX
CIN | |
CLK
CE
FIGURE 7.29

Spartan Il CLB slice

and bus standards. (See Fig. 730.) Each IOB has three registers that can function as
D-type flip-flops or as level-sensitive latches. One register (7FF) can be used to reg-
ister the signal that (synchronously) controls the programmable output buffer. A sec-
ond register (OFF) can be programmed to register a signal from the internal logic.
(Alternatively, a signal from the internal logic can pass directly to the output buffer.)
The third device can register the signal coming from the I/O pad. (Alternatively, this

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

344 Chapter 7 Memory and Programmable Logic

1L
D SR o Veco
TFF -
CLK CK | Package Pin |
TCE EC vee
N OE Programmable 1/0
SR |~ Bias & Package Pin
ESD Network
o iy S Q Programmable
OFF output buffer
CK Internal
Reference
OCE EC
Programmable
10 J Delay 1/0
1 D SR g Package Pin
IFE Programmable
CK input buffer
ICE — EC
To Other To Next
External 1/0
VREF
Inputs of
Banks
FIGURE 7.30
Spartan Il IOB

signal can pass directly to the internal logic.) A common clock drives each register,
but each has an independent clock enable. A programmable delay element on the
input path can be used to eliminate the pad-to-pad hold time.

Xilinx Virtex FPGAs

The Virtex device series’ is the leading edge of Xilinx technology. This family of
devices addresses four key factors that influence the solution to complex system-level
and system-on-chip designs: (1) the level of integration, (2) the amount of embedded
memory, (3) performance (timing), and (4) subsystem interfaces. The family targets
applications requiring a balance of high-performance logic, serial connectivity, signal
processing, and embedded processing (e.g., wireless communications). Process rules

7 Virtex, Virtex-1I, I1 Platform, II-Pro/Pro X, and Virtex-5 Multi-Platform FPGA.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 7.8 Sequential Programmable Devices 345

IOB\

Gl v ([T (10 (o] [TD (D (D M0 o] MDD
2 : —
~llB ~llB]
g|le e =
d|E d|E —
2 2 -

1 | 1B

- CLBs ——— - CLBs - —r—r CLBs — %

| . | S |]

< < |

~ (| = | = |

5|2 5|2 —

L& R L |

PE B]

e E —

e ke -

[aa)] [as] —

[] - [] - [] :
[] [] []
]] L]

DCM: Clock Manager

FIGURE 7.31
Virtex Il overall architecture

for leading-edge Virtex parts stand at 65 nm, with a 1-V operating voltage. The rules
allow up to 330,000 logic cells and over 200,000 internal flip-flops with clock enable,
together with over 10 Mb of block RAM, and 550-MHz clock technology packed into
a single die.

The Virtex family incorporates physical (electrical) and protocol support for
20 different I/0O standards, including LVDS and LVPECL, with individually program-
mable pins. Up to 12 digital clock managers provide support for frequency synthesis
and phase shifting in synchronous applications requiring multiple clock domains and
high-frequency I/O. The Virtex architecture is shown in Fig. 7.31, and its IOB is shown
in Fig. 7.32.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

346 Chapter 7 Memory and Programmable Logic

10B

Reg | DDR mux

OCK1 Input
1 Reg
Reg
ICK1
OCK2| 3-State
1 Reg
1CK2
Reg | DDR mux
OCK1
|l\ PAD
Reg

0OCK2 3-State

FIGURE 7.32
Virtex 10B block

PROBLEMS

Answers to problems marked with * appear at the end of the book.

7.1 The memory units that follow are specified by the number of words times the number of
bits per word. How many address lines and input—output data lines are needed in each

case?
(a) 8K X 16 (b) 2G X 8
(c) 16M X 32 (d) 256K X 64

7.2* Give the number of bytes stored in the memories listed in Problem 71.

7.3* Word number 563 in the memory shown in Fig. 73 contains the binary equivalent of 1,212.
List the 10-bit address and the 16-bit memory content of the word.

7.4 Show the memory cycle timing waveforms for the write and read operations. Assume a
CPU clock of 150 MHz and a memory cycle time of 20 ns.

7.5 Write a test bench for the ROM described in Example 71. The test program stores binary
7 in address 5 and binary 5 in address 7 Then the two addresses are read to verify their
stored contents.

7.6 Enclose the 4 X 4 RAM of Fig. 76 in a block diagram showing all inputs and outputs.
Assuming three-state outputs, construct an 8§ X 8 memory using four 4 X 4 RAM units.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 347

7.7% A 16K X 4 memory uses coincident decoding by splitting the internal decoder into
X-selection and Y-selection.
(a) What is the size of each decoder, and how many AND gates are required for decoding
the address?
(b) Determine the X and Y selection lines that are enabled when the input address is the
binary equivalent of 6,000.

7.8% (a) How many 32K X 8 RAM chips are needed to provide a memory capacity of 256K
bytes?
(b) How many lines of the address must be used to access 256K bytes? How many of these
lines are connected to the address inputs of all chips?
(c) How many lines must be decoded for the chip select inputs? Specify the size of the
decoder.

7.9 A DRAM chip uses two-dimensional address multiplexing. It has 13 common address pins,
with the row address having one bit more than the column address. What is the capacity
of the memory?

7.10% Given the 8-bit data word 01011011, generate the 13-bit composite word for the Hamming
code that corrects single errors and detects double errors.

7.11% Obtain the 15-bit Hamming code word for the 11-bit data word 11001001010.

7.12* A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from
memory. What was the original 8-bit data word that was written into memory if the 12-bit
word read out is as follows:

(a) 000011101010 (b) 101110000110
(c) 101111110100

7.13* How many parity check bits must be included with the data word to achieve single-error
correction and double-error detection when the data word contains
(a) 16 bits. (b) 32 bits.
(c) 48 bits.

7.14 It is necessary to formulate the Hamming code for four data bits, D3, Ds, D¢, and D,

together with three parity bits, Py, P,, and P,.

(a)* Evaluate the 7-bit composite code word for the data word 0010.

(b) Evaluate three check bits, C,, C,, and C;, assuming no error.

(c) Assume an error in bit D5 during writing into memory. Show how the error in the bit
is detected and corrected.

(d) Add parity bit Pg to include double-error detection in the code. Assume that errors
occurred in bits P, and Ds. Show how the double error is detected.

7.15 Using 64 X8 ROM chips with an enable input, construct a 512 X 8 ROM with eight chips
and a decoder.

7.16* A ROM chip of 4,096 X 8 bits has two chip select inputs and operates from a 5-V power
supply. How many pins are needed for the integrated circuit package? Draw a block dia-
gram, and label all input and output terminals in the ROM.

7.17 The 32 X 6 ROM, together with the 2% line, as shown in Fig. P717 converts a six-bit binary
number to its corresponding two-digit BCD number. For example, binary 100001 converts
to BCD 011 0011 (decimal 33). Specify the truth table for the ROM.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

348 Chapter 7 Memory and Programmable Logic

20
. D] — 100
22— h o
) E—
2 — b
23 32X6 3
A ROM
2 ——ls 1
Dsf—— 10
2 —/ b
o

FIGURE P7.17

7.18* Specify the size of a ROM (number of words and number of bits per word) that will
accommodate the truth table for the following combinational circuit components:
(a) abinary multiplier that multiplies two 4-bit binary words,
(b) a 4-bit adder-subtractor,
(c) a quadruple two-to-one-line multiplexer with common select and enable inputs, and
(d) a BCD-to-seven-segment decoder with an enable input.

7.19 Tabulate the PLA programming table for the four Boolean functions listed below. Mini-
mize the numbers of product terms.

A(x,y,z) = 2(1,3,5,6)

B(x,y,z) = 2(0,1,6,7)

C(x,y,z) = %(3,5)

D(x,y,z) = 2(1,2,4,5,7)

7.20 Tabulate the truth table for an 8§ X 4 ROM that implements the Boolean functions

A(x,y,z) = 2(0,3,4,6)

B(x,y,z) = 2(0,1,4,7)

Clx,y,2) = X(1,5)

D(x,y,z) = 2(0,1,3,5,7)

Considering now the ROM as a memory. Specify the memory contents at addresses 1 and 4.

7.21 Derive the PLA programming table for the combinational circuit that squares a three-bit
number. Minimize the number of product terms. (See Fig. 7.12 for the equivalent ROM
implementation.)

7.22 Derive the ROM programming table for the combinational circuit that squares a 4-bit
number. Minimize the number of product terms.

7.23 List the PLA programming table for the BCD-to-excess-3-code converter whose Boolean
functions are simplified in Fig. 4.3.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

References 349

7.24 Repeat Problem 723, using a PAL.

7.25% The following is a truth table of a three-input, four-output combinational circuit:

Inputs Outputs
X y z A B C D
0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 0 1 1
0 1 1 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 0 0 1
1 1 0 1 0 1 0
1 1 1 0 1 1 1

Tabulate the PAL programming table for the circuit, and mark the fuse map in a PAL
diagram similar to the one shown in Fig. 7.17.

7.26 Using the registered macrocell of Fig. 719, show the fuse map for a sequential circuit with
two inputs x and y and one flip-flop A described by the input equation

Dy,=x®y®A

7.27 Modify the PAL diagram of Fig. 7.16 by including three clocked D-type flip-flops between
the OR gates and the outputs, as in Fig. 7.19. The diagram should conform with the block
diagram of a sequential circuit. The modification will require three additional buffer—
inverter gates and six vertical lines for the flip-flop outputs to be connected to the AND
array through programmable connections. Using the modified registered PAL diagram,
show the fuse map that will implement a three-bit binary counter with an output carry.

7.28 Draw a PLA circuit to implement the functions
F,=A'B+ AC + A'BC’
F, = (AC + AB + BQ)’
7.29 Develop the programming table for the PLA described in Problem 726.

REFERENCES
1. Hamming, R. W. 1950. Error Detecting and Error Correcting Codes. Bell Syst. Tech. J.
29: 147-160.
2. Kitson, B. 1984. Programmable Array Logic Handbook. Sunnyvale, CA: Advanced Micro
Devices.

3. LiN, S. and D. J. CosTELLO, JR. 2004. Error Control Coding.2nd ed. Englewood Cliffs, NJ:
Prentice-Hall.

4. Memory Components Handbook. 1986. Santa Clara, CA: Intel.

5. NELsON, V. P, H. T. NAGLE, J. D. IRwIN, and B. D. CarroLL. 1995. Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

350 Chapter 7 Memory and Programmable Logic

*

The Programmable Logic Data Book,?2nd ed. 1994. San Jose, CA: Xilinx, Inc.

7. Toccr, R. J. and N. S. WIDMER. 2004. Digital Systems Principles and Applications, 9th ed.
Upper Saddle River, NJ: Prentice Hall.

8. TRIMBERGER, S. M. 1994. Field Programmable Gate Array Technology. Boston: Kluwer
Academic Publishers.

9. WAKERLY, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River,

NIJ: Prentice Hall.

WEB SEARCH TOPICS

FPGA

Gate array

Programmable array logic
Programmable logic data book
RAM

ROM

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 8
Design at the Register Transfer Level

8.1 INTRODUCTION

The behavior of many digital systems depends on the history of their inputs, and the
conditions that determine their future actions depend on the results of previous actions.
Such systems are said to have “memory.” A digital system is a sequential logic system
constructed with flip-flops and gates. Sequential circuits can be specified by means of
state tables as shown in Chapter 5. To specify a large digital system with a state table is
very difficult, because the number of states would be enormous. To overcome this dif-
ficulty, digital systems are designed via a modular approach. The system is partitioned
into subsystems, each of which performs some function. The modules are constructed
from such digital devices as registers, decoders, multiplexers, arithmetic elements, and
control logic. The various modules are interconnected with datapaths and control signals
to form a digital system. In this chapter, we will introduce a design methodology for
describing and designing large, complex digital systems.

8.2 REGISTER TRANSFER LEVEL NOTATION

The modules of a digital system are best defined by a set of registers and the opera-
tions that are performed on the binary information stored in them. Examples of
register operations are shift, count, clear, and load. Registers are assumed to be the
basic components of the digital system. The information flow and processing per-
formed on the data stored in the registers are referred to as register transfer opera-
tions. We'll see subsequently how a hardware description language (HDL) includes
operators that correspond to the register transfer operations of a digital system.

351

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

352 Chapter 8 Design at the Register Transfer Level

A digital system is represented at the register transfer level (RTL) when it is specified
by the following three components:

1. The set of registers in the system.
2. The operations that are performed on the data stored in the registers.
3. The control that supervises the sequence of operations in the system.

A register is a connected group of flip-flops that stores binary information and has the
capability of performing one or more elementary operations. A register can load new
information or shift the information to the right or the left. A counter is a register that
increments a number by a fixed value (e.g., 1). A flip-flop is a one-bit register that can
be set, cleared, or complemented. In fact, the flip-flops and associated gates of any
sequential circuit can be called registers by this definition.

The operations executed on the information stored in registers are elementary oper-
ations that are performed in parallel on the bits of a data word during one clock cycle.
The data produced by the operation may replace the binary information that was in the
register before the operation executed. Alternatively, the result may be transferred to
another register (i.e., an operation on a register may leave its contents unchanged). The
digital circuits introduced in Chapter 6 are registers that implement elementary opera-
tions. A counter with a parallel load is able to perform the increment-by-one and load
operations. A bidirectional shift register is able to perform the shift-right and shift-left
operations by shifting its contents by one or more bits in a specified direction.

The operations in a digital system are controlled by signals that sequence the opera-
tions in a prescribed manner. Certain conditions that depend on results of previous
operations may determine the sequence of future operations. The outputs of the control
logic of a digital system are binary variables that initiate the various operations in the
system’s registers.

Information transfer from one register to another is designated in symbolic form by
means of a replacement operator. The statement

R2 <RI

denotes a transfer of the contents of register R/ into register R2—that is, a replacement
of the contents of register R2 by the contents of register R/. For example, an eight-bit
register R2 holding the value 01011010 could have its contents replaced by R/ holding
the value 10100101. By definition, the contents of the source register R/ do not change
after the transfer. They are merely copied to RI. The arrow symbolizes the transfer and
its direction; it points from the register whose contents are being transferred and towards
the register that will receive the contents. A control signal would determine when the
operation actually executes.

The controller in a digital system is a finite state machine (see Chapter 5) whose
outputs are the control signals governing the register operations. In synchronous
machines, the operations are synchronized by the system clock. For example, register
R2 might be synchronized to have its contents replaced at the positive edge of the clock.

A statement that specifies a register transfer operation implies that a datapath (i.e.,
a set of circuit connections) is available from the outputs of the source register to the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.2 Register Transfer Level Notation 353

inputs of the destination register and that the destination register has a parallel load
capability. Data can be transferred serially between registers, too, by repeatedly shifting
their contents along a single wire, one bit at a time. Normally, we want a register transfer
operation to occur, not with every clock cycle, but only under a predetermined condition.
A conditional statement governing a register transfer operation is symbolized with an
if-then statement such as

If (T1 = 1) then (R2 < RI)

where T1 is a control signal generated in the control section. Note that the clock is not
included as a variable in the register transfer statements. It is assumed that all transfers
occur at a clock-edge transition (i.e., a transition from 0 to 1 or from 1 to 0). Although
a control condition such as 77 may become true before the clock transition, the actual
transfer does not occur until the clock transition does. The transfers are initiated and
synchronized by the action of the clock signal, but the actual transition of the outputs
(in a physical system) does not result in instantaneous transitions at the outputs of the
registers. Propagation delays depend on the physical characteristics of the transistors
implementing the flip-flops of the register and the wires connecting devices. There is
always a delay, however small, between a cause and its effect in a physical system.

A comma may be used to separate two or more operations that are executed at the
same time (concurrently). Consider the statement

If (T3 = 1) then (R2 < RI, R1 < R2)

This statement specifies an operation that exchanges the contents of two registers; more-
over, the operation in both registers is triggered by the same clock edge, provided that
T3 = 1. This simultaneous (concurrent) operation is possible with registers that have
edge-triggered flip-flops controlled by a common clock (synchronizing signal). Other
examples of register transfers are as follows:

RI <RI + R2 Add contents of R2 to RI (RI gets RI + R2)

R3<—R3 +1 Increment R3 by 1 (count upwards)
R4 < shr R4 Shift right R4
R5<0 Clear R5to 0

In hardware, addition is done with a binary parallel adder, incrementing is done with a

counter, and the shift operation is implemented with a shift register. The type of opera-

tions most often encountered in digital systems can be classified into four categories:
1. Transfer operations, which transfer (i.e., copy) data from one register to another.

2. Arithmetic operations, which perform arithmetic (e.g., multiplication) on data in
registers.

3. Logic operations, which perform bit manipulation (e.g.,logical OR) of nonnumeric
data in registers.

4. Shift operations, which shift data between registers.

The transfer operation does not change the information content of the data being moved
from the source register to the destination register unless the source and destination are

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

354 Chapter 8 Design at the Register Transfer Level

the same. The other three operations change the information content during the trans-
fer. The register transfer notation and the symbols used to represent the various regis-
ter transfer operations are not standardized. In this text, we employ two types of
notation. The notation introduced in this section will be used informally to specify and
explain digital systems at the register transfer level. The next section introduces the
RTL symbols used in the Verilog HDL, which is standardized.

8.3 REGISTER TRANSFER LEVEL IN HDL

Digital systems can be described at the register transfer level by means of a HDL. In the
Verilog HDL, descriptions of RTL operations use a combination of behavioral and data-
flow constructs and are employed to specify the register operations and the combina-
tional logic functions implemented by hardware. Register transfers are specified by
means of procedural assignment statements within an edge-sensitive cyclic behavior.
Combinational circuit functions are specified at the RTL level by means of continuous
assignment statements or by procedural assignment statements within a level-sensitive
cyclic behavior. The symbol used to designate a register transfer is either an equals sign
(=) or an arrow (<=); the symbol used to specify a combinational circuit function is an
equals sign. Synchronization with the clock is represented by associating with an always
statement an event control expression in which sensitivity to the clock event is qualified
by posedge or negedge. The a/ways keyword indicates that the associated block of state-
ments will be executed repeatedly, for the life of the simulation. The @ operator and the
event control expression preceding the block of statements synchronize the execution
of the statements to the clock event.

The following examples show the various ways to specify a register transfer operation

in Verilog:
(a) assign S = A + B; /I Continuous assignment for addition operation
(b) always @ (A, B) /I Level-sensitive cyclic behavior
S=A+B; /I Combinational logic for addition operation
(c) always @ (negedge clock) /I Edge-sensitive cyclic behavior
begin
RA = RA + RB; /I Blocking procedural assignment for addition
RD = RA; /I Register transfer operation
end
(d) always @ (negedge clock) /I Edge-sensitive cyclic behavior
begin
RA <= RA + RB; /I Nonblocking procedural assignment for addition
RD <= RA; /I Register transfer operation
end

Continuous assignments (e.g., assign S = A + B;) are used to represent and specify
combinational logic circuits. In simulation, a continuous assignment statement executes
when the expression on the right-hand side changes. The effect of execution is immediate.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.3 Register Transfer Level in HDL 355

(The variable on the left-hand side is updated.) Similarly, a level-sensitive cyclic behav-
ior (e.g., always @ (A, B)) executes during simulation when a change is detected by its
event control expression (sensitivity list). The effect of assignments made by the = oper-
ator is immediate. The continuous assignment statement (assign S = A + B) describes a
binary adder with inputs A and B and output S. The target operand in a continuous
assignment statement (S in this case) cannot be a register data type, but must be a type
of net, for example, wire. The procedural assignment made in the level-sensitive cyclic
behavior in the second example shows an alternative way of specifying a combinational
circuit for addition. Within the cyclic behavior, the mechanism of the sensitivity list
ensures that the output, S, will be updated whenever A, or B, or both change.

There are two kinds of procedural assignments: blocking and nonblocking. The two
are distinguished by their symbols and by their operation. Blocking assignments use the
equals symbol (=) as the assignment operator, and nonblocking assignments use the left
arrow (<=) as the operator. Blocking assignment statements are executed sequentially
in the order that they are listed in a sequential block; when they execute, they have an
immediate effect on the contents of memory before the next statement can be executed.
Nonblocking assignments are made concurrently. This feature is implemented by evalu-
ating the expression on the right-hand side of each statement in the list of statements
before making the assignment to their left-hand sides. Consequently, there is no interac-
tion between the result of any assignment and the evaluation of an expression affecting
another assignment. Also, the statements associated with an edge-sensitive cyclic behav-
ior do not execute until the indicated edge condition occurs. Consider (c) in the example
given above. In the list of blocking procedural assignment, the first statement transfers the
sum (RA + RB) to RA, and the second statement transfers the new value of RA into RD.
The value in RA after the clock event is the sum of the values in RA and RB immediately
before the clock event. At the completion of the operation, both RA and RD have the
same value. In the nonblocking procedural assignment ((d) above), the two assignments
are performed concurrently, so that RD receives the original value of RA.The activity
in both examples is launched by the clock undergoing a falling edge transition.

The registers in a system are clocked simultaneously (concurrently). The D-input of
each flip-flop determines the value that will be assigned to its output, independently of
the input to any other flip-flop. To ensure synchronous operations in RTL design, and
to ensure a match between an HDL model and the circuit synthesized from the model,
it is necessary that nonblocking procedural assignments be used for all variables that
are assigned a value within an edge-sensitive cyclic behavior (always clocked). The non-
blocking assignment that appears in an edge-sensitive cyclic behavior models the behav-
ior of the hardware of a synchronous sequential circuit accurately. In general, the
blocking assignment operator (=) is used in a procedural assignment statement only
when it is necessary to specify a sequential ordering of multiple assignment statements.

HDL Operators

The Verilog HDL operators and their symbols used in RTL design are listed in Table 8.1.
The arithmetic, logic, and shift operators describe register transfer operations. The

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

356 Chapter 8 Design at the Register Transfer Level

Table 8.1
Verilog 2001 HDL Operators
Operator Type Symbol Operation Performed
Arithmetic + addition
- subtraction
* multiplication
/ division
% modulus
* exponentiation
Bitwise or Reduction ~ negation (complement)
& AND
| OR
A exclusive-OR (XOR)
Logical ! negation
&& AND
Il OR
Shift >> logical right shift
<< logical left shift
>>> arithmetic right shift
<<< arithmetic left shift
{,} concatenation
Relational > greater than
< less than
== equality
1= inequality

=== case equality
== case inequality
>= greater than or equal

<= less than or equal

logical and relational operators specify control conditions and have Boolean expres-
sions as their arguments.

The operands of the arithmetic operators are numbers. The +, —, *, and / operators
form the sum, difference, product, and quotient, respectively, of a pair of operands.
The exponentiation operator (**) was added to the language in 2001 and forms a
double-precision floating-point value from a base and exponent having a real, integer,

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.3 Register Transfer Level in HDL 357

or signed value. Negative numbers are represented in 2’s-complement form. The mod-
ulus operator produces the remainder from the division of two numbers. For example,
14 % 3 evaluates to 2.

There are two types of binary operators for binary words: bitwise and reduction. The
bitwise operators perform a bit-by-bit operation on two vector operands to form a vec-
tor result. They take each bit in one operand and perform the operation with the cor-
responding bit in the other operand. Negation (~) is a unary operator; it complements
the bits of a single vector operand to form a vector result. The reduction operators are
also unary, acting on a single operand and producing a scalar (one-bit) result. They oper-
ate pairwise on the bits of a word, from right to left, and yield a one-bit result. For
example, the reduction NOR (~|) results in 0 with operand 00101 and in 1 with operand
00000. The result of applying the NOR operation on the first two bits is used with the
third bit, and so forth. Negation is not used as a reduction operator —its operation on
a vector produces a vector. Truth tables for the bitwise operators acting on a pair of
scalar operands are the same as those listed in Table 4.9 in Section 4.12 for the corre-
sponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the
same truth table). The output of an AND gate with two scalar inputs is the same as the
result produced by operating on the two bits with the & operator.

The logical and relational operators are used to form Boolean expressions and can
take variables or expressions as operands. (Note: A variable is also an expression.) Used
basically for determining true or false conditions, the logical and relational operators
evaluate to 1 if the condition expressed is true and to 0O if the condition is false. If the
condition is ambiguous, they evaluate to x. An operand that is a variable evaluates to 0
if the value of the variable is equal to zero and to 1 if the value is not equal to zero. For
example, if A =1010 and B =0000, then the expression A has the Boolean value 1 (the
number in question is not equal to 0) and the expression B has the Boolean value 0.
Results of other operations with these values are as follows:

A&&B=0 /I Logical AND: (1010) && (0000) = 0

A & B = 0000 // Bitwise AND: (1010) & (1010) = (0000)

AllB=1 Il Logical OR: (1010) || (0000) = 1

A|B=1010 /I Bitwise OR: (1010) | (0000) = (1010)

IA=0 /I Logical negation 1(1010)=1(1)=0

~A =0101 // Bitwise negation ~(1010) = (0101)

B=1 // Logical negation 1(0000) =1(0) =1

~B = 1111 // Bitwise negation ~(0000) = 1111

(A>B)=1 I is greater than

(A==B)=0 /I identity (equality)
The relational operators === and ! == test for bitwise equality (identity) and inequal-
ity in Verilog’s four-valued logic system. For example, if A = 0xx0 and B = 0xx0, the test
A === B would evaluate to true, but the test A == B would evaluate to x.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

358 Chapter 8 Design at the Register Transfer Level

Verilog 2001 has logical and arithmetic shift operators. The logical shift operators shift
a vector operand to the right or the left by a specified number of bits. The vacated bit
positions are filled with zeros. For example, if R = 11010, then the statement

R=R>>1;

shifts R to the right one position. The value of R that results from the logical right-shift
operation (11010) >> 1is 01101. In contrast, the arithmetic right-shift operator fills the
vacated cell (the most significant bit (MSB)) with its original contents when the word
is shifted to the right. The arithmetic left-shift operator fills the vacated cell with a 0
when the word is shifted to the left. The arithmetic right-shift operator is used when the
sign extension of a number is important. If R = 11010, then the statement

R>>>1;

produces the result R =11101;if R =01101, it produces the result R =00110. There is
no distinction between the logical left-shift and the arithmetic left-shift operators.

The concatenation operator provides a mechanism for appending multiple oper-
ands. It can be used to specify a shift, including the bits transferred into the vacant
positions. This aspect of its operation was shown in HDL Example 6.1 for the shift
register.

Expressions are evaluated from left to right, and their operators associate from left
to right (with the exception of the conditional operator) according to the precedence
shown in Table 8.2. For example, in the expression A + B — C, the value of B is added
to A, and then C is subtracted from the result. In the expression A + B/C, the value of
B is divided by C, and then the result is added to A because the division operator (/)
has a higher precedence than the addition operator (+). Use parentheses to establish
precedence. For example, the expression (A + B)/C is not the same as the expression
A+ B/C.

Loop Statements

Verilog HDL has four types of loops that execute procedural statements repeatedly:
repeat, forever, while, and for. All looping statements must appear inside an initial or
always block.

The repeat loop executes the associated statements a specified number of times. The
following is an example that was used previously:

initial
begin
clock = 1'b0;
repeat (16)
#5 clock = ~ clock;
end

This code toggles the clock 16 times and produces eight clock cycles with a cycle time
of 10 time units.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.3 Register Transfer Level in HDL 359

Table 8.2
Verilog Operator Precedence

+-!~&~&|~|"~" "~ (unary) Highest precedence

3k

*1 %

+ — (binary)

<< >> LKL >>>

& (binary)

A N~ ~" (binary)

| (binary)
&&

?: (conditional operator)

\

{1 {{}} Lowest precedence

The forever loop causes unconditional, repetitive execution of a procedural statement
or a block of procedural statements. For example, the following loop produces a con-
tinuous clock having a cycle time of 20 time units:

initial
begin
clock = 1'b0;
forever
#10 clock = ~ clock;
end

The while loop executes a statement or a block of statements repeatedly while an
expression is true. If the expression is false to begin with, the statement is never exe-
cuted. The following example illustrates the use of the while loop:

integer count;
initial
begin
count = 0;
while (count < 64)
#5 count = count + 1;
end

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

360 Chapter 8 Design at the Register Transfer Level

The value of count is incremented from 0 to 63. Each increment is delayed by five time
units, and the loop exits at the count of 64.

In dealing with looping statements, it is sometimes convenient to use the integer data
type to index the loop. Integers are declared with the keyword integer, as in the previous
example. Although it is possible to use a reg variable to index a loop, sometimes it is
more convenient to declare an integer variable, rather than a reg, for counting purposes.
Variables declared as data type reg are stored as unsigned numbers. Those declared as
data type integer are store as signed numbers in 2’s-complement format. The default
width of an integer is a minimum of 32 bits.

The for loop is a compact way to express the operations implied by a list of state-
ments whose variables are indexed. The for loop contains three parts separated by two
semicolons:

¢ An initial condition.
e An expression to check for the terminating condition.
e An assignment to change the control variable.

The following is an example of a for loop:

for(j=0;j<8j=j+1)
begin
/I procedural statements go here
end

The for loop statement repeats the execution of the procedural statements eight times. The
control variable is j, the initial condition is j =0, and the loop is repeated as long as j is less
than 8. After each execution of the loop statement, the value of j is incremented by 1.

A description of a two-to-four-line decoder using a for loop is shown in HDL Exam-
ple 8.1. Since output Y is evaluated in a procedural statement, it must be declared as
type reg. The control variable for the loop is the integer k. When the loop is expanded
(unrolled), we get the following four conditions (/N and Y are in binary, and the index
for Yis in decimal):

if IN = 00 then Y(0) = 1; else Y(0) = 0;
if IN =01 then Y(1) = 1; else Y(1) = 0;
if IN =10 then Y(2) = 1; else Y(2) = 0;
if IN =11 then Y(3) = 1; else Y(3) = 0;

HDL Example 8.1 (Decoder)

/I Description of 2 x 4 decoder using a for loop statement
module decoder (IN, Y);

input [1: O] IN; /I Two binary inputs

output [3:0] Y; /I Four binary outputs

reg [3:0] Y;

integer k; /I Control (index) variable for loop

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.3 Register Transfer Level in HDL 361

always @ (IN)
for(k=0;k<=3;k=k+1)
if (IN ==k) Y[k] = 1;
else Y[k] = 0;
endmodule

Logic Synthesis

Logic synthesis is the automatic process by which a computer-based program (i.e., a
synthesis tool) transforms an HDL model of a logic circuit into an optimized netlist of
gates that perform the operations specified by the source code. There are various target
technologies that implement the synthesized design in hardware. The effective use of
an HDL description requires that designers adopt a vendor-specific style suitable for
the particular synthesis tools. The type of ICs that implement the design may be an
application-specific integrated circuit (ASIC), a programmable logic device (PLD), or
a field-programmable gate array (FPGA). Logic synthesis is widely used in industry to
design and implement large circuits efficiently, correctly, and rapidly.

Logic synthesis tools interpret the source code of the HDL and translate it into
an optimized gate structure, accomplishing (correctly) all of the work that would be
done by manual methods using Karnaugh maps. Designs written in Verilog or a compa-
rable language for the purpose of logic synthesis tend to be at the register transfer level.
This is because the HDL constructs used in an RTL description can be converted into
a gate-level description in a straightforward manner. The following examples discuss
how a logic synthesizer can interpret an HDL construct and convert it into a gate
structure.

The continuous assignment (assign) statement is used to describe combinational
circuits. In an HDL, it represents a Boolean equation for a logic circuit. A continuous
assignment with a Boolean expression for the right-hand side of the assignment state-
ment is synthesized into the corresponding gate circuit implementing the expression.
An expression with an addition operator (+) is interpreted as a binary adder using
full-adder circuits. An expression with a subtraction operator () is converted into a
gate-level subtractor consisting of full adders and exclusive-OR gates (Fig. 4.13).
A statement with a conditional operator such as

assignY=S?In_1:1In_0;

translates into a two-to-one-line multiplexer with control input S and data inputs /n_J
and /n_0. A statement with multiple conditional operators specifies a larger multiplexer.

A cyclic behavior (always . . .) may imply a combinational or sequential circuit,
depending on whether the event control expression is level sensitive or edge sensitive.
A synthesis tool will interpret as combinational logic a level-sensitive cyclic behavior
whose event control expression is sensitive to every variable that is referenced within
the behavior (e.g., by the variable’s appearing in the right-hand side of an assignment

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

362 Chapter 8 Design at the Register Transfer Level

statement). The event control expression in a description of combinational logic may
not be sensitive to an edge of any signal. For example,

always @ (In_1 orIn_0 or S) /I Alternative: (In_1, In_0, S)
if (S)Y =1In_1;
else Y =1In_0;

translates into a two-to-one-line multiplexer. As an alternative, the case statement may
be used to imply large multiplexers. The casex statement treats the logic values x and z
as don’t-cares when they appear in either the case expression or a case item.

An edge-sensitive cyclic behavior (e.g., always @ (posedge clock)) specifies a syn-
chronous (clocked) sequential circuit. The implementation of the corresponding circuit
consists of D flip-flops and the gates that implement the synchronous register transfer
operations specified by the statements associated with the event control expression.
Examples of such circuits are registers and counters. A sequential circuit description
with a case statement translates into a control circuit with D flip-flops and gates that
form the inputs to the flip-flops. Thus, each statement in an RTL description is inter-
preted by the synthesizer and assigned to a corresponding gate and flip-flop circuit. For
synthesizable sequential circuits, the event control expression must be sensitive to the
positive or the negative edge of the clock (synchronizing signal), but not to both.

A simplified flowchart of the process used by industry to design digital systems is
shown in Fig. 8.1. The RTL description of the HDL design is simulated and checked for
proper operation. Its operational features must match those given in the specification
for the behavior of the circuit. The test bench provides the stimulus signals to the simu-
lator. If the result of the simulation is not satisfactory, the HDL description is corrected
and checked again. After the simulation run shows a valid design, the RTL description
is ready to be compiled by the logic synthesizer. All errors (syntax and functional) in
the description must be eliminated before synthesis. The synthesis tool generates a
netlist equivalent to a gate-level description of the design as it is represented by the
model. If the model fails to express the functionality of the specification, the circuit will
fail to do so also. The gate-level circuit is simulated with the same set of stimuli used to
check the RTL design. If any corrections are needed, the process is repeated until a
satisfactory simulation is achieved. The results of the two simulations are compared to
see if they match. If they do not, the designer must change the RTL description to correct
any errors in the design. Then the description is compiled again by the logic synthesizer
to generate a new gate-level description. Once the designer is satisfied with the results
of all simulation tests, the design of the circuit is ready for physical implementation in a
technology. In practice, additional testing will be performed to verify that the timing
specifications of the circuit can be met in the chosen hardware technology. That issue is
not within the scope of this text.

Logic synthesis provides several advantages to the designer. It takes less time to write
an HDL description and synthesize a gate-level realization than it does to develop the
circuit by manual entry from schematic diagrams. The ease of changing the description
facilitates exploration of design alternatives. It is faster, easier, less expensive, and less
risky to check the validity of the design by simulation than it is to produce a hardware

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.4 Algorithmic State Machines (ASMs) 363

Develop specification
Y Y
Develop/edit HDL
description
Simulate/verify HDL
description
No Test bench
Yes
Develop Compare
Synthesize (manually) . .
netlist gate-level SITel;ll?lttlson
model
Simulate netlist/model
Create production Yes)
masks for ICs Match:

FIGURE 8.1
A simplified flowchart for HDL-based modeling, verification, and synthesis

prototype for evaluation. A schematic and the database for fabricating the integrated
circuit can be generated automatically by synthesis tools. The HDL model can be com-
piled by different tools into different technologies (e.g., ASIC cells or FPGAs), provid-
ing multiple returns on the investment to create the model.

8.4 ALGORITHMIC STATE MACHINES (ASMs)

The binary information stored in a digital system can be classified as either data or
control information. Data are discrete elements of information (binary words) that are
manipulated by performing arithmetic, logic, shift, and other similar data-processing

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

364 Chapter 8 Design at the Register Transfer Level

operations. These operations are implemented with digital hardware components such
as adders, decoders, multiplexers, counters, and shift registers. Control information pro-
vides command signals that coordinate and execute the various operations in the data
section of the machine in order to accomplish the desired data-processing tasks.

The design of the logic of a digital system can be divided into two distinct efforts. One
part is concerned with designing the digital circuits that perform the data-processing
operations. The other part is concerned with designing the control circuits that deter-
mine the sequence in which the various manipulations of data are performed.

The relationship between the control logic and the data-processing operations in a
digital system is shown in Fig. 8.2. The data-processing path, commonly referred to as
the datapath unit, manipulates data in registers according to the system’s requirements.
The control unit issues a sequence of commands to the datapath unit. Note that an
internal feedback path from the datapath unit to the control unit provides status condi-
tions that the control unit uses together with the external (primary) inputs to determine
the sequence of control signals (outputs of the control unit) that direct the operation
of the datapath unit. We'll see later that understanding how to model this feedback
relationship with an HDL is very important.

The control logic that generates the signals for sequencing the operations in the
datapath unit is a finite state machine (FSM), i.e., a synchronous sequential circuit. The
control commands for the system are produced by the FSM as functions of the primary
inputs, the status signals, and the state of the machine. In a given state, the outputs of
the controller are the inputs to the datapath unit and determine the operations that it
will execute. Depending on status conditions and other external inputs, the FSM goes
to its next state to initiate other operations. The digital circuits that act as the control
logic provide a time sequence of signals for initiating the operations in the datapath and
also determine the next state of the control subsystem itself.

Input
data
Control
Input signals
signals
(external) Control unit Datapath
(FSM) unit
Status
signals
Output
data
FIGURE 8.2

Control and datapath interaction

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.4 Algorithmic State Machines (ASMs) 365

The control sequence and datapath tasks of a digital system are specified by means of
a hardware algorithm. An algorithm consists of a finite number of procedural steps that
specify how to obtain a solution to a problem. A hardware algorithm is a procedure for
solving the problem with a given piece of equipment. The most challenging and creative
part of digital design is the formulation of hardware algorithms for achieving required
objectives. The goal is to implement the algorithms in silicon as an integrated circuit.

A flowchart is a convenient way to specify the sequence of procedural steps and deci-
sion paths for an algorithm. A flowchart for a hardware algorithm translates the verbal
instructions to an information diagram that enumerates the sequence of operations
together with the conditions necessary for their execution. An algorithmic state machine
(ASM) chart is a flowchart that has been developed to specifically define algorithms for
execution on digital hardware. A state machine is another term for a sequential circuit,
which is the basic structure of a digital system.

ASM Chart

An ASM chart resembles a conventional flowchart, but is interpreted somewhat differ-
ently. A conventional flowchart describes the procedural steps and decision paths of an
algorithm in a sequential manner, without taking into consideration their time relation-
ship. The ASM chart describes the sequence of events,i.e., the ordering of events in time,
as well as the timing relationship between the states of a sequential controller and the
events that occur while going from one state to the next (i.e., the events that are syn-
chronous with changes in the state). The chart is adapted to specify accurately the con-
trol sequence and datapath operations in a digital system, taking into consideration the
constraints of digital hardware.

An ASM chart is composed of three basic elements: the state box, the decision box,
and the conditional box. The boxes themselves are connected by directed edges indicat-
ing the sequential precedence and evolution of the states as the machine operates. There
are various ways to attach information to an ASM chart. In one, a state in the control
sequence is indicated by a state box, as shown in Fig. 8.3(a). The shape of the state box
is a rectangle within which are written register operations or the names of output signals
that the control generates while being in the indicated state. The state is given a symbolic
name, which is placed within the upper left corner of the box. The binary code assigned
to the state is placed at the upper right corner. (The state symbol and code can be placed

l Binary code l 0101
State name S_pause
Moore-type R=<0
output signals, register operations Start_ OP_A

! !
(@) (b)

FIGURE 8.3
ASM chart state box

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

366 Chapter 8 Design at the Register Transfer Level

in other places as well.) Figure 8.3(b) gives an example of a state box. The state has the
symbolic name S_pause, and the binary code assigned to it is 0101. Inside the box is writ-
ten the register operation R <— 0, which indicates that register R is to be cleared to 0.The
name Start_OP_A inside the box indicates, for example, a Moore-type output signal that
is asserted while the machine is in state S_pause and that launches a certain operation
in the datapath unit.

The style of state box shown in Fig. 8.3(b) is sometimes used in ASM charts, but it can
lead to confusion about when the register operation R <— 0 is to execute. Although the
operation is written inside the state box, it actually occurs when the machine makes a
transition from S_pause to its next state. In fact, writing the register operation within the
state box is a way (albeit possibly confusing) to indicate that the controller must assert
a signal that will cause the register operation to occur when the machine changes state.
Later we’ll introduce a chart and notation that are more suited to digital design and that
will eliminate any ambiguity about the register operations controlled by a state machine.

The decision box of an ASM chart describes the effect of an input (i.e., a primary, or
external, input or a status, or internal, signal) on the control subsystem. The box is dia-
mond shaped and has two or more exit paths, as shown in Fig. 8.4. The input condition
to be tested is written inside the box. One or the other exit path is taken, depending on
the evaluation of the condition. In the binary case, one path is taken if the condition is
true and another when the condition is false. When an input condition is assigned a
binary value, the two paths are indicated by 1 and 0, respectively.

The state and decision boxes of an ASM chart are similar to those used in conven-
tional flowcharts. The third element, the conditional box, is unique to the ASM chart.
The shape of the conditional box is shown in Fig. 8.5(a). Its rounded corners differenti-
ate it from the state box. The input path to the conditional box must come from one of
the exit paths of a decision box. The outputs listed inside the conditional box are gener-
ated as Mealy-type signals during a given state; the register operations listed in the
conditional box are associated with a transition from the state. Figure 8.5(b) shows an
example with a conditional box. The control generates the output signal Start while in
state S_1 and checks the status of input Flag. If Flag=1,then R is cleared to 0; otherwise,
R remains unchanged. In either case, the next state is S_2. A register operation is

Exit path 2 Exit path

Exit path

FIGURE 8.4
ASM chart decision box

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.4 Algorithmic State Machines (ASMs) 367

STUDENTS-HUB.com

Reset b Reset b
l Binary code l 001 l 001
State name S_1 S 1
Moore-type output signals Start Start
Unconditional register
operations
| G-
Flush_R
Conditional l 010
(Mealy) outputs S 2 S 2
and register F<G Load F_G
operations
¢ 100 ¢ 100
S_3 S_3

(a) (b) (c)

FIGURE 8.5
ASM chart conditional box and examples

associated with S_2. We again note that this style of chart can be a source of confusion,
because the state machine does not execute the indicated register operation R <— 0 when
itisin S_7 or the operation F<— Gwhen itisin S_2.The notation actually indicates that
when the controller is in S_17, it must assert a Mealy-type signal that will cause the reg-
ister operation R < 0 to execute in the datapath unit!, subject to the condition that Flag
=0. Likewise, in state S_2, the controller must generate a Moore-type output signal that
causes the register operation F<— G to execute in the datapath unit. The operations in
the datapath unit are synchronized to the clock edge that causes the state to move from
S 1toS_2andfromS_2toS_3,respectively. Thus, the control signal generated in a given
state affects the operation of a register in the datapath when the next clock transition
occurs. The result of the operation is apparent in the next state.

The ASM chart in Fig. 8.5(b) mixes descriptions of the datapath and the controller.
An ASM chart for only the controller is shown in Fig. 8.5(c), in which the register oper-
ations are omitted. In their place are the control signals that must be generated by the
control unit to launch the operations of the datapath unit. This chart is useful for describ-
ing the controller, but it does not contain adequate information about the datapath.
(We’ll address this issue later.)

LIf the path came from a state box the asserted signals would be moore type signals, dependent on only the
state, and should be listed within the box.

Uploaded By: Malak Dar Obaid

368 Chapter 8 Design at the Register Transfer Level

ASM Block

An ASM block is a structure consisting of one state box and all the decision and condi-
tional boxes connected to its exit path. An ASM block has one entrance and any number
of exit paths represented by the structure of the decision boxes. An ASM chart consists
of one or more interconnected blocks. An example of an ASM block is given in Fig. 8.6.
Associated with state S_0 are two decision boxes and one conditional box. The diagram
distinguishes the block with dashed lines around the entire structure, but this is not usu-
ally done, since the ASM chart uniquely defines each block from its structure. A state
box without any decision or conditional boxes constitutes a simple block.

Each block in the ASM chart describes the state of the system during one clock-pulse
interval (i.e., the interval between two successive active edges of the clock). The opera-
tions within the state and conditional boxes in Fig. 8.6(a) are initiated by a common
clock pulse when the state of the controller transitions from S_0 to its next state. The
same clock pulse transfers the system controller to one of the next states, S_I, S_2, or
S_3,as dictated by the binary values of £ and F.The ASM chart for the controller alone
is shown in Fig. 8.6(b). The Moore-type signal incr_A is asserted unconditionally while
the machine is in S_0; the Mealy-type signal Clear_R is generated conditionally when
the state is S_0 and E is asserted. In general, the Moore-type outputs of the controller
are generated unconditionally and are indicated within a state box; the Mealy-type
outputs are generated conditionally and are indicated in the conditional boxes con-
nected to the edges that leave a decision box.

The ASM chart is similar to a state transition diagram. Each state block is equivalent
to a state in a sequential circuit. The decision box is equivalent to the binary information

Reset b Reset_b
001 001
S 0 S 0
A<A +] incr_A

Clear_B

010 011 100 010 011 100
S_1 S_2 S_3 S_1 S_2 S_3

(a) (b)

FIGURE 8.6
ASM blocks

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.4 Algorithmic State Machines (ASMs) 369

FIGURE 8.7
State diagram equivalent to the ASM chart of Fig. 8.6

written along the directed lines that connect two states in a state diagram. As a conse-
quence, it is sometimes convenient to convert the chart into a state diagram and then use
sequential circuit procedures to design the control logic. As an illustration, the ASM chart
of Fig. 8.6 is drawn as a state diagram (outputs are omitted) in Fig. 8.7 The states are
symbolized by circles, with their binary values written inside. The directed lines indicate
the conditions that determine the next state. The unconditional and conditional opera-
tions that must be performed in the datapath unit are not indicated in the state diagram.

Simplifications

A binary decision box of an ASM chart can be simplified by labeling only the edge cor-
responding to the asserted decision variable and leaving the other edge without a label.
A further simplification is to omit the edges corresponding to the state transitions that
occur when a reset condition is asserted. Output signals that are not asserted are not shown
on the chart; the presence of the name of an output signal indicates that it is asserted.

Timing Considerations

The timing for all registers and flip-flops in a digital system is controlled by a master-
clock generator. The clock pulses are applied not only to the registers of the datapath,
but also to all the flip-flops in the state machine implementing the control unit. Inputs
are also synchronized to the clock, because they are normally generated as outputs of
another circuit that uses the same clock signals. If the input signal changes at an arbitrary
time independently of the clock, we call it an asynchronous input. Asynchronous inputs
may cause a variety of problems. To simplify the design, we will assume that all inputs
are synchronized with the clock and change state in response to an edge transition.
The major difference between a conventional flowchart and an ASM chart is in inter-
preting the time relationship among the various operations. For example, if Fig. 8.6 were
a conventional flowchart, then the operations listed would be considered to follow one
after another in sequence: First register A is incremented, and only then is £ evaluated.
If E =1, then register R is cleared and control goes to state S_3. Otherwise (if £ = 0),
the next step is to evaluate F and go to state S_7 or S_2. In contrast, an ASM chart con-
siders the entire block as one unit. All the register operations that are specified within

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

370 Chapter 8 Design at the Register Transfer Level

Positive edge of Clock

czocﬂ \H (

Present state Next state
(S_0) (S_1orS_2orS_3)

FIGURE 8.8
Transition between states

the block must occur in synchronism at the edge transition of the same clock pulse while
the system changes from S_0 to the next state. This sequence of events is presented
pictorially in Fig. 8.8. In this illustration, we assume positive-edge triggering of all flip-
flops. An asserted asynchronous reset signal (reset_b) transfers the control circuit into
state S_0. While in state S_0, the control circuits check inputs E and F and generate
appropriate signals accordingly. If reset_b is not asserted, the following operations occur
simultaneously at the next positive edge of the clock:

1. Register A is incremented.
2. If E =1, register R is cleared.
3. Control transfers to the next state, as specified in Fig. 8.7

Note that the two operations in the datapath and the change of state in the control logic
occur at the same time. Note also that the ASM chart in Fig. 8.6(a) indicates the register
operations that must occur in the datapath unit, but does not indicate the control signal
that is to be formed by the control unit. Conversely, the chart in Fig. 8.6(b) indicates the
control signals, but not the datapath operations. We will now present an ASMD chart to
provide the clarity and complete information needed by logic designers.

ASMD Chart

Algorithmic state machine and datapath (ASMD) charts were developed to clarify the
information displayed by ASM charts and to provide an effective tool for designing a
control unit for a given datapath unit. An ASMD chart differs from an ASM chart in
three important ways: (1) An ASMD chart does not list register operations within a state
box, (2) the edges of an ASMD chart are annotated with register operations that are
concurrent with the state transition indicated by the edge, and (3) an ASMD chart
includes conditional boxes identifying the signals which control the register operations
that annotate the edges of the chart. Thus,an ASM D chart associates register operations
with state transitions rather than with states; it also associates register operations with the
signals that cause them. Consequently, an ASMD chart represents a partition of a com-
plex digital machine into its datapath and control units and clearly indicates the relation-
ship between them. There is no room for confusion about the timing of register
operations or about the signals that launch them.

Designers form an ASMD chart in a three-step process that creates an annotated and
completely specified ASM chart for the controller of a datapath unit.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.5 Design Example (ASMD Chart) 371

The steps to form an ASMD chart are:

1. Form an ASM chart showing only the states of the controller and the input signals?
that cause state transitions,

2. Convert the ASM chart into an ASMD chart by annotating the edges of the ASM
chart to indicate the concurrent register operations of the datapath unit (i.e., reg-
ister operations that are concurrent with a state transition), and

3. Modify the ASMD chart to identify the control signals that are generated by the
controller and that cause the indicated operations in the datapath unit.

The ASMD chart produced by this process clearly and completely specifies the finite
state machine of the controller, identifies the registers operations of the datapath unit,
identifies signals reporting the status of the datapath to the controller, and links register
operations to the signals that control them.

One important use of a state machine is to control register operations on a datapath
in a sequential machine that has been partitioned into a controller and a datapath. An
ASMD chart links the ASM chart of the controller to the datapath it controls in a man-
ner that serves as a universal model representing all synchronous digital hardware
design. ASMD charts help clarify the design of a sequential machine by separating the
design of its datapath from the design of the controller, while maintaining a clear rela-
tionship between the two units. Register operations that occur concurrently with state
transitions are annotated on a path of the chart, rather than in state boxes or in condi-
tional boxes on the path, because these registers are not part of the controller. The
outputs generated by the controller are the signals that control the registers of the
datapath and cause the register operations annotated on the ASMD chart.

8.5 DESIGN EXAMPLE (ASMD CHART)

We will now present a simple example demonstrating the use of the ASMD chart and
the register transfer representation. We start from the initial specifications of a system
and proceed with the development of an appropriate ASMD chart from which the
digital hardware is then designed.

The datapath unit is to consist of two JK flip-flops E and F, and one four-bit binary
counter A/3:0].The individual flip-flops in A are denoted by A3, A,, A;,and A, with A;
holding the most significant bit of the count. A signal, Start, initiates the system’s oper-
ation by clearing the counter A and flip-flop F. At each subsequent clock pulse, the
counter is incremented by 1 until the operations stop. Counter bits A, and A3 determine
the sequence of operations:

If A, = 0, E is cleared to 0 and the count continues.

If A, = 1, Eissetto 1; then, if A; = 0, the count continues, but if A; = 1, Fis set to
1 on the next clock pulse and the system stops counting.

2In general, the inputs to the control unit are external (primary) inputs and status signals that originate in
the datapath unit.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

372 Chapter 8 Design at the Register Transfer Level

Then, if Start = 0, the system remains in the initial state, but if Start = 1, the operation
cycle repeats.

A block diagram of the system’s architecture is shown in Fig. 8.9(a), with (1) the
registers of the datapath unit, (2) the external (primary) input signals, (3) the status
signals fed back from the datapath unit to the control unit, and (4) the control signals
generated by the control unit and input to the datapath unit. Note that the names of the
control signals clearly indicate the operations that they cause to be executed in the
datapath unit. For example, clr_A_F clears registers A and F. The name of the signal
reset_b (alternatively, reset_bar) indicates that the reset action is active low. The internal
details of each unit are not shown.

ASMD Chart

An ASMD chart for the system is shown in Fig. 8.9(b) for asynchronous reset action and
in Fig. 8.9(c) for synchronous reset action. The chart shows the state transitions of the
controller and the datapath operations associated with those transitions. The chart is not
in its final form, for it does not identify the control signals generated by the controller.
The nonblocking Verilog operator (<=) is shown instead of the arrow (<) for register
transfer operations because we will ultimately use the ASMD chart to write a Verilog
description of the system.

When the reset action is synchronous, the transition to the reset state is synchronous
with the clock. This transition is shown for S_idle in the diagram, but all other synchro-
nous reset paths are omitted for clarity. The system remains in the reset state, S_idle, until
Start is asserted. When that happens (i.e., Start = 1), the state moves to S_I. At the next
clock edge,depending on the values of A, and A; (decoded in a priority order), the state
returns to S_I or goes to S_2. From S_2, it moves unconditionally to S_idle, where it
awaits another assertion of Start.

The edges of the chart represent the state transitions that occur at the active (i.e.,
synchronizing) edge of the clock (e.g., the rising edge) and are annotated with the
register operations that are to occur in the datapath. With Start asserted in S_idle,
the state will transition to S_7 and the registers A and F will be cleared. Note that,
on the one hand, if a register operation is annotated on the edge leaving a state box,
the operation occurs unconditionally and will be controlled by a Moore-type signal.
For example, register A is incremented at every clock edge that occurs while the
machine is in the state S_/. On the other hand, the register operation setting register
E annotates the edge leaving the decision box for A,. The signal controlling the
operation will be a Mealy-type signal asserted when the system is in state S_/ and
A, has the value 1. Likewise, the control signal clearing A and F'is asserted condition-
ally: The system is in state S_idle and Start is asserted.

In addition to showing that the counter is incremented in state S_/, the annotated
paths show that other operations occur conditionally with the same clock edge:

Either E is cleared and control stays in state S_/ (A, = 0) or
E is set and control stays in state S_1 (A,A3 = 10) or
E is set and control goes to state S_2 (A,A3 = 11).

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Start —>

reset_b
clock

Note: A3 denotes A[3],
A2 denotes A[2],

<= denotes nonblocking assignment
reset_b denotes active-low reset condition

Section 8.5 Design Example (ASMD Chart) 373

Status signals

/

A3

Controller

A2

clr E

Datapath

set_E

set_F

clr A_F

incr_A

(b)
FIGURE 8.9

(a) Block diagram for design example

F<=1

2]

(a)

(©

reset_b

F<=1 F<=1|S§S2

(b) ASMD chart for controller state transitions, asynchronous reset
(c) ASMD chart for controller state transitions, synchronous reset
(d) ASMD chart for a completely specified controller, asynchronous reset

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

374 Chapter 8 Design at the Register Transfer Level

When control is in state S_2,a Moore-type control signal must be asserted to set flip-flop
Fto 1, and the state returns to S_idle at the next active edge of the clock.

The third and final step in creating the ASMD chart is to insert conditional boxes for
the signals generated by the controller or to insert Moore-type signals in the state boxes,
as shown in Fig. 8.9(d). The signal clr_A_F is generated conditionally in state S_idle,
incr_A is generated unconditionally in S_/, c/r_E and set_E are generated conditionally
in S_1, and set_F is generated unconditionally in S_2. The ASM chart has three states
and three blocks. The block associated with S_idle consists of the state box, one decision
box, and one conditional box. The block associated with S_2 consists of only the state
box. In addition to clock and reset_b, the control logic has one external input, Start, and
two status inputs, A, and Aj.

In this example, we have shown how a verbal (text) description (specification) of a
design is translated into an ASMD chart that completely describes the controller for the
datapath, indicating the control signals and their associated register operations. This
design example does not necessarily have a practical application, and in general, depend-
ing on the interpretation, the ASMD chart produced by the three-step design process
for the controller may be simplified and formulated differently. However, once the
ASMD chart is established, the procedure for designing the circuit is straightforward.
In practice, designers use the ASMD chart to write Verilog models of the controller and
the datapath and then synthesize a circuit directly from the Verilog description. We will
first design the system manually and then write the HDL description, keeping synthesis
as an optional step for those who have access to synthesis tools.

Timing Sequence

Every block in an ASMD chart specifies the signals which control the operations that
are to be initiated by one common clock pulse. The control signals specified within the
state and conditional boxes in the block are formed while the controller is in the indi-
cated state, and the annotated operations occur in the datapath unit when the state
makes a transition along an edge that exits the state. The change from one state to the
next is performed in the control logic. In order to appreciate the timing relationship
involved, we will list the step-by-step sequence of operations after each clock edge,
beginning with an assertion of the signal Start until the system returns to the reset (ini-
tial) state, S_idle.

Table 8.3 shows the binary values of the counter and the two flip-flops after every
clock pulse. The table also shows separately the status of A, and A3, as well as the pres-
ent state of the controller. We start with state S_7 right after the input signal Start has
caused the counter and flip-flop F to be cleared. We will assume that the machine had
been running before it entered S_idle, instead of entering it from a reset condition.
Therefore, the value of E is assumed to be 1, because E is set to 1 when the machine
enters S_2, before moving to S_idle (as shown at the bottom of the table), and because
E does not change during the transition from S_idle to S_I.The system stays in state S_/
during the next 13 clock pulses. Each pulse increments the counter and either clears or
sets E. Note the relationship between the time at which A, becomes a 1 and the time at

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.5 Design Example (ASMD Chart) 375

Table 8.3
Sequence of Operations for Design Example
Counter Flip-Flops
A; A, A A E F Conditions State
0 0 0 0 1 0 Ay =0,A;=0 S 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0 Ay=1,A4;=0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 1 0 A, =0,A;=1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0 Ay=1,A;=1
1 1 0 1 1 0 S 2
1 0 1 1 1 S_idle

which Eissetto . When A = (A3 A, A Ap) 0011, the next (4th) clock pulse increments
the counter to 0100, but that same clock edge sees the value of A, as 0, so E remains
cleared. The next (5th) pulse changes the counter from 0100 to 0101, and because A, is
equal to 1 before the clock pulse arrives, E is set to 1. Similarly, £ is cleared to 0 not when
the count goes from 0111 to 1000, but when it goes from 1000 to 1001, which is when
A, is 0 in the present value of the counter.

When the count reaches 1100, both A, and Aj are equal to 1. The next clock edge
increments A by 1, sets E to 1, and transfers control to state S_2. Control stays in S_2
for only one clock period. The clock edge associated with the path leaving S_2 sets flip-
flop Fto 1 and transfers control to state S_idle. The system stays in the initial state S_idle
as long as Start is equal to 0.

From an observation of Table 8.3, it may seem that the operations performed on E
are delayed by one clock pulse. This is the difference between an ASMD chart and a
conventional flowchart. If Fig. 8.9(d) were a conventional flowchart, we would assume
that A is first incremented and the incremented value would have been used to check
the status of A,.The operations that are performed in the digital hardware, as specified
by a block in the ASMD chart, occur during the same clock cycle and not in a sequence
of operations following each other in time, as is the usual interpretation in a conven-
tional flowchart. Thus, the value of A, to be considered in the decision box is taken

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

376 Chapter 8 Design at the Register Transfer Level

from the value of the counter in the present state and before it is incremented. This is
because the decision box for E belongs with the same block as state S_I. The digital
circuits in the control unit generate the signals for all the operations specified in the
present block prior to the arrival of the next clock pulse. The next clock edge executes
all the operations in the registers and flip-flops, including the flip-flops in the controller
that determine the next state, using the present values of the output signals of the
controller. Thus, the signals that control the operations in the datapath unit are formed
in the controller in the clock cycle (control state) preceding the clock edge at which the
operations execute.

Controller and Datapath Hardware Design

The ASMD chart provides all the information needed to design the digital system —the
datapath and the controller. The actual boundary between the hardware of the control-
ler and that of the datapath can be arbitrary, but we advocate, first, that the datapath
unit contain only the hardware associated with its operations and the logic required,
perhaps, to form status signals used by the controller, and, second, that the control unit
contain all of the logic required to generate the signals that control the operations of
the datapath unit. The requirements for the design of the datapath are indicated by the
control signals inside the state and conditional boxes of the ASMD chart and are spec-
ified by the annotations of the edges indicating datapath operations. The control logic
is determined from the decision boxes and the required state transitions. The hardware
configuration of the datapath and controller is shown in Fig. 8.10.

Note that the input signals of the control unit are the external (primary) inputs (Start,
reset_b, and clock) and the status signals from the datapath (A, and Ajs). The status
signals provide information about the present condition of the datapath. This informa-
tion, together with the primary inputs and information about the present state of the
machine, is used to form the output of the controller and the value of the next state. The
outputs of the controller are inputs to the datapath and determine which operations will
be executed when the clock undergoes a transition. Note, also, that the state of the con-
trol unit is not an output of the control unit.

The control subsystem is shown in Fig. 8.10 with only its inputs and outputs, with
names matching those of the ASMD chart. The detailed design of the controller is con-
sidered subsequently. The datapath unit consists of a four-bit binary counter and two
JK flip-flops. The counter is similar to the one shown in Fig. 6.12, except that additional
internal gates are required for the synchronous clear operation. The counter is incre-
mented with every clock pulse when the controller state is S_/. It is cleared only when
control is at state S_idle and Start is equal to 1. The logic for the signal clr_A_F will be
included in the controller and requires an AND gate to guarantee that both conditions
are present. Similarly, we can anticipate that the controller will use AND gates to form
signals set_FE and clr_E. Depending on whether the controller is in state S_7/ and whether
A, is asserted, set_F controls flip-flop F and is asserted unconditionally during state S_2.
Note that all flip-flops and registers, including the flip-flops in the control unit, use a
common clock.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.5 Design Example (ASMD Chart) 377

Design_Example
Controller
Start Start set_ E
clr_E
set_F
clr_A_F
Ay incr_A F—
Ea A3
clock reset_b
reset_b)
clock
Datapath
P E
L1y [0)
C
K
J 0 r
a
4-bit counter with c
synchronous clear
Az Ay Ap Ay K
A
4
FIGURE 8.10

Datapath and controller for design example

Register Transfer Representation

A digital system is represented at the register transfer level by specifying the registers
in the system, the operations performed, and the control sequence. The register opera-
tions and control information can be specified with an ASMD chart. It is convenient to
separate the control logic from the register operations of the datapath. The ASMD chart
provides this separation and a clear sequence of steps to design a controller for a data-
path. The control information and register transfer operations can also be represented
separately, as shown in Fig. 8.11. The state diagram specifies the control sequence, and
the register operations are represented by the register transfer notation introduced in

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

378 Chapter 8 Design at the Register Transfer Level

{ }Az
S 1
Start = 1 \W {

A2A3 =10
(a)

Start = 0

S_idle —> S 1, clr_A_F: A=<— 0 F<— 0

S 1 —> S 1 incr_A: A<—A+1
if (A, =1) then set_E: E=<—1
if (A,=0) then clr_E: E=<—20

S 2 —> S idle, set_F: F<—1
(b)
FIGURE 8.11
Register transfer-level description of design example

Section 8.2. The state transition and the signal controlling the register operation are
shown with the operation. This representation is an alternative to the representation of
the system described in the ASMD chart of Fig. 8.9(d). Only the ASMD chart is really
needed, but the state diagram for the controller is an alternative representation that is
useful in manual design. The information for the state diagram is taken directly from
the ASMD chart. The state names are specified in each state box. The conditions that
cause a change of state are specified inside the diamond-shaped decision boxes of the
ASMD chart and are used to annotate the state diagram. The directed lines between
states and the condition associated with each follow the same path as in the ASMD
chart. The register transfer operations for each of the three states are listed following
the name of the state. They are taken from the state boxes or the annotated edges of the
ASMD chart.

State Table

The state diagram can be converted into a state table from which the sequential circuit
of the controller can be designed. First, we must assign binary values to each state in the
ASMD chart. For #n flip-flops in the control sequential circuit, the ASMD chart can
accommodate up to 2" states. A chart with 3 or 4 states requires a sequential circuit with
two flip-flops. With 5 to 8 states, there is a need for three flip-flops. Each combination
of flip-flop values represents a binary number for one of the states.

A state table for a controller is a list of present states and inputs and their correspond-
ing next states and outputs. In most cases, there are many don’t-care input conditions

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.5 Design Example (ASMD Chart) 379

Table 8.4
State Table for the Controller of Fig. 8.10
Present Next
State Inputs State Outputs
W,
N <l <I
Present-State N T N
Symbol G] Go Start Az A3 G-| Go 3 < 9! S -E
S_idle 0 0 0 X X 0 0 0 0 0 0 O
S_idle 0 0 1 X X 0 1 0 0 o0 1 0
S 1 0 1 X 0 X 0 1 0 1 0 0 1
S_1 0 1 X 1 0 0 1 1 0o 0 O 1
S_1 0 1 X 1 1 1 1 1 0 0 o0 1
S 2 1 1 X X X 0 0 0 0o 1 0 o0

that must be included, so it is advisable to arrange the state table to take those conditions
into consideration. We assign the following binary values to the three states: S_idle =00,
S_1 =01, and S_2 = 11. Binary state 10 is not used and will be treated as a don’t-care
condition. The state table corresponding to the state diagram is shown in Table 8.4. Two
flip-flops are needed, and they are labeled G| and G,. There are three inputs and five
outputs. The inputs are taken from the conditions in the decision boxes. The outputs
depend on the inputs and the present state of the control. Note that there is a row in the
table for each possible transition between states. Initial state 00 goes to state 01 or stays
in 00, depending on the value of input Start. The other two inputs are marked with
don’t-care X’s, as they do not determine the next state in this case. While the system is
in binary state 00 with Start = 1, the control unit provides an output labeled clr_A_F to
initiate the required register operations. The transition from binary state 01 depends on
inputs A, and As. The system goes to binary state 11 only if A,A; = 11; otherwise, it
remains in binary state 01. Finally, binary state 11 goes to 00 independently of the input
variables.

Control Logic

The procedure for designing a sequential circuit starting from a state table was pre-
sented in Chapter 5. If this procedure is applied to Table 8.4, we need to use five-
variable maps to simplify the input equations. This is because there are five variables
listed under the present-state and input columns of the table. Instead of using maps
to simplify the input equations, we can obtain them directly from the state table by
inspection. To design the sequential circuit of the controller with D flip-flops, it is
necessary to go over the next-state columns in the state table and derive all the
conditions that must set each flip-flop to 1. From Table 8.4, we note that the next-
state column of G; has a single 1 in the fifth row. The D input of flip-flop G; must

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

380 Chapter 8 Design at the Register Transfer Level
be equal to 1 during present state S_/ when both inputs A, and Aj; are equal to 1.
This condition is expressed with the D flip-flop input equation
DGl = S_1A2A3
Similarly, the next-state column of G, has four 1’s, and the condition for setting this
flip-flop is
DGO - Starl‘S_idle + S_l
To derive the five output functions, we can exploit the fact that binary state 10 is not

used, which simplifies the equation for c/r_A_F and enables us to obtain the following
simplified set of output equations:

set E = S_1A,

cr_E = S_1A)

set F = §2
clr_A_F = StartS_idle
incr_ A = S_1

The logic diagram showing the internal detail of the controller of Fig. 8.10 is drawn in
Fig. 8.12. Note that although we derived the output equations from Table 8.4, they can
also be obtained directly by inspection of Fig. 8.9(d). This simple example illustrates the

|—) wl i Go L \ clr_A_F
Start D — /

) incr_A
w2 —/ I_DL_E
A L 5 Gy set_F
a |)
P> ¢)

clock
reset_b

FIGURE 8.12
Logic diagram of the control unit for Fig. 8.10

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.6 HDL Description of Design Example 381

manual design of a controller for a datapath, using an ASMD chart as a starting point.
The fact that synthesis tools automatically execute these steps should be appreciated.

8.6 HDL DESCRIPTION OF DESIGN EXAMPLE

In previous chapters, we gave examples of HDL descriptions of combinational circuits,
sequential circuits, and various standard components such as multiplexers, counters, and
registers. We are now in a position to incorporate these components into the description
of a specific design. As mentioned previously, a design can be described either at the
structural or behavioral level. Behavioral descriptions may be classified as being either
at the register transfer level or at an abstract algorithmic level. Consequently, we now
consider three levels of design: structural description, RTL description, and algorithmic-
based behavioral description.

The structural description is the lowest and most detailed level. The digital system is
specified in terms of the physical components and their interconnection. The various
components may include gates, flip-flops, and standard circuits such as multiplexers and
counters. The design is hierarchically decomposed into functional units, and each unit is
described by an HDL module. A top-level module combines the entire system by instan-
tiating all the lower level modules. This style of description requires that the designer
have sufficient experience not only to understand the functionality of the system, but
also to implement it by selecting and connecting other functional elements.

The RTL description specifies the digital system in terms of the registers, the opera-
tions performed, and the control that sequences the operations. This type of description
simplifies the design process because it consists of procedural statements that determine
the relationship between the various operations of the design without reference to any
specific structure. The RTL description implies a certain hardware configuration among
the registers, allowing the designer to create a design that can be synthesized automati-
cally, rather than manually, into standard digital components.

The algorithmic-based behavioral description is the most abstract level, describing
the function of the design in a procedural, algorithmic form similar to a programming
language. It does not provide any detail on how the design is to be implemented with
hardware. The algorithmic-based behavioral description is most appropriate for simulat-
ing complex systems in order to verify design ideas and explore trade-offs. Descriptions
at this level are accessible to nontechnical users who understand programming lan-
guages. Some algorithms, however, might not be synthesizable.

We will now illustrate the RTL and structural descriptions by using the design exam-
ple of the previous section. The design example will serve as a model of coding style for
future examples and will exploit alternative syntax options supported by revisions to
the Verilog language. (An algorithmic-based description is illustrated in Section 8.9.)

RTL Description

The block diagram in Fig. 8.10 describes the design example. An HDL description of
the design example can be written as a single RTL description in a Verilog module or

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

382 Chapter 8 Design at the Register Transfer Level

as a top-level module having instantiations of separate modules for the controller and
the datapath. The former option simply ignores the boundaries between the functional
units; the modules in the latter option establish the boundaries shown in Fig. 8.9(a) and
Fig. 8.10. We advocate the second option, because, in general, it distinguishes more
clearly between the controller and the datapath. This choice also allows one to easily
substitute alternative controllers for a given datapath (e.g., replace an RTL model by
a structural model). The RTL description of the design example is shown in HDL
Example 8.2. The description follows the ASMD chart of Fig. 8.9(d), which contains a
complete description of the controller, the datapath, and the interface between them
(i.e., the outputs of the controller and the status signals). Likewise, our description has
three modules: Design_Example_RTL, Controller_RTL, and Datapath_RTL. The
descriptions of the controller and the datapath units are taken directly from Fig. 8.9(d).
Design_Example_RTL declares the input and output ports of the module and instanti-
ates Controller_RTL and Datapath_RTL. At this stage of the description, it is important
to remember to declare A as a vector. Failure to do so will produce port mismatch errors
when the descriptions are compiled together. Note that the status signals A/2] and A/3],
but not A/0] and A[1], are passed to the controller. The primary (external) inputs to
the controller are Start, clock (to synchronize the system), and reset_b. The active-low
input signal reset_b is needed to initialize the state of the controller to S_idle. Without
that signal, the controller could not be placed in a known initial state.

The controller is described by three cyclic (always) behaviors. An edge-sensitive
behavior updates the state at the positive edge of the clock, depending on whether a
reset condition is asserted. Two level-sensitive behaviors describe the combinational
logic for the next state and the outputs of the controller, as specified by the ASMD
chart. Notice that the description includes default assignments to all of the outputs
(e.g., set_E = 0). This approach allows the code of the case logic to be simplified by
expressing only explicit assertions of the variables (i.e., values are assigned by excep-
tion). The approach also ensures that every path through the assignment logic assigns
a value to every variable. Thus, a synthesis tool will interpret the logic to be combina-
tional; failure to assign a value to every variable on every path of logic implies the
need for a transparent latch (memory) to implement the logic. Synthesis tools will
provide the latch, wasting silicon area.

The three states of the controller are given symbolic names and are encoded into
binary values. Only three of the possible two-bit patterns are used, so the case statement
for the next-state logic includes a default assignment to handle the possibility that one
of the three assigned codes is not detected. The alternative is to allow the hardware to
make an arbitrary assignment to the next state (next_state =2'bx;). Also, the first state-
ment of the next-state logic assigns next_state = S_idle to guarantee that the next state
is assigned in every thread of the logic. This is a precaution against accidentally forget-
ting to make an assignment to the next state in every thread of the logic, with the result
that the description implies the need for memory, which a synthesis tool will implement
with a transparent latch.

The description of Datapath_RTL is written by testing for an assertion of each
control signal from Controller_RTL.The register transfer operations are displayed in

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.6 HDL Description of Design Example 383

the ASMD chart (Fig. 8.9(d)). Note that nonblocking assignments are used (with
symbol <=) for the register transfer operations. This ensures that the register opera-
tions and state transitions are concurrent, a feature that is especially crucial during
control state S_I. In this state, A is incremented by 1 and the value of A2 (A/2]) is
checked to determine the operation to execute at register E at the next clock. To
accomplish a valid synchronous design, it is necessary to ensure that A/2] is checked
before A is incremented. If blocking assignments were used, one would have to place
the two statements that check E first and the A statement that increments last. How-
ever, by using nonblocking assignments, we accomplish the required synchronization
without being concerned about the order in which the statements are listed. The
counter A in Datapath_RTL is cleared synchronously because clr_A_F is synchro-
nized to the clock.

The cyclic behaviors of the controller and the datapath interact in a chain reaction:
At the active edge of the clock, the state and datapath registers are updated. A change
in the state, a primary input, or a status input causes the level-sensitive behaviors of
the controller to update the value of the next state and the outputs. The updated values
are used at the next active edge of the clock to determine the state transition and the
updates of the datapath.

Note that the manual method of design developed (1) a block diagram (Fig. 8.9(a))
showing the interface between the datapath and the controller, (2) an ASMD chart for
the system (Fig. 8.9(d)), (3) the logic equations for the inputs to the flip-flops of the
controller, and (4) a circuit that implements the controller (Fig. 8.12). In contrast, an
RTL model describes the state transitions of the controller and the operations of the
datapath as a step toward automatically synthesizing the circuit that implements them.
The descriptions of the datapath and controller are derived directly from the ASMD
chart in both cases.

HDL Example 8.2

/I RTL description of design example (see Fig. 8.11)
module Design_Example_RTL (A, E, F, Start, clock, reset_b);
/I Specify ports of the top-level module of the design
/I See block diagram, Fig. 8.10
output [3: 0] A;
output E, F;
input Start, clock, reset_b;
/Il Instantiate controller and datapath units
Controller_RTL MO (set_E, clr_E, set_F, cIr_A_F, incr_A, A[2], A[3], Start, clock, reset_b);
Datapath_RTL M1 (A, E, F, set_E, cIr_E, set_F, clr_A_F, incr_A, clock);
endmodule
module Controller_RTL (set_E, cIr_E, set_F, cIr_A_F, incr_A, A2, A3, Start, clock, reset_b);
output reg set_E, cIr_E, set_F, cIr_A_F, incr_A;
input Start, A2, A3, clock, reset_b;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

384 Chapter 8 Design at the Register Transfer Level

reg [1: 0] state, next_state;
parameter S idle =200, S 1=2'b01,S 2=2b11; // State codes
always @ (posedge clock, negedge reset_b) /] State transitions (edge sensitive)

if (reset_b == 0) state <= S_idle;
else state <= next_state;
/I Code next-state logic directly from ASMD chart (Fig. 8.9d)
always @ (state, Start, A2, A3) begin /I Next-state logic (level sensitive)
next_state = S_idle;
case (state)

S idle: if (Start) next_state = S_1; else next_state = S_idle;
S 1: if (A2 & A3) next_state = S_2; else next_state = S_1;
S 2: next_state = S_idle;
default: next_state = S_idle;
endcase
end

/I Code output logic directly from ASMD chart (Fig. 8.9d)
always @ (state, Start, A2) begin
set E = 0; //default assignments; assign by exception
cr E =0;
set F = 0;
clr A F=0;
incr A = 0;
case (state)
S idle: if (Start) clr_A_F =1;
S 1: begin incr_A = 1; if (A2) set_E = 1; else clr_E = 1; end
S 2: set F=1;
endcase
end
endmodule
module Datapath_RTL (A, E, F, set_E, cIr_E, set_F, clr_A_F, incr_A, clock);
output reg [3: 0] A; /I register for counter
output reg E, F; /I flags
input set_E, clIr_E, set F, cIr_A_F, incr_A, clock;
/I Code register transfer operations directly from ASMD chart (Fig. 8.9(d))
always @ (posedge clock) begin

if (set_E) E <=1;
if (clr_E) E <=0;
if (set_F) F<=1;
if (clr_A_F) begin A <=0; F <= 0; end
if (incr_A) A<=A+1;
end
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.6 HDL Description of Design Example 385

Testing the Design Description

The sequence of operations for the design example was investigated in the previous
section. Table 8.3 shows the values of £ and F while register A is incremented. It is
instructive to devise a test that checks the circuit to verify the validity of the HDL
description. The test bench in HDL Example 8.3 provides such a module. (The procedure
for writing test benches is explained in Section 4.12.) The test module generates signals
for Start, clock, and reset b, and checks the results obtained from registers A, E, and F.
Initially, the reser_b signal is set to O to initialize the controller, and Start and clock are
set to 0. At time t = 5, the reset_b signal is de-asserted by setting it to 1, the Start input
is asserted by setting it to 1, and the clock is then repeated for 16 cycles. The $monitor
statement displays the values of A, E, and F every 10 ns. The output of the simulation is
listed in the example under the simulation log. Initially, at time ¢ = 0, the values of the
registers are unknown, so they are marked with the symbol x. The first positive clock
transition, at time = 10, clears A and F, but does not affect E, so E is unknown at this
time. The rest of the table is identical to Table 8.3. Note that since Start is still equal to
1 at time = 160, the last entry in the table shows that A and F are cleared to 0, and E
does not change and remains at 1. This occurs during the second transition, from S_idle
toS_1.

HDL Example 8.3

/I Test bench for design example
'timescale 1 ns/ 1 ps
module t Design_Example_RTL;

reg Start, clock, reset_b;
wire [3: 0] A;
wire E, F;

/Il Instantiate design example
Design_Example_RTL MO (A, E, F, Start, clock, reset_b);
/I Describe stimulus waveforms
initial #500 $finish; /I Stopwatch
initial
begin

reset b =0;

Start = 0;

clock = 0;

#5reset b=1; Start=1;

repeat (32)

begin

#5 clock = ~ clock; /I Clock generator
end

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

386 Chapter 8 Design at the Register Transfer Level

end

initial

$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
endmodule
Simulation log:
A=xxxx E=xF=xtime= 0
A=0000 E=x F=0time= 10
A=0001E=0F=0time= 20
A=0010E=0F =0time= 30
A=0011 E=0F=0time= 40
A=0100E=0F =0time= 50
A=0101E=1F=0tme= 60
A=01M0E=1F=0time= 70
A=0111 E=1F=0time= 80
A=1000E=1F=0time= 90
A=1001E=0F =0time= 100
A=1010E=0F =0time = 110
A=1011 E=0F =0time= 120
A=1100 E=0F =0time= 130
A=1101 E=1F =0time= 140
A=1101 E=1F=1time= 150
A=0000E=1F=0tme= 160

Waveforms produced by a simulation of Design_Example_RTL with the test bench
are shown in Fig. 8.13. Numerical values are shown in hexadecimal format. The results
are annotated to call attention to the relationship between a control signal and the
operation that it causes to execute. For example, the controller asserts set_E for one
clock cycle before the clock edge at which E is set to 1. Likewise, set_F asserts during
the clock cycle before the edge at which F'is set to 1. Also, clr_A_F is formed in the
cycle before A and F are cleared. A more thorough verification of Design_Example_
RTL would confirm that the machine recovers from a reset on the fly (i.e., a reset that
is asserted randomly after the machine is operating). Note that the signals in the out-
put of the simulation have been listed in groups showing (1) clock and reset_b, (2) Start
and the status inputs, (3) the state, (4) the control signals, and (5) the datapath regis-
ters. It is strongly recommended that the state always be displayed, because this informa-
tion is essential for verifying that the machine is operating correctly and for debugging
its description when it is not. For the chosen binary state code, S_idle = 00, = Oy,
S_]: 012: 1H,and S_2 - 112 - 3H'

Structural Description

The RTL description of a design consists of procedural statements that determine the
functional behavior of the digital circuit. This type of description can be compiled by

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.6 HDL Description of Design Example 387

Name O 1 1 1 1 1 1 1 1 1 5|0 1 1 1 1 1 1 1 1 Il?ol 1 1 1 1 1 1 1 I15|0I 1 1 1 1 1 1
clock | Mmrire e e e rerere rere e
reset_b]
Start -
A3 I
state[1: 0] 0 1 (310 1
clr_A_F 1
set_ E
clr_E - Qj—’% S \
set F I \
incr_A] L ’ /
A[3:0] x L0 X1 X2 X3 X4 K5 K67 X8X9Xa b lcX dJ 0
E | M
F
FIGURE 8.13

Simulation results for Design_Example_RTL

HDL synthesis tools, from which it is possible to obtain the equivalent gate-level circuit
of the design. It is also possible to describe the design by its structure rather than its
function. A structural description of a design consists of instantiations of components
that define the circuit elements and their interconnections. In this regard, a structural
description is equivalent to a schematic diagram or a block diagram of the circuit. Con-
temporary design practice relies heavily on RTL descriptions, but we will present a
structural description here to contrast the two approaches.

For convenience, the circuit is again decomposed into two parts: the controller and
the datapath. The block diagram of Fig. 8.10 shows the high-level partition between these
units, and Fig. 8.12 provides additional underlying structural details of the controller.
The structure of the datapath is evident in Fig. 8.10 and consists of the flip-flops and the
four-bit counter with synchronous clear. The top level of the Verilog description replaces
Design_Example_RTL, Controller_RTL,and Datapath_RTL by Design_Example_STR,
Controller_STR, and Datapath_STR, respectively. The descriptions of Controller STR
and Datapath_STR will be structural.

HDL Example 8.4 presents the structural description of the design example. It consists
of a nested hierarchy of modules and gates describing (1) the top-level module, Design_
Example_STR, (2) the modules describing the controller and the datapath, (3) the modules
describing the flip-flops and counters, and (4) gates implementing the logic of the controller.
For simplicity, the counter and flip-flops are described by RTL models.

The top-level module (see Fig. 8.10) encapsulates the entire design by (1) instantiating
the controller and the datapath modules, (2) declaring the primary (external) input signals,

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

388 Chapter 8 Design at the Register Transfer Level

(3) declaring the output signals, (4) declaring the control signals generated by the controller
and connected to the datapath unit, and (5) declaring the status signals generated by the
datapath unit and connected to the controller. The port list is identical to the list used in the
RTL description. The outputs are declared as wire type here because they serve merely to
connect the outputs of the datapath module to the outputs of the top-level module, with
their logic value being determined within the datapath module.

The control module describes the circuit of Fig. 8.12. The outputs of the two flip-flops
G1I and GO are declared as wire data type. GI and G0 cannot be declared as reg data
type because they are outputs of an instantiated D flip-flop. DGI and DGO are unde-
clared identifiers, i.e., implicit wires. The name of a variable is local to the module or
procedural block in which it is declared. Nets may not be declared within a procedural
block (e.g., begin . .. end). The rule to remember is that a variable must be a declared
register type (e.g., reg) if and only if its value is assigned by a procedural statement
(i.e., a blocking or nonblocking assignment statement within a procedural block in cyclic
or single-pass behavior or in the output of a sequential UDP). The instantiated gates
specify the combinational part of the circuit. There are two flip-flop input equations and
three output equations. The outputs of the flip-flops GI and G0 and the input equations
DG1 and DGO replace output Q and input D in the instantiated flip-flops. The D flip-
flop is then described in the next module. The structure of the datapath unit has direct
inputs to the JK flip-flops. Note the correspondence between the modules of the HDL
description and the structures in Figs. 8.9, 8.10, and 8.12.

HDL Example 8.4

/I Structural description of design example (Figs. 8.9(a), 8.12)
module Design_Example_STR

(output [3:0] A, /I'V 2001 port syntax
output E, F,
input Start, clock, reset_b

);
Controller_STR MO (cIr_A_F, set_E, cIr_E, set_F, incr_A, Start, A[2], A[3], clock,
reset_b);
Datapath_STR M1 (A, E, F, cIr_A_F, set_E, cIr_E, set_F, incr_A, clock);
endmodule

module Controller_STR

(output clr_A_F, set_E, cIr_E, set_F, incr_A,
input Start, A2, A3, clock, reset_b

);

wire GO, G1;
parameter S _idle =2'b00, S_1=2'b01, S_2 =2'b11;
wire w1, w2, w3;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.6 HDL Description of Design Example 389

not (GO_b, GO);

not (G1_b, G1);

buf (incr_A, w2);

buf (set_F, G1);

not (A2_b, A2);

or (D_GO0, w1, w2);

and (w1, Start, GO_b);

and (clr_A_F, GO_b, Start);

and (w2, GO, G1_b);

and (set_E, w2, A2);

and (clr_E, w2, A2_b);

and (D_G1, w3, w2);

and (w3, A2, A3);

D_flip_flop_AR MO0 (GO, D_GO, clock, reset_b);

D_flip_flop_AR M1 (G1, D_G1, clock, reset_b);
endmodule

/[datapath unit

module Datapath_STR

(output [3: 0] A,

output E, F,

input clr_A_F, set E, cIr_E, set_F, incr_A, clock
)i
JK flip_flop_2 MO (E, E_b, set_E, clr_E, clock);
JK flip_flop_2 M1 (F, F_b, set_F, cIr_A_F, clock);
Counter_4 M2 (A, incr_A, clr_A_F, clock);
endmodule

/I Counter with synchronous clear

module Counter_4 (output reg [3: 0] A, input incr, clear, clock);
always @ (posedge clock)
if (clear) A <=0; else if (incr) A<= A +1;

endmodule

module D_flip_flop_AR (Q, D, CLK, RST);
output Q;
input D, CLK, RST;
reg Q;

always @ (posedge CLK, negedge RST)
if (RST ==0) Q <= 1'b0;
else Q <=D;
endmodule

/I Description of JK flip-flop

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 8 Design at the Register Transfer Level

module JK_flip_flop_2 (Q, Q_not, J, K, CLK);

output Q, Q_not;

input J, K, CLK;

reg Q;

assign Q_not = ~Q;

always @ (posedge CLK)
case ({J, K})

2'b00: Q<=Q;
2'b01: Q <= 1'b0;
2'b10: Q <= 1'b1;
2'b11: Q<=~Q;
endcase
endmodule

module t_Design_Example_STR;
reg Start, clock, reset_b;
wire [3: 0] A;
wire E, F;

/I Instantiate design example

Design_Example_STR MO (A, E, F, Start, clock, reset_b);

/I Describe stimulus waveforms

initial #500 $finish; /I Stopwatch
initial
begin
reset b =0;
Start = 0;
clock = 0;
#5 reset_ b =1; Start = 1;
repeat (32)
begin
#5 clock = ~ clock; /I Clock generator
end
end
initial

$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);

endmodule

The structural description was tested with the test bench that verified the RTL descrip-
tion to produce the results shown in Fig. 8.13. The only change necessary is the replacement
of the instantiation of the example from Design_Example_RTL by Design_Example STR.
The simulation results for Design_FExample_STR matched those for Design_Example_
RTL.However, a comparison of the two descriptions indicates that the RTL style is easier

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Section 8.7 Sequential Binary Multiplier 391

to write and will lead to results faster if synthesis tools are available to automatically
synthesize the registers, the combinational logic, and their interconnections.

8.7 SEQUENTIAL BINARY MULTIPLIER

This section introduces a second design example. It presents a hardware algorithm for
binary multiplication, proposes the register configuration for its implementation, and
then shows how to use an ASMD chart to design its datapath and its controller.

The system we will examine multiplies two unsigned binary numbers. The hardware
developed in Section 4.7 to execute multiplication resulted in a combinational circuit
multiplier with many adders and AND gates, and requires large area of silicon as an
integrated circuit. In contrast, in this section, a more efficient hardware algorithm results
in a sequential multiplier that uses only one adder and a shift register. The savings in
hardware and silicon area come about from a trade-off in the space (hardware)-time
domain. A parallel adder uses more hardware, but forms its result in one cycle of the
clock; a sequential adder uses less hardware, but takes multiple clock cycles to form its
result.

The multiplication of two binary numbers is done with paper and pencil by successive
(i.e., sequential) additions and shifting. The process is best illustrated with a numerical
example. Let us multiply the two binary numbers 10111 and 10011:

23 10111 multiplican
19 10011 multiplier
10111
10111
00000
00000
10111

437 110110101 product

The process consists of successively adding and shifting copies of the multiplicand.
Successive bits of the multiplier are examined, least significant bit first. If the multi-
plier bit is 1, the multiplicand is copied down; otherwise, 0’s are copied down. The
numbers copied in successive lines are shifted one position to the left from the previ-
ous number. Finally, the numbers are added and their sum forms the product. The
product obtained from the multiplication of two binary numbers of n bits each can
have up to 2n bits. It is apparent that the operations of addition and shifting are
executed by the algorithm.

When the multiplication process is implemented with digital hardware, it is conve-
nient to change the process slightly. First, we note that, in the context of synthesizing
a sequential machine, the add-and-shift algorithm for binary multiplication can be
executed in a single clock cycle or over multiple clock cycles. A choice to form the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

392 Chapter 8 Design at the Register Transfer Level

product in the time span of a single clock cycle will synthesize the circuit of a parallel
multiplier like the one discussed in Section 4.7 On the other hand, an RTL model of
the algorithm adds shifted copies of the multiplicand to an accumulated partial prod-
uct. The values of the multiplier, multiplicand, and partial product are stored in regis-
ters, and the operations of shifting and adding their contents are executed under the
control of a state machine. Among the many possibilities for distributing the effort of
multiplication over multiple clock cycles, we will consider that in which only one par-
tial product is formed and accumulated in a single cycle of the clock. (One alternative
would be to use additional hardware to form and accumulate two partial products in
a clock cycle, but this would require more logic gates and either faster circuits or a
slower clock.) Instead of providing digital circuits to store and add simultaneously as
many binary numbers as there are 1’s in the multiplier, it is less expensive to provide
only the hardware needed to sum two binary numbers and accumulate the partial
products in a register. Second, instead of shifting the multiplicand to the left, the par-
tial product being formed is shifted to the right. This leaves the partial product and
the multiplicand in the required relative positions. Third, when the corresponding bit
of the multiplier is 0, there is no need to add all 0’s to the partial product, since doing
so will not alter its resulting value.

Register Configuration

A block diagram for the sequential binary multiplier is shown in Fig. 8.14(a), and the
register configuration of the datapath is shown in Fig. 8.14(b). The multiplicand is
stored in register B, the multiplier is stored in register O, and the partial product is
formed in register A and stored in A and Q. A parallel adder adds the contents of
register B to register A.The C flip-flop stores the carry after the addition. The counter
P is initially set to hold a binary number equal to the number of bits in the multiplier.
This counter is decremented after the formation of each partial product. When the
content of the counter reaches zero, the product is formed in the double register A
and Q, and the process stops. The control logic stays in an initial state until Start
becomes 1. The system then performs the multiplication. The sum of A and B forms
the n most significant bits of the partial product, which is transferred to A. The output
carry from the addition, whether O or 1, is transferred to C. Both the partial product
in A and the multiplier in Q are shifted to the right. The least significant bit of A is
shifted into the most significant position of Q, the carry from C is shifted into the most
significant position of A, and 0 is shifted into C. After the shift-right operation, one
bit of the partial product is transferred into Q while the multiplier bits in Q are shifted
one position to the right. In this manner, the least significant bit of register Q, desig-
nated by Q/0], holds the bit of the multiplier that must be inspected next. The control
logic determines whether to add or not on the basis of this input bit. The control logic
also receives a signal, Zero, from a circuit that checks counter P for zero. Q/0] and
Zero are status inputs for the control unit. The input signal Start is an external control
input. The outputs of the control logic launch the required operations in the registers
of the datapath unit.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.7 Sequential Binary Multiplier 393

Ready Multiplicand ~ Multiplier

J l Datapath l

A
Load regs L1
i B
Start —>{ Controller Shift_regs
Addres | o
Decr_P
Llcl_1P
t reset clock t
l Product
Zero
0[]
(a)
Register B (Multiplicand) Register P (Counter)
1{1{of1]O0]1]1]1 110]0(0
7 3 0
16 15 8 8 7 0

010]0fO0[O)JO]JO]JO]OfO]JO]T|Of2|[1[|1

C Register A (Sum) Register Q (Multiplier)

(b)
FIGURE 8.14
(a) Block diagram and (b) datapath of a binary multiplier

The interface between the controller and the datapath consists of the status signals
and the output signals of the controller. The control signals govern the synchronous
register operations of the datapath. Signal Load_regs loads the internal registers of the
datapath, Shift_regs causes the shift register to shift, Add_regs forms the sum of the
multiplicand and register A, and Decr_P decrements the counter. The controller also
forms output Ready to signal to the host environment that the machine is ready to mul-
tiply. The contents of the register holding the product vary during execution, so it is
useful to have a signal indicating that its contents are valid. Note, again, that the state
of the control is not an interface signal between the control unit and the datapath. Only
the signals needed to control the datapath are included in the interface. Putting the state
in the interface would require a decoder in the datapath, and would require a wider and
more active bus than the control signals alone. Not good.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

394 Chapter 8 Design at the Register Transfer Level

ASMD Chart

The ASMD chart for the binary multiplier is shown in Fig. 8.15. The intermediate form
in Fig. 8.15(a) annotates the ASM chart of the controller with the register operations,
and the completed chart in Fig. 8.15(b) identifies the Moore and Mealy outputs of the
controller. Initially, the multiplicand is in B and the multiplier in Q. As long as the circuit
is in the initial state and Start = 0,no action occurs and the system remains in state S_idle
with Ready asserted. The multiplication process is launched when Start=1.Then, (1) con-
trol goes to state S_add, (2) register A and carry flip-flop C are cleared to 0, (3) registers

reset_b

Y

S_idle

A<=0
CcC<=0
B <= Multiplicand

1 / Q <= Multiplier

P<=n

S_add

1
Q/[0]

/P <= P—1 Decrement counter

[C A <=A+B

Add multiplicand
to shifted sum

S_shift

\C ={C A, 0} >>1
17-bit regtster shifts to the
right by one bit

FIGURE 8.15

ASMD chart for binary multiplier

STUDENTS-HUB.com

reset_b

g

A<=0

C<=0

B <= Multiplicand
Q <= Multiplier
P<=n

/

pP<=pP-1

{C,A}<=A+B

S_shift
Shift_regs

<&

1

(b)

(G, A Ql<=(C A 0} >>1

Uploaded By: Malak Dar Obaid

Section 8.7 Sequential Binary Multiplier 395

B and Q are loaded with the multiplicand and the multiplier, respectively, and (4) the
sequence counter P is set to a binary number n, equal to the number of bits in the mul-
tiplier. In state S_add, the multiplier bit in Q/0] is checked, and if it is equal to 1, the
multiplicand in B is added to the partial product in A. The carry from the addition is
transferred to C.The partial product in A and C is left unchanged if Q/0] =0.The coun-
ter P is decremented by 1 regardless of the value of Q/0],so Decr_P is formed in state
S_add as a Moore output of the controller. In both cases, the next state is S_shift. Reg-
isters C, A, and Q are combined into one composite register CAQ, denoted by the
concatenation {C, A, O}, and its contents are shifted once to the right to obtain a new
partial product. This shift operation is symbolized in the flowchart with the Verilog
logical right-shift operator, >>. It is equivalent to the following statement in register
transfer notation:

Shift right CAQ, C <0

In terms of individual register symbols, the shift operation can be described by the fol-
lowing register operations:

A<shrA,A, ;< C

Q<shrQ,0, <Ay
C<—0

Both registers A and Q are shifted right. The leftmost bit of A, designated by A,,_1,
receives the carry from C.The leftmost bit of O, Q,,_, receives the bit from the rightmost
position of A in Aj, and C is reset to 0. In essence, this is a long shift of the composite
register CAQ with 0 inserted into the serial input, which is at C.

The value in counter P is checked after the formation of each partial product. If the
contents of P are different from zero, status bit Zero is set equal to 0 and the process is
repeated to form a new partial product. The process stops when the counter reaches 0
and the controller’s status input Zero is equal to 1. Note that the partial product formed
in A is shifted into Q one bit at a time and eventually replaces the multiplier. The final
product is available in A and Q, with A holding the most significant bits and Q the least
significant bits of the product.

The previous numerical example is repeated in Table 8.5 to clarify the multiplication
process. The procedure follows the steps outlined in the ASMD chart. The data shown
in the table can be compared with simulation results.

The type of registers needed for the data processor subsystem can be derived from the
register operations listed in the ASMD chart. Register A is a shift register with parallel
load to accept the sum from the adder and must have a synchronous clear capability to
reset the register to 0. Register Q is a shift register. The counter P is a binary down coun-
ter with a facility to parallel load a binary constant. The C flip-flop must be designed to
accept the input carry and have a synchronous clear. Registers B and Q need a parallel
load capability in order to receive the multiplicand and multiplier prior to the start of the
multiplication process.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

396 Chapter 8 Design at the Register Transfer Level

Table 8.5

Numerical Example For Binary Multiplier

Multiplicand B = 10111, = 17 = 234 Multiplier Q = 10011, = 13 = 19,

C A Q P

Multiplier in Q 0 00000 10011 101
Qyp=1;add B 10111
First partial product 0 10111 100
Shift right CAQ 0 01011 11001
Qp=1;add B 10111
Second partial product 1 00010 011
Shift right CAQ 0 10001 01100
Q, = 0; shift right CAQ 0 01000 10110 010
Q, = 0; shift right CAQ 0 00100 01011 001
Qp=1;add B 10111
Fifth partial product 0 11011
Shift right CAQ 0 01101 10101 000

Final product in AQ =0110110101, = 1b5y

8.8 CONTROL LOGIC

The design of a digital system can be divided into two parts: the design of the regis-
ter transfers in the datapath unit and the design of the control logic of the control
unit. The control logic is a finite state machine; its Mealy- and Moore-type outputs
control the operations of the datapath. The inputs to the control unit are the primary
(external) inputs and the internal status signals fed back from the datapath to the
controller. The design of the system can be synthesized from an RTL description
derived from the ASMD chart. Alternatively, a manual design must derive the logic
governing the inputs to the flip-flops holding the state of the controller. The informa-
tion needed to form the state diagram of the controller is already contained in the
ASMD chart, since the rectangular blocks that designate state boxes are the states
of the sequential circuit. The diamond-shaped blocks that designate decision boxes
determine the logical conditions for the next state transition in the state diagram and
assertions of the conditional outputs.

As an example, the control state diagram for the binary multiplier developed in the
previous section is shown in Fig. 8.16(a). The information for the diagram is taken directly
from the ASMD chart of Fig. 8.15. The three states S_idle through S_shift are taken from
the rectangular state boxes. The inputs Start and Zero are taken from the diamond-
shaped decision boxes. The register transfer operations for each of the three states are
listed in Fig. 8.16(b) and are taken from the corresponding state and conditional boxes
in the ASMD chart. Establishing the state transitions is the initial focus, so the outputs
of the controller are not shown.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.8 Control Logic 397

Zero =1

Start = 0

Start = 1

Zero =0
(a)
State Transition Register Operations
From To
S_idle Initial state
S_idle S_add A <=0,C<=0,P<=dp_width
S_add S_shift P<=P-1
if (Q[0]) then (A <= A + B,C <= Cyy)
S_shift shift right {CAQ}, C <=0
(®)
FIGURE 8.16

Control specifications for binary multiplier

We must execute two steps when implementing the control logic: (1) establish the
required sequence of states, and (2) provide signals to control the register operations.
The sequence of states is specified in the ASMD chart or the state diagram. The signals
for controlling the operations in the registers are specified in the register transfer state-
ments annotated on the ASMD chart or listed in tabular format. For the multiplier, these
signals are Load_regs (for parallel loading the registers in the datapath unit), Decr_P
(for decrementing the counter), Add_regs (for adding the multiplicand and the partial
product), and Shift_regs (for shifting register CAQ). The block diagram of the control
unit is shown in Fig. 8.14(a). The inputs to the controller are Start, Q[0], and Zero, and
the outputs are Ready, Load_regs, Decr_P, Add_regs, and Shift_regs, as specified in the
ASMD chart. We note that Q/0] affects only the output of the controller, not its state
transitions. The machine transitions from S_add to S_shift unconditionally.

An important step in the design is the assignment of coded binary values to the states.
The simplest assignment is the sequence of binary numbers, as shown in Table 8.6.
Another assignment is the Gray code, according to which only one bit changes when
going from one number to the next. A state assignment often used in control design is
the one-hot assignment. This assignment uses as many bits and flip-flops as there are
states in the circuit. At any given time, only one bit is equal to 1 (the one that is hot)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

398 Chapter 8 Design at the Register Transfer Level

Table 8.6

State Assignment for Control
State Binary Gray Code One-Hot
S_idle 00 00 001
S_add 01 01 010
S_shift 10 11 100

while all others are kept at 0 (all cold). This type of assignment uses a flip-flop for each
state. Indeed, one-hot encoding uses more flip-flops than other types of coding, but it
usually leads to simpler decoding logic for the next state and the output of the machine.
Because the decoding logic does not become more complex as states are added to the
machine, the speed at which the machine can operate is not limited by the time required
to decode the state.

Since the controller is a sequential circuit, it can be designed manually by the sequential
logic procedure outlined in Chapter 5. However, in most cases this method is difficult to
carry out manually because of the large number of states and inputs that a typical control
circuit may have. As a consequence, it is necessary to use specialized methods for control
logic design that may be considered as variations of the classical sequential logic method.
We will now present two such design procedures. One uses a sequence register and decoder,
and the other uses one flip-flop per state. The method will be presented for a small circuit,
but it applies to larger circuits as well. Of course, the need for these methods is eliminated
if one has software that automatically synthesizes the circuit from an HDL description.

Sequence Register and Decoder

The sequence-register-and-decoder (manual) method, as the name implies, uses a reg-
ister for the control states and a decoder to provide an output corresponding to each of
the states. (The decoder is not needed if a one-hot code is used.) A register with n flip-
flops can have up to 2" states, and an n-to-2"-line decoder has up to 2" outputs. An n-bit
sequence register is essentially a circuit with n flip-flops, together with the associated
gates that effect their state transitions.

The ASMD chart and the state diagram for the controller of the binary multiplier
have three states and two inputs. (There is no need to consider Q/0/.) To implement the
design with a sequence register and decoder, we need two flip-flops for the register and
a two-to-four-line decoder. The outputs of the decoder will form the Moore-type outputs
of the controller directly. The Mealy-type outputs will be formed from the Moore outputs
and the inputs.

The state table for the finite state machine of the controller is shown in Table 8.7. It
is derived directly from the ASMD chart of Fig. 8.15(b) or the state diagram of
Fig. 8.16(a). We designate the two flip-flops as G and G, and assign the binary states
00, 01, and 10 to S_idle, S_add, and S_shift, respectively. Note that the input columns
have don’t-care entries whenever the input variable is not used to determine the next

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.8 Control Logic 399

Table 8.7
State Table for Control Circuit
Present Next
State Inputs State
] “
(=) Q =)
S, E| &l §‘ %
Present-State E E § '.gl £
Symbol G, G, Start QO] Zero G G &€ S a < &
S_idle 0 0 0 X X 0 0 1 0 0 0 0
S_idle 0 0 1 X X 0 1 1 1 0 0 0
S_add 0 1 X 0 X 1 0 0 0 1 0 0
S_add 0 1 X 1 X 1 0 0 0 1 1 0
S_shift 1 0 X X 0 0 1 0 0 0 0 1
S_shift 1 0 X X 1 0 0 0 0 0 0 1

state. The outputs of the control circuit are designated by the names given in the ASMD
chart. The particular Moore-type output variable that is equal to 1 at any given time is
determined from the equivalent binary value of the present state. Those output variables
are shaded in Table 8.7. Thus, when the present state is G;Gy, = 00, output Ready must
be equal to 1, while the other outputs remain at 0. Since the Moore-type outputs are a
function of only the present state, they can be generated with a decoder circuit having
the two inputs G| and G, and using three of the decoder outputs 7|, through 75, as
shown in Fig. 8.17(a), which does not include the wiring for the state feedback.

The state machine of the controller can be designed from the state table by means of
the classical procedure presented in Chapter 5.This example has a small number of states
and inputs, so we could use maps to simplify the Boolean functions. In most control logic
applications, the number of states and inputs is much larger. In general, the application of
the classical method requires an excessive amount of work to obtain the simplified input
equations for the flip-flops and is prone to error. The design can be simplified if we take
into consideration the fact that the decoder outputs are available for use in the design.
Instead of using flip-flop outputs as the present-state conditions, we use the outputs of the
decoder to indicate the present-state condition of the sequential circuit. Moreover, instead of
using maps to simplify the flip-flop equations, we can obtain them directly by inspection of
the state table. For example, from the next-state conditions in the state table, we find that
the next state of G is equal to 1 when the present state is S_add and is equal to 0 when the
present state is S_idle or S_shift. These conditions can be specified by the equation

Dg =T,
where Dy is the D input of flip-flop G;. Similarly, the D input of Gy is

DGO = TOStart + T2Zer0'

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Ready

Go 1 Load_regs
Start D “ (S_Idle) T,) _reg.
0
> C 2% 4
Decoder Add_regs
0/[0] Next S_tate (S_add) T,
Loge I Decr_P
Shift_regs
1 (S_shift) T fireg
Zero —|
D
G T3 —
> C
clock
reset_b
(a)
Next State Logic
Ready
Start D Go (S_idle) T, Load_regs
Q[0]
0
> C Add_regs
S_add) T,)
i ()L I Decr_P
o 2 X 4 Decoder
Zero (S_shift) T, Shift_regs
i
D
G, Ts
> C
(I)
clock
reset_b
(b)
FIGURE 8.17
Logic diagram of control for binary multiplier using a sequence register and decoder
400

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.8 Control Logic 401

When deriving input equations by inspection from the state table, we cannot be sure
that the Boolean functions have been simplified in the best possible way. (Synthesis tools
take care of this detail automatically.) In general, it is advisable to analyze the circuit to
ensure that the equations derived do indeed produce the required state transitions.

The logic diagram of the control circuit is drawn in Fig. 8.17(b). It consists of a register
with two flip-flops G and G and a 2 X 4 decoder. The outputs of the decoder are used to
generate the inputs to the next-state logic as well as the control outputs. The outputs of the
controller should be connected to the datapath to activate the required register operations.

One-Hot Design (One Flip-Flop per State)

Another method of control logic design is the one-hot assignment, which results in a
sequential circuit with one flip-flop per state. Only one of the flip-flops contains a 1 at
any time; all others are reset to 0. The single 1 propagates from one flip-flop to another
under the control of decision logic. In such a configuration, each flip-flop represents a
state that is present only when the control bit is transferred to it.

This method uses the maximum number of flip-flops for the sequential circuit. For
example, a sequential circuit with 12 states requires a minimum of four flip-flops. By
contrast, with the method of one flip-flop per state, the circuit requires 12 flip-flops, one
for each state. At first glance, it may seem that this method would increase system cost,
since more flip-flops are used. But the method offers some advantages that may not be
apparent. One advantage is the simplicity with which the logic can be designed by
inspection of the ASMD chart or the state diagram. No state or excitation tables are
needed if D-type flip-flops are employed. The one-hot method offers a savings in design
effort, an increase in operational simplicity, and a possible decrease in the total number
of gates, since a decoder is not needed.

The design procedure for a one-hot state assignment will be demonstrated by obtaining
the control circuit specified by the state diagram of Fig. 8.16(a). Since there are three states
in the state diagram, we choose three D flip-flops and label their outputs Gy, Gy, and Gy,
corresponding to S_idle, S_add, and S_shift, respectively. The input equations for setting
each flip-flop to 1 are determined from the present state and the input conditions along
the corresponding directed lines going into the state. For example, Dy, the input to flip-
flop Gy, is set to 1 if the machine is in state G, and Start is not asserted, or if the machine
is in state G, and Zero is asserted. These conditions are specified by the input equation:

Dgo = GyStart’ + G, Zero

In fact, the condition for setting a flip-flop to 1 is obtained directly from the state dia-
gram, from the condition specified in the directed lines going into the corresponding
flip-flop state ANDed with the previous flip-flop state. If there is more than one directed
line going into a state, all conditions must be ORed. Using this procedure for the other
three flip-flops, we obtain the remaining input equations:

Dgy = GyStart + G, Zero'
Dg, = Gy

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

402 Chapter 8 Design at the Register Transfer Level

L Ready
Start {>0— D Set Load_regs
(S_idle) | Go
_— > C
o[0] —
L] Add_regs
Zero 3 D G,y
—Do (S_add) T Decr_P
Rst
o 9
Shi]
S ift_regs
(S_shift) |G,
C
clock Rst
reset_b T
FIGURE 8.18

Logic diagram for one-hot state controller

The logic diagram of the one-hot controller (with one flip-flop per state) is shown in
Fig. 8.18. The circuit consists of three D flip-flops labeled G, through G,, together with the
associated gates specified by the input equations. Initially, flip-flop G, must be set to 1 and
all other flip-flops must be reset to 0, so that the flip-flop representing the initial state is
enabled. This can be done by using an asynchronous preset on flip-flop G, and an asynchro-
nous clear for the other flip-flops. Once started, the controller with one flip-flop per state
will propagate from one state to the other in the proper manner. Only one flip-flop will be
set to 1 with each clock edge; all others are reset to 0, because their D inputs are equal to 0.

8.9 HDL DESCRIPTION OF BINARY MULTIPLIER

A second example of an HDL description of an RTL design is given in HDL Example 8.5,
the binary multiplier designed in Section 8.7 For simplicity, the entire description is “flat-
tened” and encapsulated in one module. Comments will identify the controller and the
datapath. The first part of the description declares all of the inputs and outputs as specified

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.9 HDL Description of Binary Multiplier 403

in the block diagram of Fig. 8.14(a). The machine will be parameterized for a five-bit data-
path to enable a comparison between its simulation data and the result of the multiplication
with the numerical example listed in Table 8.5. The same model can be used for a datapath
having a different size merely by changing the value of the parameters. The second part of
the description declares all registers in the controller and the datapath, as well as the one-
hot encoding of the states. The third part specifies implicit combinational logic (continuous
assignment statements) for the concatenated register CAQ, the Zero status signal, and the
Ready output signal. The continuous assignments for Zero and Ready are accomplished by
assigning a Boolean expression to their wire declarations. The next section describes the
control unit, using a single edge-sensitive cyclic behavior to describe the state transitions,
and a level-sensitive cyclic behavior to describe the combinational logic for the next state
and the outputs. Again, note that default assignments are made to next_state, Load_regs,
Decr_P, Add_regs, and Shift_regs. The subsequent logic of the case statement assigns their
value by exception. The state transitions and the output logic are written directly from the
ASMD chart of Fig. 8.15(b).

The datapath unit describes the register operations within a separate edge-sensitive
cyclic behavior.® (For clarity, separate cyclic behaviors are used; we do not mix the
description of the datapath with the description of the controller.) Each control input
is decoded and is used to specify the associated operations. The addition and subtraction
operations will be implemented in hardware by combinational logic. Signal Load_regs
causes the counter and the other registers to be loaded with their initial values, etc.
Because the controller and datapath have been partitioned into separate units, the con-
trol signals completely specify the behavior of the datapath; explicit information about
the state of the controller is not needed and is not made available to the datapath unit.

The next-state logic of the controller includes a default case item to direct a synthesis
tool to map any of the unused codes to S_idle. The default case item and the default
assignments preceding the case statement ensure that the machine will recover if it
somehow enters an unused state. They also prevent unintentional synthesis of latches.
(Remember, a synthesis tool will synthesize latches when what was intended to be com-
binational logic in fact fails to completely specify the input—output function of the logic.)

HDL Example 8.5 (Sequential Multiplier)

module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start,
clock, reset_b);
/I Default configuration: five-bit datapath

parameter dp_width = 5; /I Set to width of datapath
output [2*dp_width -1: 0] Product;

output Ready;

input [dp_width -1: Q] Multiplicand, Multiplier;

input Start, clock, reset_b;

3The width of the datapath here is dp-width.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

404 Chapter 8 Design at the Register Transfer Level

parameter BC_size = 3; /I Size of bit counter

parameter S_idle = 3'b001, // one-hot code
S_add = 3'b010,
S_shift = 3'b100;

reg [2: 0] state, next_state;

reg [dp_width -1: 0] A B, Q; /I Sized for datapath

reg C;

reg [BC_size -1: 0] P;

reg Load_regs, Decr_P, Add_regs, Shift_regs;

/I Miscellaneous combinational logic

assign Product = {A, Q};

wire Zero = (P == 0); /I counter is zero
/] Zero = ~|P; // alternative

wire Ready = (state == S_idle); // controller status

/Il control unit
always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin
next_state = S_idle;

Load_regs = 0;

Decr P =0;

Add_regs = 0;

Shift_regs = 0;

case (state)
S_idle: begin if (Start) next_state = S_add; Load_regs = 1; end
S add: begin next_state = S_shift; Decr_P = 1; if (Q[0]) Add_regs = 1; end
S_shift: begin Shift_regs = 1; if (Zero) next_state = S_idle;

else next_state = S_add; end

default: next_state = S_idle;

endcase

end

/I datapath unit
always @ (posedge clock) begin

if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;

end

if (Add_regs) {C, A} <= A + B;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.9 HDL Description of Binary Multiplier 405

if (Shift_regs) {C, A, Q} <={C, A, Q} >> 1;
if (Decr_P)P <=P -1;
end
endmodule

Testing the Multiplier

HDL Example 8.6 shows a test bench for testing the multiplier. The inputs and outputs
are the same as those shown in the block diagram of Fig. 8.14(a). It is naive to conclude
that an HDL description of a system is correct on the basis of the output it generates
under the application of a few input signals. A more strategic approach to testing and
verification exploits the partition of the design into its datapath and control unit. This
partition supports separate verification of the controller and the datapath. A separate
test bench can be developed to verify that the datapath executes each operation and
generates status signals correctly. After the datapath unit is verified, the next step is to
verify that each control signal is formed correctly by the control unit. A separate test
bench can verify that the control unit exhibits the complete functionality specified by
the ASMD chart (i.e., that it makes the correct state transitions and asserts its outputs
in response to the external inputs and the status signals).

A verified control unit and a verified datapath unit together do not guarantee that
the system will operate correctly. The final step in the design process is to integrate
the verified models within a parent module and verify the functionality of the overall
machine. The interface between the controller and the datapath must be examined in
order to verify that the ports are connected correctly. For example, a mismatch in the
listed order of signals may not be detected by the compiler. After the datapath unit
and the control unit have been verified, a third test bench should verify the specified
functionality of the complete system. In practice, this requires writing a comprehensive
test plan identifying that functionality. For example, the test plan would identify the
need to verify that the sequential multiplier asserts the signal Ready in state S_idle.
The exercise to write a test plan is not academic: The quality and scope of the test plan
determine the worth of the verification effort. The test plan guides the development
of the test bench and increases the likelihood that the final design will match its
specification.

Testing and verifying an HDL model usually requires access to more information
than the inputs and outputs of the machine. Knowledge of the state of the control unit,
the control signals, the status signals, and the internal registers of the datapath might
all be necessary for debugging. Fortunately, Verilog provides a mechanism to hierarchi-
cally de-reference identifiers so that any variable at any level of the design hierarchy
can be visible to the test bench. Procedural statements can display the information
required to support efforts to debug the machine. Simulators use this mechanism to
display waveforms of any variable in the design hierarchy. To use the mechanism, we
reference the variable by its hierarchical path name. For example, the register P within

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

406 Chapter 8 Design at the Register Transfer Level

the datapath unit is not an output port of the multiplier, but it can be referenced as
MQO.P. The hierarchical path name consists of the sequence of module identifiers or
block names, separated by periods and specifying the location of the variable in the
design hierarchy. We also note that simulators commonly have a graphical user interface
that displays all levels of the hierarchy of a design.

The first test bench in HDL Example 8.6 uses the system task $strobe to display the
result of the computations. This task is similar to the $display and $monitor tasks
explained in Section 4.12. The $strobe system task provides a synchronization mecha-
nism to ensure that data are displayed only after all assignments in a given time step are
executed. This is very useful in synchronous sequential circuits, where the time step
begins at a clock edge and multiple assignments may occur at the same time step of
simulation. When the system is synchronized to the positive edge of the clock, using
$strobe after the always @ (posedge clock) statement ensures that the display shows
values of the signal after the clock pulse.

The test bench module ¢_Sequential Binary_Multiplier in HDL Example 8.6 instan-
tiates the module Sequential Binary_Multiplier of HDL Example 8.5. Both modules
must be included as source files when simulating the multiplier with a Verilog HDL
simulator. The result of this simulation displays a simulation log with numbers identi-
cal to the ones in Table 8.5. The code includes a second test bench to exhaustively
multiply five-bit values of the multiplicand and the multiplier. Waveforms for a sample
of simulation results are shown in Fig. 8.19. The numerical values of Multiplicand,
Multiplier,and Product are displayed in decimal and hexadecimal formats. Insight can
be gained by studying the displayed waveforms of the control state, the control signals,
the status signals, and the register operations. Enhancements to the multiplier and its
test bench are considered in the problems at the end of this chapter. In this example,
1949 X 2349 = 4374y, and 173 + Oby = 02y with C= 1. Note the need for the carry bit.

HDL Example 8.6

/I Test bench for the binary multiplier
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Set to width of datapath
wire [2*dp_width -1: 0] Product; /I Output from multiplier
wire Ready;

reg [dp_width -1: 0] Multiplicand, Multiplier; // Inputs to multiplier

reg Start, clock, reset_b;

/I Instantiate multiplier
Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock,

reset_b);

/I Generate stimulus waveforms
initial #200 $finish;
initial

begin
Start = 0;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.9 HDL Description of Binary Multiplier 407

65885 65925 65965 66005
Name
TN N T T T TN T AT T M T T T T T A N T N T T Y N TN AN T Y B
clock
reset_b
Start

state[2: 0] 12 a2 42 a2 42 4)1)2)

Load_regs -

Decr P J 1 I 1 I l [1
Add_regs

Shift_regs 1 I 1 I 1 [|
P[2:0] o |5 o« f 3 2 [1 | o 5]
Zero R S

B[4:0] 16 | [> D |18

A[4:0] j(ozz)(oo)(n 11 | 08 o4 1b | 0d) 00)

c

0[4:0] o2 1z 19 o | 16 | o |15) 13)
Multiplicand[4:0] | 16) 17 |18
Multiplicand[4: 0] 22X @\ X 24
Multiplier[4: 0] 13

Multiplier[4: 0] (@l

Product/9:0] | J1a2) 013)(253 {179) 059) 22c | 1Ib (360 | 105) 013
Productf9:0] | 418 19 (755377 89) 556 | 278|139 875 137 19

Ready

FIGURE 8.19
Simulation waveforms for one-hot state controller

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

408 Chapter 8 Design at the Register Transfer Level

reset b =0;
#2 Start = 1; reset_ b =1;
Multiplicand = 5'b10111; Multiplier = 5'b10011;
#10 Start = 0;
end
initial
begin
clock = 0;
repeat (26) #5 clock = ~clock;
end
/I Display results and compare with Table 8.5
always @ (posedge clock)
$strobe ("C=%b A=%b Q=%b P=%b time=%0d",M0.C,M0.A,M0.Q,M0.P, $time);
endmodule

Simulation log:

C=0 A=00000 Q=10011 P=101 time=5
C=0 A=10111 Q=10011 P=100 time=15
C=0 A=01011 Q=11001 P=100 time=25
C=1 A=00010 Q=11001 P=011 time=35
=0 A=10001 Q=01100 P=011 time=45
0 A=10001 Q=01100 P=010 time=55
0 A=01000 Q=10110 P=010 time=65
=0 A=01000 Q=10110 P=001 time=75
0 A=00100 Q=01011 P=001 time=85
0 A=11011 Q=01011 P=000 time=95
C=0 A=01101 Q=10101 P=000 time=105
C=0 A=01101 Q=10101 P=000 time=115
C=0 A=01101 Q=10101 P=000 time=125
/* Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Width of datapath
wire [2 * dp_width -1: 0] Product;
wire Ready;
reg [dp_width -1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;
Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock,
reset_b);

initial #1030000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork
reset_ b =1;
#2 reset_b =0;
#3 reset_b =1;
join

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.9 HDL Description of Binary Multiplier 409

initial begin #5 Start = 1; end
initial begin
#5 Multiplicand = 0;
Multiplier = 0;
repeat (32) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) 5 Multiplicand = Multiplicand + 1;
end
end
endmodule
*/

Behavioral Description of a Parallel Multiplier

Structural modeling implicitly specifies the functionality of a digital machine by prescrib-
ing an interconnection of gate-level hardware units. In this form of modeling, a synthesis
tool performs Boolean optimization and translates the HDL description of a circuit into
anetlist of gates in a particular technology, e.g., CMOS. Hardware design at this level often
requires cleverness and accrued experience. It is the most tedious and detailed form of
modeling. In contrast, behavioral RTL modeling specifies functionality abstractly, in terms
of HDL operators. The RTL model does not specify a gate-level implementation of the
registers or the logic to control the operations that manipulate their contents—those tasks
are accomplished by a synthesis tool. RTL modeling implicitly schedules operations by
explicitly assigning them to clock cycles. The most abstract form of behavioral modeling
describes only an algorithm, without any reference to a physical implementation, a set of
resources, or a schedule for their use. Thus, algorithmic modeling allows a designer to
explore trade-offs in the space (hardware) and time domains, trading processing speed
for hardware complexity.

HDL Example 8.7 presents an RTL model and an algorithmic model of a binary
multiplier. Both use a level-sensitive cyclic behavior. The RTL model expresses the
functionality of a multiplier in a single statement. A synthesis tool will associate with
the multiplication operator a gate-level circuit equivalent to that shown in Section 4.7.
In simulation, when either the multiplier or the multiplicand changes, the product will
be updated. The time required to form the product will depend on the propagation
delays of the gates available in the library of standard cells used by the synthesis tool.
The second model is an algorithmic description of the multiplier. A synthesis tool will
unroll the loop of the algorithm and infer the need for a gate-level circuit equivalent to
that shown in Section 4.7

Be aware that a synthesis tool may not be able to synthesize a given algorithmic
description, even though the associated HDL model will simulate and produce correct
results. One difficulty is that the sequence of operations implied by an algorithm might
not be physically realizable in a single clock cycle. It then becomes necessary to distrib-
ute the operations over multiple clock cycles. A tool for synthesizing RTL logic will not
be able to automatically accomplish the required distribution of effort, but a tool that

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

410 Chapter 8 Design at the Register Transfer Level

HDL Example 8.7

/I Behavioral (RTL) description of a parallel multiplier (n = 8)
module Mult (Product, Multiplicand, Multiplier);
input [7: 0] Multiplicand, Multiplier;
output reg [15: 0] Product;
always @ (Multiplicand, Multiplier)
Product = Multiplicand * Multiplier;
endmodule
module Algorithmic_Binary_Multiplier #(parameter dp_width = 5) (
output [2*dp_width -1: 0] Product, input [dp_width -1: 0] Multiplicand, Multiplier);

reg [dp_width -1: 0] A, B, Q; /I Sized for datapath
reg (03
integer K;
assign Product = {C, A, Q};
always @ (Multiplier, Multiplicand) begin
Q = Multiplier;
B = Multiplicand;
C=0;
A=0;

for (k = 0; k <= dp_width -1; k = k + 1) begin
if (Q[0]) {C, A} = A +B;
{C,A, Q}={C,A Q}>>1;

end
end
endmodule
module t_Algorithmic_Binary_Multiplier;
parameter dp_width = 5; /I Width of datapath
wire [2" dp_width -1: 0] Product;
reg [dp_width -1: 0] Multiplicand, Multiplier;
integer Exp_Value;
reg Error;

Algorithmic_Binary_Multiplier MO (Product, Multiplicand, Multiplier);
/I Error detection
initial # 1030000 finish;
always @ (Product) begin
Exp_Value = Multiplier * Multiplicand;
/l Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
Error = Exp_Value * Product;
end
/I Generate multiplier and multiplicand exhaustively for 5 bit operands
initial begin
#5 Multiplicand = 0;
Multiplier = O;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.10 Design with Multiplexers 411

repeat (32) #10 begin Multiplier = Multiplier + 1;
repeat (32) #5 Multiplicand = Multiplicand + 1;
end
end
endmodule

is designed to synthesize algorithms should be successful. In effect, a behavioral synthe-
sis tool would have to allocate the registers and adders to implement multiplication. If
only a single adder is to be shared by all of the operations that form a partial sum, the
activity must be distributed over multiple clock cycles and in the correct sequence, ulti-
mately leading to the sequential binary multiplier for which we have explicitly designed
the controller for its datapath. Behavioral synthesis tools require a different and more
sophisticated style of modeling and are not within the scope of this text.

8.10 DESIGN WITH MULTIPLEXERS

The register-and-decoder scheme for the design of a controller has three parts: the
flip-flops that hold the binary state value, the decoder that generates the control outputs,
and the gates that determine the next-state and output signals. In Section 4.11, it was
shown that a combinational circuit can be implemented with multiplexers instead of
individual gates. Replacing the gates with multiplexers results in a regular pattern of
three levels of components. The first level consists of multiplexers that determine the
next state of the register. The second level contains a register that holds the present
binary state. The third level has a decoder that asserts a unique output line for each
control state. These three components are predefined standard cells in many integrated
circuits.

Consider, for example, the ASM chart of Fig. 8.20, consisting of four states and four
control inputs. We are interested in only the control signals governing the state sequence.
These signals are independent of the register operations of the datapath, so the edges of
the graph are not annotated with datapath register operations, and the graph does not
identify the output signals of the controller. The binary assignment for each state is indi-
cated at the upper right corner of the state boxes. The decision boxes specify the state
transitions as a function of the four control inputs: w, x, y, and z. The three-level control
implementation, shown in Fig. 8.21, consists of two multiplexers, MUX1 and MUX2;
a register with two flip-flops, Giand Gy; and a decoder with four outputs—d,, d, d,, and
ds, corresponding to S_0, S_1, S_2,and S_3, respectively. The outputs of the state-register
flip-flops are applied to the decoder inputs and also to the select inputs of the multiplexers.
In this way, the present state of the register is used to select one of the inputs from each
multiplexer. The outputs of the multiplexers are then applied to the D inputs of G; and
G). The purpose of each multiplexer is to produce an input to its corresponding flip-flop
equal to the binary value of that bit of the next-state vector. The inputs of the multiplexers

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

412 Chapter 8 Design at the Register Transfer Level

00

S_0

l 01
S_1
0 1
X
11 10
S 3 S 2
0 1 1 0
y y
0 1 1 0
% Z

FIGURE 8.20
Example of ASM chart with four control inputs

are determined from the decision boxes and state transitions given in the ASM chart. For
example, state 00 stays at 00 or goes to 01, depending on the value of input w. Since the
next state of G is 0 in either case, we place a signal equivalent to logic 0 in MUX1 input 0.
The next state of G, is 0 if w =0 and 1 if w = 1. Since the next state of G, is equal to w,
we apply control input w to MUX2 input 0. This means that when the select inputs of the
multiplexers are equal to present state 00, the outputs of the multiplexers provide the
binary value that is transferred to the register at the next clock pulse.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.10 Design with Multiplexers 413

Gy
0 —|0 D
1 —1 I
MUX1 ¢
y —2
z S1 S0 d,
— do
— d,
MUX select dgczdir d
—— dy
- d3
51 So GO
w—0 D
x'—1 L |
y MUX?2 ¢
2
7 —
y —3
CLK
FIGURE 8.21

Control implementation with multiplexers

To facilitate the evaluation of the multiplexer inputs, we prepare a table showing
the input conditions for each possible state transition in the ASM chart. Table 8.8 gives
this information for the ASM chart of Fig. 8.20. There are two transitions from present
state 00 or 01 and three from present state 10 or 11. The sets of transitions are sepa-
rated by horizontal lines across the table. The input conditions listed in the table are
obtained from the decision boxes in the ASM chart. For example, from Fig. 8.20, we
note that present state 01 will go to next state 10 if x = 1 or to next state 11 if x = 0.
In the table, we mark these input conditions as x and x’, respectively. The two columns
under “multiplexer inputs” in the table specify the input values that must be applied
to MUX1 and MUX2. The multiplexer input for each present state is determined from
the input conditions when the next state of the flip-flop is equal to 1. Thus, after present
state 01, the next state of G is always equal to 1 and the next state of G, is equal to
the complement of x. Therefore, the input of MUXI1 is made equal to 1 and that of
MUX2 to x'when the present state of the register is 01. As another example, after pres-
ent state 10, the next state of G; must be equal to 1 if the input conditions are yz’ or
vz. When these two Boolean terms are ORed together and then simplified, we obtain
the single binary variable y, as indicated in the table. The next state of G is equal to 1
if the input conditions are yz = 11. If the next state of G remains at 0 after a given
present state, we place a 0 in the multiplexer input, as shown in present state 00 for

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

414 Chapter 8 Design at the Register Transfer Level

Table 8.8
Multiplexer Input Conditions
Present Next Input
State State Condition Inputs
G, Gy G, G s MUX1 MUX2
0 0 0 0 w'
0 0 0 1 w 0 w
0 1 1 0 X
0 1 1 1 x' 1 x'
10 0 o0 y'
10 1 0 yz'
1 0 1 1 vz vz +yz =y vz
1 1 0 1 y'z
1 1 1 0 y
1 1 1 1 y'z' yv+y'zi=y+2z vz +y'z =y’

MUXI1. If the next state of G| is always 1, we place a 1 in the multiplexer input, as
shown in present state 01 for MUX1. The other entries for MUX1 and MUX2 are
derived in a similar manner. The multiplexer inputs from the table are then used in the
control implementation of Fig. 8.21. Note that if the next state of a flip-flop is a function
of two or more control variables, the multiplexer may require one or more gates in its
input. Otherwise, the multiplexer input is equal to the control variable, the complement
of the control variable, 0, or 1.

Design Example: Count the Number of Ones in a Register

We will demonstrate the multiplexer implementation of the logic for a control unit by
means of a design example —a system that is to count the number of 1’s in a word of
data. The example will also demonstrate the formulation of the ASMD chart and the
implementation of the datapath subsystem.

From among various alternatives, we will consider a ones counter consisting of two
registers RI and R2, and a flip-flop E. (A more efficient implementation is considered
in the problems at the end of the chapter.) The system counts the number of 1’s in the
number loaded into register R/ and sets register R2 to that number. For example, if the
binary number loaded into R/ is 10111001, the circuit counts the five 1’s in R/ and sets
register R2 to the binary count 101. This is done by shifting each bit from register R/
one at a time into flip-flop E.The value in E is checked by the control, and each time it
is equal to 1, register R2 is incremented by 1.

The block diagram of the datapath and controller are shown in Fig. 8.22(a). The
datapath contains registers R/, R2,and E, as well as logic to shift the leftmost bit of R/
into E. The unit also contains logic (a NOR gate to detect whether RI is 0, but that

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Status

signals\ E data
Zero
E Datapath RI
Load_regs | : [TTT-TT11
1]
Shift_left .
Shift_le,
Start Controller . - ift_left
ner_ R2
Ready <— (LT 11
reset_b J
clock
count
(a)
reset_b reset_b
¥
RI <= data

R2<=allls
1

| R2<=R2+1

1 RI <= data

Load_rqy R2<=uallls

—

S_1
Incr_R2

| R2<=R2+1

{E,RI}<={E,RI} <<1

|E, RI) <= {E,RI} << 1

(b) (c)

FIGURE 8.22
Block diagram and ASMD chart for count-of-ones circuit

415

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

416 Chapter 8 Design at the Register Transfer Level

detail is omitted in the figure). The external input signal Start launches the operation
of the machine; Ready indicates the status of the machine to the external environment.
The controller has status input signals £ and Zero from the datapath. These signals
indicate the contents of a register holding the MSB of the data word and the condition
that the data word is 0, respectively. E is the output of the flip-flop. Zero is the output
of a circuit that checks the contents of register R/ for all 0’s. The circuit produces an
output Zero =1 when R1 is equal to O (i.e., when R/ is empty of 1’s).

A preliminary ASMD chart showing the state sequence and the register operations
is illustrated in Fig. 8.22(b), and the complete ASMD chart in Fig. 8.22(c). Asserting
Start with the controller in S_idle transfers the state to S_1I, concurrently loads reg-
ister R with the binary data word, and fills the cells of R2 with 1’s. Note that incre-
menting a number with all 1’s in a counter register produces a number with all 0’s.
Thus, the first transition from S_7 to S_2 will clear R2. Subsequent transitions will
have R2 holding a count of the bits of data that have been processed. The content of
R1, as indicated by Zero, will also be examined in S_I. If R/ is empty, Zero =1, and
the state returns to S_idle, where it asserts Ready. In state S_1I, Incr_R2 is asserted
to cause the datapath unit to increment R2 at each clock pulse. If R/ is not empty of
1’s, then Zero = 0, indicating that there are some 1’s stored in the register. The num-
ber in R/ is shifted and its leftmost bit is transferred into E. This is done as many
times as necessary, until a 1 is transferred into E. For every 1 detected in E, register
R2 is incremented and register R/ is checked again for more 1’s. The major loop is
repeated until all the 1’s in R/ are counted. Note that the state box of S_3 has no
register operations, but the block associated with it contains the decision box for E.
Note also that the serial input to shift register R/ must be equal to 0 because we don’t
want to shift external 1’s into RI. The register R/ in Fig. 8.22(a) is a shift register.
Register R2 is a counter with parallel load. The multiplexer input conditions for the
control are determined from Table 8.9. The input conditions are obtained from the
ASMD chart for each possible binary state transition. The four states are assigned

Table 8.9

Multiplexer Input Conditions for Design Example

Present Next Input Multiplexer
State State Conditions Inputs
G; Gy G; Gy MUX1 MuUX2
0 0 0 0 Start’
0 0 0 1 Start 0 Start
0 1 0 0 Zero
0 1 1 0 Zero' Zero'
1 0 1 1 None 1 1
1 1 1 0 E'
1 1 0 1 E E’ E

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.10 Design with Multiplexers 417

0——0
Zero' 1 G,
Mux_1 D
1—2 Start
c - Load_regs
E —3 s1 S
0 Ready
1 Incr_R2
2 X 4 Decoder
2 —— Shift_left
3 ————
Start 0 f1 S
0—1 e
Mux_2 D
1—2
E—13 > ¢
clock
reset_b I
FIGURE 8.23

Control implementation for count-of-ones circuit

binary values 00 through 11. The transition from present state 00 depends on Start.
The transition from present state 01 depends on Zero, and the transition from pres-
ent state 11 on E. Present state 10 goes to next state 11 unconditionally. The values
under MUX1 and MUX2 in the table are determined from the Boolean input condi-
tions for the next state of G| and G, respectively.

The control implementation of the design example is shown in Fig. 8.23. This is a
three-level implementation, with the multiplexers in the first level. The inputs to the
multiplexers are obtained from Table 8.9. The Verilog description in HDL Example 8.8
instantiates structural models of the controller and the datapath. The listing of code
includes the lower level modules implementing their structures. Note that the datapath
unit does not have a reset signal to clear the registers, but the models for the flip-flop,
shift register, and counter have an active-low reset. This illustrates the use of Verilog
data type supplyl to hardwire those ports to logic value 1 in their instantiation within
Datapath_STR. Note also that the test bench uses hierarchical de-referencing to access
the state of the controller to make the debug and verification tasks easier, without hav-
ing to alter the module ports to provide access to the internal signals. Another detail to
observe is that the serial input to the shift register is hardwired to 0. The lower level
models are described behaviorally for simplicity.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

418 Chapter 8 Design at the Register Transfer Level

HDL Example 8.8 (Ones Counter)

module Count_Ones_STR_STR (count, Ready, data, Start, clock, reset_b);
/I Mux — decoder implementation of control logic

/I controller is structural

// datapath is structural

parameter R1_size = 8, R2_size = 4;

output [R2_size -1: 0] count;

output Ready;

input [R1_size -1: 0] data;

input Start, clock, reset_b;

wire Load_regs, Shift_left, Incr_R2, Zero, E;

Controller_STR MO (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);
Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);
endmodule

module Controller_STR (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock,

reset_b);

output Ready;

output Load_regs, Shift_left, Incr_R2;

input Start;

input E, Zero;

input clock, reset_b;

supply0 GND;

supply1 PWR;

parameter S0 =2'b00, S1 =2'b01, S2 =2'b10, S3 = 2'b11; // Binary code

wire Load_regs, Shift_left, Incr_R2;

wire G0, GO_b, D _in0, D_in1, G1, G1_b;

wire Zero_b = ~Zero;

wire E b=~E;

wire [1: 0] select = {G1, GO0};

wire [0: 3] Decoder_out;

assign Ready = ~Decoder_out[0];

assign Incr_R2 = ~Decoder_out[1];

assign Shift_left = ~Decoder_out[2];

and (Load_regs, Ready, Start);

mux_4x1_beh Mux_1 (D_in1, GND, Zero_b, PWR, E_b, select);

mux_4x1_beh Mux_0 (D_in0, Start, GND, PWR, E, select);

D flip flop_ AR b M1 (G1, G1_b, D_in1, clock, reset_b);

D flip flop_ AR b MO (GO, GO_b, D_in0, clock, reset_b);

decoder_2x4 df M2 (Decoder_out, G1, GO, GND);
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.10 Design with Multiplexers 419

module Datapath_STR (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);

parameter R1_size = 8, R2_size = 4;

output [R2_size -1: 0] count;

output E, Zero;

input [R1_size -1: 0] data;

input Load_regs, Shift_left, Incr_R2, clock;

wire [R1_size -1: 0] R1;

wire Zero;

supply0 Gnd;

supply1 Pwr;

assign Zero = (R1==0); /I implicit combinational logic

Shift_Reg M1 (R1, data, Gnd, Shift_left, Load_regs, clock, Pwr);

Counter M2 (count, Load_regs, Incr_R2, clock, Pwr);

D_flip_flop_AR M3 (E, w1, clock, Pwr);

and (w1, R1[R1_size - 1], Shift_left);
endmodule

module Shift_Reg (R1, data, SI_0, Shift_left, Load_regs, clock, reset_b);
parameter R1_size = §;

output [R1_size -1: 0] R1;

input [R1_size -1: 0] data;

input S1_0, Shift_left, Load_regs;
input clock, reset_b;

reg [R1_size -1: 0] R1;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) R1 <=0;
else begin
if (Load_regs) R1 <= data; else
if (Shift_left) R1 <= {R1[R1_size -2: 0], SI_0}; end

endmodule

module Counter (R2, Load_regs, Incr_R2, clock, reset_b);
parameter R2_size = 4;
output [R2_size -1: 0] R2;
input Load_regs, Incr_R2;
input clock, reset_b;
reg [R2_size -1: 0] R2;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) R2 <=0;
else if (Load_regs) R2 <= {R2_size {1'b1}}; /1 Fill with 1
else if (Incr_R2 == 1) R2<=R2 + 1;
endmodule
module D_flip_flop_AR (Q, D, CLK, RST_b);
output Q;
input D, CLK, RST _b;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

420 Chapter 8 Design at the Register Transfer Level

reg Q;
always @ (posedge CLK, negedge RST_b)
if (RST_b ==0) Q <= 1'b0;

else Q <=D;
endmodule
module D_flip_flop_AR_b (Q, Q_b, D, CLK, RST_b);
output Q, Q_b;
input D, CLK, RST_b;
reg Q;
assign Q_b=~Q;

always @ (posedge CLK, negedge RST_b)
if (RST_b ==0) Q <= 1'b0;
else Q <=D;
endmodule
/I Behavioral description of four-to-one line multiplexer
/I Verilog 2005 port syntax
module mux_4x1_beh

(output reg m_out,
input in_0,in_1,in_2,in_3,

input [1: 0] select
);
always @ (in_0, in_1,in_2, in_3, select) // Verilog 2005 syntax
case (select)
2'b00: m_out =in_0;

2'b01: m_out =in_1;
2'b10: m_out =in_2;
2'b11: m_out =in_3;
endcase
endmodule

/I Dataflow description of two-to-four-line decoder

/I See Fig. 4.19. Note: The figure uses symbol E, but the

/I Verilog model uses enable to indicate functionality clearly.
module decoder_2x4_df (D, A, B, enable);

output [0:3] D;

input A, B;

input enable;

assign D[0] = !('A && B && lenable),

D[1] = ('A && B && lenable),

D[2] = (A && IB && lenable),

D[3] = (A && B && !lenable);
endmodule

module t_ Count_Ones;

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.10 Design with Multiplexers 421

parameter R1_size = 8, R2_size = 4;

wire [R2_size -1: 0] R2;

wire [R2_size -1: 0] count;

wire Ready;

reg [R1_size -1: 0] data;

reg Start, clock, reset_b;

wire [1: 0] state; /I Use only for debug

assign state = {M0.M0.G1, M0.M0.G0};

Count_Ones_STR_STR MO (count, Ready, data, Start, clock, reset_b);
initial #650 $finish;

initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
#1 reset_ b=1;
#3 reset_ b =0;
#4 reset b =1;

#27 reset_b = 0;
#29 reset_ b =1;
#355 reset_b =0;
#365 reset_ b =1;

#4 data = 8'Hff;
#145 data = 8'haa;
25 Start = 1;

35 Start = 0;
#55 Start = 1;

#65 Start = 0;
#395 Start = 1;
#405 Start = 0;

join
endmodule

Testing the Ones Counter

The test bench in HDL Example 8.8 was used to produce the simulation results in
Fig. 8.24. Annotations have been added for clarification. In Fig. 8.24(a), reset_b is toggled
low at =3 to drive the controller into S_idle, but with Start not yet having an assigned
value. (The default is x.) Consequently, the controller enters an unknown state (the
shaded waveform) at the next clock, and its outputs are unknown.* When reset_b is
asserted (low) again at =27 the state enters S_idle. Then, with Start=1 at the first clock
after reset_b is de-asserted, (1) the controller enters S_I, (2) Load_regs causes R1 to be
set to the value of data, namely, 8'Hff, and (3) R2 is filled with 1’s. At the next clock, R2

4Remember, this simulation is in Verilog’s four-valued logic system. In actual hardware, the values will be 0 or 1.
Without a known applied value for the inputs, the next state and outputs will be undetermined, even after the reset
signal has been applied.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

422 Chapter 8 Design at the Register Transfer Level
reset_b asserted (low), but Machine begins
Start unknown counting
Name 0II/IIIIII3|OI/III6|OIIIIIIIII9|OIIIIIIIII12|'OIII
clock
reset_b ru L
Start] 1
Zero 1
E — 1 1 1
statef{1:0] [0 X O 1) 2 N 3 1 Y 2 ¥ 3 {1 ¥ 2 ¥ 3 1
state[1] — J L 7 L T I
state[0] [1T 1] I | N
Ready | [1
Load_regs 1
Shift_left [— — e
Incr_R2 | —— 1 1 |
data[7: 0] ff
RI[7:0] XX X o) fe X fc O
E —— \ 1 1
R2/3:0] X S B X 1 X 2
count[3: 0] X)(/,(f \\ 0 1 X 2
R2 filled with 1s R1 loaded with data
(a)
FIGURE 8.24
Simulation waveforms for count-of-ones circuit
starts counting from 0. Shift_left is asserted while the controller is in state S_2, and
incr_R2 is asserted while the controller is in state S_7. Notice that R2 is incremented in
the next cycle after incr_R?2 is asserted. No output is asserted in state S_3.The counting
sequence continues in Fig. 8.24(b) until Zero is asserted, with E holding the last 1 of the
data word. The next clock produces count = 8, and state returns to S_idle. (Additional
testing is addressed in the problems at the end of the chapter.)
8.11 RACE-FREE DESIGN (SOFTWARE RACE

CONDITIONS)

STUDENTS-HUB.com

Once a circuit has been synthesized, either manually or with tools, it is necessary to
verify that the simulation results produced by the HDL behavioral model match those of
the netlist of the gates (standard cells) of the physical circuit. It is important to resolve any

Uploaded By: Malak Dar Obaid

Section 8.11

Name

Race-Free Design (Software Race Conditions)

R1 is empty of Machine returns to
Is S_idle

240

Computations are
done

300

423

clock

reset_b

Start
Zero

E

state[1: 0]

state[1]

state[0]

Ready

Load_regs

Shift_left
Incr_R2

data[7: 0]

aa

RI[7:0]

00

E

R2[3:0] 2 3)(

count(3: 0] 2) 3 X

Figure 8.24

(Continued)

R2 holds number of 1s
(b)

mismatch, because the behavioral model was presumed to be correct. There are various
potential sources of mismatch between the results of a simulation, but we will consider
one that typically happens in HDL-based design methodology. Three realities contribute
to the potential problem: (1) a physical feedback path exists between a datapath unit and
a control unit whose inputs include status signals fed back from the datapath unit;
(2) blocked procedural assignments execute immediately, and behavioral models simu-
late with 0 propagation delays, effectively creating immediate changes in the outputs of
combinational logic when its inputs change (i.e., changes in the inputs and the outputs
are scheduled in the same time step of the simulation); and (3) the order in which a
simulator executes multiple blocked assignments to the same variable at a given time
step of the simulation is indeterminate (i.e., unpredictable).

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

424 Chapter 8 Design at the Register Transfer Level

Now consider a sequential machine with an HDL model in which all assignments
are made with the blocked assignment operator. At a clock pulse, the register opera-
tions in the datapath, the state transitions in the controller, the updates of the next
state and output logic of the controller, and the updates to the status signals in the
datapath are all scheduled to occur at the same time step of the simulation. Which
executes first? Suppose that when a clock pulse occurs, the state of the controller
changes before the register operations execute. The change in the state could change
the outputs of the control unit. The new values of the outputs would be used by the
datapath when it finally executes its assignments at that same clock pulse. The result
might not be the same as it would have been if the datapath had executed its assign-
ments before the control unit updated its state and outputs. Conversely, suppose that
when the clock pulse occurs, the datapath unit executes its operations and updates its
status signals first. The updated status signals could cause a change in the value of the
next state of the controller, which would be used to update the state. The result could
differ from that which would result if the state had been updated before the edge-
sensitive operations in the datapath executed. In either case, the timing of register
transfer operations and state transitions in the different representations of the system
might not match. Failing to detect a mismatch can have disastrous consequences for
the user of the design. Finding the source of the mismatch can be very time-consuming
and costly. It is better to avoid the mismatch by following a strict discipline in your
design. Fortunately, there is a solution to this dilemma.

A designer can eliminate the software race conditions just described by observing
the rule of modeling combinational logic with blocked assignments and modeling
state transitions and edge-sensitive register operations with nonblocking assign-
ments. A software race cannot happen if nonblocking operators are used as shown
in all of the examples in this text, because the sampling mechanism of the nonblock-
ing operator breaks the feedback path between a state transition or edge-sensitive
datapath operation and the combinational logic that forms the next state or inputs
to the registers in the datapath unit. The mechanism does this because simulators
evaluate the expressions on the right-hand side of their nonblocking assignment
statements before any blocked assignments are made. Thus, the nonblocking assign-
ments cannot be affected by the results of the blocked assignments. This matches the
hardware reality. Always use the blocking operator to model combinational logic,
and use the nonblocking operator to model edge-sensitive register operations and
state transitions.

It also might appear that the physical structure of a datapath and the controller
together create a physical (i.e., hardware), race condition, because the status signals are
fed back to the controller and the outputs of the controller are fed forward to the
datapath. However, timing analysis can verify that a change in the output of the control-
ler will not propagate through the datapath logic and then through the input logic of
the controller in time to have an effect on the output of the controller until the next
clock pulse. The state cannot update until the next edge of the clock, even though the
status signals update the value of the next state. The flip-flop cuts the feedback path

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 8.12 Latch-Free Design (Why Waste Silicon?) 425

between clock cycles. In practice, timing analysis verifies that the circuit will operate at
the specified clock frequency, or it identifies signal paths whose propagation delays are
problematic. Remember, the design must implement the correct logic and operate at
the speed prescribed by the clock.

8.12 LATCH-FREE DESIGN (WHY WASTE
SILICON?)

Continuous assignments model combinational logic implicitly. A feedback-free continu-
ous assignment will synthesize to combinational logic, and the input—-output relationship
of the logic is automatically sensitive to all of the inputs of the circuit. In simulation, the
simulator monitors the right-hand sides of all continuous assignments, detects a change
in any of the referenced variables, and updates the left-hand side of an affected assign-
ment statement. Unlike a continuous assignment, a cyclic behavior is not necessarily
completely sensitive to all of the variables that are referenced by its assignment state-
ments. If a level-sensitive cyclic behavior is used to describe combinational logic, it is
essential that the sensitivity list include every variable that is referenced on the right-hand
side of an assignment statement in the behavior. If the list is incomplete, the logic
described by the behavior will be synthesized with latches at the outputs of the logic. This
implementation wastes silicon area and may have a mismatch between the simulation of
the behavioral model and the synthesized circuit. These difficulties can be avoided by
ensuring that the sensitivity list is complete, but, in large circuits, it is easy to fail to include
every referenced variable in the sensitivity list of a level-sensitive cyclic behavior.
Consequently, Verilog 2001 included a new operator to reduce the risk of accidentally
synthesizing latches.

In Verilog 2001, the tokens @ and * can be combined as @* or @(*) and are used
without a sensitivity list to indicate that execution of the associated statement is sensi-
tive to every variable that is referenced on the right-hand side of an assignment state-
ment in the logic. In effect, the operator @* indicates that the logic is to be interpreted

HDL Example 8.9

The following level-sensitive cyclic behavior will synthesize a two-channel multiplexer:

module mux_2_V2001 (output reg [31: 0] y, input [31: 0] a, b, input sel);
always @*
y =sel ? a: b;

endmodule

The cyclic behavior has an implicit sensitivity list consisting of a, b, and sel.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

426 Chapter 8 Design at the Register Transfer Level
and synthesized as level-sensitive combinational logic; the logic has an implicit sensitivity

list composed of all of the variables that are referenced by the procedural assignments.
Using the @* operator will prevent accidental synthesis of latches.

8.13 OTHER LANGUAGE FEATURES

The examples in this text have used only those features of the Verilog HDL that are
appropriate for an introductory course in logic design. Verilog 2001 contains features
that are very useful to designers, but which are not considered here. Among them are
multidimensional arrays, variable part selects, array bit and part selects, signed reg, net,
and port declarations, and local parameters. These enhancements are treated in more
advanced texts using Verilog 2001 and Verilog 2005.

PROBLEMS

Answers to problems marked with * appear at the end of the book.

8.1% Explain in words and write HDL statements for the operations specified by the following
register transfer notation:
(a) R2<-R2 + 1,RI <R
(b) R3«<—R3 -1
(c) If (S; = 1) then (RO < RI) else if (S, = 1) then (RO < R2)

8.2 A logic circuit with active-low synchronous reset has two control inputs x and y. If x is 1
and y is 0, register R is incremented by 1 and control goes to a second state. If x is 0 and y
is 1, register R is cleared to zero and control goes from the initial state to a third state.
Otherwise, control stays in the initial state. Draw (1) a block diagram showing the control-
ler, datapath unit (with internal registers), and signals, and (2) the portion of an ASMD
chart starting from an initial state.

8.3 Draw the ASMD charts for the following state transitions:
(a) If x = 1, control goes from state S; to state S,; if x =0, generate a conditional opera-
tion R <= R + 2 and go from §; to S,.
(b) If x =1, control goes from S, to S, and then to S3; if x = 0, control goes from S;to S;.
(c) Start from state S;; then if xy =11, go to Sy; if xy =01 go to S3; and if xy =10, go to Sy;
otherwise, go to S;.

8.4 Show the eight exit paths in an ASM block emanating from the decision boxes that check
the eight possible binary values of three control variables x, y, and z.

8.5 Explain how the ASM and ASMD charts differ from a conventional flowchart. Using
Fig. 8.5 as an illustration, show the difference in interpretation. Explain the difference
between and ASM chart and an ASMD chart. In your own words, discuss the use and merit
of using an ASMD chart.

8.6 Construct a block diagram and an ASMD chart for a digital system that counts the number
of people in a room. The one door through which people enter the room has a photocell
that changes a signal x from 1 to 0 while the light is interrupted. They leave the room from

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 427

a second door with a similar photocell that changes a signal y from 1 to 0 while the light
is interrupted. The datapath circuit consists of an up—down counter with a display that
shows how many people are in the room.

8.7% Draw a block diagram and an ASMD chart for a circuit with two eight-bit registers RA
and RB that receive two unsigned binary numbers. The circuit performs the subtraction
operation

RA<—RA — RB

Use the method for subtraction described in Section 1.5, and set a borrow flip-flop to 1 if
the answer is negative. Write and verify an HDL model of the circuit.

8.8* Design a digital circuit with three 16-bit registers AR, BR, and CR that perform the

following operations:

(a) Transfer two 16-bit signed numbers (in 2’s-complement representation) to AR and BR.

(b) If the number in AR is negative, divide the number in AR by 2 and transfer the result
to register CR.

(c) If the number in AR is positive but nonzero, multiply the number in BR by 2 and
transfer the result to register CR.

(d) If the number in AR is zero, clear register CR to 0.

(e) Write and verify a behavioral model of the circuit.

8.9% Design the controller whose state diagram is given by Fig. 8.11(a). Use one flip-flop per
state (a one-hot assignment). Write, simulate, verify, and compare RTL and structural
models of the controller.

8.10 The state diagram of a control unit is shown in Fig. P8.10. It has four states and two
inputs x and y. Draw the equivalent ASM chart. Write and verify a Verilog model of the
controller.

FIGURE P8.10
Control state diagram for Problems 8.10 and 8.11

8.11* Design the controller whose state diagram is shown in Fig. P8.10. Use D flip-flops.

8.12 Design the four-bit counter with synchronous clear specified in Fig. 8.10. Repeat for
asynchronous clear.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

428 Chapter 8 Design at the Register Transfer Level

8.13 Simulate Design_Example_STR (see HDL Example 8.4), and verify that its behavior
matches that of the RTL description. Obtain state information by displaying G0 and G1
as a concatenated vector for the state.

8.14 What, if any, are the consequences of the machine in Design_Example_RTL (see HDL
Example 8.2) entering an unused state?

8.15 Simulate Design_Example_RTL in HDL Example 8.2, and verify that it recovers from an
unexpected reset condition during its operation, i.e.,a “running reset” or a “reset on-the-fly.”

8.16* Develop a block diagram and an ASMD chart for a digital circuit that multiplies two binary
numbers by the repeated-addition method. For example, to multiply 5 X 4, the digital system
evaluates the product by adding the multiplicand four times: 5 + 5 + 5 + 5 = 20. Design the
circuit. Let the multiplicand be in register BR, the multiplier in register AR, and the product
in register PR. An adder circuit adds the contents of BR to PR. A zero-detection signal indi-
cates whether AR is 0. Write and verify a Verilog behavioral model of the circuit.

8.17* Prove that the multiplication of two n-bit numbers gives a product of length less than or
equal to 2n bits.

8.18% In Fig. 8.14, the Q register holds the multiplier and the B register holds the multiplicand.
Assume that each number consists of 16 bits.
(a) How many bits can be expected in the product, and where is it available?
(b) How many bits are in the P counter, and what is the binary number loaded into it

initially?

(c) Design the circuit that checks for zero in the P counter.

8.19 List the contents of registers C, A, Q, and P in a manner similar to Table 8.5 during the
process of multiplying the two numbers 11011 (multiplicand) and 10111 (multiplier).

8.20* Determine the time it takes to process the multiplication operation in the binary multi-
plier described in Section 8.8. Assume that the Q register has n bits and the clock cycle is
tns.

8.21 Design the control circuit of the binary multiplier specified by the state diagram of Fig. 8.16,
using multiplexers, a decoder, and a register.

8.22 Figure P8.22 shows an alternative ASMD chart for a sequential binary multiplier. Write and
verify an RTL model of the system. Compare this design with that described by the ASMD
chart in Fig. 8.15(b).

8.23 Figure P8.23 shows an alternative ASMD chart for a sequential binary multiplier. Write
and verify an RTL model of the system. Compare this design with that described by the
ASMD chart in Fig. 8.15(b).

8.24 The HDL description of a sequential binary multiplier given in HDL Example 8.5
encapsulates the descriptions of the controller and the datapath in a single Verilog
module. Write and verify a model that encapsulates the controller and datapath in
separate modules.

8.25 The sequential binary multiplier described by the ASMD chart in Fig. 8.15 does not consider
whether the multiplicand or the shifted multiplier is 0. Therefore, it executes for a fixed
number of clock cycles, independently of the data.

(a) Develop an ASMD chart for a more efficient multiplier that will terminate execution
as soon as either word is found to be zero.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 429

reset

A<=0

CcC<=0

B <= Multiplicand
Q <= Multiplier
P <= m_size

P<=P-1
Decrement counter

[CA)<=A+B

/4dd multiplicand
to shifted sum
Add_regs

@@ S_sum

y

Sshified |14, 0) <= 1G4, 0) >> 1
17-bit register shifts to the

E right by one bit

1

J

FIGURE P8.22
ASMD chart for Problem 8.22

(b) Write an HDL description of the circuit. The controller and datapath are to be encap-
sulated in separate Verilog modules.
(c) Write a test plan and a test bench, and verify the circuit.

8.26 Modify the ASMD chart of the sequential binary multiplier shown in Fig. 8.15 to add and
shift in the same clock cycle. Write and verify an RTL description of the system.

8.27 The second test bench given in HDL Example 8.6 generates a product for all possible
values of the multiplicand and multiplier. Verifying that each result is correct would not
be practical, so modify the test bench to include a statement that forms the expected

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

430 Chapter 8 Design at the Register Transfer Level

reset
l
S_idle A<=0
Ready CcC<=0

B <= Multiplicand
Q <= Multiplier
P <= m_size

| —

Decrement counter

~ P<=P-1
S_ - /

decr P —]
%@’ 1
Add_regs
R Add multiplicand
S_shift to shifted sum
o {CAl<=A+B
Shift_regs

X T 1GA,0) <= CA 0} >>1
1 17-bit register shifts to the
Zero right by one bit

FIGURE P8.23
ASMD chart for Problem 8.23

product. Write additional statements to compare the result produced by the RTL descrip-
tion with the expected result. Your simulation is to produce an error signal indicating the
result of the comparison. Repeat for the structural model of the multiplier.

8.28 Write the HDL structural description of the multiplier designed in Section 8.8. Use the
block diagram of Fig. 8.14(a) and the control circuit of Fig. 8.18. Simulate the design and
verify its functionality by using the test bench of HDL Example 8.6.

8.29 Anincomplete ASMD chart for a finite state machine is shown in Fig. P8.29. The register
operations are not specified, because we are interested only in designing the control logic.
(a) Draw the equivalent state diagram.
(b) Design the control unit with one flip-flop per state.
(c) List the state table for the control unit.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 431

000
S0
X
1
001
|
010
|
0 1
F
100
S 4 ()
011
0 1 | S_3 |
E
110
(5 | O
111 101
[| [|

FIGURE P8.29
ASMD chart for Problem 8.29

(d) Design the control unit with three D flip-flops, a decoder, and gates.

(e) Derive a table showing the multiplexer input conditions for the control unit.

(f) Design the control unit with three multiplexers, a register with three flip-flops, and a
3 X 8 decoder.

(g) Using the results of (f), write and verify a structural model of the controller.

(h) Write and verify an RTL description of the controller.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

432 Chapter 8 Design at the Register Transfer Level

8.30* What is the value of E in each HDL block, assuming that RA =1?

(a) RA=RA-1; (b) RA<=RA-1;
if RA==0)E=1; if RA==0)E <=1;
else E =0; else E <=0;

8.31%* Using the Verilog HDL operators listed in Table 8.2, assume that A = 4'b0110,
B = 4'b0010, and C = 4'b0000 and evaluate the result of the following operations:

A*B;A+B;A-B;~C;A&B;A|B;A"B; &A;~|C;A||B; A&&C; |A;A<B; A>B;
Al!=B;

8.32 Consider the following always block:
always @ (posedge CLK)
if (S1) R1 <=R1 +R2;
else if (S2) R1 <=R1 + 1;
else R1 <=R1;

Using a four-bit counter with parallel load for R/ (as in Fig. 6.15) and a four-bit adder,
draw a block diagram showing the connections of components and control signals for a
possible synthesis of the block.

8.33 The multilevel case statement is often translated by a logic synthesizer into hardware
multiplexers. How would you translate the following case block into hardware (assume
registers of eight bits each)?

case (state)

S0: R4 = RO;
S1: R4 = R1;
S2: R4 = R2;
S3: R4 = R3;
endcase

8.34 The design of a circuit that counts the number of ones in a register is carried out in Section
8.10. The block diagram for the circuit is shown in Fig. 8.22(a), a complete ASMD chart
for the circuit appears in Fig. 8.22(c), and structural HDL models of the datapath and
controller are given in HDL Example 8.8. Using the operations and signal names indi-
cated on the ASMD chart,

(a) Write Datapath_BEH, an RTL description of the datapath unit of the ones counter.
Write a test plan specifying the functionality that will be tested, and write a test bench
to implement the plan. Execute the test plan to verify the functionality of the datapath
unit, and produce annotated simulation results relating the test plan to the waveforms
produced in a simulation.

(b) Write Controller_BEH, an RTL description of the control unit of the ones counter.
Write a test plan specifying the functionality that will be tested, and write a test bench
to implement the plan. Execute the test plan to verify the functionality of the control
unit, and produce annotated simulation results relating the test plan to the waveforms
produced in a simulation.

(c) Write Count_Ones_BEH_BEH, a top-level module encapsulating and integrating
Controller_BEH and Datapath_BEH. Write a test plan and a test bench, and verify
the description. Produce annotated simulation results relating the test plan to the
waveforms produced in a simulation.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 433

(d) Write Controller_BEH_1Hot,an RTL description of a one-hot controller implement-
ing the ASMD chart of Fig. 8.22(c). Write a test plan specifying the functionality that
will be tested, and write a test bench to implement the plan. Execute the test plan and
produce annotated simulation results relating the test plan to the waveforms produced
in a simulation.

(e) Write Count_Ones_BEH_I_Hot, a top-level module encapsulating the module Con-
troller_BEH_1_Hot and Datapath_BEH.Write a test plan and a test bench, and verify
the description. Produce annotated simulation results relating the test plan to the
waveforms produced in a simulation.

8.35 The HDL description and test bench for a circuit that counts the number of ones in a
register are given in HDL Example 8.8. Modify the test bench and simulate the circuit to
verify that the system operates correctly for the following patterns of data: 8"hff, 8'hO0f,
8'htf0, 8"'h00, 8'haa, 8'h0a, 8'ha0, 8'h55, 8'h05, 8'h50, 8"ha5, and 8'h5a.

8.36 The design of a circuit that counts the number of ones in a register is carried out in Section
8.10. The block diagram for the circuit is shown in Fig. 8.22(a), a complete ASMD chart
for this circuit appears in Fig. 8.22(c), and structural HDL models of the datapath and
controller are given in HDL Example 8.8. Using the operations and signal names indi-
cated on the ASMD chart,

(a) Design the control logic, employing one flip-flop per state (a one-hot assignment). List
the input equations for the four flip-flops.

(b) Write Controller_Gates_I_Hot, a gate-level HDL structural description of the circuit,
using the control designed in part (a) and the signals shown in the block diagram of
Fig. 8.22(a).

(c) Write a test plan and a test bench, and then verify the controller.

(d) Write Count_Ones_Gates_I_Hot_STR,a top-level module encapsulating and integrating
instantiations of Controller_Gates_1_Hot and Datapath_STR. Write a test plan and a
test bench to verify the description. Produce annotated simulation results relating the
test plan to the waveforms produced in a simulation.

8.37 Compared with the circuit presented in HDL Example 8.8, a more efficient circuit that
counts the number of ones in a data word is described by the block diagram and the par-
tially completed ASMD chart in Fig. P8.37. This circuit accomplishes addition and shifting
in the same clock cycle and adds the LSB of the data register to the counter register at
every clock cycle.

(a) Complete the ASMD chart.

(b) Using the ASMD chart, write an RTL description of the circuit. A top-level Verilog
module, Count_of _ones_2_Beh is to instantiate separate modules for the datapath and
control units.

(c) Design the control logic, using one flip-flop per state (a one-hot assignment). List the
input equations for the flip-flops.

(d) Write the HDL structural description of the circuit, using the controller designed in
part (c) and the block diagram of Fig. P8.37(a).

(e) Write a test bench to test the circuit. Simulate the circuit to verify the operation described
in both the RTL and the structural programs.

8.38 The addition of two signed binary numbers in the signed-magnitude representation follows
the rules of ordinary arithmetic: If the two numbers have the same sign (both positive or
both negative), the two magnitudes are added and the sum has the common sign; if the
two numbers have opposite signs, the smaller magnitude is subtracted from the larger and

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

434 Chapter 8 Design at the Register Transfer Level

Status

signals data reset_b
v RI[0]

| jl*_

Datapath gy Ready
(ITTIT-T11] Y

RI1 <= data
. * R2<=0
Start Controller Add_shift 1 R2

R2 <= R2 + RI1/0]
— RI<=RI>>1

Zero

count

(a)

FIGURE P8.37
(a) Alternative circuit for a ones counter
(b) ASMD Chart for Problem 8.37

the result has the sign of the larger magnitude. Write an HDL behavioral description for
adding two 8-bit signed numbers in signed-magnitude representation and verify. The left-
most bit of the number holds the sign and the other seven bits hold the magnitude.

8.39* For the circuit designed in Problem 8.16,
(a) Write and verify a structural HDL description of the circuit. The datapath and control-
ler are to be described in separate units.
(b) Write and verify an RTL description of the circuit. The datapath and controller are to
be described in separate units.

8.40 Modify the block diagram of the sequential multiplier given in Fig. 8.14(a) and the ASMD
chart in Fig. 8.15(b) to describe a system that multiplies 32-bit words, but with 8-bit (byte-
wide) external datapaths. The machine is to assert Ready in the (initial) reset state. When
Start is asserted, the machine is to fetch the data bytes from a single 8-bit data bus in
consecutive clock cycles (multiplicand bytes first, followed by multiplier bytes, least sig-
nificant byte first) and store the data in datapath registers. Got_Data is to be asserted for
one cycle of the clock when the transfer is complete. When Run is asserted, the product is
to be formed sequentially. Done_Product is to be asserted for one clock cycle when the
multiplication is complete. When a signal Send_Data is asserted, each byte of the product
is to be placed on an 8-bit output bus for one clock cycle, in sequence, beginning with the
least significant byte. The machine is to return to the initial state after the product has
been transmitted. Consider safeguards, such as not attempting to send or receive data
while the product is being formed. Consider also other features that might eliminate need-
less multiplication by 0. For example, do not continue to multiply if the shifted multiplier
is empty of 1’s.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 435

PI1, PO} <= {0,0
S_idle { } .0

Data
> P1[7:0] o PO[7:0] n
v {P1, PO} <= {0,0}
P1/7:0] PO[7:0] | gop1s:0]
(a) Pl <= Data
RO <= {P1, PO}

STUDENTS-HUB.com

(b)

FIGURE P8.41
Two-stage pipeline register: Datapath unit and ASMD chart

8.41 The block diagram and partially completed ASMD chart in Fig. P8.41 describe the be-

havior of a two-stage pipeline that acts as a 2:1 decimator with a parallel input and output.
Decimators are used in digital signal processors to move data from a datapath with a high
clock rate to a datapath with a lower clock rate, converting data from a parallel format
to a serial format in the process. In the datapath shown, entire words of data can be trans-
ferred into the pipeline at twice the rate at which the contents of the pipeline must be
dumped into a holding register or consumed by some processor. The contents of the
holding register RO can be shifted out serially, to accomplish an overall parallel-to-serial
conversion of the data stream. The ASMD chart indicates that the machine has synchro-
nous reset to S_idle, where it waits until rst is de-asserted and En is asserted. Note that
synchronous transitions which would occur from the other states to S_idle under the
action of rst are not shown. With En asserted, the machine transitions from S_idle to S_1,
accompanied by concurrent register operations that load the MSByte of the pipe with
Data and move the content of P/ to the LSByte (P0). At the next clock, the state goes to
S_full, and now the pipe is full. If Ld is asserted at the next clock, the machine moves to
S_1 while dumping the pipe into a holding register R0. If Ld is not asserted, the machine

Uploaded By: Malak Dar Obaid

436 Chapter 8 Design at the Register Transfer Level

enters S_wait and remains there until Ld is asserted, at which time it dumps the pipe and

returns to S_17 or to S_idle, depending on whether En is asserted, too. The data rate at R,

is one-half the rate at which data are supplied to the unit from an external datapath.

(a) Develop the complete ASMD chart.

(b) Using the ASMD chart developed in (a), write and verify an HDL model of the
datapath.

(c) Write and verify a Verilog behavioral model of the control unit.

(d) Encapsulate the datapath and controller in a top-level module, and verify the integrated
system.

8.42 The count-of-ones circuit described in Fig. 8.22 has a latency that is to be eliminated. It
arises because the status signal E is formed as the output of a flip-flop into which the MSB
of R1 is shifted. Develop a design that eliminates the latency.

REFERENCES

1. ArnNoLD, M. G. 1999. Verilog Digital Computer Design. Upper Saddle River, NJ: Prentice
Hall.
BHASKER, J. 1997 A Verilog HD L Primer. Allentown, PA: Star Galaxy Press.

3. BHASKER,J. 1998. Verilog HD L Synthesis. Allentown, PA: Star Galaxy Press.

4. Ciert, M. D.2003. Modeling, Synthesis, and Rapid Prototyping with Verilog HD L. Upper
Saddle River, NJ: Prentice Hall.

5. Cierr, M. D. 2010. Advanced Digital Design with the Verilog HD L. Upper Saddle River,
NIJ: Prentice Hall.

6. CLARE, C. R. 1971. Designing Logic Systems Using State Machines. New York: McGraw-
Hill.

7. HAaves, J. P.1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

8. IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language (IEEE Std 1364-2005). 2005. New York: Institute of Electrical and Electronics
Engineers.

9. ManNo,M. M. 1993. Computer System Architecture, 3rd ed. Upper Saddle River, NJ: Prentice
Hall.

10. Mano, M. M., and C. R. KIME. 2005. Logic and Computer Design Fundamentals, 3rd ed.
Upper Saddle River, NJ: Prentice Hall.

117. PALNITKAR, S.2003. Verilog HD L: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall Title).

12. SwmitH, D.J.1996. HDL Chip Design. Madison, AL: Doone Publications.

13. Taowmas, D. E., and P. R. Moorsy. 2002. The Verilog Hardware Description Language,
5th ed. Boston: Kluwer Academic Publishers.

14. WINKLER, D.,and F. Prossgr. 1987 The Art of Digital Design, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall.

N

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Web Search Topics 437

WEB SEARCH TOPICS

Algorithmic state machine
Algorithmic state machine chart
Asynchronous circuit
Decimator

Digital control unit

Digital datapath unit

Mealy machine

Moore machine

Race condition

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 9

Laboratory Experiments with
Standard ICs and FPGAs

9.1 INTRODUCTION TO EXPERIMENTS

This chapter presents 17 laboratory experiments in digital circuits and logic design. The
experiments give the student using this book hands-on experience. The digital circuits
can be constructed by using standard integrated circuits (ICs) mounted on breadboards
that are easily assembled in the laboratory. The experiments are ordered according to
the material presented in the book. The last section consists of a number of supplements
with suggestions for using the Verilog HDL to simulate and verify the functionality of
the digital circuits presented in the experiments. If an FPGA prototyping board is avail-
able, the experiments can be implemented in an FPGA as an alternative to standard ICs.

A logic breadboard suitable for performing the experiments must have the following
equipment:

1. Light-emitting diode (LED) indicator lamps.
. Toggle switches to provide logic-1 and logic-0 signals.

2
3. Pulsers with push buttons and debounce circuits to generate single pulses.
4

. A clock-pulse generator with at least two frequencies: a low frequency of about
1 pulse per second to observe slow changes in digital signals and a higher frequency
for observing waveforms in an oscilloscope.

5. A power supply of 5V.
6. Socket strips for mounting the ICs.
7. Solid hookup wires and a pair of wire strippers for cutting the wires.

Digital logic trainers that include the required equipment are available from several
manufacturers. A digital logic trainer contains LED lamps, toggle switches, pulsers,

438

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.1 Introduction to Experiments 439

a variable clock, a power supply, and IC socket strips. Some experiments may require
additional switches, lamps, or IC socket strips. Extended breadboards with more solder-
less sockets and plug-in switches and lamps may be needed.

Additional equipment required is a dual-trace oscilloscope (for Experiments 1,2, 8,
and 15), a logic probe to be used for debugging, and a number of ICs. The ICs required
for the experiments are of the TTL or CMOS series 7400.

The integrated circuits to be used in the experiments can be classified as small-scale
integration (SSI) or medium-scale integration (MSI) circuits. SSI circuits contain indi-
vidual gates or flip-flops, and MSI circuits perform specific digital functions. The eight
SSI gate ICs needed for the experiments—two-input NAND, NOR, AND, OR, and
XOR gates, inverters, and three-input and four-input NAND gates—are shown in
Fig. 9.1. The pin assignments for the gates are indicated in the diagram. The pins are
numbered from 1 to 14. Pin number 14 is marked V-, and pin number 7 is marked GND
(ground). These are the supply terminals, which must be connected to a power supply
of 5V for proper operation of the circuit. Each IC is recognized by its identification
number; for example, the two-input NAND gates are found inside the IC whose number
is 7400.

Detailed descriptions of the MSI circuits can be found in data books published by
the manufacturers. The best way to acquire experience with a commercial MSI circuit
is to study its description in a data book that provides complete information on the
internal, external, and electrical characteristics of integrated circuits. Various semicon-
ductor companies publish data books for the 7400 series. The MSI circuits that are
needed for the experiments are introduced and explained when they are used for the
first time. The operation of the circuit is explained by referring to similar circuits in
previous chapters. The information given in this chapter about the MSI circuits should
be sufficient for performing the experiments adequately. Nevertheless, reference to a
data book will always be preferable, as it gives more detailed description of the circuits.

We will now demonstrate the method of presentation of MSI circuits adopted here. To
illustrate, we introduce the ripple counter IC, type 7493.This IC is used in Experiment 1
and in subsequent experiments to generate a sequence of binary numbers for verifying
the operation of combinational circuits.

The information about the 7493 IC that is found in a data book is shown in Figs. 9.2(a)
and (b). Part (a) shows a diagram of the internal logic circuit and its connection to
external pins. All inputs and outputs are given symbolic letters and assigned to pin
numbers. Part (b) shows the physical layout of the IC, together with its 14-pin assign-
ment to signal names. Some of the pins are not used by the circuit and are marked as
NC (no connection). The IC is inserted into a socket, and wires are connected to the
various pins through the socket terminals. When drawing schematic diagrams in this
chapter, we will show the IC in block diagram form, as in Fig. 9.2(c). The IC number
(here, 7493) is written inside the block. All input terminals are placed on the left of the
block and all output terminals on the right. The letter symbols of the signals, such as A,
RI,and QA, are written inside the block, and the corresponding pin numbers, such as
14,2, and 12, are written along the external lines. V¢, and GND are the power terminals
connected to pins 5 and 10. The size of the block may vary to accommodate all input

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

141 {1312 {11} 410+ 9 8 141913 1 4121411 14104 9 8
1 2 3 4 5 6 7 1 2 3 4 5 6 7
2-input NAND GND 2-input NOR GND
7400 7402
Vee Vee
1414131412 411{ 110 9 8 1414131412 411{ 110 9 8

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Inverters GND 2-input AND GND
7404 7408
VCC VCC

1414131412411 410} 9

[T

8
1 2 3 4 5 6 7

3-input NAND GND
7410
Vee Vee

14 ({13121 411}H10{—H 9 8 14 ({13121 411} 10{—H 9 8

—_
[\S)
w
~
W
(@)
<

4-input NAND
7420

Vo

1 2 3 4 5 6 7 1 2 3 4 5 6 7
2-input OR GND 2-input XOR GND
7432 7486
FIGURE 9.1

Digital gates in IC packages with identification numbers and pin assignments

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Section 9.1 Introduction to Experiments 411

, o2
04
InputA 14
fipu & ¢ A NC QA QD GND QB OC
i e duldol]o 8
K
CLR

; AE 7493

InputB 1 0B
4> C
s 1 2 3 4 5 6 7

]’ B RI R2 NC VYec NC NC

K

CL

(b) Physical layout (NC: no connection)
J [0} 8
QcC

C
K

CL

R

]’ 14 Vee 12
¢ — A QA I

1 9
—1B OB+——
7493
; . 11 5 g
oD ——RI oc——
c

3 11
—R2 oD ——
K GND
CLR
RI —i T 10
R2 —
(a) Internal circuit diagram (c) Schematic diagram

FIGURE 9.2
IC type 7493 ripple counter

and output terminals. Inputs or outputs may sometimes be placed on the top or the
bottom of the block for convenience.

The operation of the circuit is similar to the ripple counter shown in Fig. 6.8(a) with
an asynchronous clear to each flip-flop. When input R/ or R2 or both are equal to logic 0

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

442 Chapter 9 Laboratory Experiments

(ground), all asynchronous clears are equal to 1 and are disabled. To clear all four flip-
flops to 0, the output of the NAND gate must be equal to 0. This is accomplished by
having both inputs R and R2 at logic 1 (about 5 V). Note that the J and K inputs show
no connections. It is characteristic of TTL circuits that an input terminal with no exter-
nal connections has the effect of producing a signal equivalent to logic 1. Note also that
output QA is not connected to input B internally.

The 7493 IC can operate as a three-bit counter using input B and flip-flops OB, OC,
and QOD. It can operate as a four-bit counter using input A if output QA is connected
to input B. Therefore, to operate the circuit as a four-bit counter, it is necessary to have
an external connection between pin 12 and pin 1. The reset inputs, R/ and R2, at pins 2
and 3, respectively, must be grounded. Pins 5 and 10 must be connected to a 5-V power
supply. The input pulses must be applied to input A at pin 14, and the four flip-flop
outputs of the counter are taken from QA, OB, QC, and QD at pins 12,9, 8, and 11,
respectively, with QA being the least significant bit.

Figure 9.2(c) demonstrates the way that all MSI circuits will be symbolized graph-
ically in this chapter. Only a block diagram similar to the one shown in this figure
will be given for each IC. The letter symbols for the inputs and outputs in the IC block
diagram will be according to the symbols used in the data book. The operation of the

Table 9.1
Integrated Circuits Required for the Experiments

Graphic Symbol

IC Number Description In Chapter 9 In Chapter 10
Various gates Fig.9.1 Fig. 10.1
7447 BCD-to-seven-segment decoder Fig. 9.8 —
7474 Dual D-type flip-flops Fig.9.13 Fig. 10.9(b)
7476 Dual JK-type flip-flops Fig.9.12 Fig. 10.9(a)
7483 Four-bit binary adder Fig.9.10 Fig.10.2
7493 Four-bit ripple counter Fig.9.2 Fig. 10.13
74151 8 X 1 multiplexer Fig. 9.9 Fig. 10.7(a)
74155 3 X 8 decoder Fig.9.7 Fig. 10.6
74157 Quadruple 2 X 1 multiplexers Fig.9.17 Fig. 10.7(b)
74161 Four-bit synchronous counter Fig. 9.15 Fig. 10.14
74189 16 X 4 random-access memory Fig.9.18 Fig. 10.15
74194 Bidirectional shift register Fig.9.19 Fig. 10.12
74195 Four-bit shift register Fig.9.16 Fig. 10.11
7730 Seven-segment LED display Fig. 9.8 —
72555 Timer (same as 555) Fig.9.21 —

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.2 Experiment 1: Binary and Decimal Numbers 443

circuit will be explained with reference to logic diagrams from previous chapters. The
operation of the circuit will be specified by means of a truth table or a function table.

Other possible graphic symbols for the ICs are presented in Chapter 10. These are
standard graphic symbols approved by the Institute of Electrical and Electronics
Engineers and are given in IEEE Standard 91-1984. The standard graphic symbols for
SSI gates have rectangular shapes, as shown in Fig. 10.1. The standard graphic symbol
for the 7493 IC is shown in Fig. 10.13. This symbol can be substituted in place of the one
shown in Fig. 9.2(c). The standard graphic symbols of the other ICs that are needed to
run the experiments are presented in Chapter 10. They can be used to draw schematic
diagrams of the logic circuits if the standard symbols are preferred.

Table 9.1 lists the ICs that are needed for the experiments, together with the numbers of
the figures in which they are presented in this chapter. In addition, the table lists the numbers
of the figures in Chapter 10 in which the equivalent standard graphic symbols are drawn.

The next 18 sections present 18 hardware experiments requiring the use of digital
integrated circuits. Section 9.20 outlines HDL simulation experiments requiring a Verilog
HDL compiler and simulator.

9.2 EXPERIMENT 1: BINARY AND DECIMAL
NUMBERS

This experiment demonstrates the count sequence of binary numbers and the binary-
coded decimal (BCD) representation. It serves as an introduction to the breadboard used
in the laboratory and acquaints the student with the cathode-ray oscilloscope. Reference
material from the text that may be useful to know while performing the experiment can
be found in Section 1.2, on binary numbers, and Section 1.7, on BCD numbers.

Binary Count

IC type 7493 consists of four flip-flops, as shown in Fig. 9.2. They can be connected to
count in binary or in BCD. Connect the IC to operate as a four-bit binary counter by
wiring the external terminals, as shown in Fig. 9.3. This is done by connecting a wire from
pin 12 (output QA) to pin 1 (input B). Input A at pin 14 is connected to a pulser that
provides single pulses. The two reset inputs, R/ and R2, are connected to ground. The
four outputs go to four indicator lamps, with the low-order bit of the counter from QA
connected to the rightmost indicator lamp. Do not forget to supply 5 V and ground to
the IC. All connections should be made with the power supply in the off position.

Turn the power on and observe the four indicator lamps. The four-bit number in the
output is incremented by 1 for every pulse generated in the push-button pulser. The
count goes to binary 15 and then back to 0. Disconnect the input of the counter at pin
14 from the pulser, and connect it to a clock generator that produces a train of pulses at
a low frequency of about 1 pulse per second. This will provide an automatic binary count.
Note that the binary counter will be used in subsequent experiments to provide the
input binary signals for testing combinational circuits.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

444 Chapter 9 Laboratory Experiments

5
14 VCC 12
A QA
Push-button
pulser or 1 ?
clock B OB
7493 8
2 oc Q@
RI1 11
3 oD Qi)
R2 :
Indicator
CHD lamps
10

FIGURE 9.3
Binary counter

Oscilloscope Display

Increase the frequency of the clock to 10 kHz or higher and connect its output to an oscil-
loscope. Observe the clock output on the oscilloscope and sketch its waveform. Using a
dual-trace oscilloscope, connect the output of QA to one channel and the output of the
clock to the second channel. Note that the output of QA is complemented every time the
clock pulse goes through a negative transition from 1 to 0. Note also that the clock fre-
quency at the output of the first flip-flop is one-half that of the input clock frequency. Each
flip-flop in turn divides its incoming frequency by 2. The four-bit counter divides the
incoming frequency by 16 at output QD. Obtain a timing diagram showing the relationship
of the clock to the four outputs of the counter. Make sure that you include at least 16 clock
cycles. The way to proceed with a dual-trace oscilloscope is as follows: First, observe the
clock pulses and QA, and record their timing waveforms. Then repeat by observing and
recording the waveforms of QA together with OB, followed by the waveforms of OB with
QC and then QC with OD. Your final result should be a diagram showing the relationship
of the clock to the four outputs in one composite diagram having at least 16 clock cycles.

BCD Count

The BCD representation uses the binary numbers from 0000 to 1001 to represent the
coded decimal digits from 0 to 9. IC type 7493 can be operated as a BCD counter by
making the external connections shown in Fig. 9.4. Outputs OB and QD are connected
to the two reset inputs, R/ and R2. When both R/ and R2 are equal to 1, all four cells in
the counter clear to 0 irrespective of the input pulse. The counter starts from 0, and every
input pulse increments it by 1 until it reaches the count of 1001. The next pulse changes
the ouput to 1010, making OB and QD equal to 1. This momentary output cannot be

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.2 Experiment 1: Binary and Decimal Numbers 445

5
14 V
Input cc 12
pulses 4 04
1 9
B OB
7493 8
2 oc
RI1 11
3 ob
R2
GND
10

FIGURE 9.4
BCD counter

sustained, because the four cells immediately clear to 0, with the result that the output
goes to 0000. Thus, the pulse after the count of 1001 changes the output to 0000, produc-
ing a BCD count.

Connect the IC to operate as a BCD counter. Connect the input to a pulser and the
four outputs to indicator lamps. Verify that the count goes from 0000 to 1001.

Disconnect the input from the pulser and connect it to a clock generator. Observe the
clock waveform and the four outputs on the oscilloscope. Obtain an accurate timing dia-
gram showing the relationship between the clock and the four outputs. Make sure to include
at least 10 clock cycles in the oscilloscope display and in the composite timing diagram.

Output Pattern

When the count pulses into the BCD counter are continuous, the counter keeps repeat-
ing the sequence from 0000 to 1001 and back to 0000. This means that each bit in the
four outputs produces a fixed pattern of 1’s and 0’s that is repeated every 10 pulses. These
patterns can be predicted from a list of the binary numbers from 0000 to 1001. The list
will show that output QA, being the least significant bit, produces a pattern of alternate
1’s and 0’s. Output QD, being the most significant bit, produces a pattern of eight 0’s
followed by two 1’s. Obtain the pattern for the other two outputs and then check all four
patterns on the oscilloscope. This is done with a dual-trace oscilloscope by displaying the
clock pulses in one channel and one of the output waveforms in the other channel. The
pattern of 1’s and 0’s for the corresponding output is obtained by observing the output
levels at the vertical positions where the pulses change from 1 to 0.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

446 Chapter 9 Laboratory Experiments

Other Counts

IC type 7493 can be connected to count from 0 to a variety of final counts. This is done
by connecting one or two outputs to the reset inputs, R/ and R2.Thus, if R/ is connected
to QA instead of to OB in Fig. 9.4, the resulting count will be from 0000 to 1000, which
is 1 less than 1001 (OD = 1 and QA = 1).

Utilizing your knowledge of how R/ and R2 affect the final count, connect the 7493
IC to count from 0000 to the following final counts:

(a) 0101
(b) 0111
(c) 1011
Connect each circuit and verify its count sequence by applying pulses from the pulser

and observing the output count in the indicator lamps. If the initial count starts with a
value greater than the final count, keep applying input pulses until the output clears to 0.

9.3 EXPERIMENT 2: DIGITAL LOGIC GATES

In this experiment, you will investigate the logic behavior of various IC gates:

7400 quadruple two-input NAND gates
7402 quadruple two-input NOR gates
7404 hex inverters

7408 quadruple two-input AND gates
7432 quadruple two-input OR gates
7486 quadruple two-input XOR gates

The pin assignments to the various gates are shown in Fig. 9.1. “Quadruple” means
that there are four gates within the package. The digital logic gates and their character-
istics are discussed in Section 2.8. A NAND implementation is discussed in Section 3.7

Truth Tables

Use one gate from each IC listed and obtain the truth table of the gate. The truth table
is obtained by connecting the inputs of the gate to switches and the output to an indica-
tor lamp. Compare your results with the truth tables listed in Fig. 2.5.

Waveforms

For each gate listed, obtain the input—output waveform of the gate. The waveforms are
to be observed in the oscilloscope. Use the two low-order outputs of a binary counter
(Fig. 9.3) to provide the inputs to the gate. As an example, the circuit and waveforms
for the NAND gate are illustrated in Fig. 9.5. The oscilloscope display will repeat this
waveform, but you should record only the nonrepetitive portion.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.3 Experiment 2: Digital Logic Gates 447

oA | o | 1o |1

Input
pulses 4 04 F T
0B —]

Fig. 9.3
(counter) OB 0 0 1 1

FIGURE 9.5
Waveforms for NAND gate

Propagation Delay

Connect the six inverters inside the 7404 1C in cascade. The output will be the same as
the input, except that it will be delayed by the time it takes the signal to propagate
through all six inverters. Apply clock pulses to the input of the first inverter. Using the
oscilloscope, determine the delay from the input to the output of the sixth inverter dur-
ing the upswing of the pulse and again during the downswing. This is done with a dual-
trace oscilloscope by applying the input clock pulses to one of the channels and the
output of the sixth inverter to the second channel. Set the time-base knob to the lowest
time-per-division setting. The rise or fall time of the two pulses should appear on the
screen. Divide the total delay by 6 to obtain an average propagation delay per inverter.

Universal NAND Gate
Using a single 7400 IC, connect a circuit that produces
(a) an inverter,
(b) a two-input AND,
(c) atwo-input OR,
(d) atwo-input NOR,
(e) atwo-input XOR. (See Fig. 3.32.)

In each case, verify your circuit by checking its truth table.

NAND Circuit

Using a single 7400 IC, construct a circuit with NAND gates that implements the Boolean
function

F=AB + CD

1. Draw the circuit diagram.
2. Obtain the truth table for F as a function of the four inputs.
3. Connect the circuit and verify the truth table.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

448 Chapter 9 Laboratory Experiments

4. Record the patterns of 1’s and 0’s for F as inputs A, B, C,and D go from binary 0
to binary 15.

5. Connect the four outputs of the binary counter shown in Fig. 9.3 to the four inputs
of the NAND circuit. Connect the input clock pulses from the counter to one
channel of a dual-trace oscilloscope and output F to the other channel. Observe
and record the 1’s and 0’s pattern of F after each clock pulse, and compare it with
the pattern recorded in step 4.

9.4 EXPERIMENT 3: SIMPLIFICATION
OF BOOLEAN FUNCTIONS

This experiment demonstrates the relationship between a Boolean function and the
corresponding logic diagram. The Boolean functions are simplified by using the map
method, as discussed in Chapter 3. The logic diagrams are to be drawn with NAND gates,
as explained in Section 3.7

The gate ICs to be used for the logic diagrams must be those from Fig. 9.1 which
contain the following NAND gates:

7400 two-input NAND

7404 inverter (one-input NAND)
7410 three-input NAND

7420 four-input NAND

If an input to a NAND gate is not used, it should not be left open, but instead should be
connected to another input that is used. For example, if the circuit needs an inverter and
there is an extra two-input gate available in a 7400 IC, then both inputs of the gate are
to be connected together to form a single input for an inverter.

Logic Diagram

This part of the experiment starts with a given logic diagram from which we proceed to
apply simplification procedures to reduce the number of gates and, possibly, the number
of ICs. The logic diagram shown in Fig. 9.6 requires two ICs—a 7400 and a 7410. Note
that the inverters for inputs x, y, and z are obtained from the remaining three gates in
the 7400 IC. If the inverters were taken from a 7404 IC, the circuit would have required
three ICs. Note also that, in drawing SSI circuits, the gates are not enclosed in blocks as
is done with MSI circuits.

Assign pin numbers to all inputs and outputs of the gates, and connect the circuit with
the x, y, and z inputs going to three switches and the output F to an indicator lamp. Test
the circuit by obtaining its truth table.

Obtain the Boolean function of the circuit and simplify it, using the map method. Con-
struct the simplified circuit without disconnecting the original circuit. Test both circuits by
applying identical inputs to each and observing the separate outputs. Show that, for each
of the eight possible input combinations, the two circuits have identical outputs. This will
prove that the simplified circuit behaves exactly like the original circuit.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.4 Experiment 3: Simplification of Boolean Functions 449

" [>

.
T

fl el

FIGURE 9.6
Logic diagram for Experiment 3

Boolean Functions

Consider two Boolean functions in sum-of-minterms form:
Fi(A,B,C,D) = (0,1,4,5,8,9,10, 12, 13)
F,(A,B,C,D) = (3,5,7, 8,10, 11, 13, 15)

Simplify these functions by means of maps. Obtain a composite logic diagram with four
inputs, A, B, C, and D, and two outputs, F; and F,. Implement the two functions
together, using a minimum number of NAND ICs. Do not duplicate the same gate if
the corresponding term is needed for both functions. Use any extra gates in existing
ICs for inverters when possible. Connect the circuit and check its operation. The truth
table for F; and F, obtained from the circuit should conform with the minterms listed.

Complement

Plot the following Boolean function in a map:
F=AD+ BD + B'C+ AB'D

Combine the 1’s in the map to obtain the simplified function for F in sum-of-products
form. Then combine the 0’s in the map to obtain the simplified function for F’, also in
sum-of-products form. Implement both F'and F’ with NAND gates, and connect the two
circuits to the same input switches, but to separate output indicator lamps. Obtain the
truth table of each circuit in the laboratory and show that they are the complements of
each other.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

450 Chapter 9 Laboratory Experiments

9.5 EXPERIMENT 4: COMBINATIONAL CIRCUITS

In this experiment, you will design, construct, and test four combinational logic circuits.
The first two circuits are to be constructed with NAND gates, the third with XOR gates,
and the fourth with a decoder and NAND gates. Reference to a parity generator can be
found in Section 3.9. Implementation with a decoder is discussed in Section 4.9.

Design Example

Design a combinational circuit with four inputs— A, B, C,and D —and one output, F. F
is to be equal to 1 when A = 1, provided that B = 0, or when B = 1, provided that
either C or D is also equal to 1. Otherwise, the output is to be equal to 0.

1. Obtain the truth table of the circuit.

2. Simplify the output function.

3. Draw the logic diagram of the circuit, using NAND gates with a minimum number
of ICs.

4. Construct the circuit and test it for proper operation by verifying the given
conditions.

Majority Logic

A majority logic is a digital circuit whose output is equal to 1 if the majority of the inputs
are 1’s. The output is 0 otherwise. Design and test a three-input majority circuit using
NAND gates with a minimum number of ICs.

Parity Generator

Design, construct, and test a circuit that generates an even parity bit from four message
bits. Use XOR gates. Adding one more XOR gate, expand the circuit so that it generates
an odd parity bit also.

Decoder Implementation

A combinational circuit has three inputs—x, y, and z—and three outputs— Fy, F;, and
F;5. The simplified Boolean functions for the circuit are

Fi=xz +x'y'z
F,=x"y + xy'z’
F;=xy +x'y'z

Implement and test the combinational circuit, using a 74155 decoder IC and external
NAND gates.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.5 Experiment 4: Combinational Circuits 451

The block diagram of the decoder and its truth table are shown in Fig. 9.7. The
74155 can be connected as a dual 2 X 4 decoder or as a single 3 X 8 decoder. When
a 3 X 8 decoder is desired, inputs C/ and C2, as well as inputs G/ and G2, must be
connected together, as shown in the block diagram. The function of the circuit is
similar to that illustrated in Fig. 4.18. G is the enable input and must be equal to 0 for
proper operation. The eight outputs are labeled with symbols given in the data book.
The 74155 uses NAND gates, with the result that the selected output goes to 0 while
all other outputs remain at 1. The implementation with the decoder is as shown in
Fig. 4.21, except that the OR gates must be replaced with external NAND gates when

the 74155 is used.
16
V.
1 « 2Y0 ?
< 10
1 2Y1
5
C 2 11
2Y2
3 12
B—B 2Y3
74155 7
A 131, 1Y0 ;
2 1Y1
Gl 3
1Y2
14 4
G G2 1Y3
GND
8
Truth table
Inputs Outputs
G C B A 2Y0 2yl 2Y2 2Y3 1Y0 1Yl 1Y2 1Y3
1 X X X 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1
0 0 1 0 1 1 0 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1
0 1 0 0 1 1 1 1 0 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 1 1 0
FIGURE 9.7

IC type 74155 connected as a 3 X 8 decoder

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

452 Chapter 9 Laboratory Experiments

9.6 EXPERIMENT 5: CODE CONVERTERS

The conversion from one binary code to another is common in digital systems. In this
experiment, you will design and construct three combinational-circuit converters. Code
conversion is discussed in Section 4.4.

Gray Code to Binary

Design a combinational circuit with four inputs and four outputs that converts a four-
bit Gray code number (Table 1.6) into the equivalent four-bit binary number. Imple-
ment the circuit with exclusive-OR gates. (This can be done with one 7486 IC.)
Connect the circuit to four switches and four indicator lamps, and check for proper
operation.

9’s Complementer

Design a combinational circuit with four input lines that represent a decimal digit in
BCD and four output lines that generate the 9’s complement of the input digit. Pro-
vide a fifth output that detects an error in the input BCD number. This output should
be equal to logic 1 when the four inputs have one of the unused combinations of the
BCD code. Use any of the gates listed in Fig. 9.1, but minimize the total number of
ICs used.

Seven-Segment Display

A seven-segment indicator is used to display any one of the decimal digits 0 through 9.
Usually, the decimal digit is available in BCD. A BCD-to-seven-segment decoder accepts
a decimal digit in BCD and generates the corresponding seven-segment code, as is
shown pictorially in Problem 4.9.

Figure 9.8 shows the connections necessary between the decoder and the display. The
7447 1C is a BCD-to-seven-segment decoder/driver that has four inputs for the BCD
digit. Input D is the most significant and input A the least significant. The four-bit BCD
digit is converted to a seven-segment code with outputs a through g. The outputs of the
7447 are applied to the inputs of the 7730 (or equivalent) seven-segment display. This
IC contains the seven light-emitting diode (LED) segments on top of the package. The
input at pin 14 is the common anode (CA) for all the LEDs. A 47-() resistor to V¢ is
needed in order to supply the proper current to the selected LED segments. Other
equivalent seven-segment display ICs may have additional anode terminals and may
require different resistor values.

Construct the circuit shown in Fig. 9.8. Apply the four-bit BCD digits through four
switches, and observe the decimal display from 0 to 9. Inputs 1010 through 1111 have
no meaning in BCD. Depending on the decoder, these values may cause either a blank
or a meaningless pattern to be displayed. Observe and record the output patterns of the
six unused input combinations.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.7 Experiment 6: Design With Multiplexers 453

VCC:SV
16
47Q
VCC 13 1 14
a a a CA
; , |12 15|,
7,]
A 11 10 g
1 c c ——
B
5 747 g |0 81, e c
@ 9 7 o
6 € € d
D ¢ 15 2 f
14 1 7730
g
GND
8
FIGURE 9.8

BCD-to-seven-segment decoder (7447) and seven-segment display (7730)

9.7 EXPERIMENT 6: DESIGN WITH MULTIPLEXERS

In this experiment, you will design a combinational circuit and implement it with multi-
plexers, as explained in Section 4.11. The multiplexer to be used is IC type 74151, shown
in Fig. 9.9. The internal construction of the 74151 is similar to the diagram shown in
Fig. 4.25, except that there are eight inputs instead of four. The eight inputs are desig-
nated DO through D7.The three selection lines— C, B,and A —select the particular input
to be multiplexed and applied to the output. A strobe control S acts as an enable signal.
The function table specifies the value of output Y as a function of the selection lines.
Output W is the complement of Y. For proper operation, the strobe input S must be
connected to ground.

Design Specifications
A small corporation has 10 shares of stock, and each share entitles its owner to one vote
at a stockholder’s meeting. The 10 shares of stock are owned by four people as follows:
Mr. W: 1 share
Mr. X: 2 shares
Mr. Y: 3 shares
Mrs. Z: 4 shares

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

454 Chapter 9 Laboratory Experiments

16 | 8
7 Vee GND
Strobe S
4
DO
3
DI
2
1 b2 Y Output Y
Data —15 D3 74151 6 o
Inputs | — [py w W=Y
14
D5
13
D6
12
D7
cC B A
9‘ 10 ‘ 11 ‘
-
Select inputs
Function table
Strobe Select Output
S C B A Y
1 X X X 0
0 0 0 0 DO
0 0 0 1 D1
0 0 1 0 D2
0 0 1 1 D3
0 1 0 0 D4
0 1 0 1 D5
0 1 1 0 D6
0 1 1 1 D7

FIGURE 9.9
IC type 74151 38 X 1 multiplexer

Each of these persons has a switch to close when voting yes and to open when voting
no for his or her shares.

Itis necessary to design a circuit that displays the total number of shares that vote yes for
each measure. Use a seven-segment display and a decoder, as shown in Fig. 9.8, to display
the required number. If all shares vote no for a measure, the display should be blank. (Note
that binary input 15 into the 7447 blanks out all seven segments.) If 10 shares vote yes for a
measure, the display should show 0. Otherwise, the display shows a decimal number equal
to the number of shares that vote yes. Use four 74151 multiplexers to design the combina-
tional circuit that converts the inputs from the stock owners’ switches into the BCD digit for
the 7447. Do not use 5V for logic 1. Use the output of an inverter whose input is grounded.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.8 Experiment 7: Adders and Subtractors 455

9.8 EXPERIMENT 7: ADDERS AND SUBTRACTORS

In this experiment, you will construct and test various adder and subtractor circuits. The
subtractor circuit is then used to compare the relative magnitudes of two numbers.
Adders are discussed in Section 4.3. Subtraction with 2’s complement is explained in
Section 1.6. A four-bit parallel adder—subtractor is shown in Fig. 4.13, and the compari-
son of two numbers is explained in Section 4.8.

Half Adder
Design, construct, and test a half-adder circuit using one XOR gate and two NAND gates.

Full Adder
Design, construct, and test a full-adder circuit using two ICs, 7486 and 7400.

Parallel Adder

IC type 7483 is a four-bit binary parallel adder. The pin assignment is shown in Fig. 9.10.
The 2 four-bit input binary numbers are A/ through A4 and BI through B4.The four-bit
sum is obtained from S7 through S4. C0 is the input carry and C4 the output carry.
Test the four-bit binary adder 7483 by connecting the power supply and ground ter-
minals. Then connect the four A inputs to a fixed binary number, such as 1001, and the
B inputs and the input carry to five toggle switches. The five outputs are applied to

5
16 Vee "
. B4 |
A4 15
4
B3 S4
3
2
A3
7 S3
B2 7483 6
8 52
A2
11
BI1 S1 2
10
Al
13
Co
GND
12

FIGURE 9.10
IC type 7483 four-bit binary adder

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

456 Chapter 9 Laboratory Experiments

indicator lamps. Perform the addition of a few binary numbers and check that the output
sum and output carry give the proper values. Show that when the input carry is equal
to 1,it adds 1 to the output sum.

Adder-Subtractor

Two binary numbers can be subtracted by taking the 2’s complement of the subtrahend
and adding it to the minuend. The 2’s complement can be obtained by taking the 1’s
complement and adding 1. To perform A — B, we complement the four bits of B,add them
to the four bits of A, and add 1 through the input carry. This is done as shown in Fig. 9.11.
The four XOR gates complement the bits of B when the mode select M = 1 (because
x®1 = x' and leave the bits of B unchanged when M = 0 (because x © 0 = x). Thus,
when the mode select M is equal to 1, the input carry C0is equal to 1 and the sum output
is A plus the 2’s complement of B. When M is equal to 0, the input carry is equal to 0 and
the sum generates A + B.

Connect the adder—subtractor circuit and test it for proper operation. Connect the
four A inputs to a fixed binary number 1001 and the B inputs to switches. Perform

5
Vee
Llag 14
3 c4 Output carry
Data input A3
A 8 14z
10
15
Al S4
16 2
B4 S3
7483 Data output
S2 0 s
] 4
. i 9
Data input S1
B
— 7
mpr
I 11
BI
:Di C0_GND
13 ‘ 12
Mode select M
M = 0 for add
M =1 for subtract
FIGURE 9.11

Four-bit adder-subtractor

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.9 Experiment 8: Flip-Flops 457

the following operations and record the values of the output sum and the output

carry C4:
9+45 9-5
9+9 9-9
9+15 9 -15

Show that during addition, the output carry is equal to 1 when the sum exceeds 15.
Also, show that when A = B, the subtraction operation gives the correct answer,
A — B, and the output carry C4 is equal to 1, but when A < B, the subtraction gives
the 2’s complement of B — A and the output carry is equal to 0.

Magnitude Comparator

The comparison of two numbers is an operation that determines whether one number is
greater than, equal to, or less than the other number. Two numbers, A and B, can be com-
pared by first subtracting A — B as is done in Fig. 9.11. If the output in § is equal to zero,
then A = B. The output carry from C4 determines the relative magnitudes of the num-
bers:WhenC4 = 1,A = B;when(C4 = 0,A < B;andwhenC4 = landS # 0,A > B.

It is necessary to supplement the subtractor circuit of Fig. 9.11 to provide the com-
parison logic. This is done with a combinational circuit that has five inputs— S/ through
S§4 and C4—and three outputs, designated by x, y, and z, so that

x=1 {ifA=B (5= 0000)
y=1 ifA<B (C4=0)
=1 ifA>B (C4=1andS # 0000)

The combinational circuit can be implemented with the 7404 and 7408 ICs.
Construct the comparator circuit and test its operation. Use at least two sets of num-
bers for A and B to check each of the outputs x, y, and z.

9.9 EXPERIMENT 8: FLIP-FLOPS

In this experiment, you will construct, test, and investigate the operation of various
latches and flip-flops. The internal construction of latches and flip-flops can be found in
Sections 5.3 and 5.4.

SR Latch

Construct an SR latch with two cross-coupled NAND gates. Connect the two inputs to
switches and the two outputs to indicator lamps. Set the two switches to logic 1, and then
momentarily turn each switch separately to the logic-0 position and back to 1. Obtain
the function table of the circuit.

D Latch
Construct a D latch with four NAND gates (only one 7400 IC) and verify its function table.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

458 Chapter 9 Laboratory Experiments

Master-Slave Flip-Flop

Connect a master—slave D flip-flop using two D latches and an inverter. Connect the
D input to a switch and the clock input to a pulser. Connect the output of the master
latch to one indicator lamp and the output of the slave latch to another indicator
lamp. Set the value of the input to the complement value of the output. Press the push
button in the pulser and then release it to produce a single pulse. Observe that the
master changes when the pulse goes positive and the slave follows the change when
the pulse goes negative. Press the push button again a few times while observing the
two indicator lamps. Explain the transfer sequence from input to master and from
master to slave.

Disconnect the clock input from the pulser and connect it to a clock generator. Con-
nect the complement output of the flip-flop to the D input. This causes the flip-flop to
be complemented with each clock pulse. Using a dual-trace oscilloscope, observe the
waveforms of the clock and the master and slave outputs. Verify that the delay between
the master and the slave outputs is equal to the positive half of the clock cycle. Obtain
a timing diagram showing the relationship between the clock waveform and the master
and slave outputs.

4 PR 15 9 PR 11
J 0 J o
1 CK 6 CK Vee = pin'5
GND = pin 13
16 14 12 .| 10
K Q' K (0]
CLR CLR
Function table
Inputs Outputs
Preset Clear Clock J K 0 o’
0 1 X X X 1 0
1 0 X X X 0 1
0 X X X 1 1
1 1 I L 0 0 No change
1 1 L 0 1 0 1
1 1 EemB 1 0 1 0
1 1 L 1 1 Toggle

FIGURE 9.12
IC type 7476 dual /K master-slave flip-flops

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.9 Experiment 8: Flip-Flops 459

Edge-Triggered Flip-Flop

Construct a D-type positive-edge-triggered flip-flop using six NAND gates. Connect the
clock input to a pulser, the D input to a toggle switch, and the output Q to an indicator
lamp. Set the value of D to the complement of Q. Show that the flip-flop output changes
only in response to a positive transition of the clock pulse. Verify that the output does
not change when the clock input is logic 1, when the clock goes through a negative
transition, or when the clock input is logic 0. Continue changing the D input to corre-
spond to the complement of the Q output at all times.

Disconnect the input from the pulser and connect it to the clock generator. Connect
the complement output Q' to the D input. This causes the output to be complemented
with each positive transition of the clock pulse. Using a dual-trace oscilloscope, observe
and record the timing relationship between the input clock and the output Q. Show that
the output changes in response to a positive edge transition.

IC Flip-Flops

IC type 7476 consists of two JK master—slave flip-flops with preset and clear. The pin
assignment for each flip-flop is shown in Fig. 9.12. The function table specifies the circuit’s
operation. The first three entries in the table specify the operation of the asynchronous

| :

2 PR 5 12 PR 9
D 0 D 0
3 11 Vee = pin 14
K K GND = pin7
! 6 ’ 8
0 0
CLR CLR

Tl g

Function table

Inputs Outputs
Preset Clear Clock D | Q o’
0 1 X X |1 0
1 0 X X0 1
0 0 X X |1 1
1 1 T 0 1
1 1 T 1]1 0
1 1 0 X | No change

FIGURE 9.13
IC type 7474 dual D positive-edge-triggered flip-flops

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

460 Chapter 9 Laboratory Experiments

preset and clear inputs. These inputs behave like a NAND SR latch and are independent
of the clock or the J and K inputs. (The X’s indicate don’t-care conditions.) The last four
entries in the function table specify the operation of the clock with both the preset and
clear inputs maintained at logic 1. The clock value is shown as a single pulse. The positive
transition of the pulse changes the master flip-flop, and the negative transition changes
the slave flip-flop as well as the output of the circuit. With / = K = 0, the output does
not change. The flip-flop toggles, or is complemented, when / = K = 1. Investigate the
operation of one 7476 flip-flop and verify its function table.

IC type 7474 consists of two D positive-edge-triggered flip-flops with preset and
clear. The pin assignment is shown in Fig. 9.13. The function table specifies the preset
and clear operations and the clock’s operation. The clock is shown with an upward
arrow to indicate that it is a positive-edge-triggered flip-flop. Investigate the operation
of one of the flip-flops and verify its function table.

9.10 EXPERIMENT 9: SEQUENTIAL CIRCUITS

In this experiment, you will design, construct, and test three synchronous sequential circuits.
Use IC type 7476 (Fig. 9.12) or 7474 (Fig. 9.13). Choose any type of gate that will minimize
the total number of ICs. The design of synchronous sequential circuits is covered in Section 5.7

Up-Down Counter with Enable

Design, construct, and test a two-bit counter that counts up or down. An enable input £
determines whether the counter is on or off. If E = 0, the counter is disabled and remains
at its present count even though clock pulses are applied to the flip-flops. If £ = 1, the
counter is enabled and a second input, x, determines the direction of the count. If x = 1,
the circuit counts upward with the sequence 00,01, 10, 11, and the count repeats. If x = 0,
the circuit counts downward with the sequence 11, 10,01, 00, and the count repeats. Do
not use E to disable the clock. Design the sequential circuit with £ and x as inputs.

State Diagram

Design, construct, and test a sequential circuit whose state diagram is shown in Fig. 9.14.
Designate the two flip-flops as A and B, the input as x, and the output as y.

Connect the output of the least significant flip-flop B to the input x, and predict the
sequence of states and output that will occur with the application of clock pulses. Verify
the state transition and output by testing the circuit.

Design of Counter

Design, construct, and test a counter that goes through the following sequence of binary
states: 0,1,2,3,6,710,11,12, 13,14, 15, and back to O to repeat. Note that binary states
4,5, 8,and 9 are not used. The counter must be self-starting; that is, if the circuit starts
from any one of the four invalid states, the count pulses must transfer the circuit to one
of the valid states to continue the count correctly.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.11 Experiment 10: Counters 461

. 1/1
0/0 @ 0/1

FIGURE 9.14
State diagram for Experiment 9

Check the circuit’s operation for the required count sequence. Verify that the counter
is self-starting. This is done by initializing the circuit to each unused state by means of
the preset and clear inputs and then applying pulses to see whether the counter reaches
one of the valid states.

9.11 EXPERIMENT 10: COUNTERS

In this experiment, you will construct and test various ripple and synchronous counter
circuits. Ripple counters are discussed in Section 6.3 and synchronous counters are cov-
ered in Section 6.4.

Ripple Counter

Construct a four-bit binary ripple counter using two 7476 ICs (Fig. 9.12). Connect all
asynchronous clear and preset inputs to logic 1. Connect the count-pulse input to a
pulser and check the counter for proper operation.

Modify the counter so that it will count downward instead of upward. Check that
each input pulse decrements the counter by 1.

Synchronous Counter

Construct a synchronous four-bit binary counter and check its operation. Use two 7476
ICs and one 7408 IC.

Decimal Counter

Design a synchronous BCD counter that counts from 0000 to 1001. Use two 7476 ICs
and one 7408 IC. Test the counter for the proper sequence. Determine whether the
counter is self-starting. This is done by initializing the counter to each of the six unused
states by means of the preset and clear inputs. The application of pulses will transfer the
counter to one of the valid states if the counter is self-starting.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

462 Chapter 9 Laboratory Experiments

Binary Counter with Parallel Load

IC type 74161 is a four-bit synchronous binary counter with parallel load and asyn-
chronous clear. The internal logic is similar to that of the circuit shown in Fig. 6.14.
The pin assignments to the inputs and outputs are shown in Fig. 9.15. When the load
signal is enabled, the four data inputs are transferred into four internal flip-flops, QA
through OD, with QD being the most significant bit. There are two count-enable
inputs called P and 7. Both must be equal to 1 for the counter to operate. The function
table is similar to Table 6.6, with one exception: The load input in the 74161 is enabled
when equal to 0. To load the input data, the clear input must be equal to 1 and the
load input must be equal to 0. The two count inputs have don’t-care conditions and
may be equal to either 1 or 0. The internal flip-flops trigger on the positive transition
of the clock pulse. The circuit functions as a counter when the load input is equal to
1 and both count inputs P and T are equal to 1. If either P or T goes to 0, the output

16
V
3 “ 14
A 04
4 13
Data B OB Data
inputs 5 C 12 outputs
6 ec
D 11
9 op
Load L 74161
7 15
P cour Carry out
1
Count 0 T
Clock N CK
1
Clear ——— CLR
GND
8
Function table
Clear Clock Load Count Function
0 X X X Clear outputs to 0
1 T 0 X Load input data
1 T 1 1 Count to next binary value
1 T 1 0 No change in output

FIGURE 9.15
IC type 74161 binary counter with parallel load

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.12 Experiment 11: Shift Registers 463

does not change. The carry-out output is equal to 1 when all four data outputs are
equal to 1. Perform an experiment to verify the operation of the 74161 IC according
to the function table.

Show how the 74161 IC, together with a two-input NAND gate, can be made to oper-
ate as a synchronous BCD counter that counts from 0000 to 1001. Do not use the clear
input. Use the NAND gate to detect the count of 1001, which then causes all 0’s to be
loaded into the counter.

9.12 EXPERIMENT 11: SHIFT REGISTERS

In this experiment, you will investigate the operation of shift registers. The IC to be
used is the 74195 shift register with parallel load. Shift registers are explained in
Section 6.2.

IC Shift Register

IC type 74195 is a four-bit shift register with parallel load and asynchronous clear. The
pin assignments to the inputs and outputs are shown in Fig. 9.16. The single control line
labeled SH /LD (shift/load) determines the synchronous operation of the register. When
SH/LD = 0, the control input is in the load mode and the four data inputs are trans-
ferred into the four internal flip-flops, QA through OD.When SH/LD = 1, the control
input is in the shift mode and the information in the register is shifted right from QA
toward QD. The serial input into QA during the shift is determined from the J and K
inputs. The two inputs behave like the J and the complement of K of a JK flip-flop. When
both J and K are equal to 0, flip-flop QA is cleared to 0 after the shift. If both inputs are
equal to 1, QA is set to 1 after the shift. The other two conditions for the J and K inputs
provide a complement or no change in the output of flip-flop QA after the shift.

The function table for the 74195 shows the mode of operation of the register. When
the clear input goes to 0, the four flip-flops clear to 0 asynchronously —that is, without
the need of a clock. Synchronous operations are affected by a positive transition of the
clock. To load the input data, SH/LD must be equal to 0 and a positive clock-pulse
transition must occur. To shift right, SH/LD must be equal to 1. The J and K inputs must
be connected together to form the serial input.

Perform an experiment that will verify the operation of the 74195 IC. Show that it
performs all the operations listed in the function table. Include in your function table
the two conditions for JK = 01 and 10.

Ring Counter

A ring counter is a circular shift register with the signal from the serial output QD going
into the serial input. Connect the J and K input together to form the serial input. Use
the load condition to preset the ring counter to an initial value of 1000. Rotate the single
bit with the shift condition and check the state of the register after each clock pulse.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

464 Chapter 9 Laboratory Experiments

16
Vee
Clear CLR
Clock CK
9 15
Shift/load SH/LD QA
2 14
Serial { J OB 13 Data
i 3=
inputs g 74195 oc outputs
4 12
A oD
5 __ |1
Data B oD Complement of QD
i 6
mputs C
7
D
GND
8
Function table
Shift/ _ Serial
Clear load Clock J K input Function
0 X X X X X Asynchronous clear
1 X 0 X X X No change in output
1 0 T X X X Load input data
1 1 T 0 0 0 Shift from QA toward OD, QA =0
1 1 T 1 1 1 Shift from QA toward QD, QA =1
FIGURE 9.16

IC type 74195 shift register with parallel load

A switch-tail ring counter uses the complement output of QD for the serial input.
Preset the switch-tail ring counter to 0000 and predict the sequence of states that
will result from shifting. Verify your prediction by observing the state sequence after
each shift.

Feedback Shift Register

A feedback shift register is a shift register whose serial input is connected to some func-
tion of selected register outputs. Connect a feedback shift register whose serial input is

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.12 Experiment 11: Shift Registers 465

the exclusive-OR of outputs QC and QD. Predict the sequence of states of the register,
starting from state 1000. Verify your prediction by observing the state sequence after
each clock pulse.

Bidirectional Shift Register

The 74195 IC can shift only right from QA toward QD. It is possible to convert the
register to a bidirectional shift register by using the load mode to obtain a shift-left
operation (from QD toward QA). This is accomplished by connecting the output of
each flip-flop to the input of the flip-flop on its left and using the load mode of the
SH/LD input as a shift-left control. Input D becomes the serial input for the shift-
left operation.

Connect the 74195 as a bidirectional shift register (without parallel load). Con-
nect the serial input for shift right to a toggle switch. Construct the shift left as a
ring counter by connecting the serial output QA to the serial input D. Clear the
register and then check its operation by shifting a single 1 from the serial input
switch. Shift right three more times and insert 0’s from the serial input switch. Then
rotate left with the shift-left (load) control. The single 1 should remain visible while
shifting.

Bidirectional Shift Register with Parallel Load

The 74195 IC can be converted to a bidirectional shift register with parallel load in con-
junction with a multiplexer circuit. We will use IC type 74157 for this purpose. The 74157
is a quadruple two-to-one-line multiplexer whose internal logic is shown in Fig. 4.26. The
pin assignments to the inputs and outputs of the 74157 are shown in Fig. 9.17 Note that
the enable input is called a strobe in the 74157

Construct a bidirectional shift register with parallel load using the 74195 register
and the 74157 multiplexer. The circuit should be able to perform the following opera-
tions:

1. Asynchronous clear
2. Shift right

3. Shift left

4. Parallel load

5. Synchronous clear

Derive a table for the five operations as a function of the clear, clock, and SH/LD inputs
of the 74195 and the strobe and select inputs of the 74157 Connect the circuit and verify
your function table. Use the parallel-load condition to provide an initial value to the
register, and connect the serial outputs to the serial inputs of both shifts in order not to
lose the binary information while shifting.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

466 Chapter 9 Laboratory Experiments

16
2 Vee
Al
Data 5
A2
inputs 1
A A3 4
14 Yi
A4 7
Y2 Data
3 - 9 outputs
Bl1 12
6 74157 v4
Data B2
inputs 1
B 0 B3
13 B4
Select 1 SEL
Strobe 15 STB
GND
8
Function table
Strobe Select Data outputs YV
1 X All0’s
0 0 Select data inputs A
0 1 Select data inputs B

FIGURE 9.17
IC type 74157 quadruple 2 X 1 multiplexers

9.13 EXPERIMENT 12: SERIAL ADDITION

In this experiment, you will construct and test a serial adder—subtractor circuit. Serial
addition of two binary numbers can be done by means of shift registers and a full adder,
as explained in Section 6.2.

Serial Adder

Starting from the diagram of Fig. 6.6, design and construct a four-bit serial adder using
the following ICs: 74195 (two), 7408, 7486, and 7476. Provide a facility for register B to
accept parallel data from four toggle switches, and connect its serial input to ground so
that 0’s are shifted into register B during the addition. Provide a toggle switch to clear

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.14 Experiment 13: Memory Unit 467

the registers and the flip-flop. Another switch will be needed to specify whether register
B is to accept parallel data or is to be shifted during the addition.

Testing the Adder

To test your serial adder, perform the binary addition 5 + 6 + 15 = 26. This is done by
first clearing the registers and the carry flip-flop. Parallel load the binary value 0101 into
register B. Apply four pulses to add B to A serially, and check that the resultin A is 0101.
(Note that clock pulses for the 7476 must be as shown in Fig. 9.12.) Parallel load 0110
into B and add it to A serially. Check that A has the proper sum. Parallel load 1111 into
B and add to A. Check that the value in A is 1010 and that the carry flip-flop is set.

Clear the registers and flip-flop and try a few other numbers to verify that your serial
adder is functioning properly.

Serial Adder-Subtractor

If we follow the procedure used in Section 6.2 for the design of a serial subtractor (that
subtracts A — B),we will find that the output difference is the same as the output sum, but
that the input to the J and K of the borrow flip-flop needs the complement of QD (available
in the 74195). Using the other two XOR gates from the 7486, convert the serial adder to a
serial adder—subtractor with a mode control M.When M = 0, the circuit adds A + B. When
M = 1, the circuit subtracts A — B and the flip-flop holds the borrow instead of the carry.

Test the adder part of the circuit by repeating the operations recommended to ensure
that the modification did not change the operation. Test the serial subtractor part by
performing the subtraction 15 — 4 — 5 — 13 = —7. Binary 15 can be transferred to reg-
ister A by first clearing it to 0 and adding 15 from B. Check the intermediate results
during the subtraction. Note that —7 will appear as the 2’s complement of 7 with a bor-
row of 1 in the flip-flop.

9.14 EXPERIMENT 13: MEMORY UNIT

In this experiment, you will investigate the behavior of a random-access memory (RAM)
unit and its storage capability. The RAM will be used to simulate a read-only memory
(ROM). The ROM simulator will then be used to implement combinational circuits, as
explained in Section 75. The memory unit is discussed in Sections 7.2 and 73.

IC RAM

IC type 74189 is a 16 X 4 RAM. The internal logic is similar to the circuit shown in Fig. 76
for a4 X 4 RAM. The pin assignments to the inputs and outputs are shown in Fig. 9.18.
The four address inputs select 1 of 16 words in the memory. The least significant bit of the
address is A and the most significant is A3. The chip select (CS) input must be equal to 0
to enable the memory. If CS is equal to 1, the memory is disabled and all four outputs are
in a high-impedance state. The write enable (WE) input determines the type of operation,
as indicated in the function table. The write operation is performed when WE = 0. This

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

468 Chapter 9 Laboratory Experiments

16
Vee
4
D1 S1)
Data 6 D2 82 !
inputs 10 9 Data
D3 S3 outputs
12
D4 S4 1
1
5| 74180
Address A,
inputs 14
A,
13
Az
Chip select CS
Write enable WE
GND
8
Function table
cS WE Operation Data outputs
0 0 Write High impedance
0 1 Read Complement of selected word
1 X Disable High impedance

FIGURE 9.18
IC type 74189 16 X 4 RAM

operation is a transfer of the binary number from the data inputs into the selected word
in memory. The read operation is performed when WE = 1. This operation transfers the
complemented value stored in the selected word into the output data lines. The memory
has three-state outputs to facilitate memory expansion.

Testing the RAM

Since the outputs of the 74189 produce the complemented values, we need to insert four
inverters to change the outputs to their normal value. The RAM can be tested after
making the following connections: Connect the address inputs to a binary counter using
the 7493 IC (shown in Fig. 9.3). Connect the four data inputs to toggle switches and the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.15 Experiment 14: Lamp Handball 469

data outputs to four 7404 inverters. Provide four indicator lamps for the address and
four more for the outputs of the inverters. Connect input CS to ground and WE to a
toggle switch (or a pulser that provides a negative pulse). Store a few words into the
memory, and then read them to verify that the write and read operations are functioning
properly. You must be careful when using the WE switch. Always leave the WE input in
the read mode, unless you want to write into memory. The proper way to write is first to
set the address in the counter and the inputs in the four toggle switches. Then, store the
word in memory, flip the WE switch to the write position and return it to the read posi-
tion. Be careful not to change the address or the inputs when WE is in the write mode.

ROM Simulator

A ROM simulator is obtained from a RAM operated in the read mode only. The pattern
of 1’s and O’s is first entered into the simulating RAM by placing the unit momentarily
in the write mode. Simulation is achieved by placing the unit in the read mode and tak-
ing the address lines as inputs to the ROM. The ROM can then be used to implement
any combinational circuit.

Implement a combinational circuit using the ROM simulator that converts a four-bit
binary number to its equivalent Gray code as defined in Table 1.6. This is done as follows:
Obtain the truth table of the code converter. Store the truth table into the 74189 mem-
ory by setting the address inputs to the binary value and the data inputs to the corre-
sponding Gray code value. After all 16 entries of the table are written into memory, the
ROM simulator is set by permanently connecting the WE line to logic 1. Check the code
converter by applying the inputs to the address lines and verifying the correct outputs
in the data output lines.

Memory Expansion

Expand the memory unit to a 32 X 4 RAM using two 74189 ICs. Use the CS inputs to
select between the two ICs. Note that since the data outputs are three-stated, you can
tie pairs of terminals together to obtain a logic OR operation between the two ICs. Test
your circuit by using it as a ROM simulator that adds a three-bit number to a two-bit
number to produce a four-bit sum. For example, if the input of the ROM is 10110, then
the output is calculated to be 101 + 10 = 0111. (The first three bits of the input repre-
sent 5, the last two bits represent 2, and the output sum is binary 7) Use the counter to
provide four bits of the address and a switch for the fifth bit of the address.

9.15 EXPERIMENT 14: LAMP HANDBALL

In this experiment, you will construct an electronic game of handball, using a single light
to simulate the moving ball. The experiment demonstrates the application of a bidirec-
tional shift register with parallel load. It also shows the operation of the asynchronous
inputs of flip-flops. We will first introduce an IC that is needed for the experiment and
then present the logic diagram of the simulated lamp handball game.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

470 Chapter 9 Laboratory Experiments

IC Type 74194

This is a four-bit bidirectional shift register with parallel load. The internal logic is sim-
ilar to that shown in Fig. 6.7. The pin assignments to the inputs and outputs are shown
in Fig. 9.19. The two mode-control inputs determine the type of operation, as specified
in the function table.

Logic Diagram

The logic diagram of the electronic lamp handball game is shown in Fig. 9.20. It consists
of two 74194 ICs, a dual D flip-flop 7474 1C, and three gate ICs: the 7400, 7404, and
7408. The ball is simulated by a moving light that is shifted left or right through the

Serial input

for shift right 5 16
3 SIR Ve 15
A QA ——
4 . 0B 14
Parallel data 5 13 Data
inputs — " Ic oc——- outputs
6 12
D oD —
10 74194
Mode control 9 51
inputs S0
11
Clock — CK
1
Clear —{ CLR
SIL GND
Serial input ! 8
for shift left
Function table
Mode
Clear Clock S1 SO Function
0 X X X Clear outputs to 0
1 T 0 0 No change in output
1 T 0 1 Shift right in the direction from
QA to OD. SIR to QA
1 T 1 0 Shift left in the direction from
OD to QA. SIL to QD
1 T 1 1 Parallel-load input data
FIGURE 9.19

IC type 74194 bidirectional shift register with parallel load

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

®??® ®?®®mmm

QA 0B QC 0D QA OB QC 0D
SIL — SIR
SIR 74194 74194 SIL
CLR CLR
CK A B C D SI SO SI SO A B C D CK

CLK

PR PR
D 0 0 D
€L CK CK Pulser
o —<¢
CLR CLR

Reset
o [—

Start

il

|||—o\

FIGURE 9.20
Lamp handball logic diagram

471

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

472 Chapter 9 Laboratory Experiments

bidirectional shift register. The rate at which the light moves is determined by the fre-
quency of the clock. The circuit is first initialized with the reset switch. The start switch
starts the game by placing the ball (an indicator lamp) at the extreme right. The player
must press the pulser push button to start the ball moving to the left. The single light
shifts to the left until it reaches the leftmost position (the wall), at which time the ball
returns to the player by reversing the direction of shift of the moving light. When the
light is again at the rightmost position, the player must press the pulser again to reverse
the direction of shift. If the player presses the pulser too soon or too late, the ball dis-
appears and the light goes off. The game can be restarted by turning the start switch
on and then off. The start switch must be open (logic 1) during the game.

Circuit Analysis

Prior to connecting the circuit, analyze the logic diagram to ensure that you understand
how the circuit operates. In particular, try to answer the following questions:

1. What is the function of the reset switch?

2. How does the light in the rightmost position come on when the start switch is
grounded? Why is it necessary to place the start switch in the logic-1 position
before the game starts?

3. What happens to the two mode-control inputs, S7 and S0, once the ball is set in
motion?

4. What happens to the mode-control inputs and to the ball if the pulser is pressed
while the ball is moving to the left? What happens if the ball is moving to the right,
but has not yet reached the rightmost position?

5. If the ball has returned to the rightmost position, but the pulser has not yet been
pressed, what is the state of the mode-control inputs if the pulser is pressed? What
happens if it is not pressed?

Playing the Game

Wire the circuit of Fig. 9.20. Test the circuit for proper operation by playing the game. Note
that the pulser must provide a positive-edge transition and that both the reset and start
switches must be open (i.e., must be in the logic-1 state) during the game. Start with a low
clock rate, and increase the clock frequency to make the handball game more challenging.

Counting the Number of Losses

Design a circuit that keeps score of the number of times the player loses while playing
the game. Use a BCD-to-seven-segment decoder and a seven-segment display, as in
Fig. 9.8, to display the count from 0 through 9. Counting is done with either the 7493 as
a ripple decimal counter or the 74161 and a NAND gate as a synchronous decimal
counter. The display should show 0 when the circuit is reset. Every time the ball disap-
pears and the light goes off, the display should increase by 1. If the light stays on during
the play, the number in the display should not change. The final design should be an

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.16 Experiment 15: Clock-Pulse Generator 473

automatic scoring circuit, with the decimal display incremented automatically each time
the player loses when the light disappears.

Lamp Ping-Pong™

Modify the circuit of Fig. 9.20 so as to obtain a lamp Ping-Pong game. Two players can
participate in this game, with each player having his or her own pulser. The player with
the right pulser returns the ball when it is in the extreme right position, and the player
with the left pulser returns the ball when it is in the extreme left position. The only mod-
ification required for the Ping-Pong game is a second pulser and a change of a few wires.

With a second start circuit, the game can be made to start by either one of the two
players (i.e., either one serves). This addition is optional.

9.16 EXPERIMENT 15: CLOCK-PULSE GENERATOR

In this experiment, you will use an IC timer unit and connect it to produce clock pulses
at a given frequency. The circuit requires the connection of two external resistors and
two external capacitors. The cathode-ray oscilloscope is used to observe the waveforms
and measure the frequency of the pulses.

IC Timer

IC type 72555 (or 555) is a precision timer circuit whose internal logic is shown in Fig. 9.21.
(The resistors, R4 and Ry, and the two capacitors are not part of the IC.) The circuit con-
sists of two voltage comparators, a flip-flop, and an internal transistor. The voltage division
from V- = 5V through the three internal resistors to ground produces % and % of Ve
(3.3 V and 1.7 V, respectively) into the fixed inputs of the comparators. When the threshold
input at pin 6 goes above 3.3V, the upper comparator resets the flip-flop and the output
goes low to about 0 V. When the trigger input at pin 2 goes below 1.7 V, the lower com-
parator sets the flip-flop and the output goes high to about 5 V. When the output is low,
Q' is high and the base—emitter junction of the transistor is forward biased. When the
output is high, Q' is low and the transistor is cut off. (See Section 10.3.) The timer circuit
is capable of producing accurate time delays controlled by an external RC circuit. In this
experiment, the IC timer will be operated in the astable mode to produce clock pulses.

Circuit Operation

Figure 9.21 shows the external connections for astable operation of the circuit. Capacitor
C charges through resistors R 4 and Rp when the transistor is cut off and discharges through
Rpg when the transistor is forward biased and conducting. When the charging voltage across
capacitor C reaches 3.3V, the threshold input at pin 6 causes the flip-flop to reset and the
transistor turns on. When the discharging voltage reaches 1.7 V, the trigger input at pin 2
causes the flip-flop to set and the transistor turns off. Thus, the output continually alternates

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

474 Chapter 9 Laboratory Experiments

S5V
I 0.01 pf
Vee|sg |5~ Reset | 4
2 2
6
Threshold o]
Compare R o’
ol
b 5
S) Output
. 2 7
Trigger 9) Discharge
72555 Timer
$h
GND| 1
-—C
FIGURE 9.21

IC type 72555 timer connected as a clock-pulse generator

between two voltage levels at the output of the flip-flop. The output remains high for a
duration equal to the charge time. This duration is determined from the equation

The output remains low for a duration equal to the discharge time. This duration is

determined from the equation

Clock-Pulse Generator

Starting with a capacitor C of 0.001 pF calculate values for R4 and Ry to produce clock
pulses, as shown in Fig. 9.22. The pulse width is 1 ps in the low level and repeats at a

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.17 Experiment 16: Parallel Adder and Accumulator 475
‘j |<— JIRTAY

FIGURE 9.22
Output waveform for clock generator

frequency rate of 100 kHz (every 10 us). Connect the circuit and check the output in the
oscilloscope.

Observe the output across the capacitor C, and record its two levels to verify that
they are between the trigger and threshold values.

Observe the waveform in the collector of the transistor at pin 7 and record all perti-
nent information. Explain the waveform by analyzing the circuit’s action.

Connect a variable resistor (potentiometer) in series with R4 to produce a variable-
frequency pulse generator. The low-level duration remains at 1 us The frequency should
range from 20 to 100 kHz.

Change the low-level pulses to high-level pulses with a 7404 inverter. This will pro-
duce positive pulses of 1 ps with a variable-frequency range.

9.17 EXPERIMENT 16: PARALLEL ADDER
AND ACCUMULATOR

In this experiment, you will construct a four-bit parallel adder whose sum can be loaded
into a register. The numbers to be added will be stored in a RAM. A set of binary
numbers will be selected from memory and their sum will be accumulated in the register.

Block Diagram

Use the RAM circuit from the memory experiment of Section 9.14, a four-bit parallel
adder, a four-bit shift register with parallel load, a carry flip-flop, and a multiplexer to
construct the circuit. The block diagram and the ICs to be used are shown in Fig. 9.23.
Information can be written into RAM from data in four switches or from the four-bit
data available in the outputs of the register. The selection is done by means of a multi-
plexer. The data in RAM can be added to the contents of the register and the sum
transferred back to the register.

Control of Register
Provide toggle switches to control the 74194 register and the 7476 carry flip-flop as follows:

(a) A LOAD condition transfers the sum to the register and the output carry to the
flip-flop upon the application of a clock pulse.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

476 Chapter 9 Laboratory Experiments

Address
Count counter RAM MUX Se!ect
(pulser) (7493) (74189) (74157) (switch)

4 switches

Inverters
(7404)

Outputearry | 4 pit adder
(7483)
Sum
Carry Register
(7476) (74194)

FIGURE 9.23
Block diagram of a parallel adder for Experiment 16

(b) A SHIFT condition shifts the register right with the carry from the carry flip-
flop transferred into the leftmost position of the register upon the application
of a clock pulse. The value in the carry flip-flop should not change during the
shift.

(c) A NO-CHANGE condition leaves the contents of the register and flip-flop
unchanged even when clock pulses are applied.

Carry Circuit

To conform with the preceding specifications, it is necessary to provide a circuit between
the output carry from the adder and the J and K inputs of the 7476 flip-flop so that the
output carry is transferred into the flip-flop (whether it is equal to 0 or 1) only when the
LOAD condition is activated and a pulse is applied to the clock input of the flip-flop.
The carry flip-flop should not change if the LOAD condition is disabled or the SHIFT
condition is enabled.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.17 Experiment 16: Parallel Adder and Accumulator 477

Detailed Circuit

Draw a detailed diagram showing all the wiring between the ICs. Connect the circuit,
and provide indicator lamps for the outputs of the register and carry flip-flop and for
the address and output data of the RAM.

Checking the Circuit

Store the numbers 0110,1110,1101,0101, and 0011 in RAM and then add them to the
register one at a time. Start with a cleared register and flip-flop. Predict the values in
the output of the register and carry after each addition in the following sum, and verify
your results:

0110 + 1110 + 1101 + 0101 + 0011

Circuit Operation

Clear the register and the carry flip-flop to zero, and store the following four-bit num-
bers in RAM in the indicated addresses:

Address Content

0 0110
3 1110
6 1101
9 0101
12 0011

Now perform the following four operations:

1. Add the contents of address O to the contents of the register, using the LOAD
condition.

2. Store the sum from the register into RAM at address 1.
3. Shift right the contents of the register and carry with the SHIFT condition.
4. Store the shifted contents of the register at address 2 of RAM.

Check that the contents of the first three locations in RAM are as follows:

Address Contents

0 0110
1 0110
2 0011

Repeat the foregoing four operations for each of the other four binary numbers
stored in RAM. Use addresses 4,7, 10, and 13 to store the sum from the register in step 2.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

478 Chapter 9 Laboratory Experiments
Use addresses 5,8, 11, and 14 to store the shifted value from the register in step 4. Predict

what the contents of RAM at addresses 0 through 14 would be, and check to verify your
results.

9.18 EXPERIMENT 17: BINARY MULTIPLIER

In this experiment, you will design and construct a circuit that multiplies 2 four-bit
unsigned numbers to produce an eight-bit product. An algorithm for multiplying two
binary numbers is presented in Section 8.7 The algorithm implemented in this experi-
ment differs from the one described in Figs. 8.14 and 8.15, by treating only a four-bit
datapath and by incrementing, instead of decrementing, a bit counter.

Block Diagram

The ASMD chart and block diagram of the binary multiplier with those ICs recom-
mended to be used are shown in Fig. 9.24(a) and (b). The multiplicand, B, is available
from four switches instead of a register. The multiplier, Q, is obtained from another set
of four switches. The product is displayed with eight indicator lamps. Counter P is
initialized to 0 and then incremented after each partial product is formed. When the
counter reaches the count of four, output Done becomes 1 and the multiplication
operation terminates.

Control of Registers

The ASMD chart for the binary multiplier in Fig. 9.24(a) shows that the three registers
and the carry flip-flop of the datapath unit are controlled with signals Load_regs,
Incr_P, Add_regs, and Shift regs. The external input signals of the control unit are
clock, reset_b (active-low), and Start; another input to the control unit is the internal
status signal, Done, which is formed by the datapath unit to indicate that the counter
has reached a count of four, corresponding to the number of bits in the multiplier.
Load_regs clears the product register (A) and the carry flip-flop (C), loads the mul-
tiplicand into register B, loads the multiplier into register Q, and clears the bit coun-
ter. Incr_P increments the bit counter concurrently with the accumulation of a partial
product. Add_regs adds the multiplicand to A, if the least significant bit of the shifted
multiplier (Q/0)) is 1. Flip-flop C accommodates a carry that results from the addition.
The concatenated register CAQ is updated by storing the result of shifting its contents
one bit to the right. Shift_regs shifts CAQ one bit to the right, which also clears flip-
flop C.

The state diagram for the control unit is shown in Fig. 9.24(c). Note that it does not
show the register operations of the datapath unit or the output signals that control
them. That information is apparent in Fig. 9.24(d). Note that Incr_P and Shift_regs are
generated unconditionally in states S_add and S_shift, respectively. Load_regs is

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.18 Experiment 17: Binary Multiplier 479

generated under the condition that Start is asserted conditionally while the state is in
S_idle; Add_regs is asserted conditionally in S_add if Q[0] = 1.

Multiplication Example

Before connecting the circuit, make sure that you understand the operation of the
multiplier. To do this, construct a table similar to Table 8.5, but with B = 1111 for the
multiplicand and Q = 1011 for the multiplier. Along with each comment listed on
the left side of the table, specify the state.

Datapath Design

Draw a detailed diagram of the datapath part of the multiplier, showing all IC pin con-
nections. Generate the four control signals with switches, and use them to provide the
required control operations for the various registers. Connect the circuit and check that
each component is functioning properly. With the control signals at 0, set the multipli-
cand switches to 1111 and the multiplier switches to 1011. Assert the control signals
manually by means of the control switches, as specified by the state diagram of
Fig. 9.24(c). Apply a single pulse while in each control state, and observe the outputs of
registers A and Q and the values in C and P. Compare these outputs with the numbers
in your numerical example to verify that the circuit is functioning properly. Note that IC
type 74161 has master—slave flip-flops. To operate it manually, it is necessary that the
single clock pulse be a negative pulse.

Design of Control

Design the control circuit specified by the state diagram. You can use any method of
control implementation discussed in Section 8.8.

Choose the method that minimizes the number of ICs. Verify the operation of the
control circuit prior to its connection to the datapath unit.

Checking the Multiplier

Connect the outputs of the control circuit to the datapath unit, and verify the total circuit
operation by repeating the steps of multiplying 1111 by 1011. The single clock pulses
should now sequence the control states as well. (Remove the manual switches.) The start
signal (Start) can be generated with a switch that is on while the control is in state S_idle.

Generate the start signal (Start) with a pulser or any other short pulse, and operate the
multiplier with continuous clock pulses from a clock generator. Pressing the pulser for
Start should initiate the multiplication operation, and upon its completion, the product
should be displayed in the A and Q registers. Note that the multiplication will be repeated
as long as signal Start is enabled. Make sure that Start goes back to 0. Then set the switches
to two other four-bit numbers and press Start again. The new product should appear at the
outputs. Repeat the multiplication of a few numbers to verify the operation of the circuit.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

480 Chapter 9 Laboratory Experiments

reset

A<=0

cC<=0

B <= Multiplicand
O <= Multiplier
P<=0

S_shift
Shift_regs

T {C, A Q}<=(C A Q}>>1

&

1

(a) ASMD chart

FIGURE 9.24
ASMD chart, block diagram of the datapath, control state diagram, and register
operations of the binary multiplier circuit

9.19 VERILOG HDL SIMULATION EXPERIMENTS
AND RAPID PROTOTYPING WITH FPGAS

Field programmable gate arrays (FPGAs) are used by industry to implement logic when
the system is complex, the time-to-market is short, the performance (e.g., speed) of an
FPGA is acceptable, and the volume of potential sales does not warrant the investment
in a standard cell-based ASIC. Circuits can be rapidly prototyped into an FPGA using an

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.19 Verilog HDL Simulation Experiments 481

Multiplicand B
(4 switches) Done = 1 on count of 4

T
m

(74161)
Cout Parallel adder
(7483)
Multiplier Q
(4 switches)
€ Register A Register Q
(7474) (74194) (74194)

O
(b) Datapath block program
Done =1
Start =0
Start = 1
Done =0
(c) Control state diagram

State Transition Register Operations Control signal
From To
S_idle Initial state reached by reset action
S_idle S_add A<=0,C<=0,P<=0 Load_regs
S_add S_shift P<=P+1 Incr_P

if (Q[0]) then (A <= A + B,C <= Cuy) Add_regs
S_shift shift right {CAQ}, C <=0 Shift_regs

(d) Register operations

FIGURE 9.24
(Continued)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

482 Chapter 9 Laboratory Experiments

HDL. Once the HDL model is verified, the description is synthesized and mapped into
the FPGA. FPGA vendors provide software tools for synthesizing the HDL description
of a circuit into an optimized gate-level description and mapping (fitting) the resulting
netlist into the resources of their FPGA. This process avoids the detailed assembly of ICs
that is required by composing a circuit on a breadboard, and the process involves sig-
nificantly less risk of failure, because it is easier and faster to edit an HDL description
than to re-wire a breadboard.

Most of the hardware experiments outlined in this chapter can be supplemented by
a corresponding software procedure using the Verilog hardware description language
(HDL). A Verilog compiler and simulator are necessary for these supplements. The
supplemental experiments have two levels of engagement. In the first, the circuits that
are specified in the hands-on laboratory experiments can be described, simulated, and
verified using Verilog and a simulator. In the second, if a suitable FPGA prototyping
board is available (e.g., see www.digilentinc.com), the hardware experiments can be
done by synthesizing the Verilog descriptions and implementing the circuits in an FPGA.
Where appropriate, the identity of the individual (structural) hardware units (e.g.,a 4-bit
counter) can be preserved by encapsulating them in separate Verilog modules whose
internal detail is described behaviorally or by a mixture of behavioral and structural
models.

Prototyping a circuit with an FPGA requires synthesizing a Verilog description to
produce a bit stream that can be downloaded to configure the internal resources
(e.g., CLBS of a Xilinx FPGA) and connectivity of the FPGA. Three details require
attention: (1) The pins of the prototyping board are connected to the pins of the FPGA,
and the hardware implementation of the synthesized circuit requires that its input and
output signals be associated with the pins of the prototyping board (this association is
made using the synthesis tool provided by the vendor of the FPGA (such tools are avail-
able free)), (2) FPGA prototyping boards have a clock generator, but it will be necessary,
in some cases, to implement a clock divider (in Verilog) to obtain an internal clock
whose frequency is suitable for the experiment, and (3) inputs to an FPGA-based circuit
can be made using switches and pushbuttons located on the prototyping board, but it
might be necessary to implement a pulser circuit in software to control and observe the
activity of a counter or a state machine (see the supplement to Experiment 1).

Supplement to Experiment 1 (Section 9.2)

The functionality of the counters specified in Experiment 1 can be described in Verilog
and synthesized for implementation in an FPGA. Note that the circuit shown in Fig. 9.3
uses a push-button pulser or a clock to cause the count to increment in a circuit built
with standard ICs. A software pulser circuit can be developed to work with a switch on
the prototyping board of an FPGA so that the operation of the counters can be verified
by visual inspection.

The software pulser has the ASM chart shown in Fig. 9.25, where the external input
(Pushed) is obtained from a mechanical switch or pushbutton. This circuit asserts Start
for one cycle of the clock and then waits for the switch to be opened (or the pushbutton

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

www.digilentinc.com

Section 9.19 Verilog HDL Simulation Experiments 483

reset_b

FIGURE 9.25
Pulser circuit for FPGA implementation of Experiment 1

to be released) to ensure that each action of the switch or pushbutton will produce only
one pulse of Start. If the counter, or a state machine, is in the reset state (S_idle) when
the switch is closed, the pulse will launch the activity of the counter or state machine. It
will be necessary to open the switch (or release the pushbutton) before Start can be
reasserted. Using the software pulser will allow each value of the count to be observed.
If necessary, a simple synchronizer circuit can be used with Pushed.

Supplement to Experiment 2 (Section 9.3)

The various logic gates and their propagation delays were introduced in the hardware
experiment. In Section 3.10, a simple circuit with gate delays was investigated. As an
introduction to the laboratory Verilog program, compile the circuit described in HDL
Example 3.3 and then run the simulator to verify the waveforms shown in Fig. 3.38.

Assign the following delays to the exclusive-OR circuit shown in Fig. 3.32(a): 10 ns
for an inverter, 20 ns for an AND gate, and 30 ns for an OR gate. The input of the circuit
goes from xy = 00 to xy = 01.

(a) Determine the signals at the output of each gate from ¢t = O tot = 50 ns.
(b) Write the HDL description of the circuit including the delays.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

484 Chapter 9 Laboratory Experiments

(c) Write a stimulus module (similar to HDL Example 3.3) and simulate the circuit
to verify the answer in part (a).

(d) Implement the circuit with an FPGA and test its operation.

Supplement to Experiment 4 (Section 9.5)

The operation of a combinational circuit is verified by checking the output and compar-
ing it with the truth table for the circuit. HDL Example 4.10 (Section 4.12) demonstrates
the procedure for obtaining the truth table of a combinational circuit by simulating it.

(a) In order to get acquainted with this procedure, compile and simulate HDL
Example 4.10 and check the output truth table.

(b) In Experiment 4, you designed a majority logic circuit. Write the HDL gate-level
description of the majority logic circuit together with a stimulus for displaying the
truth table. Compile and simulate the circuit and check the output response.

(c) Implement the majority logic circuit units in an FPGA and test its operation.

Supplement to Experiment 5 (Section 9.6)

This experiment deals with code conversion. A BCD-to-excess-3 converter was designed
in Section 4.4. Use the result of the design to check it with an HDL simulator.

(a) Write an HDL gate-level description of the circuit shown in Fig. 4.4.
(b) Write a dataflow description using the Boolean expressions listed in Fig. 4.3.
(c) Write an HDL behavioral description of a BCD-to-excess-3 converter.

(d) Write a test bench to simulate and test the BCD-to-excess-3 converter circuit in
order to verify the truth table. Check all three circuits.

(e) Implement the behavioral description with an FPGA and test the operation of the
circuit.

Supplement to Experiment 7 (Section 9.8)

A four-bit adder—subtractor is developed in this experiment. An adder—subtractor cir-
cuit is also developed in Section 4.5.

(a) Write the HDL behavioral description of the 7483 four-bit adder.
(b) Write a behavioral description of the adder—subtractor circuit shown in Fig. 9.11.

(c) Write the HDL hierarchical description of the four-bit adder—subtractor shown in
Fig.4.13 (including V). This can be done by instantiating a modified version of the
four-bit adder described in HDL Example 4.2 (Section 4.12).

(d) Write an HDL test bench to simulate and test the circuits of part (c). Check and
verify the values that cause an overflow with V' = 1.

(e) Implement the circuit of part (c) with an FPGA and test its operation.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.19 Verilog HDL Simulation Experiments 485

Supplement to Experiment 8 (Section 9.9)

The edge-triggered D flip-flop 7474 is shown in Fig. 9.13. The flip-flop has asynchronous
preset and clear inputs.

(a) Write an HDL behavioral description of the 7474 D flip-flop, using only the O
output. (Note that when Preset = 0, O goes to 1, and when Preset = 1 and
Clear = 0, Q goes to 0. Thus, Preset takes precedence over Clear.)

(b) Write an HDL behavioral description of the 7474 D flip-flop, using both outputs.
Label the second output Q_not, and note that this is not always the complement
of Q. (When Preset = Clear = 0, both Q and Q_not go to 1.)

Supplement to Experiment 9 (Section 9.10)

In this hardware experiment, you are asked to design and test a sequential circuit whose
state diagram is given by Fig. 9.14. This is a Mealy model sequential circuit similar to the
one described in HDL Example 5.5 (Section 5.6).

(a) Write the HDL description of the state diagram of Fig. 9.14.

(b) Write the HDL structural description of the sequential circuit obtained from the
design. (This is similar to HDL Example 5.7 in Section 5.6.)

(c) Figure 9.24(c) (Section 9.18) shows a control state diagram. Write the HDL descrip-
tion of the state diagram, using the one-hot binary assignment (see Table 5.9 in
Section 5.7) and four outputs— Ty, Ty, T,, and T3.

(d) Write a behavioral model of the datapath unit, and verify that the interconnected
control unit and datapath unit operate correctly.

(e) Implement the integrated circuit with an FPGA and test its operation.

Supplement to Experiment 10 (Section 9.11)

The synchronous counter with parallel load IC type 74161 is shown in Fig. 9.15. This
circuit is similar to the one described in HDL Example 6.3 (Section 6.6), with two excep-
tions: The load input is enabled when equal to 0, and there are two inputs (P and 7)) that
control the count. Write the HDL description of the 74161 IC. Implement the counter
with an FPGA and test its operation.

Supplement to Experiment 11 (Section 9.12)

A bidirectional shift register with parallel load is designed in this experiment by using
the 74195 and 74157 IC types.

(a) Write the HDL description of the 74195 shift register. Assume that inputs J and K
are connected together to form the serial input.

(b) Write the HDL description of the 74157 multiplexer.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

486 Chapter 9 Laboratory Experiments

(c) Obtain the HDL description of the four-bit bidirectional shift register that has
been designed in this experiment. (1) Write the structural description by instanti-
ating the two ICs and specifying their interconnection, and (2) write the behav-
ioral description of the circuit, using the function table that is derived in this design
experiment.

(d) Implement the circuit with an FPGA and test its operation.

Supplement to Experiment 13 (Section 9.14)

This experiment investigates the operation of a random-access memory (RAM). The
way a memory is described in HDL is explained in Section 72 in conjunction with HDL
Example 71.

(a) Write the HDL description of IC type 74189 RAM, shown in Fig. 9.18.

(b) Test the operation of the memory by writing a stimulus program that stores bi-
nary 3 in address 0 and binary 1 in address 14. Then read the stored numbers from
the two addresses to check whether the numbers were stored correctly.

(¢) Implement the RAM with an FPGA and test its operation.

Supplement to Experiment 14 (Section 9.15)

(a) Write the HDL behavioral description of the 74194 bidirectional shift register with
parallel load shown in Fig. 9.19.

(b) Implement the shift register with an FPGA and test its operation.

Supplement to Experiment 16 (Section 9.17)

A parallel adder with an accumulator register and a memory unit is shown in the block
diagram of Fig. 9.23. Write the structural description of the circuit specified by the
block diagram. The HDL structural description of this circuit can be obtained by
instantiating the various components. An example of a structural description of a
design can be found in HDL Example 8.4 in Section 8.6. First, it is necessary to write
the behavioral description of each component. Use counter 74161 instead of 7493, and
substitute the D flip-flop 7474 instead of the JK flip-flop 7476. The block diagram of
the various components can be found from the list in Table 9.1. Write a test bench for
each model, and then write a test bench to verify the entire design. Implement the
circuit with an FPGA and test its operation.

Supplement to Experiment 17 (Section 9.18)

The block diagram of a four-bit binary multiplier is shown in Fig. 9.24. The multiplier
can be described in one of two ways: (1) by using the register transfer level statements
listed in part (b) of the figure or (2) by using the block diagram shown in part (a) of the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 9.19 Verilog HDL Simulation Experiments 487

figure. The description of the multiplier in terms of the register transfer level (RTL)
format is carried out in HDL Example 8.5 (Section 8.7).

(a) Use the integrated circuit components specified in the block diagram to write the
HDL structural description of the binary multiplier. The structural description is
obtained by using the module description of each component and then instantiating
all the components to show how they are interconnected. (See Section 8.5 for an
example.) The HDL descriptions of the components may be available from the
solutions to previous experiments. The 7483 is described with a solution to
Experiment 7(a), the 7474 with Experiment 8(a), the 74161 with Experiment 10,
and the 74194 with Experiment 14. The description of the control is available from
a solution to Experiment 9(c). Be sure to verify each structural unit before
attempting to verify the multiplier.

(b) Implement the binary multiplier with an FPGA. Use the pulser described in the
supplement to Experiment 1.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Chapter 10
Standard Graphic Symbols

10.1 RECTANGULAR-SHAPE SYMBOLS

Digital components such as gates, decoders, multiplexers, and registers are available
commercially in integrated circuits and are classified as SSI or MSI circuits. Standard
graphic symbols have been developed for these and other components so that the user
can recognize each function from the unique graphic symbol assigned to it. This stan-
dard, known as ANSI/TEEE Std. 91-1984, has been approved by industry, government,
and professional organizations and is consistent with international standards.

The standard uses a rectangular-shape outline to represent each particular logic func-
tion. Within the outline, there is a general qualifying symbol denoting the logical operation
performed by the unit. For example, the general qualifying symbol for a multiplexer is
MUX.The size of the outline is arbitrary and can be either a square or a rectangular shape
with an arbitrary length—width ratio. Input lines are placed on the left and output lines are
placed on the right. If the direction of signal flow is reversed, it must be indicated by arrows.

The rectangular-shape graphic symbols for SSI gates are shown in Fig. 10.1. The
qualifying symbol for the AND gate is the ampersand (&).The OR gate has the qualify-
ing symbol that designates greater than or equal to 1, indicating that at least one input
must be active for the output to be active. The symbol for the buffer gate is 1, showing
that only one input is present. The exclusive-OR symbol designates the fact that only
one input must be active for the output to be active. The inclusion of the logic negation
small circle in the output converts the gates to their complement values. Although the
rectangular-shape symbols for the gates are recommended, the standard also recognizes
the distinctive-shape symbols for the gates shown in Fig. 2.5.

An example of an MSI standard graphic symbol is the four-bit parallel adder shown
in Fig. 10.2. The qualifying symbol for an adder is the Greek letter 2. The preferred

488

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.1 Rectangular-Shape Symbols 489

& =1 1 =1
AND OR Buffer XOR
& =1 1 =1
o— o—— — o—— o——
NAND NOR Inverter XNOR
FIGURE 10.1

Rectangular-shape graphic symbols for gates

3
10
Al ————0
8
A2
3 P 9
A3 ——— of———s1
Ad ! 3 6 S2
11 3 2
Bl ———0 — $3
7 15
B2 ———— 3f———54
4 0
B3
16
B4 ————3
13 14
cl ———cI COF———co

FIGURE 10.2
Standard graphic symbol for a four-bit parallel adder, IC type 7483

letters for the arithmetic operands are P and Q. The bit-grouping symbols in the two
types of inputs and the sum output are the decimal equivalents of the weights of the
bits to the power of 2. Thus, the input labeled 3 corresponds to the value of 2> = 8.The
input carry is designated by CI and the output carry by CO. When the digital compo-
nent represented by the outline is also a commercial integrated circuit, it is customary
to write the IC pin number along each input and output. Thus, IC type 7483 is a four-bit
adder with look-ahead carry. It is enclosed in a package with 16 pins. The pin numbers

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

490 Chapter 10 Standard Graphic Symbols

for the nine inputs and five outputs are shown in Fig. 10.2. The other two pins are for
the power supply.

Before introducing the graphic symbols of other components, it is necessary to review
some terminology. As mentioned in Section 2.8, a positive-logic system defines the more
positive of two signal levels (designated by H) as logic 1 and the more negative signal
level (designated by L) as logic 0. Negative logic assumes the opposite assignment.
A third alternative is to employ a mixed-logic convention, where the signals are consid-
ered entirely in terms of their H and L values. At any point in the circuit, the user is
allowed to define the logic polarity by assigning logic 1 to either the H or L signal. The
mixed-logic notation uses a small right-angle-triangle graphic symbol to designate a
negative-logic polarity at any input or output terminal. (See Fig. 2.10(f).)

Integrated-circuit manufacturers specify the operation of integrated circuits in terms of
H and L signals. When an input or output is considered in terms of positive logic, it is defined
as active high. When it is considered in terms of negative logic, it is defined as active low.
Active-low inputs or outputs are recognized by the presence of the small-triangle polarity-
indicator symbol. When positive logic is used exclusively throughout the entire system, the
small-triangle polarity symbol is equivalent to the small circle that designates negation. In
this book, we have assumed positive logic throughout and employed the small circle when
drawing logic diagrams. When an input or output line does not include the small circle, we
define it to be active if it is logic 1. An input or output that includes the small-circle symbol
is considered active if it is in the logic-0 state. However, we will use the small-triangle
polarity symbol to indicate active-low assignment in all drawings that represent standard
diagrams. This will conform with integrated-circuit data books, where the polarity symbol
is usually employed. Note that the bottom four gates in Fig. 10.1 could have been drawn
with a small triangle in the output lines instead of a small circle.

Another example of a graphic symbol for an MSI circuit is shown in Fig. 10.3. This
is a 2-to-4-line decoder representing one-half of IC type 74155. Inputs are on the left
and outputs on the right. The identifying symbol X/Y indicates that the circuit converts
from code X to code Y. Data inputs A and B are assigned binary weights 1 and 2
equivalent to 2° and 2!, respectively. The outputs are assigned numbers from 0 to 3,
corresponding to outputs D through Ds, respectively. The decoder has one active-low
input £; and one active-high input E,. These two inputs go through an internal AND

13 XY
A 1 7
5 3) ofP~————Do
1 ;6 D1
5
2 P S))
El —= I 4
1 & EN 3~ " D3
E2

FIGURE 10.3
Standard graphic symbol for a 2-to-4-line decoder (one-half of IC type 74155)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.2 Qualifying Symbols 491

gate to enable the decoder. The output of the AND gate is labeled EN (enable) and is
activated when E is at a low-level state and E, at a high-level state.

10.2 QUALIFYING SYMBOLS

The IEEE standard graphic symbols for logic functions provide a list of qualifying symbols
to be used in conjunction with the outline. A qualifying symbol is added to the basic outline
to designate the overall logic characteristics of the element or the physical characteristics
of an input or output. Table 10.1 lists some of the general qualifying symbols specified in
the standard. A general qualifying symbol defines the basic function performed by the
device represented in the diagram. It is placed near the top center position of the rectan-
gular-shape outline. The general qualifying symbols for the gates, decoder, and adder were
shown in previous diagrams. The other symbols are self-explanatory and will be used later
in diagrams representing the corresponding digital elements.

Some of the qualifying symbols associated with inputs and outputs are shown in
Fig. 10.4. Symbols associated with inputs are placed on the left side of the column
labeled symbol. Symbols associated with outputs are placed on the right side of the
column. The active-low input or output symbol is the polarity indicator. As mentioned

Table 10.1
General Qualifying Symbols
Symbol Description
& AND gate or function
=1 OR gate or function
1 Buffer gate or inverter
=1 Exclusive-OR gate or function
2k Even function or even parity
element
2k +1 Odd function or odd parity element
XY Coder, decoder, or code converter
MUX Multiplexer
DMUX Demultiplexer
> Adder
H Multiplier
COMP Magnitude comparator
ALU Arithmetic logic unit
SRG Shift register
CTR Counter
RCTR Ripple counter
ROM Read-only memory
RAM Random-access memory

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

492 Chapter 10 Standard Graphic Symbols

Symbol Description

} Active-low input or output
— } Logic negation input or output

— Dynamic indicator input

i— Three-state output
Q:— Open-collector output
g— Output with special amplification
—;N Enable input
—} Data input to a storage element
—:J K, R SorT Flip-flop inputs
—:_’ Shift right
—:e Shift left
-
L Countup
L Countdown

CT = 15:'* Contents of register equals binary 15

FIGURE 10.4
Qualifying symbols associated with inputs and outputs

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.3 Dependency Notation 493

previously, it is equivalent to the logic negation when positive logic is assumed. The
dynamic input is associated with the clock input in flip-flop circuits. It indicates that the
input is active on a transition from a low-to-high-level signal. The three-state output has
a third high-impedance state, which has no logic significance. When the circuit is enabled,
the output is in the normal 0 or 1 logic state, but when the circuit is disabled, the three-
state output is in a high-impedance state. This state is equivalent to an open circuit.

The open-collector output has one state that exhibits a high-impedance condition. An
externally connected resistor is sometimes required in order to produce the proper logic
level. The diamond-shape symbol may have a bar on top (for high type) or on the bottom
(for low type). The high or low type specifies the logic level when the output is not in
the high-impedance state. For example, TTL-type integrated circuits have special outputs
called open-collector outputs. These outputs are recognized by a diamond-shape symbol
with a bar under it. This indicates that the output can be either in a high-impedance state
or in a low-level state. When used as part of a distribution function, two or more open-
collector NAND gates when connected to a common resistor perform a positive-logic
AND function or a negative-logic OR function.

The output with special amplification is used in gates that provide special driving
capabilities. Such gates are employed in components such as clock drivers or bus-oriented
transmitters. The EN symbol designates an enable input. It has the effect of enabling all
outputs when it is active. When the input marked with EN is inactive, all outputs are
disabled. The symbols for flip-flop inputs have the usual meaning. The D input is also
associated with other storage elements such as memory input.

The symbols for shift right and shift left are arrows pointing to the right or the left,
respectively. The symbols for count-up and count-down counters are the plus and minus
symbols, respectively. An output designated by CT = 15 will be active when the contents
of the register reach the binary count of 15. When nonstandard information is shown
inside the outline, it is enclosed in square brackets [like this].

10.3 DEPENDENCY NOTATION

The most important aspect of the standard logic symbols is the dependency notation.
Dependency notation is used to provide the means of denoting the relationship between
different inputs or outputs without actually showing all the elements and interconnections
between them. We will first demonstrate the dependency notation with an example of the
AND dependency and then define all the other symbols associated with this notation.

The AND dependency is represented with the letter G followed by a number. Any
input or output in a diagram that is labeled with the number associated with G is consid-
ered to be ANDed with it. For example, if one input in the diagram has the label G1 and
another input is labeled with the number 1, then the two inputs labeled G1 and 1 are
considered to be ANDed together internally.

An example of AND dependency is shown in Fig. 10.5. In (a), we have a portion of
a graphic symbol with two AND dependency labels, G1 and G2.There are two inputs
labeled with the number 1 and one input labeled with the number 2. The equivalent

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

494 Chapter 10 Standard Graphic Symbols

X
Y
&
X G1 A
Y G2
&
1 -
1 B
2
&
(a) Block with G1 and G2 —
c

(b) Equivalent interpretation

FIGURE 10.5
Example of G (AND) dependency

interpretation is shown in part (b) of the figure. Input X associated with G1 is considered
to be ANDed with inputs A and B, which are labeled with a 1. Similarly, input Y is
ANDed with input C to conform with the dependency between G2 and 2.

The standard defines 10 other dependencies. Each dependency is denoted by a letter
symbol (except EN). The letter appears at the input or output and is followed by a
number. Each input or output affected by that dependency is labeled with that same
number. The 11 dependencies and their corresponding letter designation are as follows:

G Denotes an AND (gate) relationship

|4 Denotes an OR relationship

N Denotes a negate (exclusive-OR) relationship

EN Specifies an enable action

Identifies a control dependency
Specifies a setting action

C

S

R Specifies a resetting action

M Identifies a mode dependency
A

Identifies an address dependency

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.4 Symbols for Combinational Elements 495

V4 Indicates an internal interconnection

X Indicates a controlled transmission

The V and N dependencies are used to denote the Boolean relationships of OR and
exclusive-OR similar to the G that denotes the Boolean AND. The EN dependency is
similar to the qualifying symbol EN except that a number follows it (for example, EN 2).
Only the outputs marked with that number are disabled when the input associated with
EN is active.

The control dependency C is used to identify a clock input in a sequential element
and to indicate which input is controlled by it. The set S and reset R dependencies are
used to specify internal logic states of an SR flip-flop. The C, S, and R dependencies
are explained in Section 10.5 in conjunction with the flip-flop circuit. The mode M
dependency is used to identify inputs that select the mode of operation of the unit. The
mode dependency is presented in Section 10.6 in conjunction with registers and coun-
ters. The address A dependency is used to identify the address input of a memory. It is
introduced in Section 10.8 in conjunction with the memory unit.

The Z dependency is used to indicate interconnections inside the unit. It signifies the
existence of internal logic connections between inputs, outputs, internal inputs, and inter-
nal outputs, in any combination. The X dependency is used to indicate the controlled
transmission path in a CMOS transmission gate.

10.4 SYMBOLS FOR COMBINATIONAL ELEMENTS

The examples in this section and the rest of this chapter illustrate the use of the standard
in representing various digital components with graphic symbols. The examples demon-
strate actual commercial integrated circuits with the pin numbers included in the inputs
and outputs. Most of the ICs presented in this chapter are included with the suggested
experiments outlined in Chapter 9.

The graphic symbols for the adder and decoder were shown in Section 10.2. IC type
74155 can be connected as a 3 X 8 decoder, as shown in Fig. 10.6. (The truth table of this
decoder is shown in Fig. 9.7) There are two C and two G inputs in the IC. Each pair must
be connected together as shown in the diagram. The enable input is active when in the
low-level state. The outputs are all active low. The inputs are assigned binary weights 1, 2,
and 4, equivalent to 202! and 22, respectively. The outputs are assigned numbers from 0
to 7 The sum of the weights of the inputs determines the output that is active. Thus, if the
two input lines with weights 1 and 4 are activated, the total weight is 1 +4 =5 and output
5 is activated. Of course, the EN input must be activated for any output to be active.

The decoder is a special case of a more general component referred to as a coder.
A coder is a device that receives an input binary code on a number of inputs and produces
a different binary code on a number of outputs. Instead of using the qualifying symbol
X/Y, the coder can be specified by the code name. For example, the 3-to-8-line decoder
of Fig. 10.6 can be symbolized with the name BIN/OCT since the circuit converts a 3-bit
binary number into 8 octal values, O through 7

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

496 Chapter 10 Standard Graphic Symbols

X/Y

o
=z
N O AW N

FIGURE 10.6
IC type 74155 connected as a 3 X 8 decoder

Before showing the graphic symbol for the multiplexer, it is necessary to show a
variation of the AND dependency. The AND dependency is sometimes represented by
a shorthand notation like G 2 This symbol stands for eight AND dependency symbols
from O to 7 as follows:

GO0, G1, G2, G3, G4, G5, G6, G7

At any given time, only one out of the eight AND gates can be active. The active AND
gate is determined from the inputs associated with the G symbol. These inputs are
marked with weights equal to the powers of 2. For the eight AND gates just listed,
the weights are 0, 1, and 2, corresponding to the numbers 2°, 2!, and 22, respectively.
The AND gate that is active at any given time is determined from the sum of the
weights of the active inputs. Thus, if inputs 0 and 2 are active, then the AND gate that
is active has the number 2° 4+ 22 = 5. This makes G5 active and the other seven AND
gates inactive.

The standard graphic symbol for a 8 X 1 multiplexer is shown in Fig. 10.7(a). The
qualifying symbol MUX identifies the device as a multiplexer. The symbols inside the
block are part of the standard notation, but the symbols marked outside are user-
defined symbols. The function table of the 741551 IC can be found in Fig. 9.9. The AND
dependency is marked with G 2 and is associated with the inputs enclosed in brackets.
These inputs have weights of 0, 1, and 2. They are actually what we have called the
selection inputs. The eight data inputs are marked with numbers from 0 to 7 The net
weight of the active inputs associated with the G symbol specifies the number in the
data input that is active. For example, if selection inputs CBA = 110, then inputs 1 and
2 associated with G are active. This gives a numerical value for the AND dependency
of 22 4+ 2! = 6, which makes G 6 active. Since G 6 is ANDed with data input number 6,
it makes this input active. Thus, the output will be equal to data input Dg provided that
the enable input is active.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.5 Symbols for Flip-Flops 497

15
Strobe ——— I~ EN
MUX 1
7 [
s EN Select G1
11
A——0 _| |_
10
B—— (G% 5 MUX
9 Al ————7 4
C 2 3 ——Y1
Bl ———1
4
DO 0 5 5
3 —Y A2 —2 7
D1 1 6 6 Y2
2 e~ w B2
D2 2
D3 ! 3
11
15 A3 —— 9
D4 4 10 F————VY3
14 B3
D5 5
13
D6 6 14
12 A4 ——— 12
D7 7 13 ————Y4
B4

(a) IC type 74151 8 X 1 MUX

(b) IC type 74157 quadruple 2 X 1 MUX

FIGURE 10.7
Graphic symbols for multiplexers

Figure 10.7(b) represents the quadruple 2 X 1 multiplexer IC type 74157 whose func-
tion table is listed in Fig. 9.17 The enable and selection inputs are common to all four
multiplexers. This is indicated in the standard notation by the indented box at the top
of the diagram, which represents a common control block. The inputs to a common
control block control all lower sections of the diagram. The common enable input EN
is active when in the low-level state. The AND dependency, G1, determines which input
is active in each multiplexer section. When G1 = 0, the A inputs marked with 1 are active.
When G1 =1, the B inputs marked with 1 are active. The active inputs are applied to
the corresponding outputs if EN is active. Note that the input symbols 1 and 1 are
marked in the upper section only instead of repeating them in each section.

10.5 SYMBOLS FOR FLIP-FLOPS

The standard graphic symbols for different types of flip-flops are shown in Fig. 10.8.
A flip-flop is represented by a rectangular-shaped block with inputs on the left and
outputs on the right. One output designates the normal state of the flip-flop and the

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

498 Chapter 10 Standard Graphic Symbols

— 1D — —1D —
—C1 —>Cl
o—— o——
D latch Positive-edge-triggered
D flip-flop
— U E— — E—
—1>Cl —q>C1
— 1K p— — 1K o——
Positive-edge-triggered Negative-edge-triggered
JK flip-flop JK flip-flop
— B — 1D I
—C1 —C1
— 1K Tp— o——-
Master-slave JK flip-flop Master-slave D flip-flop

FIGURE 10.8
Standard graphic symbols for flip-flops

other output with a small-circle negation symbol (or polarity indicator) designates the
complement output. The graphic symbols distinguish between three types of flip-flops:
the D latch, whose internal construction is shown in Fig. 6.5; the master—slave flip-flop,
shown in Fig. 6.9; and the edge-triggered flip-flop, introduced in Fig. 6.12. The graphic
symbol for the D latch or D flip-flop has inputs D and C indicated inside the block. The
graphic symbol for the JK flip-flop has inputs J, K, and C inside. The notation C1, 1D,
1J,and 1K are examples of control dependency. The input in C1 controls input 1D in a
D flip-flop and inputs 1/ and 1K in a JK flip-flop.

The D latch has no other symbols besides the 1D and C1 inputs. The edge-triggered
flip-flop has an arrowhead-shaped symbol in front of the control dependency C1 to
designate a dynamic input. The dynamic indicator symbol denotes that the flip-flop
responds to the positive-edge transition of the input clock pulses. A small circle outside
the block along the dynamic indicator designates a negative-edge transition for trigger-
ing the flip-flop. The master—slave is considered to be a pulse-triggered flip-flop and is

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.6 Symbols for Registers 499

4 15 —S
1 B — 3 5

1 — B>l —
C1 2 6

16 14 —1D EO—
1K | S A 1

3 —R

—OR

(a) One-half 7476 JK flip-flop (b) One-half 7474 D flip-flop

FIGURE 10.9
IC flip-flops with direct set and reset

indicated as such with an upside-down L symbol in front of the outputs. This is to show
that the output signal changes on the falling edge of the pulse. Note that the master—
slave flip-flop is drawn without the dynamic indicator.

Flip-flops available in integrated-circuit packages provide special inputs for setting
and resetting the flip-flop asynchronously. These inputs are usually called direct set and
direct reset. They affect the output on the negative level of the signal without the need
of a clock. The graphic symbol of a master—slave JK flip-flop with direct set and reset is
shown in Fig. 10.9(a). The notations C1, 1/, and 1K represent control dependency, show-
ing that the clock input at C1 controls inputs 1/ and 1K. S and R have no 1 in front of
the letters and, therefore, they are not controlled by the clock at C1.The S and R inputs
have a small circle along the input lines to indicate that they are active when in the
logic-0 level. The function table for the 7476 flip-flop is shown in Fig. 9.12.

The graphic symbol for a positive-edge-triggered D flip-flop with direct set and reset
is shown in Fig. 10.9(b). The positive-edge transition of the clock at input C1 controls
input 1D.The S and R inputs are independent of the clock. This is IC type 7474, whose
function table is listed in Fig. 9.13.

10.6 SYMBOLS FOR REGISTERS

The standard graphic symbol for a register is equivalent to the symbol used for a group
of flip-flops with a common clock input. Fig. 10.10 shows the standard graphic symbol
of IC type 74175, consisting of four D flip-flops with common clock and clear inputs.
The clock input C1 and the clear input R appear in the common control block. The
inputs to the common control block are connected to each of the elements in the lower
sections of the diagram. The notation C1 is the control dependency that controls all the
1D inputs. Thus, each flip-flop is triggered by the common clock input. The dynamic
input symbol associated with C1 indicates that the flip-flops are triggered on the positive
edge of the input clock. The common R input resets all flip-flops when its input is at a
low-level state. The 1D symbol is placed only once in the upper section instead of

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

500 Chapter 10 Standard Graphic Symbols

Clear EEER NN R
Clock —9 C1l
2
4 0
1D 3
~ N 0 0
7
5
;6
10
12
I~ 11
15
13 —
$

FIGURE 10.10
Graphic symbol for IC type 74175 quad flip-flop

repeating it in each section. The complement outputs of the flip-flops in this diagram
are marked with the polarity symbol rather than the negation symbol.

The standard graphic symbol for a shift register with parallel load is shown in
Fig. 10.11. This is IC type 74195, whose function table can be found in Fig. 9.16. The
qualifying symbol for a shift register is SRG followed by a number that designates the
number of stages. Thus, SRG4 denotes a four-bit shift register. The common control
block has two mode dependencies, M1 and M2, for the shift and load operations, respec-
tively. Note that the IC has a single input labeled SH/LD (shift/load), which is split into
two lines to show the two modes. M1 is active when the SH/LD input is high and M2 is
active when the SH/LD input is low. M2 is recognized as active low from the polarity
indicator along its input line. Note the convention in this symbology: We must recognize
that a single input actually exists in pin 9, but it is split into two parts in order to assign
to it the two modes, M1 and M2. The control dependency C3 is for the clock input. The
dynamic symbol along the C3 input indicates that the flip-flops trigger on the positive
edge of the clock. The symbol /1 — following C3 indicates that the register shifts to the
right or in the downward direction when mode M1 is active.

The four sections below the common control block represent the four flip-flops. Flip-
flop QA has three inputs: Two are associated with the serial (shift) operation and one

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.6 Symbols for Registers 501

1 SRG4
Clear —— IR
9
SH/LD —L: M1 [SHIFT]
M2 [LOAD]
10
Clock ——>C3/1—>
2
J ———1,3J
3 15
K ——I>13K ——— QA
4
—— 123D
5 14
———12,3D E—O]
6 13
12
oD
1 _
p—1 —

FIGURE 10.11
Graphic symbol for a shift register with parallel load, IC type 74195

with the parallel (load) operation. The serial input label 1, 3/ indicates that the J input
of flip-flop QA is active when M1 (shift) is active and C3 goes through a positive clock
transition. The other serial input with label 1, 3K has a polarity symbol in its input line
corresponding to the complement of input K in a JK flip-flop. The third input of QA
and the inputs of the other flip-flops are for the parallel input data. Each input is denoted
by the label 2, 3D. The 2 is for M2 (load), and 3 is for the clock C3. If the input in pin
number 9 is in the low level, M1 is active, and a positive transition of the clock at C3
causes a parallel transfer from the four inputs, A through D, into the four flip-flops, QA
through OD. Note that the parallel input is labeled only in the first and second sections.
It is assumed to be in the other two sections below.

Figure 10.12 shows the graphic symbol for the bidirectional shift register with paral-
lel load, IC type 74194. The function table for this IC is listed in Fig. 9.19. The common
control block shows an R input for resetting all flip-flops to 0 asynchronously. The mode
select has two inputs and the mode dependency M may take binary values from 0 to 3.
This is indicated by the symbol M g, which stands for M0, M1, M2, M3, and is similar
to the notation for the G dependency in multiplexers. The symbol associated with the
clock is

C4/1— /2 —

C4 is the control dependency for the clock. The /1 — symbol indicates that the register
shifts right (down in this case) when the mode is M1 (S; Sy = 10). The /2 « symbol

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

502 Chapter 10 Standard Graphic Symbols

1 SRG4
Clear —— >~ R
9
Sy —————0 "
M2
s, 10 1 3
11
Clock ——— > C4/1 > 2«
Lo 2
Serial input —{ 1, 4D 15
3 — 04
A ——3,4D
4 14
B —3,4D ————— OB
5 1
C ——3,4D 13 ocC
6
D —3,4D "
7 -
Serial input ————— 2, 4D oD

FIGURE 10.12
Graphic symbol for a bidirectional shift register with parallel load, IC type 74194

indicates that the register shifts left (up in this case) when the mode is M2 (S; Sy = 10).
The right and left directions are obtained when the page is turned 90 degrees counter-
clockwise.

The sections below the common control block represent the four flip-flops. The first
flip-flop has a serial input for shift right, denoted by 1, 4D (mode M1, clock C4,
input D). The last flip-flop has a serial input for shift left, denoted by 2,4D (mode M2,
clock C4,input D). All four flip-flops have a parallel input denoted by the label 3,4D
(mode M3, clock C4,input D). Thus, M3 (S; So=11) is for parallel load. The remaining
mode MO (S; Sy = 00) has no effect on the outputs because it is not included in the
input labels.

10.7 SYMBOLS FOR COUNTERS

The standard graphic symbol of a binary ripple counter is shown in Fig. 10.13. The
qualifying symbol for a ripple counter is RCTR. The designation DIV?2 stands for the
divide-by-2 circuit that is obtained from the single flip-flop QA.The DIV8 designation
is for the divide-by-8 counter obtained from the other three flip-flops. The diagram
represents IC type 7493, whose internal circuit diagram is shown in Fig. 9.2. The com-
mon control block has an internal AND gate, with inputs R1 and R2. When both of
these inputs are equal to 1, the content of the counter goes to zero. This is indicated by

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section 10.7 Symbols for Counters 503

RCTR
2
R1
3 & |cr=o0
R2
14 12
A——D=> 1 pw —————— 0A
1 DIV8 9
B + 0 OB
8
cr{ ——ocC
11
2 oD

FIGURE 10.13
Graphic symbol for ripple counter, IC type 7493

the symbol CT=0. Since the count input does not go to the clock inputs of all flip-flops,
it has no C1 label and, instead, the symbol + is used to indicate a count-up operation.
The dynamic symbol next to the + together with the polarity symbol along the input
line signify that the count is affected with a negative-edge transition of the input signal.
The bit grouping from 0 to 2 in the output represents values for the weights to the
power of 2. Thus, 0 represents the value of 2° =1 and 2 represents the value 2> =4.

The standard graphic symbol for the four-bit counter with parallel load, IC type 74161,
is shown in Fig. 10.14. The qualifying symbol for a synchronous counter is CTR followed
by the symbol DIV16 (divide by 16), which gives the cycle length of the counter. There
is a single load input at pin 9 that is split into the two modes, M1 and M2. M1 is active
when the load input at pin 9 is low and M2 is active when the load input at pin 9 is high.
M1 is recognized as active low from the polarity indicator along its input line. The count-
enable inputs use the G dependencies. G3 is associated with the 7 input and G4 with
the P input of the count enable. The label associated with the clock is

C5/2,3,4 +

This means that the circuit counts up (the + symbol) when M2, G3, and G4 are active
(load=1,ENT=1,and ENP=1) and the clock in C5 goes through a positive transition.
This condition is specified in the function table of the 74161 listed in Fig. 9.15. The paral-
lel inputs have the label 1, 5D, meaning that the D inputs are active when M1 is active
(load =0) and the clock goes through a positive transition. The output carry is designated
by the label

3CT =15

This is interpreted to mean that the output carry is active (equal to 1) if G3 is active
(ENT=1) and the content (CT) of the counter is 15 (binary 1111). Note that the outputs

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

504 Chapter 10 Standard Graphic Symbols

. CTR DIV16
Clear —— T =0
9
Load ‘Ii M1
M2 15
10 3CT = 15— Output carry
ENT ———{ G3
7
ENP ————| G4
2
Clock ——>{(¢5/2,3,4 +
3 14
A 1,50 [1] f————0A
4 13
B (2] —))
5 12
c [4] —————0cC
6 11
D [8] ———— 0D

FIGURE 10.14
Graphic Symbol for 4-Bit Binary Counter with Parallel Load, IC Type 74161

have an inverted L symbol, indicating that all the flip-flops are of the master—slave type.
The polarity symbol in the C5 input designates an inverted pulse for the input clock.
This means that the master is triggered on the negative transition of the clock pulse and
the slave changes state on the positive transition. Thus, the output changes on the posi-
tive transition of the clock pulse. It should be noted that IC type 74L.S161 (low-power
Schottky version) has positive-edge-triggered flip-flops.

10.8 SYMBOL FOR RAM

The standard graphic symbol for the random-access memory (RAM) 74189 is shown
in Fig. 10.15. The numbers 16 X 4 that follow the qualifying symbol RAM designate
the number of words and the number of bits per word. The common control block is
shown with four address lines and two control inputs. Each bit of the word is shown in
a separate section with an input and output data line. The address dependency A is
used to identify the address inputs of the memory. Data inputs and outputs affected
by the address are labeled with the letter A. The bit grouping from 0 through 3 provides
the binary address that ranges from A0 through A15. The inverted triangle signifies
three-state outputs. The polarity symbol specifies the inversion of the outputs.

The operation of the memory is specified by means of the dependency notation. The
RAM graphic symbol uses four dependencies: A (address), G (AND), EN (enable), and
C (control). Input G1 is to be considered ANDed with 1EN and 1C2 because G1 has a
1 after the letter G and the other two have a 1 in their label. The EN dependency is used

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Problems 505

1 RAM 16 X 4
A0 0

15
Al

14 Ags
A2
A3 13 2
cS _25 Gl

3

WE 1EN [READ]
E 1C2 [WRITE]
Il [

p1—2* Taop AV~ g
pp— % | ~ 7 5
p3 —10 | ~ 0 g
ps— 12| ~ 1 g

FIGURE 10.15
Graphic symbol for 16x4 RAM, IC type 74189

to identify an enable input that controls the data outputs. The dependency C2 controls
the inputs as indicated by the 2D label. Thus, for a write operation, we have the G1 and
1C2 dependency (CS =0),the C2 and 2D dependency (WE =0), and the A dependency,
which specifies the binary address in the four address inputs. For a read operation, we
have the G1 and 1EN dependencies (CS = 0, WE = 1) and the A dependency for the
outputs. The interpretation of these dependencies results in the operation of the memory
as listed in the function table of the 74189 RAM (see Web Search Topics).

PROBLEMS

10.1 Figure 9.1 shows various small-scale integration circuits with pin assignment. Using this
information, draw the rectangular-shaped graphic symbols for the 7400, 7404, and 7486 ICs.
10.2 Define the following in your own words:
(a) Positive and negative logic. (b) Active high and active low.
(c) Polarity indicator. (d) Dynamic indicator.
(e) Dependency notation.

10.3 Show an example of a graphic symbol that has the three Boolean dependencies—G, V,
and N. Draw the equivalent interpretation.

10.4 Draw the graphic symbol of a BCD-to-decimal decoder. This is similar to a decoder with
4 inputs and 10 outputs.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

506 Chapter 10 Standard Graphic Symbols

10.5 Draw the graphic symbol for a binary-to-octal decoder with three enable inputs, £1, E2,
and E3.The circuit is enabled if E1 =1, E2 =0, and E3 = 0 (assuming positive logic).

10.6 Draw the graphic symbol of dual 4-to-1-line multiplexers with common selection inputs
and a separate enable input for each multiplexer.

10.7 Draw the graphic symbol for the following flip-flops:

(a) Negative-edge-triggered D flip-flop. (b) Master-slave RS flip-flop.
(c) Positive-edge-triggered T flip-flop.

10.8 Explain the function of the common control block when used with the standard graphic
symbols.

10.9 Draw the graphic symbol of a four-bit register with parallel load using the label M1 for
the load input and C2 for the clock.

10.10 Explain all the symbols used in the standard graphic diagram of Fig. 10.12.

10.11 Draw the graphic symbol of an up—down synchronous binary counter with mode input
(for up or down) and count-enable input with G dependency. Show the output carries
for the up count and the down count.

10.12 Draw the graphic symbol of a 256 X 1 RAM. Include the symbol for three-state outputs.

REFERENCES
1. IEEE Standard Graphic Symbols for Logic Functions (ANSI/IEEE Std. 91-1984). 1984.

N

New York: Institute of Electrical and Electronics Engineers.

KawMmPEL, I. 1985. A Practical Introduction to the New Logic Symbols. Boston: Butterworth.
Mann, F. A. 1984. Explanation of New Logic Symbols. Dallas: Texas Instruments.

The TTL Data Book, Volume 1. 1985. Dallas: Texas Instruments.

WEB SEARCH TOPICS

Bidirectional shift register 74161 flip-flop

Three-state inverter 74194 shift register
Three-state buffer 74175 quad flip-flops
Universal shift register 74195 shift register
7483 adder 7494 counter

74151 multiplexer 74161 counter

74155 decoder 74LS161 flip-flop
74157 multiplexer 74189 RAM

7476 flip-flop
7474 flip-flop

STUDENTS-HUB.com

BCD-to-decimal decoder
Random access memory

Uploaded By: Malak Dar Obaid

Appendix

Semiconductors and CMOS
Integrated Circuits

Semiconductors are formed by doping a thin slice of a pure silicon crystal with a small
amount of a dopant that fits relatively easily into the crystalline structure of the silicon.
Dopants are differentiated on the basis of whether they have either three valence elec-
trons or five valence electrons. A silicon crystalline structure is such that each silicon
atom shares its four valence electrons with its four nearest neighbors, thereby completing
its valence structure. The atoms of a dopant with five valence electrons, referred to as a
n-type dopant, fit in the physical structure of the crystal, but their fifth electrons are held
only loosely by their parent atoms in the bonded structure. Consequently, an applied
electric field can cause such electrons to flow as a current. On the other hand, a dopant
atom with only three valence electrons, a p-type dopant, has a vacant valence site. Under
the influence of an applied electric field, an electron from a neighboring silicon atom in
the bonded structure can jump from its host and fill a vacant dopant site, leaving behind
a vacancy at its host. This migration, visualized as a leapfrogging of electrons from hole
to hole, establishes a current.

Current is due to the movement of electrons, which are negative charge carriers. Cur-
rent is measured, however, in the opposite direction of flow, by convention—since the
days of Benjamin Franklin. (Think of current as being the motion of an equivalent
positive charge moving in the opposite direction of an electron, whose charge is nega-
tive). Holes move in the direction of current, although the underlying physical movement
of electrons is in the opposite direction. Thermal agitation causes both types of charge
carriers to be present in a semiconductor. If the majority carrier is a hole, the device is
said to be a p-type device; if the majority carrier is an electron, the device is said to be
an n-type device. Bipolar transistors rely on both types of carriers. Metal-oxide silicon
semiconductors rely on a majority carrier, either an electron or a hole, but not both. The
type and relative amount of dopant determine the type of a semiconductor material.

507

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

508 Appendix Semiconductors and CMOS Integrated Circuits

gate (—) gate (+)
drain (—) | source drain (+) | source
p | ++++ | p n | ————= 1| n
n-type substrate p-type substrate
(a) p-channel (b) n-channel

FIGURE A.1
Basic structure of MOS transistor

The basic structure of a metal-oxide semiconductor (MOS) transistor is shown in
Fig. A.1. The p-channel MOS transistor consists of a lightly doped substrate of n-type
silicon material. Two regions are heavily doped with p-type impurities by a diffusion pro-
cess to form the source and drain. The source terminal supplies charge carriers to an
external circuit; the drain terminal removes charge carriers from the circuit. The region
between the two p-type sections serves as the channel. In its simplest form, the gate is a
metal plate separated from the channel by an insulted dielectric of silicon dioxide.
A negative voltage (with respect to the substrate) at the gate terminal causes an induced
electric field in the channel that attracts p-type carriers (holes) from the substrate. As
the magnitude of the negative voltage increases, the region below the gate accumulates
more positive carriers, the conductivity increases, and current can flow from source to
drain, provided that a voltage difference is maintained between these two terminals.

There are four basic types of MOS structures. The channel can be p or n type, depend-
ing on whether the majority carriers are holes or electrons. The mode of operation can
be enhancement or depletion, depending on the state of the channel region at zero gate
voltage. If the channel is initially doped lightly with p-type impurity (in which case it is
called a diffused channel), a conducting channel exists at zero gate voltage and the
device is said to operate in the depletion mode. In this mode, current flows unless the
channel is depleted by an applied gate field. If the region beneath the gate is left initially
uncharged, a channel must be induced by the gate field before current can flow. Thus,
the channel current is enhanced by the gate voltage, and such a device is said to operate
in the enhancement mode.

The source is the terminal through which the majority carriers enter the device. If
the majority carrier is a hole (p-type channel), the source terminal supplies current to
the circuit; if the majority carrier is an electron (n-type channel), the source removes
current from the circuit. The drain is the terminal through which the majority carriers
leave the device. In a p-channel MOS, the source terminal is connected to the substrate
and a negative voltage is applied to the drain terminal. When the gate voltage is above
a threshold voltage V; (about —2 V), no current flows in the channel and the drain-to-
source path is like an open circuit. When the gate voltage is sufficiently negative below
V7, a channel is formed and p-type carriers flow from source to drain. p-type carriers are
positive and correspond to a positive current flow from source to drain.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Appendix Semiconductors and CMOS Integrated Circuits 509

drain D drain D

gate —| 5 substrate G —| gate —| |—|_,<— substrate G —|
|_I

source N source S
(a) p-channel (b) n-channel
FIGURE A.2

Symbols for MOS transistors

In the n-channel MOS, the source terminal is connected to the substrate and a
positive voltage is applied to the drain terminal. When the gate voltage is below the
threshold voltage V- (about 2 V), no current flows in the channel. When the gate volt-
age is sufficiently positive above V; to form the channel, n-type carriers flow from
source to drain. n-type carriers are negative and correspond to a positive current flow
from drain to source. The threshold voltage may vary from 1 to 4 V, depending on the
particular process used.

The graphic symbols for the MOS transistors are shown in Fig. A.2. The symbol for
the enhancement type is the one with the broken-line connection between source and
drain. In this symbol, the substrate can be identified and is shown connected to the
source. An alternative symbol omits the substrate, and instead an arrow is placed in the
source terminal to show the direction of positive current flow (from source to drain in
the p-channel MOS and from drain to source in the n-channel MOS).

Because of the symmetrical construction of source and drain, the MOS transistor can
be operated as a bilateral device. Although normally operated so that carriers flow from
source to drain, there are circumstances when it is convenient to allow carriers to flow
from drain to source.

One advantage of the MOS device is that it can be used not only as a transistor, but
as a resistor as well. A resistor is obtained from the MOS by permanently biasing the
gate terminal for conduction. The ratio of the source—drain voltage to the channel
current then determines the value of the resistance. Different resistor values may be
constructed during manufacturing by fixing the channel length and width of the MOS
device.

Three logic circuits using MOS devices are shown in Fig. A.3. For an n-channel MOS,
the supply voltage Vpp is positive (about 5 V), to allow positive current flow from drain
to source. The two voltage levels are a function of the threshold voltage V4. The low level
is anywhere from zero to V7, and the high level ranges from V; to Vjp. The n-channel
gates usually employ positive logic. The p-channel MOS circuits use a negative voltage
for Vpp, to allow positive current flow from source to drain. The two voltage levels are
both negative above and below the negative threshold voltage V7. p-channel gates usu-
ally employ negative logic.

The inverter circuit shown in Fig. A.3(a) uses two MOS devices. Q1 acts as the load
resistor and Q2 as the active device. The load-resistor MOS has its gate connected to Vpp,

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

510 Appendix Semiconductors and CMOS Integrated Circuits

Vbp

ﬂ VDD

_|)

R
|
1

—| o no—|

$—ov=4A

Y= (A + By

Ao—] Bo—|

Ao—| 02 Bo—|
1

(a) Inverter (b) NAND gate (c) NOR gate

FIGURE A.3
n-channel MOS logic circuits

thus maintaining it in the conduction state. When the input voltage is low (below V;), 02
turns off. Since Q1 is always on, the output voltage is about Vj, 5. When the input voltage
is high (aboveV;), O2 turns on. Current flows from V}, through the load resistor Q7 and
into Q2. The geometry of the two MOS devices must be such that the resistance of Q2,
when conducting, is much less than the resistance of Q7 to maintain the output Y at a
voltage below V7.

The NAND gate shown in Fig. A.3(b) uses transistors in series. Inputs A and B must
both be high for all transistors to conduct and cause the output to go low. If either input
is low, the corresponding transistor is turned off and the output is high. Again, the series
resistance formed by the two active MOS devices must be much less than the resistance
of the load-resistor MOS. The NOR gate shown in Fig. A.3(c) uses transistors in parallel.
If either input is high, the corresponding transistor conducts and the output is low. If all
inputs are low, all active transistors are off and the output is high.

A.1 COMPLEMENTARY MOS

Complementary MOS (CMOS) circuits take advantage of the fact that both n-channel
and p-channel devices can be fabricated on the same substrate. CMOS circuits consist
of both types of MOS devices, interconnected to form logic functions. The basic cir-
cuit is the inverter, which consists of one p-channel transistor and one n-channel
transistor, as shown in Fig. A.4(a). The source terminal of the p-channel device is at
Vpp, and the source terminal of the n-channel device is at ground. The value of Vpp

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section A.1 Complementary MOS 511

VDD

T

e

p —
I Ao I
Ao oY =A' Ean

oY =(AB)

> Bo |
(a) Inverter (b) NAND gate
Vb
o
| <
Ao I
| <
B o——|
O0Y=(A+B)
(c) NOR gate
FIGURE A.4

CMOS logic circuits

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

512 Appendix Semiconductors and CMOS Integrated Circuits

may be anywhere from +3 to +18 V. The two voltage levels are 0 V for the low level
and Vpp for the high level (typically, 5 V).

To understand the operation of the inverter, we must review the behavior of the MOS
transistor from the previous section:

1. The n-channel MOS conducts when its gate-to-source voltage is positive.
2. The p-channel MOS conducts when its gate-to-source voltage is negative.
3. Either type of device is turned off if its gate-to-source voltage is zero.

Now consider the operation of the inverter. When the input is low, both gates are at
zero potential. The input is at —V}p relative to the source of the p-channel device and
at 0 V relative to the source of the n-channel device. The result is that the p-channel
device is turned on and the n-channel device is turned off. Under these conditions, there
is a low-impedance path from Vpp to the output and a very high impedance path from
output to ground. Therefore, the output voltage approaches the high level Vj,p under
normal loading conditions. When the input is high, both gates are at Vjp and the situa-
tion is reversed: The p-channel device is off and the n-channel device is on. The result is
that the output approaches the low level of 0 V.

Two other CMOS basic gates are shown in Fig. A.4. A two-input NAND gate consists
of two p-type units in parallel and two n-type units in series, as shown in Fig. A.4(b). If
all inputs are high, both p-channel transistors turn off and both n-channel transistors
turn on. The output has a low impedance to ground and produces a low state. If any input
is low, the associated n-channel transistor is turned off and the associated p-channel
transistor is turned on. The output is coupled to V}, and goes to the high state. Multiple-
input NAND gates may be formed by placing equal numbers of p-type and n-type
transistors in parallel and series, respectively, in an arrangement similar to that shown
in Fig. A.4(b).

A two-input NOR gate consists of two n-type units in parallel and two p-type units in
series, as shown in Fig. A.4(c). When all inputs are low, both p-channel units are on and
both n-channel units are off. The output is coupled to Vj,p and goes to the high state. If any
input is high, the associated p-channel transistor is turned off and the associated n-channel
transistor turns on, connecting the output to ground and causing a low-level output.

MOS transistors can be considered to be electronic switches that either conduct
or are open. As an example, the CMOS inverter can be visualized as consisting of two
switches as shown in Fig. A.5(a). Applying a low voltage to the input causes the upper
switch (p) to close, supplying a high voltage to the output. Applying a high voltage
to the input causes the lower switch (n) to close, connecting the output to ground.
Thus, the output V,, is the complement of the input V,,. Commercial applications
often use other graphic symbols for MOS transistors to emphasize the logical behav-
ior of the switches. The arrows showing the direction of current flow are omitted.
Instead, the gate input of the p-channel transistor is drawn with an inversion bubble
on the gate terminal to show that it is enabled with a low voltage. The inverter circuit
is redrawn with these symbols in Fig. A.5(b). A logic 0 in the input causes the upper
transistor to conduct, making the output logic 1. A logic 1 in the input enables the
lower transistor, making the output logic 0.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section A.1 Complementary MOS 513

Vop =5V
Vop
Vin Vout
R
(a) Switch model (b) Logical model
FIGURE A.5

CMOS inverter

CMOS Characteristics

When a CMOS logic circuit is in a static state, its power dissipation is very low. This is
because at least one transistor is always off in the path between the power supply and
ground when the state of the circuit is not changing. As a result, a typical CMOS gate
has static power dissipation on the order of 0.01 mW. However, when the circuit is
changing state at the rate of 1 MHz, the power dissipation increases to about 1 mW, and
at 10 MHz it is about 5 mW.

CMOS logic is usually specified for a single power-supply operation over a voltage
range from 3 to 18 V with a typical Vjp value of 5 V. Operating CMOS at a larger power-
supply voltage reduces the propagation delay time and improves the noise margin, but
the power dissipation is increased. The propagation delay time with V;,p, = 5V ranges
from 5 to 20 ns, depending on the type of CMOS used. The noise margin is usually about
40% of the power supply voltage. The fan-out of CMOS gates is about 30 when they are
operated at a frequency of 1 MHz. The fan-out decreases with an increase in the
frequency of operation of the gates.

There are several series of the CMOS digital logic family. The 74C series are pin and
function compatible with TTL devices having the same number. For example, CMOS
IC type 74C04 has six inverters with the same pin configuration as TTL type 7404. The
high-speed CMOS 74HC series is an improvement over the 74C series, with a tenfold
increase in switching speed. The 74HCT series is electrically compatible with TTL ICs.
This means that circuits in this series can be connected to inputs and outputs of TTL ICs
without the need of additional interfacing circuits. Newer versions of CMOS are the
high-speed series 74VHC and its TTL-compatible version 74VHCT.

The CMOS fabrication process is simpler than that of TTL and provides a greater
packing density. Thus, more circuits can be placed on a given area of silicon at a reduced
cost per function. This property, together with the low power dissipation of CMOS cir-
cuits, good noise immunity, and reasonable propagation delay, makes CMOS the most
popular standard as a digital logic family.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

514 Appendix Semiconductors and CMOS Integrated Circuits

A.2 CMOS TRANSMISSION GATE CIRCUITS

A special CMOS circuit that is not available in the other digital logic families is the
transmission gate. The transmission gate is essentially an electronic switch that is con-
trolled by an input logic level. It is used to simplify the construction of various digital
components when fabricated with CMOS technology.

Figure A.6(a) shows the basic circuit of the transmission gate. Whereas a CMOS
inverter consists of a p-channel transistor connected in series with an n-channel transis-
tor, a transmission gate is formed by one n-channel and one p-channel MOS transistor
connected in parallel.

The n-channel substrate is connected to ground and the p-channel substrate is con-
nected to Vpp. When the N gate is at Vpp and the P gate is at ground, both transistors
conduct and there is a closed path between input X and output Y. When the N gate is
at ground and the P gate is at Vjp, both transistors are off and there is an open circuit
between X and Y. Figure A.4(b) shows the block diagram of the transmission gate. Note
that the terminal of the p-channel gate is marked with the negation symbol. Figure A.4(c)
demonstrates the behavior of the switch in terms of positive-logic assignment with Vjp
equivalent to logic 1 and ground equivalent to logic 0.

The transmission gate is usually connected to an inverter, as shown in Fig. A.7 This
type of arrangement is referred to as a bilateral switch. The control input C is connected
directly to the n-channel gate and its inverse to the p-channel gate. When C = 1, the

N N
X —— — Y xX——-/ TG Y
VDD

P P
(a) (b)
Closed switch Open switch
N=1 N=0
P=0 P=1

(©)
FIGURE A.6
Transmission gate (TG)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section A.2 CMOS Transmission Gate Circuits 515

c P> |

FIGURE A.7
Bilateral switch

switch is closed, producing a path between X and Y. When C = 0, the switch is open,
disconnecting the path between X and Y.

Various circuits can be constructed that use the transmission gate. To demonstrate its
usefulness as a component in the CMOS family, we will show three examples.

The exclusive-OR gate can be constructed with two transmission gates and two
inverters, as shown in Fig. A.8. Input A controls the paths in the transmission gates and
input B is connected to output Y through the gates. When input A is equal to 0, transmis-
sion gate TG1 is closed and output Y is equal to input B. When input A is equal to 1,
TG2 is closed and output Y is equal to the complement of input B. This results in the
exclusive-OR truth table, as indicated in Fig. A.8.

Another circuit that can be constructed with transmission gates is the multiplexer.
A four-to-one-line multiplexer implemented with transmission gates is shown in
Fig. A.9. The TG circuit provides a transmission path between its horizontal input and

A J)
B TG1
A B TGI G2 Y
0 0 close open 0
{>c Y 0 1 close open 1
1 1 open close 1
I 1 0 open close 0
{>c G2
FIGURE A.8

Exclusive-OR constructed with transmission gates

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

516 Appendix Semiconductors and CMOS Integrated Circuits

S >

S {>C
TG
b (S0 =0)
TG
(51 = 0)
TG
h So=1)
[¢)
Y
TG
b (Sy=0)
[®)
TG
(51 = 1)
TG
4] (So=1)

FIGURE A.9
Multiplexer with transmission gates

output lines when the two vertical control inputs have the value of 1 in the uncircled ter-
minal and 0 in the circled terminal. With an opposite polarity in the control inputs, the path
disconnects and the circuit behaves like an open switch. The two selection inputs, S;and S,
control the transmission path in the TG circuits. Inside each box is marked the condition
for the transmission gate switch to be closed. Thus,if S; = 0 and §; = 0, there is a closed
path from input /; to output Y through the two 7Gs marked with S, = 0 and §; = 0.The
other three inputs are disconnected from the output by one of the other TG circuits.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section A.3 Switch-Level Modeling With HDL 517

TG 0

FIGURE A.10
Gated D latch with transmission gates

The level-sensitive D flip-flop commonly referred to as the gated D latch can be
constructed with transmission gates, as shown in Fig. A.10. The C input controls two
transmission gates 7G. When C = 1, the TG connected to input D has a closed path
and the one connected to output Q has an open path. This configuration produces an
equivalent circuit from input D through two inverters to output Q. Thus, the output fol-
lows the data input as long as C remains active. When C switches to 0, the first 7G dis-
connects input D from the circuit and the second 7G produces a closed path between
the two inverters at the output. Thus, the value that was present at input D at the time
that C went from 1 to 0 is retained at the Q output.

A master—slave D flip-flop can be constructed with two circuits of the type shown in
Fig. A.10. The first circuit is the master and the second is the slave. Thus, a master—slave
D flip-flop can be constructed with four transmission gates and six inverters.

A.3 SWITCH-LEVEL MODELING WITH HDL

CMOS is the dominant digital logic family used with integrated circuits. By definition,
CMOS is a complementary connection of an NMOS and a PMOS transistor. MOS
transistors can be considered to be electronic switches that either conduct or are open.
By specifying the connections among MOS switches, the designer can describe a digital
circuit constructed with CMOS. This type of description is called switch-level modeling
in Verilog HDL.

The two types of MOS switches are specified in Verilog HDL with the keywords nmeos
and pmos. They are instantiated by specifying the three terminals of the transistor, as
shown in Fig. A.2:

nmos (drain, source, gate);
pmos (drain, source, gate);

Switches are considered to be primitives, so the use of an instance name is optional.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

518 Appendix Semiconductors and CMOS Integrated Circuits

The connections to a power source (Vpp) and to ground must be specified when MOS
circuits are designed. Power and ground are defined with the keywords supplyl and
supply0. They are specified, for example, with the following statements:

supply1 PWR;
supply0 GRD;

Sources of type supplyl are equivalent to Vjp and have a value of logic 1. Sources of
type supply0 are equivalent to ground connection and have a value of logic 0.

The description of the CMOS inverter of Fig. A.4(a) is shown in HDL Example A.1.
The input, the output, and the two supply sources are declared first. The module instan-
tiates a PMOS and an NMOS transistor. The output Y is common to both transistors
at their drain terminals. The input is also common to both transistors at their gate
terminals. The source terminal of the PMOS transistor is connected to PWR and the
source terminal of the NMOS transistor is connected to GRD.

HDL Example A.1

/I CMOS inverter of Fig. A.4(a)
module inverter (Y, A);
input A;
output Y;
supply1 PWR;
supply0 GRD;
pmos (Y, PWR, A); /I (Drain, source, gate)
nmos (Y, GRD, A); /I (Drain, source, gate)
endmodule

The second module, set forth in HDL Example A.2, describes the two-input CMOS
NAND circuit of Fig. A.4(b). There are two PMOS transistors connected in parallel,
with their source terminals connected to PWR. There are also two NMOS transistors
connected in series and with a common terminal W1. The drain of the first NMOS is
connected to the output, and the source of the second NMOS is connected to GRD.

HDL Example A.2

/I CMOS two-input NAND of Fig. A.4(b)
module NAND2 (Y, A, B);
input A, B;
output Y,
supply1l PWR;
supply0 GRD;
wire W1; /I terminal between two nmos
pmos (Y, PWR, A); /I source connected to Vdd
pmos (Y, PWR, B); /I parallel connection

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Section A.3 Switch-Level Modeling With HDL 519

nmos (Y, W1, A); // serial connection
nmos (W1, GRD, B); /I source connected to ground
endmodule

Transmission Gate

The transmission gate is instantiated in Verilog HDL with the keyword emos. It has an
output, an input, and two control signals, as shown in Fig. A.6. It is referred to as a cmos
switch. The relevant code is as follows:

cmos (output, input, ncontrol, pcontrol); // general description
cmos (Y, X, N, P); // transmission gate of Fig. A.6(b)

Normally, ncontrol and pcontrol are the complement of each other. The emos switch
does not need power sources, since Vjp and ground are connected to the substrates of
the MOS transistors. Transmission gates are useful for building multiplexers and flip-
flops with CMOS circuits.

HDL Example A.3 describes a circuit with emos switches. The exclusive-OR circuit
of Fig. A.8 has two transmission gates and two inverters. The two inverters are instan-
tiated within the module describing a CMOS inverter. The two emos switches are
instantiated without an instance name, since they are primitives in the language. A test
module is included to test the circuit’s operation. Applying all possible combinations
of the two inputs, the result of the simulator verifies the operation of the exclusive-OR
circuit. The output of the simulation is as follows:

A=0 B=0 Y=0
A=0 B=1 Y=1
A=1 B=0 Y=1
A=1 B=1 Y=0
HDL Example A.3
/ICMOS_XOR with CMOS switches, Fig. A.8
module CMOS_XOR (A, B, Y);
input A, B;
output Y;
wire A_b, B_b;
/I instantiate inverter
inverter v1 (A_b, A);
inverter v2 (B_b, B);
/I instantiate cmos switch
cmos (Y, B, A_b, A); //(output, input, ncontrol, pcontrol)
cmos (Y, B_b, A, A_b);
endmodule

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

520 Appendix Semiconductors and CMOS Integrated Circuits

/I CMOS inverter Fig. A.4(a)
module inverter (Y, A);
input A;
output Y;
supply1 PWR;
supply0 GND;
pmos (Y, PWR, A); //(Drain, source, gate)
nmos (Y, GND, A); //(Drain, source, gate)
endmodule
/I Stimulus to test CMOS_XOR
module test CMOS_XOR,;
reg A,B;
wire Y;
/lInstantiate CMOS_XOR
CMOS_XOR X1 (A, B, Y);
/I Apply truth table
initial
begin
A =1b0; B =1'b0;
#5 A =1'b0; B = 1'b1;
#5 A =1Db1; B = 1'b0;
#5 A =1b1; B =1Db1;
end
/I Display results
initial
$monitor ("A =%b B= %b Y =%b", A, B, Y);
endmodule

WEB SEARCH TOPICS

Conductor

Semiconductor

Insulator

Electrical properties of materials
Valence electron

Diode

Transistor

CMOS process

CMOS logic gate

CMOS inverter

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems

CHAPTER 1

1.2 (a) 32,768 (b) 67108864 (c) 6,871,947674

1.3 (a) (4310)s =580 (b) (198), = 260

1.5 @ 6 (b 8 (o) 11

1.6 8

1.7 (62315)4

1.9 223125 (all three)

112 (a) 10000and 110111 (b) 62 and 958

1.19 (a) 010087 (b) 008485 (c) 991515 (d) 989913

124 (a) 6 1 Decimal

)

0
1
2
3
4 (or0101)
5
6
7 (or 1001)
8
9

el allan el e e Mool

_ O OOk = PO OO w9
OR P OR—,OR OO | -
OFRPr OO P OO~ O

521

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

522 Answers to Selected Problems

1.29 Steve Jobs

1.31 62 + 32 = 94 printing characters
1.32 bit 6 from the right

1.33 (a) 897 (b) 564 (¢) 871 (d) 2,199

CHAPTER 2

2.2 (a) x (b) «x () vy d O
23 (@ B () zx+ty (© xy (@ x(wt+y) (e O
24 (a) AB + (' b)) x+y+z (c) B d A'(B+CA
29 @@ xy +x'y’
211 F(x,y,z) = 2(1,4,5,6,7)
212 (a) 10100000 (¢) 00011101 (d) 01001110
214 () (X' +y)Y +x+y) + O+
215 T, =A'(B' + ()
T, =A+ BC =T}
217 (a) X(3,5,6,7) = 11(0,1,2,4)
218 (¢) F=y'z+yw + x)
219 2(1,3,5,7,9,11,13,15) = 11(0, 2, 4, 6, 8, 10, 12, 14)
222 (a) AB+BC=(A+ OB b)) x' +y+7z

CHAPTER 3

31 (@ xy +x'z’ b)) xy' +z' () x' +y'z d xy+x'z+yz
3.2 (@ x'y +xz b)) y+x'z
3.3 (@ xy+x'z ®d) x +yz () z/ +x'y
34 (@ y () BCD+ A'BD' (¢) ABD + ABC + CD
d wx + w'x'y
3.5 (@) xz' +w'y'z+wxy (d BD+B'D'"+A'Bor BD+ B'D'+A'D’
36 (a) B'D' +A'BD + ABC' (b) xy' +x'z + wx'y
3.7 @@ x'y+z (¢¢ AC+ B'D' + A'BD + B'C (or CD)
3.8 (@) F(x,y,z) = 2(3,5,6,7) () F(A,B,C,D) = 3(1,3,5,9,12,13,14)
3.9 (a) Essential: xz and x'z’; Nonessential: w'x and w'z’
(b) F=B'D' + AC + A'BD + (CD or B'C)
310 (¢) F=BC' + AC+ A'B'D

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems 523

Essential: BC’, AC
Nonessential: AB,A'B'D,B'CD,A'C'D
311 (a F=A'B'D'+ AD'E + B'C'D’
312 (b) F=A+D")YB' + D’
313 (@) F=xy+z' =@x+z)y+2z)
315 () F=B'D'+ CD' + ABC'D = 3(0,2,6,8,10,13, 14)
317 F = AC' + BC' + BD
319 (@ F=Ww +z2)x" +z)w' +x" +y)
330 F=(A®B)(CSD)
3.35 The HDL description is available on the Companion Website.

Line 1: Dash not allowed, use underscore: Exmpl_3.
Terminate line with semicolon (;).
Line 2: inputs should be input (no s at the end).
Change last comma (,) to semicolon (;). Output is declared but does not
appear in the port list, and should be followed by a comma if it is in-
tended to be in the list of inputs. If Output is a mispelling of output and
is to declare output ports, C should be followed by a semicolon (;) and
F should be followed by a semicolon (;).
Line 3: B cannot be declared as input (Line 2) and output (Line 3). Terminate the
line with a semicolon (;).
Line 4: A cannot be an output of the primitive if it is an input to the module
Line 5: Too many entries for the not gate (only two allowed).
Line 6: OR must be in lowercase: change to “or”
Line 7: endmodule is mispelled. Remove semicolon (no semicolon after endmodule).

CHAPTER 4
41 (@ F,=A+B'C+BD' +B'D
F,=AB+D
4.2 F=ABC+ A'D

G = ABC + A'D'’
4.3 (b) 1024 rows and 14 columns
4.4 (@ F=x'y +x'z
4.6 F=xy+xz+yz
4.7 @ w=A x=A®B y=x®C z=y®D
4.8 w=AB + AC'D’

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

524

Answers to Selected Problems

4.10

4.12

4.13

4.14
4.18

4.22

4.28

4.29

4.34
4.35

4.39
4.42

Inputs: A, B, C, D; Outputs: w, x, y, z

z=D

y=Ce®D

x=B®(C+ D)
w=A®B + C+ D)
(b) Diff=xSySB,;,
By = x'y + x'Bj, + yBiy

Sum C |4
(@ 1101 0 1
(b) 0001 1 1
(¢) 0100 1 0
(d 1011 O 1
(e) 1111 0 0
30 ns
w=A'B'C’
x=B&C
y=0C
z=D'
w= AB + ACD
x=B'C'"+ B'D' + BCD
y=C'D+ CD'
z=D’
(a) F, = 3(0,5,7)
F, = 3(2,3,4)
F; = %(1,6,7)
x = DyD]

y = DyDy + DyD;

F(A, B,C,D) = 3(1,6,7,9,10, 11, 12)

(@) WhenAB =00,F =D

When AB = 01, F = (C + D)’

When AB = 10, F = CD
When AB =11, F =1

The HDL description is available on the Companion Website.

(¢) The HDL description is available on the Companion Website.

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Answers to Selected Problems 525

4.50 The HDL description is available on the Companion Website.
4.56 assign match = (A == B); /I Assumes reg [3: 0] A, B;
4.57 The HDL description is available on the Companion Website.
CHAPTER 5
5.4 (b) PO’ + NQ
5.7 S=xdy®Q
Q@+ 1) =xy +xQ +y0
5.8 A counter with a repeated sequence of 00,01, 10
5.9 (a) A(t+1)=xA"+ AB
B(t+1)=xB" + A'B
510 (¢) A(t+1)=xB+x'A+yA+y A'B’
B(t+1)=xA'B' + x’A'B + yA'B’
511 Presentstate: 0000010001 110001 11 100001 11 10 10
Input: 010110111011 110
Output: 0010010001O0O0O0O0T1
Next state: 00010001 110001 11 100001 11 10 1000
5.12 Present state Next state ~ Output
01 01
a f 0 0
b d a 0 0
d g a 1 0
f f b 11
g g d 0 1
513 (a) State: afbcedghggha
Input: 01110010011
Output: 01000111010
(b) State: afbabdgdggda
Input: 01110010011
Output: 01000111010
515 Dy =0Q'J+ QK

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

526 Answers to Selected Problems

516 D, = Ax' + Bx
Dy = A'x + Bx'
518 J,=K, = (BF + B'F)E
Jp=Kg=E
519 () Dy, = A'B'x_in
Dp=A + C'x_in" + BCx_in
Dc = Cx_in" + Ax_in + A'B'x_in’
y_out = A'x_in
523 (a) RegA = 125, RegB = 125
(b) RegA = 125, RegB = 30
526 (a)
ot+1)=JO +K'Q
When Q = 0,0t + 1) =J
When QO = 1,0(t + 1) = K’

module JK_Behavior (output reg Q, input J, K, CLK);
always @ (posedge CLK)

if (Q==0) Q<=y;
else Q <= ~K;
endmodule

5.31 The HDL description is available on the Companion Website.
Note: The statements must be written in an order that produces the effect of con-
current assignments.

CHAPTER 6

6.4 0110;0011;0001;1000;1100;1110; 0111;1011
68 A = 0010,0001,1000,1100. Carry = 1,1,1,0
6.9 (b) Jop=x"y;Kp=(x"+y)
614 (a) 4
6.15 30ns;33.3 MHz
6.16 1010 — 1011 — 0100

1100 — 1101 — 0100

1110 — 1111 — 0000

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems 527

617 Dy=ADE
Day = A1 ®(A)E)
Dy = Ay ® (ALAGE)
D3 = A3 ® (AA1A(E)
619 (b) Dy = 0
Dy, = 0,01 + 03050,
Doy = 0401 + 0405 + 040504
Dgg = Q301 + 040,04
621 Jyp =L+ L'C
Kyo= LI+ L'C
624 T,=ASB
Tg =BdC
Tc=AC+ A'C’ (not self-starting)
= AC+ A'B'C (self-starting)
6.26 The clock generator has a period of 12.5 ns. Use a 2-bit counter to count four pulses.
628 D, =ADB

Dy =AB' + C
Dc=A'B'C’
6.34 The HDL description is available on the Companion Website. Simulations results
for Problem 6.34 follow:
Name 0 6|0 1%0

CLK

S1 |
SO I I

6.35 (b) The HDL description is available on the Companion Website.
6.37 The HDL description is available on the Companion Website.
6.38 (a) The HDL description is available on the Companion Website.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

528 Answers to Selected Problems

6.42 Because A is a register variable, it retains whatever value has been assigned to it
until a new value is assigned. Therefore, the statement A <= A has the same
effect as if the statement was omitted.

6.45 The HDL description is available on the Companion Website. Simulations results

for Problem 6.45 follow:

Name 0) N TN N N N N O | 7|() | N T N N N I I | Ilzl‘ol) N T N N | IZ}OI | N T I T T | IZ?OI L1l
clock SRR g g RN RN EpEpi iR R EEpEEE
reset_bar I L

start Ll [1 [1 J

y_out I I [— [

6.50 (b) The HDL description is available on the Companion Website. Simulations
results for Problem 6.50 follow:

0 30 60 90
1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1
reset_b | L
clock
count2:0] [0 1 | 2 | 4 J6Jo) 1 | 2 | 4 | 6 | o0 Ji

CHAPTER 7

72 @ 2 b 22 (0 2 (@ 2%
73 Address: 1 0001 1011 = 011B (hex)
Data: 100 1011 1100 = 4BC (hex)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems

529

7.7 (a) 7 X 128 decoders, 256 AND gates (b) x =46,y =112
7.8 (a) 8chips (b) 18;15 (¢) 3 X 8decoder
710 0001101110111
711 101110011001 010
712 (a) 0101 1010; (b) 11000110; (¢) 11110100
713 (a) © (b)y 7 (¢c) 7
714 (a) 0101010
716 24 pins
720 Product terms: yz',xz',x'y'z,xy’,x'y, 2
725 A =y7' +xz' +x'y'z
B=x'y +yz+y'z
C=A+xyz
D=z+x'y
CHAPTER 8
8.1 (a) The transfer and increment occur concurrently, i.e., at the same clock edge.
After the transfer, R2 holds the contents that were in RI before the clock
edge, and R2 holds its previous value incremented by 1.
(b) Decrement the content of R3 by one.
(¢) If (S; = 1), transfer content of R to RO. If (S; = 0 and S, = 1), transfer
content of R2 to R0.
8.7 RTL notation:

STUDENTS-HUB.com

S0: Initial state: if (start = 1) then (RA <— data_A, RB < data_B, go to S1).

SI: {Carry, RA} < RA + (2’s complement of RB), go to S2.

S2: If (borrow = 0) go to SO. If (borrow = 1) then RA < (2’s complement

of RA), go to SO.

Uploaded By: Malak Dar Obaid

530 Answers to Selected Problems

Block diagram and ASMD chart:

reset_b
data_A data_B
borrow 8 8 Reg A < data A
| Reg_B <=data_B
Datapath /
Load_A_B Reg A
Subtract |—|—|—|—|—I&!§_|F| Reg_ A <=Reg A+~Reg B+1
start —>| Controler EEEEEINN
Convert
carry result
done <€— O
reset_b _+
8
clock
Reg A<=~Reg A+1
result /

The HDL description is available on the Companion Website. Simulations results for

Problems 8.7 follow:
0 40 80 120

Name TN T T T T T TN T AT T T T T N T Y
clock
reset_b
state[1: 0]
start I
Load_A_B 1 1 |
Subtract L
carry -
borrow - -
Convert
data_A[7: 0] 50 X 20 X 50
RA[7:0] 00 1le (14 J(e2 [(Te (32 00 [32)
data_B[7: 0] 20 X 50
RB[7:0] 00 X 14 X 32
done 1 |
borrow I
result(7: 0] 0 30 (20 (22630 Y50 X 0)'50)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems 531
8.8 RTL notation:

S0: if (start = 1) AR < input data, BR < input data, go to S1.
SI1: if (AR[15]) = 1(sign bit negative) then CR < AR (shifted right, sign
extension).

else if (positive non-zero) then (Overflow <= BR([15] @ [14]), CR < BR(shifted
left)

else if (AR = 0) then (CR < 0).

AR_eq_0 data_AR data_BR
AR_gt
!0 16 16
AR_It 0
|
Datapath
Ld_AR_BR AR

< ; (I T-11J
>| Controller Div_ AR x2 CR BR
start —> Mul BR x2 CR mCR
done ~<— Clr_CR CITTT--T17
reset_b A l |
clock
reset_b

l ”4

AR <= data_A

BR<=data_B
1
> Note: Division by 2 of a
57 negative number
represented in 16-bit 2s
complement format

Note: Multiplication by
2 of a positive number

represented in 16-bit 2s

complement format

The HDL description is available on the Companion Website. Simulations results
for Problem 8.8 follow:

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

532 Answers to Selected Problems
Reset on-the-fly
Name 0 60 120 180 240
II

reset_b I f
clock
start] |

Multiply by 2 and xfer to CR Divide by 2 and xfer to CR
AR_It_0 1
AR_gt_0 —< %ﬁ
AR_eq_0 | I B
state [—1
Ld_AR_BR M
Div_AR_x2_CR 1
Mul_BR x2_CR ™ [| W\/
Clr_CR 111
done
data_AR/15: 0] 50—y [20 [50 [o fessi6)/ 20 /
AR[15: 0] 0 0] o) 20 | s0] o0 Jesie 20 /
AR[15:0] 0000 | 0032 | 0000 | 0014 [0032) 0000 X)(?ec% 0014 /
AR_mag[15: 0] 0 X 50 X 0 X 20 X 50)(0 X 20
data_BR[15: 0] 20 50 I | 65535
BR/15: 0] o) o) 50 [65535
BR[15:0] 0000 | 0014 | 0000 | 0032 \ |
BR_mag[15: 0] 0 20 0 50) 1)
CR[15: 0] 0 40 0 | 100 i 0 Jo5526) 65534"
CR[15: 0] 0000 0000 | 0064 | 0000 | fifel[fite—
CR_mag15:0] 0 o [w0 [o w0 2V
Overflow —

8.9

Design equations:
DS_idle = S_2 + S_1dle Start'

Dg , = S_idle Start + S_1(A2 A3)'

Ds, = A2 A3S_1

The HDL description is available on the Companion Website. Simulations results
for Problem 8.9 follow:

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems 533

N, 0 60 120 180 240
ame TN T T T T T A T T T T T T T T T N T T S B B B B |
reset b L1

clock I Y e e Y e e e Y Y Y Y Y I O
Start]

A2 I I
A3 I |
state[2: 0] |1 T 2 2
set_E 1

clr E -
set_F 1

cdr AF | — T T 1 1

incr_A I L T
A[3:0] 0 X 0 (1X2)X3)4 5)6)X7X8X9 afbick d YO1)
E | D -
F 1

811 D, = A'B + Ax
Dgp=A'B'x + A'By + xy
8.16 RTL notation:

s0: (initial state) If start = 0 go back to state s0, If(start = 1) then
BR < multiplicand, AR < multiplier, PR <— 0, go to s1.

sI: (check AR for Zero) Zero = 1if AR = 0, if (Zero = 1) then go back to s0
(done) If (Zero = 0) then go to sI, PR<— PR + BR,AR< AR — 1.

The internal architecture of the datapath consists of a double-width register to
hold the product (PR), a register to hold the multiplier (AR), a register to hold
the multiplicand (BR), a double-width parallel adder, and single-width parallel
adder. The single-width adder is used to implement the operation of decrement-
ing the multiplier unit. Adding a word consisting entirely of 1s to the multiplier
accomplishes the 2’s complelment subtraction of 1 from the multiplier. Fig-
ure 8.16 (a) below shows the ASMD chart, block diagram, and controller of othe
circuit. Figure 8.16 (b) shows the internal architecture of the datapath. Figure
8.16 (c) shows the results of simulating the circuit.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

534 Answers to Selected Problems

reset_b
data_AR data_BR
AR <= data_A ero 16 16
BR <= data_B Z |
=0 \ Datapath
Ld_regs AR
Y Add_decr BR
PR <= PR + BR 51 Controller T
AR <= AR -1 start —»-| D:IZI:‘:‘PR
T~ done <— RN
1
Add@ @ reset_b X |
16
clock
PR

Note: Form Zero as the output of an OR gate whose inputs
are the bits of the register AR.

Controller Add_decr

Zero $0 = s1 done

Start

clock —
reset_b —T

Ld_regs

(a) ASMD chart, block diagram, and controller

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems 535

data_BR
WS 16
Ld_regs lmu)?
16
BR Add_decr
[AlLQ’s [TT]--TT1 16 16
32 16 data_AR +L
32
+ Note: all registers have active-low Ld_r€gs_¥_
asynchronous reset a
32
PR
[T TT-TTITTTT--TT] [TTTT--T1
16
Ld_regs
32 — +>
0
A0\ Add_decr 16
All 1’s
(b) Datapath
Name 0 40 80 120 160 200
TN T T T T T T T N T I A A
reset_b L 1]
clock
start I I]
Ld_regs I I [
Add_decr
zero
state I I L L]
data_AR[7: 0] 5 [3 | 4
data_BR[7: 0] 20 | 9
AR[7:0] 0 (sfafs 2] o Jafsfaf1] o [4]
BR[7:0] 0 I 20 I 9
done
PRY15:0] 0 2040 60f8of 100 [o[9[18[27] 36 |o]

(c) Simulation results

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

536 Answers to Selected Problems

817 (2"-DR"-1)<@2*-1)forn=1

8.18 (a) The maximum product size is 32 bits available in registers A and Q.
(b) P counter must have 5 bits to load 16 (binary 10000) initially.
(¢) Z (zero) detection is generated with a 5-input NOR gate.

820 2(n + 1)t
8.21

—_

State codes:

wn

ot

o

o
OHOOQ
OO'—‘OO

Mux_1 — D -
Zero' —2 Swart_____
] Load_regs
E—3 ¢ 3

St S
0o[0]
= |
1 }Add_regs

2 X 4 Decoder
2 —— Shift_left

3_

Start—{ 0 51 S
0—1 G,
Mux_ 2 H+— D —
0—2
0—3 > €
clock
reset_b I

830 (@ E=1 () E=0

831 A = 0110,B = 0010, C = 0000.
A*B=1100 A|B =0110 A&&C=0
A+B=1000 AAB = 0100 |A =1
A-B=0100 &A=0 A<B =0
~C = 1111 ~|c=1 A>B=1
A&B=0010 A|B=1 Al=B =1

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Answers to Selected Problems 537

8.39
Block diagram and ASMD chart:

data_AR data_BR

L Zero | j(w j(m

Datapath
Ld_regs AR
LI T[T T[]
Add_decr BR
Start —» Controller [TTTT-TT1]
PR
done <—| LITTT-TT]
reset_b—+ 16
Clock
reset_b PR
S0
done
AR <= data_A
BR <= data_B
PR <=0 o 7
Y
S1
PR <= PR + BR
AR<=AR -1
1

Add_decr

O

The HDL description is available on the Companion Website. Simulation results for
Problem 8.39 follow:

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

538 Answers to Selected Problems

Name OI Ll |3|0| Ll |6|0| Ll |9|0| Ll |1|2?
reset_b I LI

clock N [N O O Y O e Y e Y Y O Iy O
start [
Ld_regs 1 [1 L
Add_decr] LI |
zero [1

state — LI

data_AR[7: 0] 5 3 4
data_BR[7: 0] 20 I 9

AR[7:0] 0 [5 4o 5[4 3 [2] 1] 0)
BR/[7: 0] 0 [20 Jof 20)
done [1

PR/[15: 0] 0) 0o Y2040)60 | 80 | 100)

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Index

A
ABEL, 332
Absorption theorem, 45
Abstract behavioral model, 109
Adders and subtractors (experiment)
adder—subtractor (four-bit), 456457
full adder, 455
half adder, 455
magnitude comparator, 457
parallel adder, 455-456
Additive identity, 40
Algebraic manipulation, of Boolean
function, 48-49
Algorithmic state machine and
datapath (ASMD) charts,
370-371
controller and datapath hardware
design, 376
control logic, 379-381, 396, 398
design examples, 371-381
register transfer representation,
377-378
state table, 378-379
timing sequence, 374-376
Algorithmic state machines (ASMs),
363-371
algorithmic state machine and
datapath (ASMD) charts,
370-371
design examples, 371-381
binary code assignment, 365-366
block, 368-369

STUDENTS-HUB.com

chart, 365-368
conditional box and examples, 367
control logic, 364
control unit, 364
datapath unit, 364
decision box of an ASM chart, 366
Mealy-type signals, 366-368
simplifications, 369
state and decision boxes of, 366
style of state box, 365-366
timing considerations, 369-370
always block, 358
always statement, 164, 176, 217,219, 228,
290, 354-355,382
American Standard Code for
Information Interchange
(ASCII),24-26
Analog-to-digital converter, 2
ANDed with an expression, 53
AND gate, 30, 32-33, 42, 4647, 50,
57-58, 60, 65,90, 113,321, 323
ANDing of maxterms, 55
AND-invert graphic symbol, 92
AND-invert symbol, 90-91
AND-NOR diagrams, 98-99
AND-OR diagrams, 90, 98-99
AND-OR-INVERT function,
97-98
Application-specific integrated circuit
(ASIC), 68
Arithmetic addition, 39
Arithmetic operations, 5

ASCII NAK (negative acknowledge)
control character, 27
assign statement, 115, 164, 171, 228,
354-355,361
Associative law, 39
algebraic proofs of, 45
Asynchronous sequential circuit, 191

B
Backspace (BS) control, 26
Base-r system, 4, 10
Base-8 system, 4
BCD adder, 144-146
BCD code, 22-23
BCD ripple counter, 269-271
BCD synchronous counter, 275
begin keyword, 115, 177,217
Behavioral modeling, 174-176
Bidirectional shift register, 264, 352
Bilateral switch, 514-515
Binary adder—subtractor, of
combinational circuits, 133-144
binary adder, 136-138
binary subtractor, 141-142
carry propagation, 138-141
full adder, 135-136
half adder, 134
overflow, 143-144
Binary and decimal numbers
(experiment)
BCD count, 444-445
binary count, 443

539

Uploaded By: Malak Dar Obaid

540 Index

Binary and decimal numbers (cont.)
counts, 446
oscilloscope, 444
output pattern, 445
Binary cell, 27
Binary-coded decimal (BCD), 130-131
additions, 20-21
code, 22-23
Binary codes, 2, 18-27
8,4,-2,-1 code,22-23
addition of decimal numbers, 21
ASCII character code, 24-26
BCD code, 20-23
2421 code, 22-23
error-detecting code, 26-27
excess-3 code, 22-23
Gray code, 23-24
subtraction of decimal numbers, 21
Binary digit, See Bit
Binary information processing, 29-30
Binary information processing, of
digital logic circuits, 30
Binary logic:
definition of, 30-31
logic gates, 31-33
Binary multiplier, 146-148
Binary multiplier, HDL description of,
402411
behavioral description of a parallel
multiplier, 409-411
datapath unit, 403
testing the multiplier, 405-409
Binary multiplier (experiment),
478-480
block diagram, 478
checking the multiplier, 479
control of registers, 478-479
datapath design, 479
design of control, 479
multiplication example, 479
Binary numbers, 3-6, 9-10
arithmetic operations, 5-6
complement of, 10-11
sum of two, 6
Binary operator:
*,39
+,39
°. 40
definition, 38
Binary ripple counter, 267-269
Binary signals, 3, 32
Binary storage, 27-30
Binary synchronous counter, 271-272
with parallel load, 276-278
up-down, 272-275
Bipolar transistors, 507
Bit,2,5

STUDENTS-HUB.com

Blocking assignments, 219-220, 355
Block statement, 115
Boolean algebra, 30,47 126
application in gate-type circuits, 42
axiomatic definition of, 4043
basic definitions, 38-40
basic theorems, 43-45
canonical forms, 51-58
conversion between, 55-56
duality, 43
maxterms, 51-52
ANDing of, 55
definition, 55
product of, 54-55
miniterms, 51-52
definition, 55
sum of, 52-53
operator procedure, 45-46
standard forms, 56-58
two-valued, 41-43
Boolean expressions, for HDL, 115-116
Boolean function, 126
algebraic manipulation, 48-49
complement of, 49-50
definition, 46
implementation with gates, 48
multilevel NAND circuit, 93-95
with NAND gates, 90-91
NOR implementation, 95-97
16 possible functions, 58-60
product-of-sums form of, 84-88
sum-of-products form, 84-88
in truth table, 46
two-level implementation of, 91-93
Boolean function simplification
(experiment)
Boolean functions in sum-of-
minterms form, 449
complement, 449
gate ICs, 448
logic diagram, 448
Bubble, 60
Buffer circuit, 60
Built-in system functions, 178
Byte, 5,26

C

Carriage return (CR) control, 26
Cascaded NAND gates, 63

case expression, 176, 382

case items, 175

case statement, 175, 362, 403
casex construct, 176

casex statement, 362

casez construct, 176

Central processing unit, 2
Characteristic tables, for flip-flop, 201-202

Uploaded By: Malak Dar Obaid

Chip, 66
Clear operation, 351
Clocked sequential circuits, 191
Clock generator, 191
Clock-pulse generator (experiment),
474-475
circuit operation, 473-474
IC timer, 473
Clock pulses, 191
Closed structure, 42
2421 code, 22-23
Code converters (experiment)
Gray code to equivalent binary, 452
nine’s complementer, 452
seven-segment display, 452453
Coefficients, of binary number system, 4
Combinational circuits:
analysis procedure, 126-129
binary adder—subtractor, 133-144
binary adder, 136-138
binary subtractor, 141-142
carry propagation, 138-141
full adder, 135-136
half adder, 134
overflow, 143-144
binary multiplier, 146-148
block diagram, 125-126
decimal adder, 144-146
decoders, 150-155
combinational logic
implementation, 154-155
deriving output Boolean functions,
127-128
design procedure, 129-133
code conversion example, 130-133
encoders, 155-157
priority, 156-157
feedback path, 127
hardware description language
(HDL) of, 164-181
behavioral modeling, 174-176
dataflow modeling, 171-174
example of test bench, 176-181
gate-level modeling, 164-169
three-state gates, 169-170
magnitude comparator, 148-150
multiplexer, 158-164
used in design of digital systems, 126
Combinational circuits (experiment)
decoder implementation, 450451
design example, 450
majority logic, 450
parity generator, 450
Combinational programmable logic
device (PLD), 321
Comma, 179
Commutative law, 39, 42

Complementary metal-oxide
semiconductor (CMOS), 67
Complementary MOS (CMOS) circuits,
510-513
bilateral switch, 514-515
characteristics, 513
CMOS fabrication process, 513
CMOS logic circuit, 513
construction of exclusive-OR with
transmission gates, 515
74C series, 513
four-to-one-line multiplexer, 515
IC type 74C04, 513
propagation delay time, 513
static power dissipation of, 513
transmission gate, 514-517
Complements, 10-14, 44, 55, 87
diminished radix, 10-11
radix, 11-12
subtracion with, 12-14
Computer-aided design (CAD) systems,
67-68,118
Computer-aided design of VLSI circuits,
67-68
Consensus theorem, 49
Control characters, 25
Controller, register-and-decoder
scheme for the design of a, 411
Control logic, 396-402
ASMD charts, 379-381,
396,398
block diagram, 393
D flip-flop, 401
Gray code, 397-398
inputs Start and Zero
decisions, 396
one flip-flop per state, 401-402
one-hot assignment,
397,401-402
sequence-register-and-decoder
(manual) method, 398-401
state assignment, 398
steps when implementing, 397
Counters:
defined, 255
HDL for:
ripple, 288-290
synchronous, 287-288
Johnson, 282-283
ring, 280-282
ripple:
BCD, 269-271
binary, 267-269
symbols, 502-504
synchronous:
BCD, 275
binary, 271-272

STUDENTS-HUB.com

binary counter with parallel load,
276-278
up-down binary, 272-275
with unused states, 278-280
Counters (experiment)
binary counter with parallel load,
462-463
decimal counter, 461
ripple counter, 461
synchronous four-bit binary
counter, 461
Count operation, 351
Crosspoint, 317

D
Dataflow modeling, of combinational
logic, 171-174
Datapath unit, 364
Decimal adder, of combinational
circuits, 144-146
Decimal equivalent, of binary
number, 4
Decimal number system, 4
Declaration of module, 112
Decoders, 150-155
combinational logic implementation,
154-155
default keyword, 176
Degenerate forms, of gates, 98-99
Delay control operator, 218
DeMorgan’s theorem, 45,49-50, 55, 62,
84,91-92
Dependency notation, 493-495
Depletion mode, 508
Design entry, 109
Design of combinational circuits,
129-133
D flip-flop, 198-200, 255,263
analysis, 210
characteristic table, 202
in combinational PAL, 330
in control logic, 401
graphic symbol for the
edge-triggered, 200
hold time, 199
master—slave, 517
positive-edge-triggered, 203
setup time, 199
Diffused channel, 508
Digital age, 1
Digital integrated circuits, 66-67
fan-in, 67
fan-out, 67
noise margin, 67
power dissipation, 67
propagation delay, 67

Uploaded By: Malak Dar Obaid

Index 541

Digital logic circuits:
binary information process, 30
symbols for, 32
Digital logic family, 66-67
Digital logic gates, 60-65
extension of multiple inputs, 62-63
positive and negative logic, 63—65
Digital logic gates (experiment)
NAND circuit, 447-448
propagation delay, 447
truth table, 446
universal NAND gate, 447
waveforms, 446-447
Digital systems, 1-3
information-flow capabilities, 30
Digital versatile disk (DVD), 3
Diminished radix complement, 10-11
$display task, 178-179, 181
Distributive law, 39,42, 54,57
D latch, 195-196, 457
Documentation language, 109
Don’t-care conditions, 88
Don’t-care minterms, 88-90
Dopants, 507
Drain terminal, 508
Duality principle, 43
Dual theorem, 44

E
Edge-sensitive cyclic behavior, 354
Edge-triggered D flip-flop, 330
Eight-bit alphanumeric character
code, 28
Eight-bit code, 27
8,4,-2,-1 code,22-23
Electrically erasable PROM, 320
Electronic design automation (EDA), 68
else statement, 222
Emitter-coupled logic (ECL), 67
Encoders, 155-157
priority, 156-157
End-around carry, 13
end keyword, 115, 177,217
endprimitive, 117
endtable, 117
Enhancement mode, 508
Erasable PROM, 320
Error-detecting and
error-correcting codes:
Hamming, 312-315
single-error correction and double-
error detection, 315
ETX (end of text), 26
Event control expression, 175
Event control operator, 218
Excess-3 code, 22-23, 130
Exclusive-NOR function, 103

542 Index

F
Fan-in, 67
Fan-out, 67
Fault-free circuit, 110
Fault simulation, 110
Field, 39
Field-programmable gate array
(FPGA), 68,299, 329-330, 438,
480482, See also Xilinx FPGA
File separator (FS) control, 26
$finish statement, 178
$finish system, 115
Finite state machine (FSM), 364
Five-variable K-map, 84
Flash memory devices, 320
Flip-flop, defined, 192
Flip-flop circuits, 259
ASMD, 371
characteristic table, 201-202
Clear_b input, 256
clear or direct reset, 203
clock response in, 197
D flip-flop, 198-200, 255,263
analysis, 210
characteristic table, 202
in combinational PAL, 330
graphic symbol for the
edge-triggered, 200
hold time, 199
master—slave, 517
positive-edge-triggered, 203
setup time, 199
direct inputs, 203
input equation, 209-210
JK flip-flop, 200-201, 263
analysis, 210-213
characteristic equation, 203
characteristic table, 202
master—slave, 198, 517
positive-edge-triggered, 199
signal transition, 197
symbols, 497-499
T (toggle) flip-flop, 200-201
analysis, 213-214
characteristic equation, 203
characteristic table, 202
Flip-flop input equations, 209-210
Flip-flops (experiment)
D latch, 457
IC type flip-flop, 459460
master-slave D flip-flop, 458
positive-edge-triggered flip-flop, 459
SR latch, 457
forever loop, 359
fork ... join block, 226
for loop, 360

STUDENTS-HUB.com

Four-bit data-storage register, 257

Four-bit register, 256

Four-bit universal shift register, 265

Four-digit binary equivalent, 9

Four-to-one-line multiplexer, 163

Four-variable Boolean functions, map
minimization of, 80-84

Four-variable K-map, 80-84

Franklin, Benjamin, 507

Full-adder (FA) circuit, 261-262

Functional errors, 109

Functional verification, 181

Function blocks, 332

G
Gate delays, 113-115
Gate instantiation, 112
Gate-level minimization, 73
AND-OR-INVERT
implementation, 99-100
don’t-care conditions, 88-90
exclusive-OR (XOR) function,
103-108
odd function, 104-106
parity generation and checking,
106-108
hardware description language
(HDL), 108-118
Boolean expressions, 115-116
gate delays, 113-115
user-defined primitives (UDPs),
116-118
map method:
five-variable K-map, 84
four-variable K-map, 80-84
prime implicants of a function,
82-84
three-variable K-map, 75-76
two-variable K-map, 74-75
NAND circuits, 90-91
nondegenerate forms, 98-99
OR-AND-INVERT
implementation, 100
product-of-sums simplification,
84-88,90
tabular summary and example,
100-102
Gates with multiple inputs, 33
Gate voltage, 508
General-purpose digital computer, 2
Giga (G) bytes, 5
Graphical user interfaces (GUIs), 1
Graphic symbols, 32
Gray code, 23-24,397-398
Gray code to equivalent
binary, 452

Uploaded By: Malak Dar Obaid

H
Half adder, 167
Hamming code, 312-315
Hand-held devices, 190
Hardware description language (HDL),
68,108-118
algorithmic-based behavioral
description, 381
of binary multiplier, 402411
Boolean expressions, 115-116
circuit demonstrating, 111
combinational circuits, 164-181
behavioral modeling, 174-176
dataflow modeling, 171-174
example of test bench, 176-181
three-state gates, 169—-170
description of design example,
381-391
gate delays, 113-115
for ripple counter, 288-290
RTL description, 381-385
structural description, 381, 386-391
switch-level modeling, 517-520
for synchronous counter, 287-288
testing of design description, 385-386
transmission gate, 519-520
user-defined primitives (UDPs),
116-118
Hardware signal generators, 115
HDL-based design methodology, 3
Heuristics, 30
Hexadecimal (base-16) number system,
4-5,8-10
High-impedance state, 162-163
Holes, 507
Horizontal tabulation (HT) control, 26
Huntington postulates, 42

I

7493 1C, 439, 442443

IC type 74194, 470

IC type flip-flop, 459-460
Identity element, 39

if-else statement, 174

if statement, 222

if-then statement, 353

Implicit combinational logic, 116
Incompletely specified functions, 88
initial block, 177 179, 358

initial statement, 115,177, 217-219
input declaration, 117

3-input NAND gate, 63

3-input NOR gate, 63
Input-output signals for gates, 33
Input—output units, 2
Instantiation of module, 112

integer k, 360
integer keyword, 176
Integrated circuits:
computer-aided design of VLSI
circuits, 67-68
digital integrated circuits, 66-67
fan-in, 67
fan-out, 67
noise margin, 67
power dissipation, 67
propagation delay, 67
levels of integration, 66
Integrated circuits (ICs), 438-439
required for experiments, 442
Internet, 2
Inverse of an element, 39
Inverter circuit, 509
Inverter gate, 66
Invert-OR graphic symbol, 93
iPod Touch™, 1

J

JK flip-flop, 200-201, 263, 371
analysis of, 210-213
characteristic equation, 203
characteristic table, 202

K

Karnaugh map, 73

Kilo (K) bytes, 5

K-map, See Karnaugh map

L
Laboratory experiments:
adders and subtractors (experiment 7)
adder—subtractor (four-bit),
456-457
full adder, 455
half adder, 455
magnitude comparator, 457
parallel adder, 455-456
binary and decimal numbers
(experiment 1)
BCD count, 444-445
binary count, 443
counts, 446
oscilloscope, 444
output pattern, 445
binary multiplier (experiment 17),
478-480
block diagram, 478
checking the multiplier, 479
control of registers, 478-479
datapath design, 479
design of control, 479
multiplication example, 479

STUDENTS-HUB.com

Boolean function simplification
(experiment 3)
Boolean functions in
sum-ofminterms form, 449
complement, 449
gate ICs, 448
logic diagram, 448
clock-pulse generator
(experiment 15), 474-475
circuit operation, 473-474
IC timer, 473
code converters (experiment 5)
Gray code to equivalent binary, 452
nine’s complementer, 452
seven-segment display, 452453
combinational circuits (experiment 4)
decoder implementation, 450451
design example, 450
majority logic, 450
parity generator, 450
counters (experiment 10)
binary counter with parallel load,
462-463
decimal counter, 461
ripple counter, 461
synchronous four-bit binary
counter, 461
digital logic gates (experiment 2)
NAND circuit, 447-448
propagation delay, 447
truth table, 446
universal NAND gate, 447
waveforms, 446-447
flip-flops (experiment 8)
D latch, 457
IC type flip-flop, 459-460
master—slave D flip-flop, 458
positive-edge-triggered
flip-flop, 459
SR latch, 457
lamp handball (experiment 14)
circuit analysis, 472
counting number of losses, 472-473
IC type 74194, 470
lamp Ping-Pong game, 473
logic diagram, 470472
playing the game, 472
memory unit (experiment 13)
IC RAM, 467-468
memory expansion, 469
ROM simulator, 469
testing RAM, 468-469
multiplexer design (experiment 6)
design specifications, 453-454
parallel adder and accumulator
(experiment 16)

Uploaded By: Malak Dar Obaid

Index 543

block diagram, 475
carry circuit, 476
checking the circuit, 477
circuit operation, 477-478
control of register, 475-476
detailed circuit, 477
sequential circuits (experiment 9)
design of counter, 460461
state diagram, 460
up-down counter with enable, 460
serial addition (experiment 12)
serial adder, 466467
serial adder-subtractor, 467
testing the adder, 467
shift registers (experiment 11)
bidirectional shift register, 465
bidirectional shift register with
parallel load (IC type 74157),
465-466
feedback shift register, 464-465
IC shift register, 463
ring counter, 463-464
Verilog HDI simulation experiments
and rapid prototyping with
FPGAs:
experiment 1,482-483
experiment 2, 483-484
experiment 4, 484
experiment 5, 484
experiment 7,484
experiment 8, 485
experiment 9, 485
experiment 10, 485
experiment 11, 485-486
experiment 13, 486
experiment 14,486
experiment 16, 486
experiment 17, 486487
Lamp handball (experiment)
circuit analysis, 472
counting number of losses, 472473
IC type 74194, 470
lamp Ping-Pong game, 473
logic diagram, 470472
playing the game, 472
Lamp Ping-Pong game, 473
Large-scale integration (LSI)
devices, 66
Latches, 193-196, 220-223
D latch, 195-196, 457
NAND latch, 194
NOR latch, 194
SR latch, 193-195, 457
Latch-free design, 425-426
Level-sensitive cyclic behavior, 354
Load operation, 351

544 Index

Logic-circuit diagram, 4647

Logic circuits, 3

Logic families, of digital integrated
circuits, 67

Logic gates, 31-33

Logic simulators, 125

Logic synthesis, 109, 361-363

M
Macrocells, 330-331
Magnitude comparator, 148-150
Map minimization method:
five-variable K-map, 84
four-variable K-map, 80-84
prime implicants of a function, 82-84
three-variable K-map, 75-76
two-variable K-map, 74-75
Mask programming, 320
Master-slave flip-flop, 198
D flip-flop, 458, 517
Mathematical system, postulates of a, 39
Maxterms, 51-52
ANDing of, 55
definition, 55
product of, 54-55
Mealy model of finite state machine,
214-217
Mealy_Zero_Detector, 226-227
Medium-scale integration (MSI)
circuits, 66, 126, 439
Memory chips, 66
Memory decoding:
coincident, 309-312
internal construction, 307-309
Memory registers, 29
Memory unit, 2,29
Memory unit (experiment)
IC RAM, 467-468
memory expansion, 469
ROM simulator, 469
testing RAM, 468-469
Metal-oxide semiconductor (MOS), 67
Metal-oxide silicon semiconductors, 507
basic structure, 508
types of, 508
Miniterms, 51-52
definition, 55
don’t-care, 88-90
and prime implicants, 83
sum of, 52-53
Minterm, 51
Module, 111
module ... endmodule keyword pair,
116,169
$monitor statement, 178, 180
$monitor system task, 179

STUDENTS-HUB.com

Moore model of finite state machine,
214-217
Moore-type zero detector sequential
circuit, 228
Most significant bit (MSB), 358
Multiple-IC MSI design, 126
Multiplexer design (experiment),
453-454
Multiplexers, 158-164
design with, 411-422
testing of ones counter, 421-422

N

Name association mechanism, 178

NAND circuits, 90-91, 447-448

NAND gate, 58, 60, 63, 66, 90-93,
439,510

NAND latch, 194

NAND-NAND diagrams, 98-99

N bits, 27

N-channel MOS, 509-510

Negative-logic OR gate, 65

Negative logic polarity, 64

negedge keyword, 219,222, 354

Netlist, 109

Nine’s complementer, 452

nmos keyword, 517

Noise margin, 67

Nonblocking assignments, 219-220, 355

Nondegenerate forms, of gates, 98-99

NOR gate, 60, 63, 66, 90,510

NOR latch, 194

NOR-NOR diagrams, 98-99

NOT gate, 30,32,42,58,113

N-type dopant, 507

Number-base conversions, 6-8

o

Octal number system, 4, 8-10

Odd function, 62

One-hot assignment, 397, 401402

Open Verilog International (OVI), 110

OR-AND diagrams, 98-99

OR-AND-INVERT function, 98

ORed with xx', 54

OR gate, 30, 32-33, 42, 46-47, 50, 57-58,
60, 65,90,113, 316,323

OR-NAND diagrams, 98-99

output declaration, 117

P
Parallel adder and accumulator
(experiment)
block diagram, 475
carry circuit, 476
checking the circuit, 477

Uploaded By: Malak Dar Obaid

circuit operation, 477-478
control of register, 475-476
detailed circuit, 477
Parallel-load control, 264
parameter statement, 224
Parity bit, 26
Parity error, 26-27
P-channel MOS, 509
pmos keyword, 517
Polarity indicator, 65
Port list, 112
posedge keyword, 219-222, 354
Positive-edge-triggered flip-flop, 459
Positive integers, 14
Positive-logic AND gate, 65
Positive logic polarity, 64
Postulates of a mathematical system, 39
Postulates of Boolean algebra,
43-44
Power dissipation, 67
Predefined primitives, 112
Prime implicants of a function,
82-84
primitive ... endprimitive
keyword pair, 116
Primitive gates, 165
primitive keyword, 117
Processor registers, 29
Product-of-maxterms form, 87
Product of sums, 57
Product-of-sums form, of Boolean
function, 84-88, 90
Program, 1
Programmable array logic (PAL),
299,321
buffer-inverter gate, 325
commercial, 325
fuse map of, 328-329
programming table, 327
Programmable logic array (PLA)
Boolean functions implemented
in, 322
custom-made, 324
fuse map of, 323
internal logic of, 322
programming table, 323
size of, 324
Programmable logic device (PLD), 66,
68,299
Programmable read-only memory
(PROM), 320
Propagation delay, 67, 110, 447
P-type device, 507-508

Q
Qualifying symbols, 491-493

R
Race-free design, 422-425
Radix complement, 11-12
R-allowable digits, 5
Random-access memory (RAM),
299-307
memory description in HDL,
303-304
symbol, 504-505
timing waveforms, 304-306
types of memories, 306-307
write and read operations, 302-303
Read-only memory (ROM), 299,
315-321
block diagram, 316
combinational circuit
implementation, 318
example of 32x8,316
hardware procedure, 317
inputs and outputs, 316
internal binary storage of, 317
truth table of, 317
types, 320
Record separator (RS) control, 26
Rectangular-shape symbols, 488-491
Register (s),27
defined, 255
of excess-3 code, 27
four-bit, 256
HDL for, 284-287
loading or updating, 257
with parallel load, 257
shift, 258-266
serial addition, 261-263
serial transfer of information,
259-261
universal, 263-266
symbol, 499-502
transfer of information among, 28-30
Register transfer level (RTL), 3
algorithmic state machines (ASMs),
363-371
block, 368-369
chart, 365-368, 370-371
relationship between control
logic and data-processing
operations, 364
simplifications, 369
timing considerations, 369-370
combinational circuit functions, 354
control logic, 396-402
in HDL, 354-363
flowchart for modeling, verification,
and synthesis, 363
logic synthesis, 361-363
loop statements, 358-361

STUDENTS-HUB.com

operators, 355-358
procedural assignments, 355
HDL descriptions:
of binary circuits, 402—411
of combinational circuits,
381-391
latch-free design, 425-426
with multiplexers, 411422
notation, 351-354
procedural assignments, 355
propagation delays, 353
race-free design, 422-425
sequential binary multiplier,
391-396
type of operations, 353
Verilog HDL for, 426
reg keyword, 168, 175,177,179,
220-221, 360
repeat loop, 358
Ripple_carry_4_bit_adder, 169
Ripple counter:
BCD, 269-271
binary, 267-269
HDL for, 288-290

S
Schematic capture, 68
Schematic entry, 68
Semiconductors, 507
Sensitivity list, 175
Sequential binary multiplier:
ASMD chart, 394-396
interface between the controller and
the datapath, 393
numerical example for binary
multiplier, 396
register configuration, 392-393
registers needed for the data
processor subsystem, 395
Sequential circuits (experiment)
design of counter, 460461
state diagram, 460
up—down counter with enable, 460
Sequential programmable devices,
329-346
AND-OR sum-of-products
function, 330
complex programmable logic device
(CPLD), 329,331
configuration, 331
field-programmable gate array
(FPGA), 329-330, 332
input—output (I/O) blocks, 330
registered, 330
sequential (or simple) programmable
logic device (SPLD), 329

Uploaded By: Malak Dar Obaid

Index 545

Serial addition (experiment)
serial adder, 466-467
serial adder-subtractor, 467
testing the adder, 467
Set of elements, 38
Set of natural numbers, 39
Set of operators, 38
Set of real numbers, 39
Shift-left control, 264
Shift operation, 351
Shift registers (experiment)
bidirectional shift register, 465
bidirectional shift register with
parallel load (IC type 74157),
465-466
feedback shift register, 464-465
IC shift register, 463
ring counter, 463-464
Shift-right control, 264
Signals, 2
assignment of, 64
Signed binary numbers, 14-18
arithmetic addition, 16-17
arithmetic subtraction, 17-18
signed-complement system, 15
signed-magnitude convention, 15
Signed-complement system, 15,21
Signed-magnitude convention, 15
Signed-10’s-complement system, 21
Silicon crystalline structure, 507
Simple_Circuit, 112-113
Simple_Circuit_ prop_delay, 114
Single-pass behavior, 217
Small-scale integration (SSI) circuits,
439
Small-scale integration (SSI) devices, 66
Software programs, 68
Source terminal, 508
Spartan™, 333, 339-344
SR latch, 193-195, 457
Standard cells, 126
Standard form of Boolean algebra,
56-58
Standard product, 51
Standard sums, 51
State table, 378-379
STX (start of text), 26
Sum of products, 56, 62, 88,91
Sum terms, 57
supplyl and supply0 keyword, 518
Switching algebra, 43
Switch-level modeling, 517-520
Symbols, 61,171
1,171
%, 178
&, 171

546 Index

Symbols (cont.)

&&, 171

¥,53

*/,111

+,171

/#,111

==171

@,174-175, 354, 425-426

AT

[,171

“I7,174

- 171

2,171

(&), (/),and (~), 115

@, 58

active-low input or output, 492

adder (Y), 491

AND gate or function (&), 491

arithmetic logic unit (ALU), 491

arithmetic operators (+, -, *,/), 356

buffer gate or inverter, 491

coder, decoder, or code converter
(X/Y), 491

for combinational elements, 495-497

contents of register equals binary
15,492

countdown, 492

counter (CTR), 491

for counters, 502-504

countup, 492

data input to a storage element, 492

demultiplexer (DMUX), 491

for digital logic circuits, 32

dynamic indicator input, 492

enable input, 492

even function or even parity element
(2k), 491

exclusive-OR gate or function
(=1),491

exponentiation operator (¥*), 356

flip-flop inputs, 492

for flip-flops, 497-499

logic negation input or output, 492

magnitude comparator (COMP), 491

of MOS transistor, 509

multiplexer (MUX), 491

multiplier (IT), 491

odd function or odd parity element
(2k+1), 491

open-collector output, 492

OR gate or function (=1),491

output with special amplification, 492

(I1), 55

for RAM, 504-505

random-access memory (RAM), 491

read-only memory (ROM), 491

STUDENTS-HUB.com

for registers, 499-502
ripple counter (RCTR), 491
semicolon (;), 112,174
shift left, 492
shift register (SRG), 491
shift right, 492
slashes (/), 111
three-state output, 492
Verilog HDL operators, 356
Synchronous counter:
BCD, 275
binary, 271-272
with parallel load, 276-278
up—down, 272-275
HDL for, 287-288
Synchronous sequential circuit, 191
Synchronous sequential logic:
clocked sequential circuits, analysis
of, 204-217
design of, 236-245
D flip-flops, analysis of, 210
flip-flop input equations, 209-210
JK flip-flops, analysis of, 210-213
Mealy and Moore models of finite
state machines, 214-217
state diagram of, 207-209
state equation of, 205-206
state table of, 206-207
structural description of, 228-230
T flip-flops, analysis of, 213-214
design procedure:
excitation table, 239-241
logic diagram of three-bit binary
counter, 245
maps for three-bit binary
counter, 245
using D flip-flops, 238-239
using JK flip-flops, 241-243
using 7 flip-flops, 243-245
HDL models:
behavioral modeling, 217-220
flip-flops and latches, 220-223
state diagram, 223-227
sequential circuits, 190-192
state assignment, 235-236
state reduction, 231-235
storage elements:
flip-flops, 196-204
latches, 193-196
System primitives, 116

T

table, 117

Tera (T) bytes, 5

Test bench, 109

T flip-flops, analysis of, 213-214

Uploaded By: Malak Dar Obaid

Theorems of Boolean algebra, 43-45
proofs, 44-45
Thermal agitation, impact on
semiconductor, 507
Three-input exclusive-OR gate, 64
Three-input NAND gate, 91
Three-state buffer gate, 162
Three-state buffers, 163
Three-state gates, 162-164, 169-170
Three-variable K-map, 75-76
$time, 178
timescale compiler, 113
Timing diagrams, 32
Timing verification, 110, 181
Transfer function, 60
Transfer of information, among
registers, 28-30
Transistors, 2
Transistor—transistor logic (TTL), 67
Trigger, 196
tri keyword, 170
Truth table, 31, 46, 52-53, 86, 109, 129
and Boolean algebra, 45
for the 16 functions of two binary
variables, 58
ROM, 317
T_Simple_Circuit_prop_delay, 114
T (toggle) flip-flop, 200-201
analysis, 213-214
characteristic equation, 203
characteristic table, 202
Two-level gating structure, 57
Two-level implementation, 56-57
of Boolean function, 91-93
Two-to-one-line multiplexer, 163, 174
Two-valued Boolean algebra, 41-43
definition, 41
rules of binary operation, 41-42
Two-variable K-map, 74-75

U

Unidirectional shift register, 264

Universal gate, 90

Universal NAND gate, 447

Universal shift register, 263-266

User-defined primitives (UDPs),
116-118

\

Vectors, 166

Verification, 181

Verilog 2001, 426

Verilog 2005, 426

Verilog HDL, 68,115, 118, 332,
354,438

Index 547

flowchart, 363
logical and relational operators, 357
logic operators for binary words, 357

Virtex™, 333, 344-346
Voltage-operated logic circuits, 31

Xilinx FPGA:
basic architecture, 333
configurable logic block

looping statements, 358-361
operator precedence, 359
operators, 355-358
register transfer operation, 354
switch-level modeling in, 517-520
Verilog module, 112
Verilog statements, 115
Verilog system tasks, 178-181
Very large-scale integration (VLSI)
circuits, 66-67, 126
gate array, 332
VHDL, 332

STUDENTS-HUB.com

w

while loop, 359
Wired-AND gate, 97
Wired logic, 97

wire keyword, 112,170, 179
$write, 178

X

XC2000, 333
XC3000,333
XC4000,333

(CLB), 334
distributed RAM, 334
enhancements, 337-339
interconnect lines of,

334-336
1/0 block (I0B), 337
series, 333
Spartan II, 340-344
Spartan XL chips, 339-340
Virtex, 344-346

XOR gate, 323
XOR operation, 315

Uploaded By: Malak Dar Obaid

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	1 Digital Systems and Binary Numbers
	1.1 Digital Systems
	1.2 Binary Numbers
	1.3 Number-Base Conversions
	1.4 Octal and Hexadecimal Numbers
	1.5 Complements of Numbers
	1.6 Signed Binary Numbers
	1.7 Binary Codes
	1.8 Binary Storage and Registers
	1.9 Binary Logic

	2 Boolean Algebra and Logic Gates
	2.1 Introduction
	2.2 Basic Definitions
	2.3 Axiomatic Definition of Boolean Algebra
	2.4 Basic Theorems and Properties of Boolean Algebra
	2.5 Boolean Functions
	2.6 Canonical and Standard Forms
	2.7 Other Logic Operations
	2.8 Digital Logic Gates
	2.9 Integrated Circuits

	3 Gate-Level Minimization
	3.1 Introduction
	3.2 The Map Method
	3.3 Four-Variable K-Map
	3.4 Product-of-Sums Simplification
	3.5 Don't-Care Conditions
	3.6 NAND and NOR Implementation
	3.7 Other Two-Level Implementations
	3.8 Exclusive-OR Function
	3.9 Hardware Description Language

	4 Combinational Logic
	4.1 Introduction
	4.2 Combinational Circuits
	4.3 Analysis Procedure
	4.4 Design Procedure
	4.5 Binary Adder–Subtractor
	4.6 Decimal Adder
	4.7 Binary Multiplier
	4.8 Magnitude Comparator
	4.9 Decoders
	4.10 Encoders
	4.11 Multiplexers
	4.12 HDL Models of Combinational Circuits

	5 Synchronous Sequential Logic
	5.1 Introduction
	5.2 Sequential Circuits
	5.3 Storage Elements: Latches
	5.4 Storage Elements: Flip-Flops
	5.5 Analysis of Clocked Sequential Circuits
	5.6 Synthesizable HDL Models of Sequential Circuits
	5.7 State Reduction and Assignment
	5.8 Design Procedure

	6 Registers and Counters
	6.1 Registers
	6.2 Shift Registers
	6.3 Ripple Counters
	6.4 Synchronous Counters
	6.5 Other Counters
	6.6 HDL for Registers and Counters

	7 Memory and Programmable Logic
	7.1 Introduction
	7.2 Random-Access Memory
	7.3 Memory Decoding
	7.4 Error Detection and Correction
	7.5 Read-Only Memory
	7.6 Programmable Logic Array
	7.7 Programmable Array Logic
	7.8 Sequential Programmable Devices

	8 Design at the Register Transfer Level
	8.1 Introduction
	8.2 Register Transfer Level Notation
	8.3 Register Transfer Level in HDL
	8.4 Algorithmic State Machines (ASMs)
	8.5 Design Example (ASMD Chart)
	8.6 HDL Description of Design Example
	8.7 Sequential Binary Multiplier
	8.8 Control Logic
	8.9 HDL Description of Binary Multiplier
	8.10 Design with Multiplexers
	8.11 Race-Free Design (Software Race Conditions)
	8.12 Latch-Free Design (Why Waste Silicon?)
	8.13 Other Language Features

	9 Laboratory Experiments with Standard ICs and FPGAs
	9.1 Introduction to Experiments
	9.2 Experiment 1: Binary and Decimal Numbers
	9.3 Experiment 2: Digital Logic Gates
	9.4 Experiment 3: Simplification of Boolean Functions
	9.5 Experiment 4: Combinational Circuits
	9.6 Experiment 5: Code Converters
	9.7 Experiment 6: Design with Multiplexers
	9.8 Experiment 7: Adders and Subtractors
	9.9 Experiment 8: Flip-Flops
	9.10 Experiment 9: Sequential Circuits
	9.11 Experiment 10: Counters
	9.12 Experiment 11: Shift Registers
	9.13 Experiment 12: Serial Addition
	9.14 Experiment 13: Memory Unit
	9.15 Experiment 14: Lamp Handball
	9.16 Experiment 15: Clock-Pulse Generator
	9.17 Experiment 16: Parallel Adder and Accumulator
	9.18 Experiment 17: Binary Multiplier
	9.19 Verilog HDL Simulation Experiments and Rapid Prototyping with FPGAs

	10 Standard Graphic Symbols
	10.1 Rectangular-Shape Symbols
	10.2 Qualifying Symbols
	10.3 Dependency Notation
	10.4 Symbols for Combinational Elements
	10.5 Symbols for Flip-Flops
	10.6 Symbols for Registers
	10.7 Symbols for Counters
	10.8 Symbol for RAM

	Appendix
	Answers to Selected Problems
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

