Birzeit University Faculty of Engineering Department of Electrical Engineering Information Theory and Coding ENEE 532 Final Exam

Instructor: Dr. Wael Hashlamoun Date: May 25, 2013

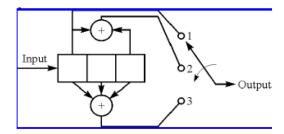
Problem 1: 22 Points

The generator matrix of a linear binary block code is

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

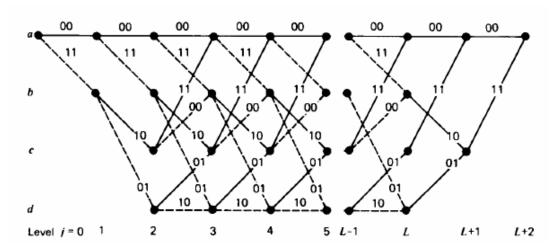
- a. Find the codeword corresponding to the message $\mathbf{m} = (1\ 0\ 1\ 0)$
- b. Find the code rate
- c. Find the corresponding parity check matrix, H, for this code.
- d. Construct the syndrome table for this code.
- e. If the received word is $\mathbf{r} = (1\ 1\ 1\ 0\ 0\ 0\ 1)$, find via syndrome decoding the codeword selected by the decoder and the corresponding message at the decoder output.

Problem 2: 18 Points


We want binary codes with length n = 255 and capable of correcting up to and including t = 3 errors.

- a. According to the sphere packing bound, what is the minimum number of parity bits needed to achieve this error correcting capability?
- b. How many erroneous bits can this code detect?

Problem 3: 22 Points


Consider the convolutional encoder depicted in Figure 1.

- a. Find the rate of the code
- b. Find the code corresponding to the message 10100
- c. Construct the trellis diagram for the encoder.

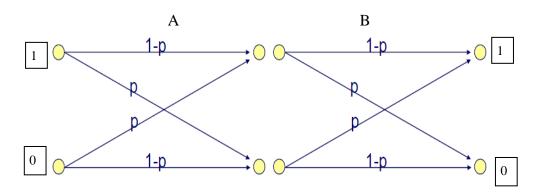
Problem 4: 18 Points

The trellis diagram of a convolutional encoder is shown in Figure 2.

Use the Viterbi algorithm to decode the received sequence 10 10 00 01

Remark: A solid line means a "0" input, while a dashed line means a "1" input.

Problem 5: 20 Points


Two binary symmetric channels A and B are connected in cascade as shown in the Figure 3 below

a. The capacity of the binary symmetric channel is given as

$$C = 1 + p \log_2 p + (1 - p) \log_2 (1 - p) = 1 - H(p)$$

Use this formula to find the capacity for p = 0.25.

b. By reducing the cascade into a single channel H, find the capacity of the new channel when p=0.25.

 $\mathsf{Good}\;\mathsf{Luck}$

Birzeit University

Faculty of Engineering and Technology Department of Electrical and Computer Engineering Information and Coding Theory ENEE 5304 Midterm Exam

Instructors: Dr. Wael Hashlamoun

Date: April 11, 2018

Problem 1: 22 Points

A discrete memory-less source produces six possible symbols with the following probabilities:

Symbol	A	В	С	D	Е	F
Probability	1/2	1/4	1/8	1/20	1/20	1/40

6 a. Find the source entropy.

b. Find a binary Huffman code for the source.

c. Find the average number of binary digits per source symbol for the Huffman code found in part b.

H=-0.50	log 0.5 -0.25 log 0.25 -	0.025 =	5-0.05 la	190105 ymbol
	7.5 5.0		0.5	P0.50
	1250 .25	0.75	0·25 -0·25	0.51
C 0	1125 01125			0
D °	.05.005-		B;	10
F o	.025		C: D!	110
L= (0.9	5)(1) + (0.75)(2) + 0. 0.05)(4) + (0.05)(5)		E: F:	11101
+	1. 95 bits/codeword			1

Uploaded By: Mohammad Awawdeh

Problem 2: 22 Points

A discrete memory-less source produces 7 possible symbols with the probabilities given in the table below. Also, given in the table is one possible code.

Symbol	A	В	С	D	Е	F	G
Probability	1/2	1/4	1/8	1/16	1/32	1/64	1/64
Code	0	10	110	1110	11110	111110	111111

- 5 a. Find the amount of information (in bits) produced by symbol E.
- b. Find the average amount of information in a message consisting of eight symbols produced by the source.
- c. Does there exists a prefix-free code with an average length smaller than that given in the table? Explain
- d. If a fixed length code is used, find the required number of binary digits per source symbol.
- e. Find the minimum achievable average number of binary digits per symbol source if a fixed length code is used.

a.
$$T_{E} = -\log_{2} P(E) = -\log_{2} \frac{1}{32} = 5$$
 bits

b. $H = -\sum_{0} p_{0} \log_{2} p_{0} = p_{0} + \sum_{0} (1) + \sum_{0} (2) + \sum_{0} (3) + (\frac{1}{16}) (4)$
 $H = 1.068$ bits/symbol

 $T_{E} = 8 + 1 + 3 = 8 (1.968) = 1.968$ bits/symbol

 $T_{E} = 1.968$
 $T_{E} = 1.968$

Since $T_{E} = 1.968$
 $T_{E} = 1$

Problem 3: 20 Points

Give the Lempel-Ziv parsing and encoding of the binary data sequence 010000000110101101010101. Here, you need to find the different sentences in the dictionary and their respective code words.

0,1,00,000,0001,10,101,1010,10101,

1	<u>O</u>	(0,0) 00000
2	1	(0,0) = -00001 $(1,0) = -00010$
3	00	(1,0) 00110 (3,0) 0001
	000	(3,0)
	0001	(2,0)00100
	101	
	1010	(6/1) $(7/0)$ $(7/0)$ $(7/0)$

9 10101

Problem 4: 20 Points

Let X and Y be two independent random variables with the following marginal probability mass functions:

$$P(X) = \begin{cases} 1/3, & x = 1 \\ 1/3, & x = 2 \\ 1/3, & x = 3 \end{cases}$$

$$Q(Y) = \begin{cases} 5/10, & y = 1 \\ 3/10, & y = 2 \\ 2/10, & y = 3 \end{cases}$$
2 a. Find the mutual information $I(X; Y)$ between X and Y.

b. Define the product of X and Y as: $Z = XY$. Find $H(Z)$, the entropy of Z.

c. Find the relative entropy (divergence) between X and Y defined as:

$$\frac{3}{4} = \frac{3}{4} = \frac{3}{4}$$

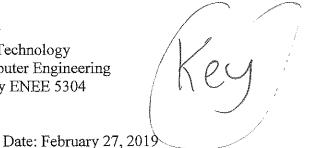
$$D(X,Y) = \sum_{i=1}^{3} p_i \log_2\left(\frac{p_i}{q_i}\right)$$

a.
$$\exists (x, y) = \sum_{x} \int_{y} p(x, y) \log_{x} \frac{p(x, y)}{p(x)} p(y)$$

since x and y are independent, then $p(x, y) = p(x) p(y)$
 $\Rightarrow \exists (x, y) = \sum_{x} \int_{y} p(x) p(y) \log_{x} \frac{p(x, y)}{p(x)} p(y) = 0$

b.
$$H(Z) = H(x) + H(y)$$
 idne to independence
 $H(x) = \left(-\frac{1}{3} \left(\frac{1}{2} \frac{1}{3}\right) 3 = log_2 3 = 1.584 \text{ bity} \text{ symbol}$
 $H(y) = -\frac{5}{10} \log \frac{5}{10} - \frac{3}{10} \log_2 \frac{3}{10} - \frac{2}{10} \log_2 \frac{2}{10} = 1.485 \text{ bity} \text{ symbol}$

$$\Rightarrow H(z) = 3.069$$


$$\Rightarrow D(x/y) = \frac{1}{3} \log_2 \frac{0.333}{0.5} + \frac{1}{3} \log_2 \frac{0.3333}{0.3} + \frac{1}{3} \log_2 \frac{0.3333}{0.2}$$

Birzeit University

Faculty of Engineering and Technology Department of Electrical and Computer Engineering Information and Coding Theory ENEE 5304

Quiz#1

Instructors: Dr. Wael Hashlamoun

Problem

A discrete memoryless source emits one of the six symbols every time unit with the following probabilities:

2 I	productives.							
_	a	ь	С	d	e	f		
	0.36	0.18	0.18	0.15	0.08	0.05		

- Find the amount of information contained in symbol a
- b. Find the amount of information contained in the message (a, e)

$$C \cdot H = C \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \log_{2} \beta_{i}^{j}$$

$$= -\sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \log_{2} \beta_{i}^{j} + 0.15 \ln 0.36 + 0.18 \ln 0.18 + 0.18 \ln 0.18$$

$$+ 0.15 \ln 0.15 + 0.08 \ln 0.08 + 0.05 \ln 0.05$$

$$= \frac{1.621}{\ln 2} = 2.33 \text{ of bits symbol}$$

Birzeit University

Faculty of Engineering and Technology Department of Electrical and Computer Engineering Information and Coding Theory ENEE 5304 Ouiz#2

Instructors: Dr. Wael Hashlamoun

Date: April 24, 2019

Problem 1: Find the capacity of the binary symmetric channel when P(1|0) =

Problem 1: Find the capacity of the binary symmetric channel when
$$P(1|0) = P(0|1) = 0.1$$

$$C = 1 + \sum_{p} \log_p P + (1-p) \log_p C(1-p)$$

$$= 1 + \sum_{p} \log_p P + (1-p) \log_p C(1-p)$$

$$= 1 - (0.23 + 0.092)$$

$$= 1 - (0.23 + 0.092)$$

$$= 1 - (0.23 + 0.092)$$

$$= 1 - (0.23 + 0.092)$$

$$= 1 - (0.23 + 0.092)$$

$$= 1 - (0.23 + 0.092)$$

$$= 0.532 \text{ bit} / \text{symbol} (\text{transmission})$$

Problem 2:

Find the capacity of a continuous channel with a bandwidth of 3.3 KHz and signal to noise ratio of 40 dB.

noise ratio of 40 dB.

$$40 dB = 10 log SNR \Rightarrow (SNR) = \frac{40}{10} = 40$$
 $\Rightarrow SNR = 10^4 = 10,000 ()$
 $C = Wlog (1+ SNR) ()$
 $= (3.3) \times 10^3 log (1+ lp,000)$
 $C = 43.84 k bits | Sec ()$

Birzeit University Faculty of Engineering and Technology Department of Electrical and Computer Engineering Information and Coding Theory ENEE 5304 Quiz # 3

Instructors: Dr. Wael Hashlamoun Date: May 20, 2019

Problem

Consider the (6, 3) linear block code.

a. Can this code correct a single bit in error? Verify your answer

b. How many different codewords does this code generate? Justify

c. Can we select 000001 as a codeword? Explain

d. Use Hamming Bound

4 $2^{\times} \sum_{s=0}^{t} {\binom{n}{s}} \leq 2^{n} \Rightarrow 2^{3} (1+\binom{6}{s}) \leq 2^{6}$ $2^{3}(7) \leq 2^{6} \Rightarrow 5^{6} \leq 6^{4}$ $2^{3}(7) \leq 2^{6} \Rightarrow 5^{6} \leq 6^{4}$ YES, it can correct a single ewor.

YES, it can correct a single ewor.

Let $2^{3} = 2^{3}$

Problem 2: 20 Points

A discrete memory-less source produces one of 7 possible symbols every time unit with the probabilities given in the table below. Also, given in the table is one possible code.

Symbol	A	В	С	D	Е	F	G
Probability	1/2	1/4	1/8	1/16	1/32	1/64	1/64
Code	0	10	110	1110	11110	111110	111111

- a. Find the source entropy in bits/symbol.
- b. Find the average number of bits/codeword.
- c. Does there exists a prefix-free code with an average length smaller than that given in the table? Explain

- 4 d. Is it possible to reduce the average number of bits/symbol by combining two symbols together to form one message? Explain
 - e. If a fixed length code is used, find the minimum achievable average number of

$$= \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{16}(4) + \frac{1}{32}(5) + \frac{2}{64}(6)$$

a. = 1.968 bits/symbol

b.
$$L = \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{16}(4) + \frac{1}{72}(5) + \frac{1}{64}(6) + \frac{1}{64}(6)$$
 $L = \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{16}(4) + \frac{1}{72}(5) + \frac{1}{64}(6) + \frac{1}{64}(6)$
 $L = \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{16}(4) + \frac{1}{72}(5) + \frac{1}{64}(6) + \frac{1}{64}(6)$
 $L = \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{16}(4) + \frac{1}{72}(5) + \frac{1}{64}(6) + \frac{1}{64}(6)$
 $L = \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{16}(4) + \frac{1}{72}(5) + \frac{1}{64}(6) + \frac{1}{64}(6)$
 $L = \frac{1}{2}(1) + \frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{16}(4) + \frac{1}{72}(5) + \frac{1}{64}(6) + \frac{1}{64}(6)$

This is the smallest average

Problem 3: 20 Points

Consider the binary sequence:

0100000001101010101010101 Find the Lempel-Ziv code corresponding to this sequence. Here, you need to find the different sentences in the dictionary and show their respective code words.

Dictionally 612 forther 6000 0 1 0 (010) 6000 0 2 (011) 0001 0 3 00 (110) 0001 0 4 000 (310) 00110 5 0001 (411) 0100 1 6 10 (710) 0110 0 6 10 (710) 0110 0 7 1010 (710) 01110	8X215=20		(position, new)	a deword
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	positio-	Dictionary	code formal	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	(0,0)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			0000
3 00 (110) 00010 4 000 (310) 00110 01001 (41) 01001 (210) 01100 (611) 01100 (710) 01110 (710) 01110 (710) 01110		1	(0/1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		2 x	00010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	00	(1102	
4 000 (37°) 5 0001 (41) 0100 1 6 10 (270) 0010 0 7 1010 (410) 0111 0 7 1010 (411) 1000 1			(0 = 1)	00110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	000	(310)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T		(411)	01001
6 10 (6/1) 0110 1 7 (710) 01110 8 (8/1) 1000 1	5	0001		20100
7 (6/1) 0(10. (7:0) 01110 (8/1) 1000 1			(210)	
7 (710) (710) 0 11 1 0 6 (8) 1) (8) 1)	6	10		01101
4 (716) (716) (811)		101	(6/1)	
4 (811)	7		(7,6)	01110
10101	.1	1010		1000
10101	8	1	(811)	
	a	10101		

Problem 4: 20 Points

Let X and Y be two random variables related through the following joint probability

inction	1:	0.3	0.34	0.36
	Y	0	1	2
A	X			
0.16	0	0.1	0.06	0
0.16	1	0	0.28	0.06
0.5	2	0.2	0	0.3

a. Find the entropies H(X) and H(Y).
b. Find the relative entropy (divergence) between X and Y defined as:

$$D(X,Y) = \sum_{i=1}^{3} p_i log_2\left(\frac{p_i}{q_i}\right)$$

c. Under what conditions can the relative entropy be negative?

a.
$$H(x) = -\frac{1}{2} \sum_{i} \log_{2} p_{i} = -\frac{1}{2} \sum_{i} \left[0.16 \ln 0.16 + 0.34 \ln 0.34 + 0.54 \ln 0.36 \right]$$

H(x) = 1.452

H(y) = $-\frac{1}{2} \sum_{i} \log_{2} p_{i} = -\frac{1}{2} \sum_{i} \left[0.34 \ln 0.34 \ln 0.34 + 0.364 \ln 0.36 \right]$

H(y) = 1.5808

b. $D(x)y) = 0.16 \log_{2} \frac{0.16}{0.3} + 0.34 \log_{2} \frac{0.34}{0.34} + 0.5 \log_{2} \frac{0.5}{0.36}$

Then $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_$

Birzeit University Faculty of Engineering and Technology Department of Electrical and Computer Engineering Information and Coding Theory ENEE 5304 Final Exam

Instructors: Dr. Wael Hashlamoun Date: June 4, 2017

Problem 1: 18 Points

A discrete memoryless source emits one of the following symbols every time unit with the given probabilities

Letter	Probability
A	1/2
В	1/4
C	1/8
D	1/16
Е	1/16

- a. Construct an efficient, uniquely decodable binary code, having the prefix-free property and having the shortest possible average code length per symbol.
- b. How do you know that your code has the shortest possible average code length per symbol?

Problem 2: 18 Points

Consider the data sequence 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1, which will be encoded using the Limpel-Ziv algorithm

- a. Parse the data into different phrases to create the dictionary
- b. How many bits are needed to represent each phrase?
- c. Find the codeword for each phrase

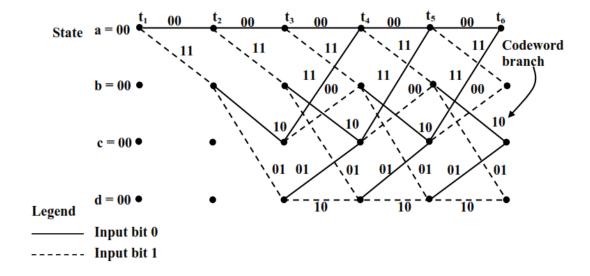
Problem 3: 22 Points

Given the generator matrix of a linear block code

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- a. How many codewords can this code generate?
- b. Find the codeword for the message (1000)
- c. Find the associated parity check matrix H^T
- d. Generate the syndrome table for single error correction
- e. If the sequence 1100011 is received, use the syndrome table of Part d to find the correct codeword

Problem 4: 22 Points

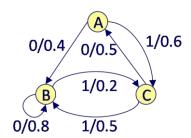

Suppose a cyclic redundancy check (CRC) code uses the prime generator polynomial $g(x) = x^3 + x + 1$.

- a. Generate the CRC bits for the message 1101
- b. If the received sequence is 0001111, will the receiver accept is as a codeword?
- c. If s(x) is the transmitted sequence, y(x) the received sequence, and e(x) the error sequence, then y(x) = s(x) + e(x). You know that: remainder (s(x)/g(x)) = 0. Use this information to find out if this polynomial is able to detect the error pattern 0001011? Verify
- d. Can this CRC code detect a single error with a 100% certainty? Explain

Problem 5: 20 Points

The trellis diagram of a convolutional encoder is shown in the figure below.

- a. If state a is 00, find states b, c, and d
- b. Use the trellis diagram to find the codeword corresponding to the message 10100 assuming the encoder starts at the 00 state
- c. Use the Viterbi decoding algorithm to find the most likely data sequence corresponding to the received sequence (10,10,00,10,11)



Good Luck

Birzeit University Faculty of Engineering and Technology Department of Electrical and Computer Engineering Information and Coding Theory ENEE 5304 Midterm Makeup Exam

Problem 1:

A stationary discrete Markov source can be in any one of three states, A, B, or C. When it is in any one of the states it emits either a 1 or a 0 with probabilities as shown in the figure below.

- a. Find the steady state probabilities of the states A, B, and C
- b. Find the source entropy.

Problem 2:

The joint probability mass function of two random variables X and Y is shown in the table below.

		Y		
		2	3	
v	0	0.45	0.12	
X	1	0.15	0.28	

- a. Find H(X)
- b. Find I(X; Y)