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2

Preface

These are my own solutions to the problems in Introduction to Quantum Mechanics, 2nd ed. I have made every
effort to insure that they are clear and correct, but errors are bound to occur, and for this I apologize in advance.
I would like to thank the many people who pointed out mistakes in the solution manual for the first edition,
and encourage anyone who finds defects in this one to alert me (griffith@reed.edu). I’ll maintain a list of errata
on my web page (http://academic.reed.edu/physics/faculty/griffiths.html), and incorporate corrections in the
manual itself from time to time. I also thank my students at Reed and at Smith for many useful suggestions,
and above all Neelaksh Sadhoo, who did most of the typesetting.

At the end of the manual there is a grid that correlates the problem numbers in the second edition with
those in the first edition.

David Griffiths
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CHAPTER 1. THE WAVE FUNCTION 3

Chapter 1

The Wave Function

Problem 1.1

(a)

〈j〉2 = 212 = 441.

〈j2〉 =
1
N

∑
j2N(j) =

1
14

[
(142) + (152) + 3(162) + 2(222) + 2(242) + 5(252)

]
=

1
14

(196 + 225 + 768 + 968 + 1152 + 3125) =
6434
14

= 459.571.

(b)

j ∆j = j − 〈j〉
14 14− 21 = −7
15 15− 21 = −6
16 16− 21 = −5
22 22− 21 = 1
24 24− 21 = 3
25 25− 21 = 4

σ2 =
1
N

∑
(∆j)2N(j) =

1
14

[
(−7)2 + (−6)2 + (−5)2 · 3 + (1)2 · 2 + (3)2 · 2 + (4)2 · 5

]
=

1
14

(49 + 36 + 75 + 2 + 18 + 80) =
260
14

= 18.571.

σ =
√

18.571 = 4.309.

(c)

〈j2〉 − 〈j〉2 = 459.571− 441 = 18.571. [Agrees with (b).]

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


4 CHAPTER 1. THE WAVE FUNCTION

Problem 1.2

(a)

〈x2〉 =
∫ h

0

x2 1
2
√
hx

dx =
1

2
√
h

(
2
5
x5/2

)∣∣∣∣h
0

=
h2

5
.

σ2 = 〈x2〉 − 〈x〉2 =
h2

5
−

(
h

3

)2

=
4
45

h2 ⇒ σ =
2h

3
√

5
= 0.2981h.

(b)

P = 1−
∫ x+

x−

1
2
√
hx

dx = 1− 1
2
√
h

(2
√
x)

∣∣∣∣x+

x−

= 1− 1√
h

(√
x+ −

√
x−

)
.

x+ ≡ 〈x〉+ σ = 0.3333h + 0.2981h = 0.6315h; x− ≡ 〈x〉 − σ = 0.3333h− 0.2981h = 0.0352h.

P = 1−
√

0.6315 +
√

0.0352 = 0.393.

Problem 1.3

(a)

1 =
∫ ∞
−∞

Ae−λ(x−a)2dx. Let u ≡ x− a, du = dx, u : −∞→∞.

1 = A

∫ ∞
−∞

e−λu2
du = A

√
π

λ
⇒ A =

√
λ

π
.

(b)

〈x〉 = A

∫ ∞
−∞

xe−λ(x−a)2dx = A

∫ ∞
−∞

(u + a)e−λu2
du

= A

[∫ ∞
−∞

ue−λu2
du + a

∫ ∞
−∞

e−λu2
du

]
= A

(
0 + a

√
π

λ

)
= a.

〈x2〉 = A

∫ ∞
−∞

x2e−λ(x−a)2dx

= A

{∫ ∞
−∞

u2e−λu2
du + 2a

∫ ∞
−∞

ue−λu2
du + a2

∫ ∞
−∞

e−λu2
du

}
= A

[
1
2λ

√
π

λ
+ 0 + a2

√
π

λ

]
= a2 +

1
2λ

.

σ2 = 〈x2〉 − 〈x〉2 = a2 +
1
2λ
− a2 =

1
2λ

; σ =
1√
2λ

.
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CHAPTER 1. THE WAVE FUNCTION 5

(c)

A

xa

ρ(x)

Problem 1.4

(a)

1 =
|A|2
a2

∫ a

0

x2dx +
|A|2

(b− a)2

∫ b

a

(b− x)2dx = |A|2
{

1
a2

(
x3

3

)∣∣∣∣a
0

+
1

(b− a)2

(
− (b− x)3

3

)∣∣∣∣b
a

}

= |A|2
[
a

3
+

b− a

3

]
= |A|2 b

3
⇒ A =

√
3
b
.

(b)

xa

A

b

Ψ

(c) At x = a.

(d)

P =
∫ a

0

|Ψ|2dx =
|A|2
a2

∫ a

0

x2dx = |A|2 a
3

=
a

b
.

{
P = 1 if b = a, �
P = 1/2 if b = 2a. �

(e)

〈x〉 =
∫

x|Ψ|2dx = |A|2
{

1
a2

∫ a

0

x3dx +
1

(b− a)2

∫ b

a

x(b− x)2dx
}

=
3
b

{
1
a2

(
x4

4

)∣∣∣∣a
0

+
1

(b− a)2

(
b2

x2

2
− 2b

x3

3
+

x4

4

)∣∣∣∣b
a

}

=
3

4b(b− a)2
[
a2(b− a)2 + 2b4 − 8b4/3 + b4 − 2a2b2 + 8a3b/3− a4

]
=

3
4b(b− a)2

(
b4

3
− a2b2 +

2
3
a3b

)
=

1
4(b− a)2

(b3 − 3a2b + 2a3) =
2a + b

4
.
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6 CHAPTER 1. THE WAVE FUNCTION

Problem 1.5

(a)

1 =
∫
|Ψ|2dx = 2|A|2

∫ ∞
0

e−2λxdx = 2|A|2
(
e−2λx

−2λ

)∣∣∣∣∞
0

=
|A|2
λ

; A =
√
λ.

(b)

〈x〉 =
∫

x|Ψ|2dx = |A|2
∫ ∞
−∞

xe−2λ|x|dx = 0. [Odd integrand.]

〈x2〉 = 2|A|2
∫ ∞

0

x2e−2λxdx = 2λ
[

2
(2λ)3

]
=

1
2λ2

.

(c)

σ2 = 〈x2〉 − 〈x〉2 =
1

2λ2
; σ =

1√
2λ

. |Ψ(±σ)|2 = |A|2e−2λσ = λe−2λ/
√

2λ = λe−
√

2 = 0.2431λ.

|Ψ|2
λ

σ−σ +
x

.24λ

Probability outside:

2
∫ ∞

σ

|Ψ|2dx = 2|A|2
∫ ∞

σ

e−2λxdx = 2λ
(
e−2λx

−2λ

)∣∣∣∣∞
σ

= e−2λσ = e−
√

2 = 0.2431.

Problem 1.6

For integration by parts, the differentiation has to be with respect to the integration variable – in this case the
differentiation is with respect to t, but the integration variable is x. It’s true that

∂

∂t
(x|Ψ|2) =

∂x

∂t
|Ψ|2 + x

∂

∂t
|Ψ|2 = x

∂

∂t
|Ψ|2,

but this does not allow us to perform the integration:∫ b

a

x
∂

∂t
|Ψ|2dx =

∫ b

a

∂

∂t
(x|Ψ|2)dx �= (x|Ψ|2)

∣∣b
a
.
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CHAPTER 1. THE WAVE FUNCTION 7

Problem 1.7

From Eq. 1.33, d〈p〉
dt = −i�

∫
∂
∂t

(
Ψ∗ ∂Ψ

∂x

)
dx. But, noting that ∂2Ψ

∂x∂t = ∂2Ψ
∂t∂x and using Eqs. 1.23-1.24:

∂

∂t

(
Ψ∗

∂Ψ
∂x

)
=

∂Ψ∗

∂t

∂Ψ
∂x

+ Ψ∗
∂

∂x

(
∂Ψ
∂t

)
=

[
− i�

2m
∂2Ψ∗

∂x2
+

i

�
V Ψ∗

]
∂Ψ
∂x

+ Ψ∗
∂

∂x

[
i�

2m
∂2Ψ
∂x2

− i

�
V Ψ

]
=

i�

2m

[
Ψ∗

∂3Ψ
∂x3

− ∂2Ψ∗

∂x2

∂Ψ
∂x

]
+

i

�

[
V Ψ∗

∂Ψ
∂x

−Ψ∗
∂

∂x
(V Ψ)

]
The first term integrates to zero, using integration by parts twice, and the second term can be simplified to
V Ψ∗ ∂Ψ

∂x −Ψ∗V ∂Ψ
∂x −Ψ∗ ∂V

∂x Ψ = −|Ψ|2 ∂V
∂x . So

d〈p〉
dt

= −i�

(
i

�

) ∫
−|Ψ|2 ∂V

∂x
dx = 〈−∂V

∂x
〉. QED

Problem 1.8

Suppose Ψ satisfies the Schrödinger equation without V0: i�∂Ψ
∂t = − �

2

2m
∂2Ψ
∂x2 + V Ψ. We want to find the solution

Ψ0 with V0: i�∂Ψ0
∂t = − �

2

2m
∂2Ψ0
∂x2 + (V + V0)Ψ0.

Claim: Ψ0 = Ψe−iV0t/�.

Proof: i�∂Ψ0
∂t = i�∂Ψ

∂t e
−iV0t/� + i�Ψ

(
− iV0

�

)
e−iV0t/� =

[
− �

2

2m
∂2Ψ
∂x2 + V Ψ

]
e−iV0t/� + V0Ψe−iV0t/�

= − �
2

2m
∂2Ψ0
∂x2 + (V + V0)Ψ0. QED

This has no effect on the expectation value of a dynamical variable, since the extra phase factor, being inde-
pendent of x, cancels out in Eq. 1.36.

Problem 1.9

(a)

1 = 2|A|2
∫ ∞

0

e−2amx2/�dx = 2|A|2 1
2

√
π

(2am/�)
= |A|2

√
π�

2am
; A =

(
2am
π�

)1/4

.

(b)

∂Ψ
∂t

= −iaΨ;
∂Ψ
∂x

= −2amx

�
Ψ;

∂2Ψ
∂x2

= −2am
�

(
Ψ + x

∂Ψ
∂x

)
= −2am

�

(
1− 2amx2

�

)
Ψ.

Plug these into the Schrödinger equation, i�∂Ψ
∂t = − �

2

2m
∂2Ψ
∂x2 + V Ψ:

V Ψ = i�(−ia)Ψ +
�

2

2m

(
−2am

�

) (
1− 2amx2

�

)
Ψ

=
[
�a− �a

(
1− 2amx2

�

)]
Ψ = 2a2mx2Ψ, so V (x) = 2ma2x2.
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8 CHAPTER 1. THE WAVE FUNCTION

(c)

〈x〉 =
∫ ∞
−∞

x|Ψ|2dx = 0. [Odd integrand.]

〈x2〉 = 2|A|2
∫ ∞

0

x2e−2amx2/�dx = 2|A|2 1
22(2am/�)

√
π�

2am
=

�

4am
.

〈p〉 = m
d〈x〉
dt

= 0.

〈p2〉 =
∫

Ψ∗
(

�

i

∂

∂x

)2

Ψdx = −�
2

∫
Ψ∗

∂2Ψ
∂x2

dx

= −�
2

∫
Ψ∗

[
−2am

�

(
1− 2amx2

�

)
Ψ

]
dx = 2am�

{∫
|Ψ|2dx− 2am

�

∫
x2|Ψ|2dx

}
= 2am�

(
1− 2am

�
〈x2〉

)
= 2am�

(
1− 2am

�

�

4am

)
= 2am�

(
1
2

)
= am�.

(d)

σ2
x = 〈x2〉 − 〈x〉2 =

�

4am
=⇒ σx =

√
�

4am
; σ2

p = 〈p2〉 − 〈p〉2 = am� =⇒ σp =
√
am�.

σxσp =
√

�

4am

√
am� = �

2 . This is (just barely) consistent with the uncertainty principle.

Problem 1.10

From Math Tables: π = 3.141592653589793238462643 · · ·

(a)
P (0) = 0 P (1) = 2/25 P (2) = 3/25 P (3) = 5/25 P (4) = 3/25
P (5) = 3/25 P (6) = 3/25 P (7) = 1/25 P (8) = 2/25 P (9) = 3/25

In general, P (j) = N(j)
N .

(b) Most probable: 3. Median: 13 are ≤ 4, 12 are ≥ 5, so median is 4.

Average: 〈j〉 = 1
25 [0 · 0 + 1 · 2 + 2 · 3 + 3 · 5 + 4 · 3 + 5 · 3 + 6 · 3 + 7 · 1 + 8 · 2 + 9 · 3]

= 1
25 [0 + 2 + 6 + 15 + 12 + 15 + 18 + 7 + 16 + 27] = 118

25 = 4.72.

(c) 〈j2〉 = 1
25 [0 + 12 · 2 + 22 · 3 + 32 · 5 + 42 · 3 + 52 · 3 + 62 · 3 + 72 · 1 + 82 · 2 + 92 · 3]

= 1
25 [0 + 2 + 12 + 45 + 48 + 75 + 108 + 49 + 128 + 243] = 710

25 = 28.4.

σ2 = 〈j2〉 − 〈j〉2 = 28.4− 4.722 = 28.4− 22.2784 = 6.1216; σ =
√

6.1216 = 2.474.
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CHAPTER 1. THE WAVE FUNCTION 9

Problem 1.11

(a) Constant for 0 ≤ θ ≤ π, otherwise zero. In view of Eq. 1.16, the constant is 1/π.

ρ(θ) =
{

1/π, if 0 ≤ θ ≤ π,
0, otherwise.

1/π

−π/2 0 π 3π/2

ρ(θ)

θ

(b)

〈θ〉 =
∫

θρ(θ) dθ =
1
π

∫ π

0

θdθ =
1
π

(
θ2

2

)∣∣∣∣π
0

=
π

2
[of course].

〈θ2〉 =
1
π

∫ π

0

θ2 dθ =
1
π

(
θ3

3

)∣∣∣∣π
0

=
π2

3
.

σ2 = 〈θ2〉 − 〈θ〉2 =
π2

3
− π2

4
=

π2

12
; σ =

π

2
√

3
.

(c)

〈sin θ〉 =
1
π

∫ π

0

sin θ dθ =
1
π

(− cos θ)|π0 =
1
π

(1− (−1)) =
2
π

.

〈cos θ〉 =
1
π

∫ π

0

cos θ dθ =
1
π

(sin θ)|π0 = 0.

〈cos2 θ〉 =
1
π

∫ π

0

cos2 θ dθ =
1
π

∫ π

0

(1/2)dθ =
1
2
.

[Because sin2 θ + cos2 θ = 1, and the integrals of sin2 and cos2 are equal (over suitable intervals), one can
replace them by 1/2 in such cases.]

Problem 1.12

(a) x = r cos θ ⇒ dx = −r sin θ dθ. The probability that the needle lies in range dθ is ρ(θ)dθ = 1
πdθ, so the

probability that it’s in the range dx is

ρ(x)dx =
1
π

dx

r sin θ
=

1
π

dx

r
√

1− (x/r)2
=

dx

π
√
r2 − x2

.
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10 CHAPTER 1. THE WAVE FUNCTION

ρ(x)

xr 2r-r-2r

∴ ρ(x) =
{ 1

π
√

r2−x2 , if − r < x < r,

0, otherwise.
[Note: We want the magnitude of dx here.]

Total:
∫ r

−r
1

π
√

r2−x2 dx = 2
π

∫ r

0
1√

r2−x2 dx = 2
π sin−1 x

r

∣∣r
0

= 2
π sin−1(1) = 2

π · π
2 = 1.�

(b)

〈x〉 =
1
π

∫ r

−r

x
1√

r2 − x2
dx = 0 [odd integrand, even interval].

〈x2〉 =
2
π

∫ r

0

x2

√
r2 − x2

dx =
2
π

[
−x

2

√
r2 − x2 +

r2

2
sin−1

(x

r

)]∣∣∣∣r
0

=
2
π

r2

2
sin−1(1) =

r2

2
.

σ2 = 〈x2〉 − 〈x〉2 = r2/2 =⇒ σ = r/
√

2.

To get 〈x〉 and 〈x2〉 from Problem 1.11(c), use x = r cos θ, so 〈x〉 = r〈cos θ〉 = 0, 〈x2〉 = r2〈cos2 θ〉 = r2/2.

Problem 1.13

Suppose the eye end lands a distance y up from a line (0 ≤ y < l), and let x be the projection along that same
direction (−l ≤ x < l). The needle crosses the line above if y + x ≥ l (i.e. x ≥ l − y), and it crosses the line
below if y + x < 0 (i.e. x < −y). So for a given value of y, the probability of crossing (using Problem 1.12) is

P (y) =
∫ −y

−l

ρ(x)dx +
∫ l

l−y

ρ(x)dx =
1
π

{∫ −y

−l

1√
l2 − x2

dx +
∫ l

l−y

1√
l2 − x2

dx

}

=
1
π

{
sin−1

(x

l

)∣∣∣−y

−l
+ sin−1

(x

l

)∣∣∣l
l−y

}
=

1
π

[
− sin−1(y/l) + 2 sin−1(1)− sin−1(1− y/l)

]
= 1− sin−1(y/l)

π
− sin−1(1− y/l)

π
.

Now, all values of y are equally likely, so ρ(y) = 1/l, and hence the probability of crossing is

P =
1
πl

∫ l

0

[
π − sin−1

(y

l

)
− sin−1

(
l − y

l

)]
dy =

1
πl

∫ l

0

[
π − 2 sin−1(y/l)

]
dy

=
1
πl

[
πl − 2

(
y sin−1(y/l) + l

√
1− (y/l)2

)∣∣∣l
0

]
= 1− 2

πl
[l sin−1(1)− l] = 1− 1 +

2
π

=
2
π

.
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CHAPTER 1. THE WAVE FUNCTION 11

Problem 1.14

(a) Pab(t) =
∫ b

a
|Ψ(x, t)2dx, so dPab

dt =
∫ b

a
∂
∂t |Ψ|2dx. But (Eq. 1.25):

∂|Ψ|2
∂t

=
∂

∂x

[
i�

2m

(
Ψ∗

∂Ψ
∂x

− ∂Ψ∗

∂x
Ψ

)]
= − ∂

∂t
J(x, t).

∴ dPab

dt
= −

∫ b

a

∂

∂x
J(x, t)dx = − [J(x, t)]|ba = J(a, t)− J(b, t). QED

Probability is dimensionless, so J has the dimensions 1/time, and units seconds−1.

(b) Here Ψ(x, t) = f(x)e−iat, where f(x) ≡ Ae−amx2/�, so Ψ∂Ψ∗

∂x = fe−iat df
dxe

iat = f df
dx ,

and Ψ∗ ∂Ψ
∂x = f df

dx too, so J(x, t) = 0.

Problem 1.15

(a) Eq. 1.24 now reads ∂Ψ∗

∂t = − i�
2m

∂2Ψ∗

∂x2 + i
�
V ∗Ψ∗, and Eq. 1.25 picks up an extra term:

∂

∂t
|Ψ|2 = · · ·+ i

�
|Ψ|2(V ∗ − V ) = · · ·+ i

�
|Ψ|2(V0 + iΓ− V0 + iΓ) = · · · − 2Γ

�
|Ψ|2,

and Eq. 1.27 becomes dP
dt = − 2Γ

�

∫∞
−∞ |Ψ|2dx = − 2Γ

�
P . QED

(b)

dP

P
= −2Γ

�
dt =⇒ lnP = −2Γ

�
t + constant =⇒ P (t) = P (0)e−2Γt/�, so τ =

�

2Γ
.

Problem 1.16

Use Eqs. [1.23] and [1.24], and integration by parts:

d

dt

∫ ∞
−∞

Ψ∗1Ψ2 dx =
∫ ∞
−∞

∂

∂t
(Ψ∗1Ψ2) dx =

∫ ∞
−∞

(
∂Ψ∗1
∂t

Ψ2 + Ψ∗1
∂Ψ2

∂t

)
dx

=
∫ ∞
−∞

[(−i�

2m
∂2Ψ∗1
∂x2

+
i

�
V Ψ∗1

)
Ψ2 + Ψ∗1

(
i�

2m
∂2Ψ2

∂x2
− i

�
V Ψ2

)]
dx

= − i�

2m

∫ ∞
−∞

(
∂2Ψ∗1
∂x2

Ψ2 −Ψ∗1
∂2Ψ2

∂x2

)
dx

= − i�

2m

[
∂Ψ∗1
∂x

Ψ2

∣∣∣∣∞
−∞

−
∫ ∞
−∞

∂Ψ∗1
∂x

∂Ψ2

∂x
dx− Ψ∗1

∂Ψ2

∂x

∣∣∣∣∞
−∞

+
∫ ∞
−∞

∂Ψ∗1
∂x

∂Ψ2

∂x
dx

]
= 0. QED
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12 CHAPTER 1. THE WAVE FUNCTION

Problem 1.17

(a)

1 = |A|2
∫ a

−a

(
a2 − x2

)2
dx = 2|A|2

∫ a

0

(
a4 − 2a2x2 + x4

)
dx = 2|A|2

[
a4x− 2a2x

3

3
+

x5

5

]∣∣∣∣a
0

= 2|A|2a5

(
1− 2

3
+

1
5

)
=

16
15

a5|A|2, so A =

√
15

16a5
.

(b)

〈x〉 =
∫ a

−a

x|Ψ|2 dx = 0. (Odd integrand.)

(c)

〈p〉 =
�

i
A2

∫ a

−a

(
a2 − x2

) d

dx

(
a2 − x2

)
︸ ︷︷ ︸

−2x

dx = 0. (Odd integrand.)

Since we only know 〈x〉 at t = 0 we cannot calculate d〈x〉/dt directly.

(d)

〈x2〉 = A2

∫ a

−a

x2
(
a2 − x2

)2
dx = 2A2

∫ a

0

(
a4x2 − 2a2x4 + x6

)
dx

= 2
15

16a5

[
a4x

3

3
− 2a2x

5

5
+

x7

7

]∣∣∣∣a
0

=
15
8a5

(
a7

)(1
3
− 2

5
+

1
7

)

=✚
✚15a2

8

(
35− 42 + 15

✁3 · ✁5 · 7

)
=

a2

8
· 8
7

=
a2

7
.

(e)

〈p2〉 = −A2
�

2

∫ a

−a

(
a2 − x2

) d2

dx2

(
a2 − x2

)
︸ ︷︷ ︸

−2

dx = 2A2
�

22
∫ a

0

(
a2 − x2

)
dx

= 4 · 15
16a5

�
2

(
a2x− x3

3

)∣∣∣∣a
0

=
15�

2

4a5

(
a3 − a3

3

)
=

15�
2

4a2
· 2
3

=
5
2

�
2

a2
.

(f)

σx =
√
〈x2〉 − 〈x〉2 =

√
1
7
a2 =

a√
7
.

(g)

σp =
√
〈p2〉 − 〈p〉2 =

√
5
2

�2

a2
=

√
5
2

�

a
.
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CHAPTER 1. THE WAVE FUNCTION 13

(h)

σxσp =
a√
7
·
√

5
2

�

a
=

√
5
14

� =

√
10
7

�

2
>

�

2
. �

Problem 1.18

h√
3mkBT

> d ⇒ T <
h2

3mkBd2
.

(a) Electrons (m = 9.1× 10−31 kg):

T <
(6.6× 10−34)2

3(9.1× 10−31)(1.4× 10−23)(3× 10−10)2
= 1.3× 105 K.

Sodium nuclei (m = 23mp = 23(1.7× 10−27) = 3.9× 10−26 kg):

T <
(6.6× 10−34)2

3(3.9× 10−26)(1.4× 10−23)(3× 10−10)2
= 3.0 K.

(b) PV = NkBT ; volume occupied by one molecule (N = 1, V = d3) ⇒ d = (kBT/P )1/3.

T <
h2

2mkB

(
P

kBT

)2/3

⇒ T 5/3 <
h2

3m
P 2/3

k
5/3
B

⇒ T <
1
kB

(
h2

3m

)3/5

P 2/5.

For helium (m = 4mp = 6.8× 10−27 kg) at 1 atm = 1.0× 105 N/m2:

T <
1

(1.4× 10−23)

(
(6.6× 10−34)2

3(6.8× 10−27)

)3/5

(1.0× 105)2/5 = 2.8 K.

For hydrogen (m = 2mp = 3.4× 10−27 kg) with d = 0.01 m:

T <
(6.6× 10−34)2

3(3.4× 10−27)(1.4× 10−23)(10−2)2
= 3.1× 10−14 K.

At 3 K it is definitely in the classical regime.
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14 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Chapter 2

Time-Independent Schrödinger
Equation

Problem 2.1

(a)

Ψ(x, t) = ψ(x)e−i(E0+iΓ)t/� = ψ(x)eΓt/�e−iE0t/� =⇒ |Ψ|2 = |ψ|2e2Γt/�.

∫ ∞
−∞

|Ψ(x, t)|2dx = e2Γt/�

∫ ∞
−∞

|ψ|2dx.

The second term is independent of t, so if the product is to be 1 for all time, the first term (e2Γt/�) must
also be constant, and hence Γ = 0. QED

(b) If ψ satisfies Eq. 2.5, − �
2

2m
∂2ψ
dx2 + V ψ = Eψ, then (taking the complex conjugate and noting that V and

E are real): − �
2

2m
∂2ψ∗

dx2 + V ψ∗ = Eψ∗, so ψ∗ also satisfies Eq. 2.5. Now, if ψ1 and ψ2 satisfy Eq. 2.5, so
too does any linear combination of them (ψ3 ≡ c1ψ1 + c2ψ2):

− �
2

2m
∂2ψ3

dx2
+ V ψ3 = − �

2

2m

(
c1

∂2ψ1

dx2
+ c2

∂2ψ2

∂x2

)
+ V (c1ψ1 + c2ψ2)

= c1

[
− �

2

2m
d2ψ1

dx2
+ V ψ1

]
+ c2

[
− �

2

2m
d2ψ2

dx2
+ V ψ2

]
= c1(Eψ1) + c2(Eψ2) = E(c1ψ1 + c2ψ2) = Eψ3.

Thus, (ψ + ψ∗) and i(ψ − ψ∗) – both of which are real – satisfy Eq. 2.5. Conclusion: From any complex
solution, we can always construct two real solutions (of course, if ψ is already real, the second one will be
zero). In particular, since ψ = 1

2 [(ψ + ψ∗)− i(i(ψ − ψ∗))], ψ can be expressed as a linear combination of
two real solutions. QED

(c) If ψ(x) satisfies Eq. 2.5, then, changing variables x→ −x and noting that ∂2/∂(−x)2 = ∂2/∂x2,

− �
2

2m
∂2ψ(−x)

dx2
+ V (−x)ψ(−x) = Eψ(−x);

so if V (−x) = V (x) then ψ(−x) also satisfies Eq. 2.5. It follows that ψ+(x) ≡ ψ(x) + ψ(−x) (which is
even: ψ+(−x) = ψ+(x)) and ψ−(x) ≡ ψ(x)− ψ(−x) (which is odd: ψ−(−x) = −ψ−(x)) both satisfy Eq.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 15

2.5. But ψ(x) = 1
2 (ψ+(x) + ψ−(x)), so any solution can be expressed as a linear combination of even and

odd solutions. QED

Problem 2.2

Given d2ψ
dx2 = 2m

�2 [V (x)−E]ψ, if E < Vmin, then ψ′′ and ψ always have the same sign: If ψ is positive(negative),
then ψ′′ is also positive(negative). This means that ψ always curves away from the axis (see Figure). However,
it has got to go to zero as x→ −∞ (else it would not be normalizable). At some point it’s got to depart from
zero (if it doesn’t, it’s going to be identically zero everywhere), in (say) the positive direction. At this point its
slope is positive, and increasing, so ψ gets bigger and bigger as x increases. It can’t ever “turn over” and head
back toward the axis, because that would requuire a negative second derivative—it always has to bend away
from the axis. By the same token, if it starts out heading negative, it just runs more and more negative. In
neither case is there any way for it to come back to zero, as it must (at x → ∞) in order to be normalizable.
QED

x

ψ

Problem 2.3

Equation 2.20 says d2ψ
dx2 = − 2mE

�2 ψ; Eq. 2.23 says ψ(0) = ψ(a) = 0. If E = 0, d2ψ/dx2 = 0, so ψ(x) = A + Bx;
ψ(0) = A = 0 ⇒ ψ = Bx; ψ(a) = Ba = 0 ⇒ B = 0, so ψ = 0. If E < 0, d2ψ/dx2 = κ2ψ, with κ ≡

√
−2mE/�

real, so ψ(x) = Aeκx + Be−κx. This time ψ(0) = A + B = 0 ⇒ B = −A, so ψ = A(eκx − e−κx), while
ψ(a) = A

(
eκa − eiκa

)
= 0 ⇒ either A = 0, so ψ = 0, or else eκa = e−κa, so e2κa = 1, so 2κa = ln(1) = 0,

so κ = 0, and again ψ = 0. In all cases, then, the boundary conditions force ψ = 0, which is unacceptable
(non-normalizable).

Problem 2.4

〈x〉 =
∫

x|ψ|2dx =
2
a

∫ a

0

x sin2
(nπ

a
x
)
dx. Let y ≡ nπ

a
x, so dx =

a

nπ
dy; y : 0→ nπ.

=
2
a

( a

nπ

)2
∫ nπ

0

y sin2 y dy =
2a

n2π2

[
y2

4
− y sin 2y

4
− cos 2y

8

]∣∣∣∣nπ

0

=
2a

n2π2

[
n2π2

4
− cos 2nπ

8
+

1
8

]
=

a

2
. (Independent of n.)
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16 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

〈x2〉 =
2
a

∫ a

0

x2 sin2
(nπ

a
x
)
dx =

2
a

( a

nπ

)3
∫ nπ

0

y2 sin2 y dy

=
2a2

(nπ)3

[
y3

6
−

(
y3

4
− 1

8

)
sin 2y − y cos 2y

4

]nπ

0

=
2a2

(nπ)3

[
(nπ)3

6
− nπ cos(2nπ)

4

]
= a2

[
1
3
− 1

2(nπ)2

]
.

〈p〉 = m
d〈x〉
dt

= 0. (Note : Eq. 1.33 is much faster than Eq. 1.35.)

〈p2〉 =
∫

ψ∗n

(
�

i

d

dx

)2

ψn dx = −�
2

∫
ψ∗n

(
d2ψn

dx2

)
dx

= (−�
2)

(
−2mEn

�2

) ∫
ψ∗nψn dx = 2mEn =

(
nπ�

a

)2

.

σ2
x = 〈x2〉 − 〈x〉2 = a2

(
1
3
− 1

2(nπ)2
− 1

4

)
=

a2

4

(
1
3
− 2

(nπ)2

)
; σx =

a

2

√
1
3
− 2

(nπ)2
.

σ2
p = 〈p2〉 − 〈p〉2 =

(
nπ�

a

)2

; σp =
nπ�

a
. ∴ σxσp =

�

2

√
(nπ)2

3
− 2.

The product σxσp is smallest for n = 1; in that case, σxσp = �

2

√
π2

3 − 2 = (1.136)�/2 > �/2. �

Problem 2.5

(a)

|Ψ|2 = Ψ2Ψ = |A|2(ψ∗1 + ψ∗2)(ψ1 + ψ2) = |A|2[ψ∗1ψ1 + ψ∗1ψ2 + ψ∗2ψ1 + ψ∗2ψ2].

1 =
∫
|Ψ|2dx = |A|2

∫
[|ψ1|2 + ψ∗1ψ2 + ψ∗2ψ1 + |ψ2|2]dx = 2|A|2 ⇒ A = 1/

√
2.

(b)

Ψ(x, t) =
1√
2

[
ψ1e
−iE1t/� + ψ2e

−iE2t/�

]
(but

En

�
= n2ω)

=
1√
2

√
2
a

[
sin

(π

a
x
)
e−iωt + sin

(
2π
a

x

)
e−i4ωt

]
=

1√
a
e−iωt

[
sin

(π

a
x
)

+ sin
(

2π
a

x

)
e−3iωt

]
.

|Ψ(x, t)|2 =
1
a

[
sin2

(π

a
x
)

+ sin
(π

a
x
)

sin
(

2π
a

x

) (
e−3iωt + e3iωt

)
+ sin2

(
2π
a

x

)]
=

1
a

[
sin2

(π

a
x
)

+ sin2

(
2π
a

x

)
+ 2 sin

(π

a
x
)

sin
(

2π
a

x

)
cos(3ωt)

]
.
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(c)

〈x〉 =
∫

x|Ψ(x, t)|2dx

=
1
a

∫ a

0

x

[
sin2

(π

a
x
)

+ sin2

(
2π
a

x

)
+ 2 sin

(π

a
x
)

sin
(

2π
a

x

)
cos(3ωt)

]
dx

∫ a

0

x sin2
(π

a
x
)
dx =

[
x2

4
− x sin

(
2π
a x

)
4π/a

− cos
(

2π
a x

)
8(π/a)2

]∣∣∣∣∣
a

0

=
a2

4
=

∫ a

0

x sin2

(
2π
a

x

)
dx.

∫ a

0

x sin
(π

a
x
)

sin
(

2π
a

x

)
dx =

1
2

∫ a

0

x

[
cos

(π

a
x
)
− cos

(
3π
a

x

)]
dx

=
1
2

[
a2

π2
cos

(π

a
x
)

+
ax

π
sin

(π

a
x
)
− a2

9π2
cos

(
3π
a

x

)
− ax

3π
sin

(
3π
a

x

)]a

0

=
1
2

[
a2

π2

(
cos(π)− cos(0)

)
− a2

9π2

(
cos(3π)− cos(0)

)]
= −a2

π2

(
1− 1

9

)
= − 8a2

9π2
.

∴ 〈x〉 =
1
a

[
a2

4
+

a2

4
− 16a2

9π2
cos(3ωt)

]
=

a

2

[
1− 32

9π2
cos(3ωt)

]
.

Amplitude:
32
9π2

(a

2

)
= 0.3603(a/2); angular frequency: 3ω =

3π2
�

2ma2
.

(d)

〈p〉 = m
d〈x〉
dt

= m
(a

2

) (
− 32

9π2

)
(−3ω) sin(3ωt) =

8�

3a
sin(3ωt).

(e) You could get either E1 = π2
�

2/2ma2 or E2 = 2π2
�

2/ma2, with equal probability P1 = P2 = 1/2.

So 〈H〉 =
1
2
(E1 + E2) =

5π2
�

2

4ma2
; it’s the average of E1 and E2.

Problem 2.6

From Problem 2.5, we see that

Ψ(x, t) = 1√
a
e−iωt

[
sin

(
π
ax

)
+ sin

(
2π
a x

)
e−3iωteiφ

]
;

|Ψ(x, t)|2 = 1
a

[
sin2

(
π
ax

)
+ sin2

(
2π
a x

)
+ 2 sin

(
π
ax

)
sin

(
2π
a x

)
cos(3ωt− φ)

]
;
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18 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

and hence 〈x〉 = a
2

[
1− 32

9π2 cos(3ωt− φ)
]
. This amounts physically to starting the clock at a different time

(i.e., shifting the t = 0 point).

If φ =
π

2
, so Ψ(x, 0) = A[ψ1(x) + iψ2(x)], then cos(3ωt− φ) = sin(3ωt); 〈x〉 starts at

a

2
.

If φ = π, so Ψ(x, 0) = A[ψ1(x)− ψ2(x)], then cos(3ωt− φ) = − cos(3ωt); 〈x〉 starts at
a

2

(
1 +

32
9π2

)
.

Problem 2.7

Ψ(x,0)

xaa/2

Aa/2

(a)

1 = A2

∫ a/2

0

x2dx + A2

∫ a

a/2

(a− x)2dx = A2

[
x3

3

∣∣∣∣a/2

0

− (a− x)3

3

∣∣∣∣a
a/2

]

=
A2

3

(
a3

8
+

a3

8

)
=

A2a3

12
⇒ A =

2
√

3√
a3

.

(b)

cn =

√
2
a

2
√

3
a
√
a

[ ∫ a/2

0

x sin
(
nπ

a
x

)
dx +

∫ a

a/2

(a− x) sin
(
nπ

a
x

)
dx

]
=

2
√

6
a2

{[(
a

nπ

)2

sin
(
nπ

a
x

)
− xa

nπ
cos

(
nπ

a
x

)]∣∣∣∣a/2

0

+ a

[
− a

nπ
cos

(
nπ

a
x

)]∣∣∣∣a
a/2

−
[(

a

nπ

)2

sin
(
nπ

a
x

)
−

(
ax

nπ

)
cos

(
nπ

a
x

)]∣∣∣∣a
a/2

}

=
2
√

6
a2

[(
a

nπ

)2

sin
(
nπ

2

)
−✘✘✘

✘✘✘
✘a2

2nπ
cos

(
nπ

2

)
−
✟✟

✟✟
✟a2

nπ
cosnπ +

✟✟
✟✟

✟✟
✟

a2

nπ
cos

(
nπ

2

)
+

(
a

nπ

)2

sin
(
nπ

2

)
+
✟✟

✟✟
✟a2

nπ
cosnπ −✘✘✘

✘✘✘
✘a2

2nπ
cos

(
nπ

2

)]
=

2
√

6

��a2
2 �
�a2

(nπ)2
sin

(
nπ

2

)
=

4
√

6
(nπ)2

sin
(
nπ

2

)
=

{
0, n even,
(−1)(n−1)/2 4

√
6

(nπ)2 , n odd.

So Ψ(x, t) =
4
√

6
π2

√
2
a

∑
n=1,3,5,...

(−1)(n−1)/2 1
n2

sin
(
nπ

a
x

)
e−Ent/�, where En =

n2π2
�

2

2ma2
.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 19

(c)

P1 = |c1|2 =
16 · 6
π4

= 0.9855.

(d)

〈H〉 =
∑

|cn|2En =
96
π4

π2
�

2

2ma2

(
1
1

+
1
32

+
1
52

+
1
72

+ · · ·︸ ︷︷ ︸
π2/8

)
=

48�
2

π2ma2

π2

8
=

6�
2

ma2
.

Problem 2.8

(a)

Ψ(x, 0) =

{
A, 0 < x < a/2;
0, otherwise.

1 = A2

∫ a/2

0

dx = A2(a/2)⇒ A =

√
2
a
.

(b) From Eq. 2.37,

c1 = A

√
2
a

∫ a/2

0

sin
(π

a
x
)
dx =

2
a

[
−a

π
cos

(π

a
x
)] ∣∣∣∣a/2

0

= − 2
π

[
cos

(π

2

)
− cos 0

]
=

2
π
.

P1 = |c1|2 = (2/π)2 = 0.4053.

Problem 2.9

ĤΨ(x, 0) = − �
2

2m
∂2

∂x2
[Ax(a− x)] = −A

�
2

2m
∂

∂x
(a− 2x) = A

�
2

m
.

∫
Ψ(x, 0)∗ĤΨ(x, 0) dx = A2 �

2

m

∫ a

0

x(a− x) dx = A2 �
2

m

(
a
x2

2
− x3

3

) ∣∣∣∣a
0

= A2 �
2

m

(
a3

2
− a3

3

)
=

30
a5

�
2

m

a3

6
=

5�
2

ma2

(same as Example 2.3).
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20 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Problem 2.10

(a) Using Eqs. 2.47 and 2.59,

a+ψ0 =
1√

2�mω

(
−�

d

dx
+ mωx

) (mω

π�

)1/4

e−
mω
2�

x2

=
1√

2�mω

(mω

π�

)1/4 [
−�

(
−mω

2�

)
2x + mωx

]
e−

mω
2�

x2
=

1√
2�mω

(mω

π�

)1/4

2mωxe−
mω
2�

x2
.

(a+)2ψ0 =
1

2�mω

(mω

π�

)1/4

2mω

(
−�

d

dx
+ mωx

)
xe−

mω
2�

x2

=
1
�

(mω

π�

)1/4 [
−�

(
1− x

mω

2�
2x

)
+ mωx2

]
e−

mω
2�

x2
=

(mω

π�

)1/4
(

2mω

�
x2 − 1

)
e−

mω
2�

x2
.

Therefore, from Eq. 2.67,

ψ2 =
1√
2
(a+)2ψ0 =

1√
2

(mω

π�

)1/4
(

2mω

�
x2 − 1

)
e−

mω
2�

x2
.

(b)
ψ ψ ψ1 20

(c) Since ψ0 and ψ2 are even, whereas ψ1 is odd,
∫
ψ∗0ψ1dx and

∫
ψ∗2ψ1dx vanish automatically. The only one

we need to check is
∫
ψ∗2ψ0 dx:∫

ψ∗2ψ0 dx =
1√
2

√
mω

π�

∫ ∞
−∞

(
2mω

�
x2 − 1

)
e−

mω
�

x2
dx

= −
√

mω

2π�

( ∫ ∞
−∞

e−
mω

�
x2

dx− 2mω

�

∫ ∞
−∞

x2e−
mω

�
x2

dx

)
= −

√
mω

2π�

(√
π�

mω
− 2mω

�

�

2mω

√
π�

mω

)
= 0. �

Problem 2.11

(a) Note that ψ0 is even, and ψ1 is odd. In either case |ψ|2 is even, so 〈x〉 =
∫
x|ψ|2dx = 0. Therefore

〈p〉 = md〈x〉/dt = 0. (These results hold for any stationary state of the harmonic oscillator.)

From Eqs. 2.59 and 2.62, ψ0 = αe−ξ2/2, ψ1 =
√

2αξe−ξ2/2. So

n = 0:

〈x2〉 = α2

∫ ∞
−∞

x2e−ξ2/2dx = α2

(
�

mω

)3/2 ∫ ∞
−∞

ξ2e−ξ2
dξ =

1√
π

(
�

mω

)√
π

2
=

�

2mω
.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 21

〈p2〉 =
∫

ψ0

(
�

i

d

dx

)2

ψ0 dx = −�
2α2

√
mω

�

∫ ∞
−∞

e−ξ2/2

(
d2

dξ2
e−ξ2/2

)
dξ

= −m�ω√
π

∫ ∞
−∞

(
ξ2 − 1

)
e−ξ2/2dξ = −m�ω√

π

(√
π

2
−
√
π

)
=

m�ω

2
.

n = 1:

〈x2〉 = 2α2

∫ ∞
−∞

x2ξ2e−ξ2
dx = 2α2

(
�

mω

)3/2 ∫ ∞
−∞

ξ4e−ξ2
dξ =

2�√
πmω

3
√
π

4
=

3�

2mω
.

〈p2〉 = −�
22α2

√
mω

�

∫ ∞
−∞

ξe−ξ2/2

[
d2

dξ2

(
ξe−ξ2/2

)]
dξ

= −2mω�√
π

∫ ∞
−∞

(
ξ4 − 3ξ2

)
e−ξ2

dξ = −2mω�√
π

(
3
4
√
π − 3

√
π

2

)
=

3m�ω

2
.

(b) n = 0:

σx =
√
〈x2〉 − 〈x〉2 =

√
�

2mω
; σp =

√
〈p2〉 − 〈p〉2 =

√
m�ω

2
;

σxσp =

√
�

2mω

√
mω�

2
=

�

2
. (Right at the uncertainty limit.)�

n = 1:

σx =

√
3�

2mω
; σp =

√
3m�ω

2
; σxσp = 3

�

2
>

�

2
. �

(c)

〈T 〉 =
1

2m
〈p2〉 =


1
4�ω (n = 0)

3
4�ω (n = 1)

 ; 〈V 〉 =
1
2
mω2〈x2〉 =


1
4�ω (n = 0)

3
4�ω (n = 1)

 .

〈T 〉+ 〈V 〉 = 〈H〉 =


1
2�ω (n = 0) = E0

3
2�ω (n = 1) = E1

 , as expected.

Problem 2.12

From Eq. 2.69,

x =

√
�

2mω
(a+ + a−), p = i

√
�mω

2
(a+ − a−),

so

〈x〉 =

√
�

2mω

∫
ψ∗n(a+ + a−)ψn dx.
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22 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

But (Eq. 2.66)
a+ψn =

√
n + 1ψn+1, a−ψn =

√
nψn−1.

So

〈x〉 =

√
�

2mω

[√
n + 1

∫
ψ∗nψn+1 dx +

√
n

∫
ψ∗nψn−1 dx

]
= 0 (by orthogonality).

〈p〉 = m
d〈x〉
dt

= 0. x2 =
�

2mω
(a+ + a−)2 =

�

2mω

(
a2
+ + a+a− + a−a+ + a2

−
)
.

〈x2〉 =
�

2mω

∫
ψ∗n

(
a2
+ + a+a− + a−a+ + a2

−
)
ψn. But


a2
+ψn = a+

(√
n + 1ψn+1

)
=
√
n + 1

√
n + 2ψn+2 =

√
(n + 1)(n + 2)ψn+2.

a+a−ψn = a+

(√
nψn−1

)
=
√
n
√
nψn = nψn.

a−a+ψn = a−
(√

n + 1ψn+1

)
=

√
n + 1)

√
n + 1ψn = (n + 1)ψn.

a2
−ψn = a−

(√
nψn−1

)
=
√
n
√
n− 1ψn−2 =

√
(n− 1)nψn−2.

So

〈x2〉 =
�

2mω

[
0 + n

∫
|ψn|2dx + (n + 1)

∫
|ψn|2 dx + 0

]
=

�

2mω
(2n + 1) =

(
n +

1
2

)
�

mω
.

p2 = −�mω

2
(a+ − a−)2 = −�mω

2
(
a2
+ − a+a− − a−a+ + a2

−
)
⇒

〈p2〉 = −�mω

2
[0− n− (n + 1) + 0] =

�mω

2
(2n + 1) =

(
n +

1
2

)
m�ω.

〈T 〉 = 〈p2/2m〉 =
1
2

(
n +

1
2

)
�ω .

σx =
√
〈x2〉 − 〈x〉2 =

√
n +

1
2

√
�

mω
; σp =

√
〈p2〉 − 〈p〉2 =

√
n +

1
2

√
m�ω; σxσp =

(
n +

1
2

)
� ≥ �

2
. �

Problem 2.13

(a)

1 =
∫
|Ψ(x, 0)|2dx = |A|2

∫ (
9|ψ0|2 + 12ψ∗0ψ1 + 12ψ∗1ψ0 + 16|ψ1|2

)
dx

= |A|2(9 + 0 + 0 + 16) = 25|A|2 ⇒ A = 1/5.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 23

(b)

Ψ(x, t) =
1
5

[
3ψ0(x)e−iE0t/� + 4ψ1(x)e−iE1t/�

]
=

1
5

[
3ψ0(x)e−iωt/2 + 4ψ1(x)e−3iωt/2

]
.

(Here ψ0 and ψ1 are given by Eqs. 2.59 and 2.62; E1 and E2 by Eq. 2.61.)

|Ψ(x, t)|2 =
1
25

[
9ψ2

0 + 12ψ0ψ1e
iωt/2e−3iωt/2 + 12ψ0ψ1e

−iωt/2e3iωt/2 + 16ψ2
1

]
=

1
25

[
9ψ2

0 + 16ψ2
1 + 24ψ0ψ1 cos(ωt)

]
.

(c)

〈x〉 =
1
25

[
9

∫
xψ2

0 dx + 16
∫

xψ2
1 dx + 24 cos(ωt)

∫
xψ0ψ1 dx

]
.

But
∫
xψ2

0 dx =
∫
xψ2

1 dx = 0 (see Problem 2.11 or 2.12), while

∫
xψ0ψ1 dx =

√
mω

π�

√
2mω

�

∫
xe−

mω
2�

x2
xe−

mω
2�

x2
dx =

√
2
π

(mω

�

) ∫ ∞
−∞

x2e−
mω

�
x2

dx

=

√
2
π

(mω

�

)
2
√
π2

(
1
2

√
�

mω

)3

=

√
�

2mω
.

So

〈x〉 =
24
25

√
�

2mω
cos(ωt); 〈p〉 = m

d

dt
〈x〉 = −24

25

√
mω�

2
sin(ωt).

(With ψ2 in place of ψ1 the frequency would be (E2 − E0)/� = [(5/2)�ω − (1/2)�ω]/� = 2ω.)

Ehrenfest’s theorem says d〈p〉/dt = −〈∂V/∂x〉. Here

d〈p〉
dt

= −24
25

√
mω�

2
ω cos(ωt), V =

1
2
mω2x2 ⇒ ∂V

∂x
= mω2x,

so

−
〈∂V
∂x

〉
= −mω2〈x〉 = −mω2 24

25

√
�

2mω
cos(ωt) = −24

25

√
�mω

2
ω cos(ωt),

so Ehrenfest’s theorem holds.

(d) You could get E0 = 1
2�ω, with probability |c0|2 = 9/25, or E1 = 3

2�ω, with probability |c1|2 = 16/25.

Problem 2.14

The new allowed energies are E′n = (n + 1
2 )�ω′ = 2(n + 1

2 )�ω = �ω, 3�ω, 5�ω, . . . . So the probability of
getting 1

2�ω is zero. The probability of getting �ω (the new ground state energy) is P0 = |c0|2, where c0 =∫
Ψ(x, 0)ψ′0 dx, with

Ψ(x, 0) = ψ0(x) =
(mω

π�

)1/4

e−
mω
2�

x2
, ψ0(x)′ =

(
m2ω
π�

)1/4

e−
m2ω
2�

x2
.
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24 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

So

c0 = 21/4

√
mω

π�

∫ ∞
−∞

e−
3mω
2�

x2
dx = 21/4

√
mω

π�
2
√
π

(
1
2

√
2�

3mω

)
= 21/4

√
2
3
.

Therefore

P0 =
2
3

√
2 = 0.9428.

Problem 2.15

ψ0 =
(mω

π�

)1/4

e−ξ2/2, so P = 2
√

mω

π�

∫ ∞
x0

e−ξ2
dx = 2

√
mω

π�

√
�

mω

∫ ∞
ξ0

e−ξ2
dξ.

Classically allowed region extends out to: 1
2mω2x2

0 = E0 = 1
2�ω, or x0 =

√
�

mω , so ξ0 = 1.

P =
2√
π

∫ ∞
1

e−ξ2
dξ = 2(1− F (

√
2)) (in notation of CRC Table) = 0.157.

Problem 2.16

n = 5: j = 1 ⇒ a3 = −2(5−1)
(1+1)(1+2)a1 = − 4

3a1; j = 3 ⇒ a5 = −2(5−3)
(3+1)(3+2)a3 = − 1

5a3 = 4
15a1; j = 5 ⇒ a7 = 0. So

H5(ξ) = a1ξ − 4
3a1ξ

3 + 4
15a1ξ

5 = a1
15 (15ξ − 20ξ3 + 4ξ5). By convention the coefficient of ξ5 is 25, so a1 = 15 · 8,

and H5(ξ) = 120ξ − 160ξ3 + 32ξ5 (which agrees with Table 2.1).

n = 6: j = 0 ⇒ a2 = −2(6−0)
(0+1)(0+2)a0 = −6a0; j = 2 ⇒ a4 = −2(6−2)

(2+1)(2+2)a2 = − 2
3a2 = 4a0; j = 4 ⇒ a6 =

−2(6−4)
(4+1)(4+2)a4 = − 2

15a4 = − 8
15a0; j = 6⇒ a8 = 0. So H6(ξ) = a0 − 6a0ξ

2 + 4a0ξ
4 − 8

15ξ
6a0. The coefficient of ξ6

is 26, so 26 = − 8
15a0 ⇒ a0 = −15 · 8 = −120. H6(ξ) = −120 + 720ξ2 − 480ξ4 + 64ξ6.

Problem 2.17

(a)

d

dξ
(e−ξ2

) = −2ξe−ξ2
;

(
d

dξ

)2

e−ξ2
=

d

dξ
(−2ξe−ξ2

) = (−2 + 4ξ2)e−ξ2
;

(
d

dξ

)3

e−ξ2
=

d

dξ

[
(−2 + 4ξ2)e−ξ2

]
=

[
8ξ + (−2 + 4ξ2)(−2ξ)

]
e−ξ2

= (12ξ − 8ξ3)e−ξ2
;

(
d

dξ

)4

e−ξ2
=

d

dξ

[
(12ξ − 8ξ3)e−ξ2

]
=

[
12− 24ξ2 + (12ξ − 8ξ3)(−2ξ)

]
e−ξ2

= (12− 48ξ2 + 16ξ4)e−ξ2
.

H3(ξ) = −eξ2
(

d

dξ

)3

e−ξ2
= −12ξ + 8ξ3; H4(ξ) = eξ2

(
d

dξ

)4

e−ξ2
= 12− 48ξ2 + 16ξ4.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 25

(b)

H5 = 2ξH4 − 8H3 = 2ξ(12− 48ξ2 + 16ξ4)− 8(−12ξ + 8ξ3) = 120ξ − 160ξ3 + 32ξ5.

H6 = 2ξH5 − 10H4 = 2ξ(120ξ − 160ξ3 + 32ξ5)− 10(12− 48ξ2 + 16ξ4) = −120 + 720ξ2 − 480ξ4 + 64ξ6.

(c)

dH5

dξ
= 120− 480ξ2 + 160ξ4 = 10(12− 48ξ2 + 16ξ4) = (2)(5)H4. �

dH6

dξ
= 1440ξ − 1920ξ3 + 384ξ5 = 12(120ξ − 160ξ3 + 32ξ5) = (2)(6)H5. �

(d)

d

dz
(e−z2+2zξ) = (−2z + ξ)e−z2+2zξ; setting z = 0, H0(ξ) = 2ξ.

(
d

dz

)2

(e−z2+2zξ) =
d

dz

[
(−2z + 2ξ)e−z2+2zξ

]
=

[
− 2 + (−2z + 2ξ)2

]
e−z2+2zξ; setting z = 0, H1(ξ) = −2 + 4ξ2.

(
d

dz

)3

(e−z2+2zξ) =
d

dz

{[
− 2 + (−2z + 2ξ)2

]
e−z2+2zξ

}
=

{
2(−2z + 2ξ)(−2) +

[
− 2 + (−2z + 2ξ)2

]
(−2z + 2ξ)

}
e−z2+2zξ;

setting z = 0, H2(ξ) = −8ξ + (−2 + 4ξ2)(2ξ) = −12ξ + 8ξ3.

Problem 2.18

Aeikx + Be−ikx = A(cos kx + i sin kx) + B(cos kx− i sin kx) = (A + B) cos kx + i(A−B) sin kx

= C cos kx + D sin kx, with C = A + B; D = i(A−B).

C cos kx + D sin kx = C

(
eikx + e−ikx

2

)
+ D

(
eikx − e−ikx

2i

)
=

1
2
(C − iD)eikx +

1
2
(C + iD)e−ikx

= Aeikx + Be−ikx, with A =
1
2
(C − iD); B =

1
2
(C + iD).
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26 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Problem 2.19

Equation 2.94 says Ψ = Aei(kx− �k2
2m t), so

J =
i�

2m

(
Ψ

∂Ψ∗

∂x
−Ψ∗

∂Ψ
∂x

)
=

i�

2m
|A|2

[
ei(kx− �k2

2m t)(−ik)e−i(kx− �k2
2m t) − e−i(kx− �k2

2m t)(ik)ei(kx− �k2
2m t)

]
=

i�

2m
|A|2(−2ik) =

�k

m
|A|2.

It flows in the positive (x) direction (as you would expect).

Problem 2.20

(a)

f(x) = b0 +
∞∑

n=1

an

2i

(
einπx/a − e−inπx/a

)
+
∞∑

n=1

bn

2

(
einπx/a + e−inπx/a

)
= b0 +

∞∑
n=1

(
an

2i
+

bn

2

)
einπx/a +

∞∑
n=1

(
−an

2i
+

bn

2

)
e−inπx/a.

Let

c0 ≡ b0; cn = 1
2 (−ian + bn) , for n = 1, 2, 3, . . . ; cn ≡ 1

2 (ia−n + b−n) , for n = −1,−2,−3, . . . .

Then f(x) =
∞∑

n=−∞
cne

inπx/a. QED

(b) ∫ a

−a

f(x)e−imπx/adx =
∞∑

n=−∞
cn

∫ a

−a

ei(n−m)πx/adx. But for n �= m,

∫ a

−a

ei(n−m)πx/adx =
ei(n−m)πx/a

i(n−m)π/a

∣∣∣∣a
−a

=
ei(n−m)π − e−i(n−m)π

i(n−m)π/a
=

(−1)n−m − (−1)n−m

i(n−m)π/a
= 0,

whereas for n = m,∫ a

−a

ei(n−m)πx/adx =
∫ a

−a

dx = 2a.

So all terms except n = m are zero, and∫ a

−a

f(x)e−imπx/a = 2acm, so cn =
1
2a

∫ a

−a

f(x)e−inπx/adx. QED

(c)

f(x) =
∞∑

n=−∞

√
π

2
1
a
F (k)eikx =

1√
2π

∑
F (k)eikx∆k,
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 27

where ∆k ≡ π

a
is the increment in k from n to (n + 1).

F (k) =

√
2
π
a

1
2a

∫ a

−a

f(x)e−ikxdx =
1√
2π

∫ a

−a

f(x)e−ikxdx.

(d) As a→∞, k becomes a continuous variable,

f(x) =
1√
2π

∫ ∞
−∞

F (k)eikxdk; F (k) =
1√
2π

∫ ∞
−∞

f(x)eikxdx.

Problem 2.21

(a)

1 =
∫ ∞
−∞

|Ψ(x, 0)|2dx = 2|A|2
∫ ∞

0

e−2axdx = 2|A|2 e
−2ax

−2a

∣∣∣∣∞
0

=
|A|2
a
⇒ A =

√
a.

(b)

φ(k) =
A√
2π

∫ ∞
−∞

e−a|x|e−ikx dx =
A√
2π

∫ ∞
−∞

e−a|x|(cos kx− i sin kx)dx.

The cosine integrand is even, and the sine is odd, so the latter vanishes and

φ(k) = 2
A√
2π

∫ ∞
0

e−ax cos kx dx =
A√
2π

∫ ∞
0

e−ax
(
eikx + e−ikx

)
dx

=
A√
2π

∫ ∞
0

(
e(ik−a)x + e−(ik+a)x

)
dx =

A√
2π

[
e(ik−a)x

ik − a
+

e−(ik+a)x

−(ik + a)

]∣∣∣∣∞
0

=
A√
2π

( −1
ik − a

+
1

ik + a

)
=

A√
2π
−ik − a + ik − a

−k2 − a2
=

√
a

2π
2a

k2 + a2
.

(c)

Ψ(x, t) =
1√
2π

2

√
a3

2π

∫ ∞
−∞

1
k2 + a2

ei(kx− �k2
2m t)dk =

a3/2

π

∫ ∞
−∞

1
k2 + a2

ei(kx− �k2
2m t)dk.

(d) For large a, Ψ(x, 0) is a sharp narrow spike whereas φ(k) ∼=
√

2/πa is broad and flat; position is well-
defined but momentum is ill-defined. For small a, Ψ(x, 0) is a broad and flat whereas φ(k) ∼= (

√
2a3/π)/k2

is a sharp narrow spike; position is ill-defined but momentum is well-defined.
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Problem 2.22

(a)

1 = |A|2
∫ ∞
−∞

e−2ax2
dx = |A|2

√
π

2a
; A =

(
2a
π

)1/4

.

(b) ∫ ∞
−∞

e−(ax2+bx)dx =
∫ ∞
−∞

e−y2+(b2/4a) 1√
a
dy =

1√
a
eb2/4a

∫ ∞
−∞

e−y2
dy =

√
π

a
eb2/4a.

φ(k) =
1√
2π

A

∫ ∞
−∞

e−ax2
e−ikxdx =

1√
2π

(
2a
π

)1/4 √
π

a
e−k2/4a =

1
(2πa)1/4

e−k2/4a.

Ψ(x, t) =
1√
2π

1
(2πa)1/4

∫ ∞
−∞

e−k2/4aei(kx−�k2t/2m)︸ ︷︷ ︸
e−[( 1

4a+i�t/2m)k2−ixk]

dk

=
1√

2π(2πa)1/4

√
π√

1
4a + i�t/2m

e−x2/4( 1
4a+i�t/2m) =

(
2a
π

)1/4
e−ax2/(1+2i�at/m)√

1 + 2i�at/m
.

(c)

Let θ ≡ 2�at/m. Then |Ψ|2 =

√
2a
π

e−ax2/(1+iθ)e−ax2/(1−iθ)√
(1 + iθ)(1− iθ)

. The exponent is

− ax2

(1 + iθ)
− ax2

(1− iθ)
= −ax2 (1− iθ + 1 + iθ)

(1 + iθ)(1− iθ)
=
−2ax2

1 + θ2
; |Ψ|2 =

√
2a
π

e−2ax2/(1+θ2)

√
1 + θ2

.

Or, with w ≡
√

a

1 + θ2
, |Ψ|2 =

√
2
π
we−2w2x2

. As t increases, the graph of |Ψ|2 flattens out and broadens.

|Ψ|2 |Ψ|2

x x
t = 0 t > 0

(d)

〈x〉 =
∫ ∞
−∞

x|Ψ|2dx = 0 (odd integrand); 〈p〉 = m
d〈x〉
dt

= 0.

〈x2〉 =

√
2
π
w

∫ ∞
−∞

x2e−2w2x2
dx =

√
2
π
w

1
4w2

√
π

2w2
=

1
4w2

. 〈p2〉 = −�
2

∫ ∞
−∞

Ψ∗
d2Ψ
dx2

dx.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 29

Write Ψ = Be−bx2
, where B ≡

(
2a
π

)1/4 1√
1 + iθ

and b ≡ a

1 + iθ
.

d2Ψ
dx2

= B
d

dx

(
−2bxe−bx2

)
= −2bB(1− 2bx2)e−bx2

.

Ψ∗
d2Ψ
dx2

= −2b|B|2(1− 2bx2)e−(b+b∗)x2
; b + b∗ =

a

1 + iθ
+

a

1− iθ
=

2a
1 + θ2

= 2w2.

|B|2 =

√
2a
π

1√
1 + θ2

=

√
2
π
w. So Ψ∗

d2Ψ
dx2

= −2b

√
2
π
w(1− 2bx2)e−2w2x2

.

〈p2〉 = 2b�2

√
2
π
w

∫ ∞
−∞

(1− 2bx2)e−2w2x2
dx

= 2b�2

√
2
π
w

(√
π

2w2
− 2b

1
4w2

√
π

2w2

)
= 2b�2

(
1− b

2w2

)
.

But 1− b

2w2
= 1−

(
a

1 + iθ

) (
1 + θ2

2a

)
= 1− (1− iθ)

2
=

1 + iθ

2
=

a

2b
, so

〈p2〉 = 2b�2 a

2b
= �

2a. σx =
1

2w
; σp = �

√
a.

(e)

σxσp =
1

2w
�
√
a =

�

2

√
1 + θ2 =

�

2

√
1 + (2�at/m)2 ≥ �

2
. �

Closest at t = 0, at which time it is right at the uncertainty limit.

Problem 2.23

(a)

(−2)3 − 3(−2)2 + 2(−2)− 1 = −8− 12− 4− 1 = −25.

(b)

cos(3π) + 2 = −1 + 2 = 1.

(c)

0 (x = 2 is outside the domain of integration).
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Problem 2.24

(a) Let y ≡ cx, so dx =
1
c
dy.

{
If c > 0, y : −∞→∞.
If c < 0, y :∞→ −∞.

}
∫ ∞
−∞

f(x)δ(cx)dx =


1
c

∫∞
−∞ f(y/c)δ(y)dy = 1

cf(0) (c > 0); or

1
c

∫ −∞
∞ f(y/c)δ(y)dy = − 1

c

∫∞
−∞ f(y/c)δ(y)dy = − 1

cf(0) (c < 0).

In either case,
∫ ∞
−∞

f(x)δ(cx)dx =
1
|c|f(0) =

∫ ∞
−∞

f(x)
1
|c|δ(x)dx. So δ(cx) =

1
|c|δ(x). �

(b) ∫ ∞
−∞

f(x)
dθ

dx
dx = fθ

∣∣∣∣∞
−∞

−
∫ ∞
−∞

df

dx
θdx (integration by parts)

= f(∞)−
∫ ∞

0

df

dx
dx = f(∞)− f(∞) + f(0) = f(0) =

∫ ∞
−∞

f(x)δ(x)dx.

So dθ/dx = δ(x). � [Makes sense: The θ function is constant (so derivative is zero) except at x = 0, where
the derivative is infinite.]

Problem 2.25

ψ(x) =
√
mα

�
e−mα|x|/�

2
=
√
mα

�

{
e−mαx/�

2
, (x ≥ 0),

emαx/�
2
, (x ≤ 0).

〈x〉 = 0 (odd integrand).

〈x2〉 =
∫ ∞
−∞

x2|ψ|2dx = 2
mα

�2

∫ ∞
0

x2e−2mαx/�
2
dx =

2mα

�2
2

(
�

2

2mα

)3

=
�

4

2m2α2
; σx =

�
2

√
2mα

.

dψ

dx
=
√
mα

�


−mα

�2 e−mαx/�
2
, (x ≥ 0)

mα
�2 emαx/�

2
, (x ≤ 0)

 =
(√

mα

�

)3 [
−θ(x)e−mαx/�

2
+ θ(−x)emαx/�

2
]
.

d2ψ

dx2
=

(√
mα

�

)3 [
−δ(x)e−mαx/�

2
+

mα

�2
θ(x)e−mαx/�

2 − δ(−x)emαx/�
2
+

mα

�2
θ(−x)emαx/�

2
]

=
(√

mα

�

)3 [
−2δ(x) +

mα

�2
e−mα|x|/�

2
]
.

In the last step I used the fact that δ(−x) = δ(x) (Eq. 2.142), f(x)δ(x) = f(0)δ(x) (Eq. 2.112), and θ(−x) +
θ(x) = 1 (Eq. 2.143). Since dψ/dx is an odd function, 〈p〉 = 0.

〈p2〉 = −�
2

∫ ∞
−∞

ψ
d2ψ

dx2
dx = −�

2

√
mα

�

(√
mα

�

)3 ∫ ∞
−∞

e−mα|x|/�
2
[
−2δ(x) +

mα

�2
e−mα|x|/�

2
]
dx

=
(mα

�

)2
[
2− 2

mα

�2

∫ ∞
0

e−2mαx/�
2
dx

]
= 2

(mα

�

)2
[
1− mα

�2

�
2

2mα

]
=

(mα

�

)2

.

Evidently

σp =
mα

�
, so σxσp =

�
2

√
2mα

mα

�
=
√

2
�

2
>

�

2
. �
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 31

Problem 2.26

Put f(x) = δ(x) into Eq. 2.102: F (k) =
1√
2π

∫ ∞
−∞

δ(x)e−ikxdx =
1√
2π

.

∴ f(x) = δ(x) =
1√
2π

∫ ∞
−∞

1√
2π

eikxdk =
1
2π

∫ ∞
−∞

eikxdk. QED

Problem 2.27

(a)
V(x)

-a a

x

(b) From Problem 2.1(c) the solutions are even or odd. Look first for even solutions:

ψ(x) =


Ae−κx (x < a),
B(eκx + e−κx) (−a < x < a),
Aeκx (x < −a).

Continuity at a : Ae−κa = B(eκa + e−κa), or A = B(e2κa + 1).

Discontinuous derivative at a, ∆
dψ

dx
= −2mα

�2
ψ(a) :

−κAe−κa −B(κeκa − κe−κa) = −2mα

�2
Ae−κa ⇒ A + B(e2κa − 1) =

2mα

�2κ
A; or

B(e2κa − 1) = A

(
2mα

�2κ
− 1

)
= B(e2κa + 1)

(
2mα

�2κ
− 1

)
⇒ e2κa − 1 = e2κa

(
2mα

�2κ
− 1

)
+

2mα

�2κ
− 1.

1 =
2mα

�2κ
− 1 +

2mα

�2κ
e−2κa;

�
2κ

mα
= 1 + e−2κa, or e−2κa =

�
2κ

mα
− 1.

This is a transcendental equation for κ (and hence for E). I’ll solve it graphically: Let z ≡ 2κa, c ≡ �
2

2amα ,
so e−z = cz − 1. Plot both sides and look for intersections:

1

z1/c

cz-1

e-z
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32 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

From the graph, noting that c and z are both positive, we see that there is one (and only one) solution
(for even ψ). If α = �

2

2ma , so c = 1, the calculator gives z = 1.278, so κ2 = − 2mE
�2 = z2

(2a)2 ⇒ E =

− (1.278)2

8

(
�
2

ma2

)
= −0.204

(
�
2

ma2

)
.

Now look for odd solutions:

ψ(x) =


Ae−κx (x < a),
B(eκx − e−κx) (−a < x < a),
−Aeκx (x < −a).

Continuity at a : Ae−κa = B(eκa − e−κa), or A = B(e2κa − 1).

Discontinuity in ψ′ : −κAe−κa −B(κeκa + κe−κa) = −2mα

�2
Ae−κa ⇒ B(e2κa + 1) = A

(
2mα

�2κ
− 1

)
,

e2κa + 1 = (e2κa − 1)
(

2mα

�2κ
− 1

)
= e2κa

(
2mα

�2κ
− 1

)
− 2mα

�2κ
+ 1,

1 =
2mα

�2κ
− 1− 2mα

�2κ
e−2κa;

�
2κ

mα
= 1− e−2κa, e−2κa = 1− �

2κ

mα
, or e−z = 1− cz.

1/c 1/c

1

z

This time there may or may not be a solution. Both graphs have their y-intercepts at 1, but if c is too
large (α too small), there may be no intersection (solid line), whereas if c is smaller (dashed line) there
will be. (Note that z = 0 ⇒ κ = 0 is not a solution, since ψ is then non-normalizable.) The slope of e−z

(at z = 0) is −1; the slope of (1− cz) is −c. So there is an odd solution ⇔ c < 1, or α > �
2/2ma.

Conclusion: One bound state if α ≤ �
2/2ma; two if α > �

2/2ma.

ψ ψ

x xa-a a
-a

Even Odd

α =
�

2

ma
⇒ c =

1
2
.

{
Even: e−z = 1

2z − 1 ⇒ z = 2.21772,
Odd: e−z = 1− 1

2z ⇒ z = 1.59362.

E = −0.615(�2/ma2); E = −0.317(�2/ma2).

α =
�

2

4ma
⇒ c = 2. Only even: e−z = 2z − 1 ⇒ z = 0.738835; E = −0.0682(�2/ma2).
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Problem 2.28

ψ =


Aeikx + Be−ikx (x < −a)
Ceikx + De−ikx (−a < x < a)
Feikx (x > a)

 . Impose boundary conditions:

(1) Continuity at −a : Aeika + Beika = Ce−ika + Deika ⇒ βA + B = βC + D, where β ≡ e−2ika.
(2) Continuity at +a : Ceika + De−ika = Feika ⇒ F = C + βD.
(3) Discontinuity in ψ′ at −a : ik(Ce−ika −Deika)− ik(Ae−ika −Beika) = − 2mα

�2 (Ae−ika + Beika)
⇒ βC −D = β(γ + 1)A + B(γ − 1), where γ ≡ i2mα/�

2k.
(4) Discontinuity in ψ′ at +a : ikFeika − ik(Ceika −De−ika) = − 2mα

�2 (Feika)
⇒ C − βD = (1− γ)F.

To solve for C and D,
{

add (2) and (4) : 2C = F + (1− γ)F ⇒ 2C = (2− γ)F.
subtract (2) and (4) : 2βD = F − (1− γ)F ⇒ 2D = (γ/β)F.

{
add (1) and (3) : 2βC = βA + B + β(γ + 1)A + B(γ − 1) ⇒ 2C = (γ + 2)A + (γ/β)B.
subtract (1) and (3) : 2D = βA + B − β(γ + 1)A−B(γ − 1) ⇒ 2D = −γβA + (2− γ)B.

{
Equate the two expressions for 2C : (2− γ)F = (γ + 2)A + (γ/β)B.
Equate the two expressions for 2D : (γ/β)F = −γβA + (2− γ)B.

Solve these for F and B, in terms of A. Multiply the first by β(2− γ), the second by γ, and subtract:[
β(2− γ)2F = β(4− γ2)A + γ(2− γ)B

]
;

[
(γ2/β)F = −βγ2A + γ(2− γ)B

]
.

⇒
[
β(2− γ)2 − γ2/β

]
F = β

[
4− γ2 + γ

]
A = 4βA⇒ F

A
=

4
(2− γ)2 − γ2/β2

.

Let g ≡ i/γ =
�

2k

2mα
; φ ≡ 4ka, so γ =

i

g
, β2 = e−iφ. Then:

F

A
=

4g2

(2g − i)2 + eiφ
.

Denominator: 4g2 − 4ig − 1 + cosφ + i sinφ = (4g2 − 1 + cosφ) + i(sinφ− 4g).

|Denominator|2 = (4g2 − 1 + cosφ)2 + (sinφ− 4g)2

= 16g4 + 1 + cos2 φ− 8g2 − 2 cosφ + 8g2 cosφ + sin2 φ− 8g sinφ + 16g2

= 16g4 + 8g2 + 2 + (8g2 − 2) cosφ− 8g sinφ.

T =
∣∣∣∣FA

∣∣∣∣2 =
8g4

(8g4 + 4g2 + 1) + (4g2 − 1) cosφ− 4g sinφ
, where g ≡ �

2k

2mα
and φ ≡ 4ka.
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Problem 2.29

In place of Eq. 2.151, we have: ψ(x) =


Fe−κx (x > a)
D sin(lx) (0 < x < a)
−ψ(−x) (x < 0)

 .

Continuity of ψ : Fe−κa = D sin(la); continuity of ψ′ : −Fκe−κa = Dl cos(la).

Divide: − κ = l cot(la), or − κa = la cot(la)⇒
√

z2
0 − z2 = −z cot z, or − cot z =

√
(z0/z)2 − 1.

Wide, deep well: Intersections are at π, 2π, 3π, etc. Same as Eq. 2.157, but now for n even. This fills in the
rest of the states for the infinite square well.

Shallow, narrow well: If z0 < π/2, there is no odd bound state. The corresponding condition on V0 is

V0 <
π2

�
2

8ma2
⇒ no odd bound state.

π 2π zz0

Problem 2.30

1 = 2
∫ ∞

0

|ψ|2dx = 2
(
|D|2

∫ a

0

cos2 lx dx + |F |2
∫ ∞

a

e−2κxdx

)
= 2

[
|D|2

(
x

2
+

1
4l

sin 2lx
)∣∣∣∣a

0

+ |F |2
(
− 1

2κ
e−2κx

)∣∣∣∣∞
a

]
= 2

[
|D|2

(
a

2
+

sin 2la
4l

)
+ |F |2 e

−2κa

2κ

]
.

But F = Deκa cos la (Eq. 2.152), so 1 = |D|2
(
a +

sin(2la)
2l

+
cos2(la)

κ

)
.

Furthermore κ = l tan(la) (Eq. 2.154), so

1 = |D|2
(
a +

2 sin la cos la
2l

+
cos3 la

l sin la

)
= |D|2

[
a +

cos la
l sin la

(sin2 la + cos2 la)
]

= |D|2
(
a +

1
l tan la

)
= |D|2

(
a +

1
κ

)
. D =

1√
a + 1/κ

, F =
eκa cos la√
a + 1/κ

.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 35

Problem 2.31

Equation 2.155 ⇒ z0 = a
�

√
2mV0. We want α = area of potential = 2aV0 held constant as a → 0. Therefore

V0 = α
2a ; z0 = a

�

√
2m α

2a = 1
�

√
mαa → 0. So z0 is small, and the intersection in Fig. 2.18 occurs at very small

z. Solve Eq. 2.156 for very small z, by expanding tan z:

tan z ∼= z =
√

(z0/z)2 − 1 = (1/z)
√

z2
0 − z2.

Now (from Eqs. 2.146, 2.148 and 2.155) z2
0−z2 = κ2a2, so z2 = κa. But z2

0−z2 = z4 � 1 ⇒ z ∼= z0, so κa ∼= z2
0 .

But we found that z0
∼= 1

�

√
mαa here, so κa = 1

�2 mαa, or κ = mα
�2 . (At this point the a’s have canceled, and

we can go to the limit a→ 0.)

√
−2mE

�
=

mα

�2
⇒ −2mE =

m2α2

�2
. E = −mα2

2�2
(which agrees with Eq. 2.129).

In Eq. 2.169, V0 � E ⇒ T−1 ∼= 1+ V 2
0

4EV0
sin2

(
2a
�

√
2mV0

)
. But V0 = α

2a , so the argument of the sine is small,

and we can replace sin ε by ε: T−1 ∼= 1+ V0
4E

(
2a
�

)2 2mV0 = 1+(2aV0)2 m
2�2E . But 2aV0 = α, so T−1 = 1+ mα2

2�2E ,
in agreement with Eq. 2.141.

Problem 2.32

Multiply Eq. 2.165 by sin la, Eq. 2.166 by 1
l cos la, and add:

C sin2 la + D sin la cos la = Feika sin la
C cos2 la−D sin la cos la = ik

l Feika cos la

}
C = Feika

[
sin la +

ik

l
cos la

]
.

Multiply Eq. 2.165 by cos la, Eq. 2.166 by 1
l sin la, and subtract:

C sin la cos la + D cos2 la = Feika cos la
C sin la cos la−D sin2 la = ik

l Feika sin la

}
D = Feika

[
cos la− ik

l
sin la

]
.

Put these into Eq. 2.163:

(1) Ae−ika + Beika = −Feika

[
sin la +

ik

l
cos la

]
sin la + Feika

[
cos la− ik

l
sin la

]
cos la

= Feika

[
cos2 la− ik

l
sin la cos la− sin2 la− ik

l
sin la cos la

]
= Feika

[
cos(2la)− ik

l
sin(2la)

]
.

Likewise, from Eq. 2.164:

(2) Ae−ika −Beika = − il

k
Feika

[(
sin la +

ik

l
cos la

)
cos la +

(
cos la− ik

l
sin la

)
sin la

]
= − il

k
Feika

[
sin la cos la +

ik

l
cos2 la + sin la cos la− ik

l
sin2 la

]
= − il

k
Feika

[
sin(2la) +

ik

l
cos(2la)

]
= Feika

[
cos(2la)− il

k
sin(2la)

]
.
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36 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Add (1) and (2): 2Ae−ika = Feika

[
2 cos(2la)− i

(
k

l
+

l

k

)
sin(2la)

]
, or:

F =
e−2ikaA

cos(2la)− i sin(2la)
2kl (k2 + l2)

(confirming Eq. 2.168). Now subtract (2) from (1):

2Beika = Feika

[
i

(
l

k
− k

l

)
sin(2la)

]
⇒ B = i

sin(2la)
2kl

(l2 − k2)F (confirming Eq. 2.167).

T−1 =
∣∣∣∣AF

∣∣∣∣2 =
∣∣∣∣cos(2la)− i

sin(2la)
2kl

(k2 + l2)
∣∣∣∣2 = cos2(2la) +

sin2(2la)
(2lk)2

(k2 + l2)2.

But cos2(2la) = 1− sin2(2la), so

T−1 = 1 + sin2(2la)
[

(k2 + l2)2

(2lk)2
− 1︸ ︷︷ ︸

1
(2kl)2

[k4+2k2l2+l4−4k2l2]= 1
(2kl)2

[k4−2k2l2+l4]=
(k2−l2)2

(2kl)2
.

]
= 1 +

(k2 − l2)2

(2kl)2
sin2(2la).

But k =
√

2mE

�
, l =

√
2m(E + V0)

�
; so (2la) =

2a
�

√
2m(E + V0); k2 − l2 = −2mV0

�2
, and

(k2 − l2)2

(2kl)2
=

(
2m
�2

)2
V 2

0

4
(

2m
�2

)2
E(E + V0)

=
V 2

0

4E(E + V0)
.

∴ T−1 = 1 +
V 2

0

4E(E + V0)
sin2

(
2a
�

√
2m(E + V0)

)
, confirming Eq. 2.169.

Problem 2.33

E < V0. ψ =


Aeikx + Be−ikx (x < −a)
Ceκx + De−κx (−a < x < a)
Feikx (x > a)

 k =
√

2mE

�
; κ =

√
2m(V0 − E)

�
.

(1) Continuity of ψ at −a: Ae−ika + Beika = Ce−κa + Deκa.

(2) Continuity of ψ′ at −a: ik(Ae−ika −Beika) = κ(Ce−κa −Deκa).

⇒ 2Ae−ika =
(
1− i

κ

k

)
Ce−κa +

(
1 + i

κ

k

)
Deκa.

(3) Continuity of ψ at +a: Ceκa + De−κa = Feika.

(4) Continuity of ψ′ at +a: κ(Ceκa −De−κa) = ikFeika.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 37

⇒ 2Ceκa =
(

1 +
ik

κ

)
Feika; 2De−κa =

(
1− ik

κ

)
Feika.

2Ae−ika =
(

1− iκ

k

) (
1 +

ik

κ

)
Feika e

−2κa

2
+

(
1 +

iκ

k

) (
1− ik

κ

)
Feika e

2κa

2

=
Feika

2

{[
1 + i

(
k

κ
− κ

k

)
+ 1

]
e−2κa +

[
1 + i

(
κ

k
− k

κ

)
+ 1

]
e2κa

}
=

Feika

2

[
2

(
e−2κa + e2κa

)
+ i

(κ2 − k2)
kκ

(
e2κa − e−2κa

)]
.

But sinhx ≡ ex − e−x

2
, coshx ≡ ex + e−x

2
, so

=
Feika

2

[
4 cosh(2κa) + i

(κ2 − k2)
kκ

2 sinh(2κa)
]

= 2Feika

[
cosh(2κa) + i

(κ2 − k2)
2kκ

sinh(2κa)
]
.

T−1 =
∣∣∣∣AF

∣∣∣∣2 = cosh2(2κa) +
(κ2 − k2)2

(2κk)2
sinh2(2κa). But cosh2 = 1 + sinh2, so

T−1 = 1 +
[

1 +
(κ2 − k2)2

(2κk)2︸ ︷︷ ︸
�

]
sinh2(2κa) = 1 +

V 2
0

4E(V0 − E)
sinh2

(
2a
�

√
2m(V0 − E)

)
,

where � =
4κ2k2 + k4 + κ4 − 2κ2k2

(2κk)2
=

(κ2 + k2)2

(2κk)2
=

(
2mE

�2 + 2m(V0−E)
�2

)2

4 2mE
�2

2m(V0−E)
�2

=
V 2

0

4E(V0 − E)
.

(You can also get this from Eq. 2.169 by switching the sign of V0 and using sin(iθ) = i sinh θ.)

E = V0. ψ =


Aeikx + Be−ikx (x < −a)
C + Dx (−a < x < a)
Feikx (x > a)


(In central region − �

2

2m
d2ψ

dx2
+ V0ψ = Eψ ⇒ d2ψ

dx2
= 0, so ψ = C + Dx.)

(1) Continuous ψ at −a : Ae−ika + Beika = C −Da.

(2) Continuous ψ at +a : Feika = C + Da.

⇒ (2.5) 2Da = Feika −Ae−ika −Beika.

(3) Continuous ψ′ at −a : ik
(
Ae−ika −Beika

)
= D.

(4) Continuous ψ′ at +a : ikFeika = D.
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38 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

⇒ (4.5) Ae−2ika −B = F.

Use (4) to eliminate D in (2.5): Ae−2ika + B = F − 2aikF = (1− 2iak)F , and add to (4.5):

2Ae−2ika = 2F (1− ika), so T−1 =
∣∣∣∣AF

∣∣∣∣2 = 1 + (ka)2 = 1 +
2mE

�2
a2.

(You can also get this from Eq. 2.169 by changing the sign of V0 and taking the limit E → V0, using sin ε ∼= ε.)

E > V0. This case is identical to the one in the book, only with V0 → −V0. So

T−1 = 1 +
V 2

0

4E(E − V0)
sin2

(
2a
�

√
2m(E − V0)

)
.

Problem 2.34

(a)

ψ =
{

Aeikx + Be−ikx (x < 0)
Fe−κx (x > 0)

}
where k =

√
2mE

�
; κ =

√
2m(V0 − E)

�
.

(1) Continuity of ψ : A + B = F.

(2) Continuity of ψ′ : ik(A−B) = −κF.

⇒ A + B = − ik

κ
(A−B)⇒ A

(
1 +

ik

κ

)
= −B

(
1− ik

κ

)
.

R =
∣∣∣∣BA

∣∣∣∣2 =
|(1 + ik/κ)|2
|(1− ik/κ)|2 =

1 + (k/κ)2

1 + (k/κ)2
= 1.

Although the wave function penetrates into the barrier, it is eventually all reflected.

(b)

ψ =
{

Aeikx + Be−ikx (x < 0)
Feilx (x > 0)

}
where k =

√
2mE

�
; l =

√
2m(E − V0)

�
.

(1) Continuity of ψ : A + B = F.

(2) Continuity of ψ′ : ik(A−B) = ilF.

⇒ A + B =
k

l
(A−B); A

(
1− k

l

)
= −B

(
1 +

k

l

)
.

R =
∣∣∣∣BA

∣∣∣∣2 =
(1− k/l)2

(1 + k/l)2
=

(k − l)2

(k + l)2
=

(k − l)4

(k2 − l2)2
.

Now k2 − l2 =
2m
�2

(E − E + V0) =
(

2m
�2

)
V0; k − l =

√
2m
�

[
√
E −

√
E − V0], so

R =
(
√
E −

√
E − V0)4

V 2
0

.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 39

(c)

vi
vi vt

vtdt dt

From the diagram, T = Pt/Pi = |F |2vt/|A|2vi, where Pi is the probability of finding the incident particle
in the box corresponding to the time interval dt, and Pt is the probability of finding the transmitted
particle in the associated box to the right of the barrier.

But
vt

vi
=
√
E − V0√

E
(from Eq. 2.98). So T =

√
E − V0

E

∣∣∣∣FA
∣∣∣∣2 . Alternatively, from Problem 2.19:

Ji =
�k

m
|A|2; Jt =

�l

m
|F |2; T =

Jt

Ji
=

∣∣∣∣FA
∣∣∣∣2 l

k
=

∣∣∣∣FA
∣∣∣∣2

√
E − V0

E
.

For E < V0, of course, T = 0.

(d)

For E > V0, F = A + B = A + A

(
k
l − 1

)(
k
l + 1

) = A
2k/l(
k
l + 1

) =
2k

k + l
A.

T =
∣∣∣∣FA

∣∣∣∣2 l

k
=

(
2k

k + l

)2
l

k
=

4kl
(k + l)2

=
4kl(k − l)2

(k2 − l2)2
=

4
√
E
√
E − V0(

√
E −

√
E − V0)2

V 2
0

.

T + R =
4kl

(k + l)2
+

(k − l)2

(k + l)2
=

4kl + k2 − 2kl + l2

(k + l)2
=

k2 + 2kl + l2

(k + l)2
=

(k + l)2

(k + l)2
= 1. �

Problem 2.35

(a)

ψ(x) =
{

Aeikx + Be−ikx (x < 0)
Feilx (x > 0)

}
where k ≡

√
2mE

�
, l ≡

√
2m(E + V0)

�
.

Continuity of ψ ⇒ A + B = F
Continuity of ψ′ ⇒ ik(A−B) = ilF

}
=⇒

A + B =
k

l
(A−B); A

(
1− k

l

)
= −B

(
1 +

k

l

)
;

B

A
= −

(
1− k/l

1 + k/l

)
.
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R =
∣∣∣∣BA

∣∣∣∣2 =
(
l − k

l + k

)2

=

(√
E + V0 −

√
E√

E + V0 +
√
E

)2

=

(√
1 + V0/E − 1√
1 + V0/E + 1

)2

=
(√

1 + 3− 1√
1 + 3 + 1

)2

=
(

2− 1
2 + 1

)2

=
1
9
.

(b) The cliff is two-dimensional, and even if we pretend the car drops straight down, the potential as a function
of distance along the (crooked, but now one-dimensional) path is −mgx (with x the vertical coordinate),
as shown.

V(x)

x

-V0

(c) Here V0/E = 12/4 = 3, the same as in part (a), so R = 1/9, and hence T = 8/9 = 0.8889.

Problem 2.36

Start with Eq. 2.22: ψ(x) = A sin kx + B cos kx. This time the boundary conditions are ψ(a) = ψ(−a) = 0:

A sin ka + B cos ka = 0; −A sin ka + B cos ka = 0.{
Subtract : A sin ka = 0⇒ ka = jπ or A = 0,
Add : B cos ka = 0⇒ ka = (j − 1

2 )π or B = 0,

(where j = 1, 2, 3, . . . ).
If B = 0 (so A �= 0), k = jπ/a. In this case let n ≡ 2j (so n is an even integer); then k = nπ/2a,

ψ = A sin(nπx/2a). Normalizing: 1 = |A|2
∫ a

−a
sin2(nπx/2a) dx = |A|2/2 ⇒ A =

√
2.

If A = 0 (so B �= 0), k = (j − 1
2 )π/a. In this case let n ≡ 2j − 1 (n is an odd integer); again k = nπ/2a,

ψ = B cos(nπx/2a). Normalizing: 1 = |B|2
∫ a

−a
cos2(nπx/2a)dx = |a|2/2 ⇒ B =

√
2.

In either case Eq. 2.21 yields E = �
2k2

2m = n2π2
�
2

2m(2a)2 (in agreement with Eq. 2.27 for a well of width 2a).
The substitution x→ (x + a)/2 takes Eq. 2.28 to

√
2
a

sin
(
nπ

a

(x + a)
2

)
=

√
2
a

sin
(nπx

2a
+

nπ

2

)
=


(−1)n/2

√
2
a sin

(
nπx
2a

)
(n even),

(−1)(n−1)/2
√

2
a cos

(
nπx
2a

)
(n odd).

So (apart from normalization) we recover the results above. The graphs are the same as Figure 2.2, except that
some are upside down (different normalization).

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 41

cos(πx/2a) sin(2πx/2a) cos(3πx/2a)

Problem 2.37

Use the trig identity sin 3θ = 3 sin θ − 4 sin3 θ to write

sin3

(
πx

a

)
=

3
4

sin
(
πx

a

)
− 1

4
sin

(
3πx
a

)
. So (Eq. 2.28): Ψ(x, 0) = A

√
a

2

[
3
4
ψ1(x)− 1

4
ψ3(x)

]
.

Normalize using Eq. 2.38: |A|2 a
2

(
9
16

+
1
16

)
=

5
16

a|A|2 = 1⇒ A =
4√
5a

.

So Ψ(x, 0) = 1√
10

[3ψ1(x)− ψ3(x)] , and hence (Eq. 2.17)

Ψ(x, t) =
1√
10

[
3ψ1(x)e−iE1t/� − ψ3(x)e−iE3t/�

]
.

|Ψ(x, t)|2 =
1
10

[
9ψ2

1 + ψ2
3 − 6ψ1ψ3 cos

(
E3 − E1

�
t

)]
; so

〈x〉 =
∫ a

0

x|Ψ(x, t)|2dx =
9
10
〈x〉1 +

1
10
〈x〉3 −

3
5

cos
(
E3 − E1

�
t

) ∫ a

0

xψ1(x)ψ3(x)dx,

where 〈x〉n = a/2 is the expectation value of x in the nth stationary state. The remaining integral is

2
a

∫ a

0

x sin
(
πx

a

)
sin

(
3πx
a

)
dx =

1
a

∫ a

0

x

[
cos

(
2πx
a

)
− cos

(
4πx
a

)]
dx

=
1
a

[(
a

2π

)2

cos
(

2πx
a

)
+

(
xa

2π

)
sin

(
2πx
a

)
−

(
a

4π

)2

cos
(

4πx
a

)
−

(
xa

4π

)
sin

(
4πx
a

)∣∣∣∣∣
a

0

= 0.

Evidently then,

〈x〉 =
9
10

(
a

2

)
+

1
10

(
a

2

)
=

a

2
.
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42 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

Problem 2.38

(a) New allowed energies: En =
n2π2

�
2

2m(2a)2
; Ψ(x, 0) =

√
2
a

sin
(π

a
x
)
, ψn(x) =

√
2
2a

sin
(nπ

2a
x
)
.

cn =
√

2
a

∫ a

0

sin
(π

a
x
)

sin
(nπ

2a
x
)
dx =

√
2

2a

∫ a

0

{
cos

[(n

2
− 1

) πx

a

]
− cos

[(n

2
+ 1

) πx

a

]}
dx.

=
1√
2a

{
sin

[(
n
2 − 1

)
πx
a

](
n
2 − 1

)
π
a

− sin
[(

n
2 + 1

)
πx
a

](
n
2 + 1

)
π
a

}∣∣∣∣∣
a

0

(for n �= 2)

=
1√
2π

{
sin

[(
n
2 − 1

)
π
](

n
2 − 1

) − sin
[(

n
2 + 1

)
π
](

n
2 + 1

) }
=

sin
[(

n
2 + 1

)
π
]

√
2π

[
1(

n
2 − 1

) − 1(
n
2 + 1

)]

=
4
√

2
π

sin
[(

n
2 + 1

)
π
]

(n2 − 4)
=

{
0, if n is even
± 4

√
2

π(n2−4) , if n is odd

}
.

c2 =
√

2
a

∫ a

0

sin2
(π

a
x
)
dx =

√
2
a

∫ a

0

1
2
dx =

1√
2
. So the probability of getting En is

Pn = |cn|2 =


1
2 , if n = 2

32
π2(n2−4)2 , if n is odd
0, otherwise

 .

Most probable: E2 =
π2

�
2

2ma2
(same as before). Probability: P2 = 1/2.

(b) Next most probable: E1 =
π2

�
2

8ma2
, with probability P1 =

32
9π2

= 0.36025.

(c) 〈H〉 =
∫

Ψ∗HΨ dx = 2
a

∫ a

0
sin

(
π
ax

) (
− �

2

2m
d2

dx2

)
sin

(
π
ax

)
dx, but this is exactly the same as before the wall

moved – for which we know the answer:
π2

�
2

2ma2
.

Problem 2.39

(a) According to Eq. 2.36, the most general solution to the time-dependent Schrödinger equation for the
infinite square well is

Ψ(x, t) =
∞∑

n=1

cnψn(x)e−i(n2π2
�/2ma2)t.

Now
n2π2

�

2ma2
T =

n2π2
�

2ma2

4ma2

π�
= 2πn2, so e−i(n2π2

�/2ma2)(t+T ) = e−i(n2π2
�/2ma2)te−i2πn2

, and since n2 is

an integer, e−i2πn2
= 1. Therefore Ψ(x, t + T ) = Ψ(x, t). QED

(b) The classical revival time is the time it takes the particle to go down and back: Tc = 2a/v, with the
velocity given by

E =
1
2
mv2 ⇒ v =

√
2E
m
⇒ Tc = a

√
2m
E

.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 43

(c) The two revival times are equal if

4ma2

π�
= a

√
2m
E

, or E =
π2

�
2

8ma2
=

E1

4
.

Problem 2.40

(a) Let V0 ≡ 32�
2/ma2. This is just like the odd bound states for the finite square well, since they are the

ones that go to zero at the origin. Referring to the solution to Problem 2.29, the wave function is

ψ(x) =

{
D sin lx, l ≡

√
2m(E + V0)/� (0 < x < a),

Fe−κx, κ ≡
√
−2mE/� (x > a),

and the boundary conditions at x = a yield

− cot z =
√

(z0/z)2 − 1

with

z0 =
√

2mV0

�
a =

√
2m(32�2/ma2)

�
a = 8.

Referring to the figure (Problem 2.29), and noting that (5/2)π = 7.85 < z0 < 3π = 9.42, we see that there
are three bound states.

(b) Let

I1 ≡
∫ a

0

|ψ|2dx = |D|2
∫ a

0

sin2 lx dx = |D|2
[
x

2
− 1

2l
sin lx cos lx

]∣∣∣∣a
0

= |D|2
[
a

2
− 1

2l
sin lz cos la

]
;

I2 ≡
∫ ∞

a

|ψ|2dx = |F |2
∫ ∞

a

e−2κx dx = |F |2
[
−e−2κx

2κ

]∣∣∣∣∞
a

= |F |2 e
−2κa

2κ
.

But continuity at x = a⇒ Fe−κa = D sin la, so I2 = |D|2 sin2 la
2κ .

Normalizing:

1 = I1 + I2 = |D|2
[
a

2
− 1

2l
sin la cos la +

sin2 la

2κ

]
=

1
2κ
|D|2

[
κa− κ

l
sin la cos la + sin2 la

]
But (referring again to Problem 2.29) κ/l = − cot la, so

=
1
2κ
|D|2

[
κa + cot la sin la cos la + sin2 la

]
= |D|2 (1 + κa)

2κ
.

So |D|2 = 2κ/(1 + κa), and the probability of finding the particle outside the well is

P = I2 =
2κ

1 + κa

sin2 la

2κ
=

sin2 la

1 + κa
.

We can express this interms of z ≡ la and z0: κa =
√

z2
0 − z2 (page 80),

sin2 la = sin2 z =
1

1 + cot2 z
=

1
1 + (z0/z)2 − 1

=
(

z

z0

)2

⇒ P =
z2

z2
0(1 +

√
z2
0 − z2)

.

So far, this is correct for any bound state. In the present case z0 = 8 and z is the third solution
to − cot z =

√
(8/z)2 − 1, which occurs somewhere in the interval 7.85 < z < 8. Mathematica gives

z = 7.9573 and P = 0.54204.
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Problem 2.41

(a) In the standard notation ξ ≡
√

mω/�x, α ≡ (mω/π�)1/4,

Ψ(x, 0) = A(1− 2ξ)2e−ξ2/2 = A(1− 4ξ + 4ξ2)e−ξ2/2.

It can be expressed as a linear combination of the first three stationary states (Eq. 2.59 and 2.62, and
Problem 2.10):

ψ0(x) = αe−ξ2/2, ψ1(x) =
√

2αξe−ξ2/2, ψ2(x) =
α√
2
(2ξ2 − 1)e−ξ2/2.

So Ψ(x, 0) = c0ψ0 + c1ψ1 + c2ψ2 = α(c0 +
√

2ξc1 +
√

2ξ2c2 − 1√
2
c2)e−ξ2/2 with (equating like powers)

α
√

2c2 = 4A ⇒ c2 = 2
√

2A/α,

α
√

2c1 = −4A ⇒ c1 = −2
√

2A/α,

α(c0 − c2/
√

2) = A ⇒ c0 = (A/α) + c2/
√

2 = (1 + 2)A/α = 3A/α.

Normalizing: 1 = |c0|2 + |c1|2 + |c2|2 = (8 + 8 + 9)(A/α)2 = 25(A/α)2 ⇒ A = α/5.

c0 =
3
5
, c1 = −2

√
2

5
, c2 =

2
√

2
5

.

〈H〉 =
∑

|cn|2(n +
1
2
)�ω =

9
25

(
1
2

�ω

)
+

8
25

(
3
2

�ω

)
+

8
25

(
5
2

�ω

)
=

�ω

50
(9 + 24 + 40) =

73
50

�ω.

(b)

Ψ(x, t) =
3
5
ψ0e
−iωt/2− 2

√
2

5
ψ1e
−3iωt/2+

2
√

2
5

ψ2e
−5iωt/2 = e−iωt/2

[
3
5
ψ0 −

2
√

2
5

ψ1e
−iωt +

2
√

2
5

ψ2e
−2iωt

]
.

To change the sign of the middle term we need e−iωT = −1 (then e−2iωT = 1); evidently ωT = π, or
T = π/ω.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 45

Problem 2.42

Everything in Section 2.3.2 still applies, except that there is an additional boundary condition: ψ(0) = 0. This
eliminates all the even solutions (n = 0, 2, 4, . . . ), leaving only the odd solutions. So

En =
(
n +

1
2

)
�ω, n = 1, 3, 5, . . . .

Problem 2.43

(a) Normalization is the same as before: A =
(

2a
π

)1/4.

(b) Equation 2.103 says

φ(k) =
1√
2π

(
2a
π

)1/4 ∫ ∞
−∞

e−ax2
eilxe−ikxdx [same as before, only k → k − l] =

1
(2πa)1/4

e−(k−l)2/4a.

Ψ(x, t) =
1√
2π

1
(2πa)1/4

∫ ∞
−∞

e−(k−l)2/4aei(kx−�k2t/2m)︸ ︷︷ ︸
e−l2/4ae

−[( 1
4a+i �t

2m )k2−(ix+ l
2a )k]

dk

=
1√
2π

1
(2πa)1/4

e−l2/4a

√
π(

1
4a + i �t

2m

)e(ix+l/2a)2/[4(1/4a+i�t/2m)]

=
(

2a
π

)1/4 1√
1 + 2i�at/m

e−l2/4aea(ix+l/2a)2/(1+2ia�t/m).

(c) Let θ ≡ 2�at/m, as before: |Ψ|2 =

√
2a
π

1√
1 + θ2

e−l2/2ae
a

[
(ix+l/2a)2

(1+iθ) +
(−ix+l/2a)2

(1−iθ)

]
. Expand the term in

square brackets:

[ ] =
1

1 + θ2

[
(1− iθ)

(
ix +

l

2a

)2

+ (1 + iθ)
(
−ix +

l

2a

)2
]

=
1

1 + θ2

[(
−x2 +

ixl

a
+

l2

4a2

)
+

(
−x2 − ixl

a
+

l2

4a2

)
+iθ

(
x2 − ixl

a
− l2

4a2

)
+ iθ

(
−x2 − ixl

a
+

l2

4a2

)]
=

1
1 + θ2

[
−2x2 +

l2

2a2
+ 2θ

xl

a

]
=

1
1 + θ2

[
−2x2 + 2θ

xl

a
− θ2l2

2a2
+

θ2l2

2a2
+

l2

2a2

]
=

−2
1 + θ2

(
x− θl

2a

)2

+
l2

2a2
.

|Ψ(x, t)|2 =

√
2
π

√
a

1 + θ2
e−l2/2ae

− 2a
1+θ2

(x−θl/2a)2
el2/2a =

√
2
π
we−2w2(x−θl/2a)2 ,
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46 CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION

where w ≡
√

a/(1 + θ2). The result is the same as before, except x→
(
x− θl

2a

)
=

(
x− �l

m t
)
, so |Ψ|2 has

the same (flattening Gaussian) shape – only this time the center moves at constant speed v = �l/m.

(d)

〈x〉 =
∫ ∞
−∞

x|Ψ(x, t)|2dx. Let y ≡ x− θl/2a = x− vt, so x = y + vt.

=
∫ ∞
−∞

(y + vt)

√
2
π
we−2w2y2

dy = vt.

(The first integral is trivially zero; the second is 1 by normalization.)

=
�l

m
t; 〈p〉 = m

d〈x〉
dt

= �l.

〈x2〉 =
∫ ∞
−∞

(y + vt)2
√

2
π
we−2w2y2

dy =
1

4w2
+ 0 + (vt)2 (the first integral is same as before).

〈x2〉 =
1

4w2
+

(
�lt

m

)2

. 〈p2〉 = −�
2

∫ ∞
−∞

Ψ∗
d2Ψ
dx2

dx.

Ψ =
(

2a
π

)1/4 1√
1 + iθ

e−l2/4aea(ix+l/2a)2/(1+iθ), so
dΨ
dx

=
2ia

(
ix + l

2a

)
(1 + iθ)

Ψ;

d2Ψ
dx2

=
[
2ia(ix + l/2a)

1 + iθ

]
dΨ
dx

+
2i2a

1 + iθ
Ψ =

[
−4a2 (ix + l/2a)2

(1 + iθ)2
− 2a

1 + iθ

]
Ψ.

〈p2〉 =
4a2

�
2

(1 + iθ)2

∫ ∞
−∞

[(
ix +

l

2a

)2

+
(1 + iθ)

2a

]
|Ψ|2dx

=
4a2

�
2

(1 + iθ)2

∫ ∞
−∞

[
−

(
y + vt− il

2a

)2

+
(1 + iθ)

2a

]
|Ψ|2dy

=
4a2

�
2

(1 + iθ)2

{
−

∫ ∞
−∞

y2|Ψ|2dy − 2
(
vt− il

2a

) ∫ ∞
−∞

y|Ψ|2dy

+

[
−

(
vt− il

2a

)2

+
(1 + iθ)

2a

] ∫ ∞
−∞

|Ψ|2dy
}

=
4a2

�
2

(1 + iθ)2

[
− 1

4w2
+ 0−

(
vt− il

2a

)2

+
(1 + iθ)

2a

]

=
4a2

�
2

(1 + iθ)2

{
−1 + θ2

4a
−

[(−il

2a

)
(1 + iθ)

]2

+
(1 + iθ)

2a

}

=
a�

1 + iθ

[
−(1− iθ) +

l2

a
(1 + iθ) + 2

]
=

a�
2

1 + iθ

[
(1 + iθ)

(
1 +

l2

a

)]
= �

2(a + l2).

σ2
x = 〈x2〉 − 〈x〉2 =

1
4w2

+
(

�lt

m

)2

−
(

�lt

m

)2

=
1

4w2
⇒ σx =

1
2w

;
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σ2
p = 〈p2〉 − 〈p〉2 = �

2a + �
2l2 − �

2l2 = �
2a, so σp = �

√
a.

(e) σx and σp are same as before, so the uncertainty principle still holds.

Problem 2.44

Equation 2.22 ⇒ ψ(x) = A sin kx + B cos kx, 0 ≤ x ≤ a, with k =
√

2mE/�
2.

Even solutions: ψ(x) = ψ(−x) = A sin(−kx) + B cos(−kx) = −A sin kx + B cos kx (−a ≤ x ≤ 0).

Boundary
conditions


ψ continuous at 0 : B = B (no new condition).
ψ′ discontinuous (Eq. 2.125 with sign of α switched): Ak + Ak = 2mα

�2 B ⇒ B = �
2k

mαA.

ψ → 0 at x = a : A sin(ka) + �
2k

mαA cos(ka) = 0⇒ tan(ka) = −�
2k

mα .

ψ(x) = A

(
sin kx +

�
2k

mα
cos kx

)
(0 ≤ x ≤ a); ψ(−x) = ψ(x).

π 2π 3π

tan(ka) -h k
mα

2

ka

From the graph, the allowed energies are slightly above

ka =
nπ

2
(n = 1, 3, 5, . . . ) so En �

n2π2
�

2

2m(2a)2
(n = 1, 3, 5, . . . ).

These energies are somewhat higher than the corresponding energies for the infinite square well (Eq. 2.27, with
a → 2a). As α → 0, the straight line (−�

2k/mα) gets steeper and steeper, and the intersections get closer to
nπ/2; the energies then reduce to those of the ordinary infinite well. As α → ∞, the straight line approaches
horizontal, and the intersections are at nπ (n = 1, 2, 3, . . . ), so En → n2π2

�
2

2ma2 – these are the allowed energies for
the infinite square well of width a. At this point the barrier is impenetrable, and we have two isolated infinite
square wells.

Odd solutions: ψ(x) = −ψ(−x) = −A sin(−kx)−B cos(−kx) = A sin(kx)−B cos(kx) (−a ≤ x ≤ 0).

Boundary conditions


ψ continuous at 0 : B = −B ⇒ B = 0.
ψ′ discontinuous: Ak −Ak = 2mα

�2 (0) (no new condition).
ψ(a) = 0⇒ A sin(ka) = 0⇒ ka = nπ

2 (n = 2, 4, 6, . . . ).

ψ(x) = A sin(kx), (−a < x < a); En =
n2π2

�
2

2m(2a)2
(n = 2, 4, 6, . . . ).

These are the exact (even n) energies (and wave functions) for the infinite square well (of width 2a). The point
is that the odd solutions (even n) are zero at the origin, so they never “feel” the delta function at all.
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Problem 2.45

− �
2

2m
d2ψ1

dx2
+ V ψ1 = Eψ1 ⇒ − �

2

2m
ψ2

d2ψ1

dx2
+ V ψ1ψ2 = Eψ1ψ2

− �
2

2m
d2ψ2

dx2
+ V ψ2 = Eψ2 ⇒ − �

2

2m
ψ1

d2ψ2

dx2
+ V ψ1ψ2 = Eψ1ψ2

⇒ − �
2

2m

[
ψ2

d2ψ1

dx2
− ψ1

d2ψ2

dx2

]
= 0.

But
d

dx

[
ψ2

dψ1

dx
− ψ1

dψ2

dx

]
=

dψ2

dx

dψ1

dx
+ ψ2

d2ψ1

dx2
− dψ1

dx

dψ2

dx
− ψ1

d2ψ2

dx2
= ψ2

d2ψ1

dx2
− ψ1

d2ψ2

dx2
. Since this is

zero, it follows that ψ2
dψ1

dx
− ψ1

dψ2

dx
= K (a constant). But ψ → 0 at ∞ so the constant must be zero. Thus

ψ2
dψ1

dx
= ψ1

dψ2

dx
, or

1
ψ1

dψ1

dx
=

1
ψ2

dψ2

dx
, so lnψ1 = lnψ2 + constant, or ψ1 = (constant)ψ2. QED

Problem 2.46

− �
2

2m
d2ψ

dx2
= Eψ (where x is measured around the circumference), or

d2ψ

dx2
= −k2ψ, with k ≡

√
2mE

�
, so

ψ(x) = Aeikx + Be−ikx.

But ψ(x + L) = ψ(x), since x + L is the same point as x, so

AeikxeikL + Be−ikxe−ikL = Aeikx + Be−ikx,

and this is true for all x. In particular, for x = 0 :

(1) AeikL + Be−ikL = A + B. And for x =
π

2k
:

Aeiπ/2eikL + Be−iπ/2e−ikL = Aeiπ/2 + Be−iπ/2, or iAeikL − iBe−ikL = iA− iB, so

(2) AeikL −Be−ikL = A−B. Add (1) and (2): 2AeikL = 2A.

Either A = 0, or else eikL = 1, in which case kL = 2nπ (n = 0,±1,±2, . . . ). But if A = 0, then Be−ikL = B,
leading to the same conclusion. So for every positive n there are two solutions: ψ+

n (x) = Aei(2nπx/L) and
ψ−n (x) = Be−i(2nπx/L) (n = 0 is ok too, but in that case there is just one solution). Normalizing:

∫ L

0
|ψ±|2dx =

1 ⇒ A = B = 1/
√
L. Any other solution (with the same energy) is a linear combination of these.

ψ±n (x) =
1√
L
e±i(2nπx/L); En =

2n2π2
�

2

mL2
(n = 0, 1, 2, 3, . . . ).

The theorem fails because here ψ does not go to zero at ∞; x is restricted to a finite range, and we are unable
to determine the constant K (in Problem 2.45).

Problem 2.47

(a) (i) b = 0 ⇒ ordinary finite square well. Exponential decay outside; sinusoidal inside (cos for ψ1, sin for
ψ2). No nodes for ψ1, one node for ψ2.

(ii) Ground state is even. Exponential decay outside, sinusoidal inside the wells, hyperbolic cosine in
barrier. First excited state is odd – hyperbolic sine in barrier. No nodes for ψ1, one node for ψ2.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 49

x x

ψ ψ1 2

-a
-a

a a

x xb/2 b/2
-b/2

b/2+a-b/2
-(b/2+a)

-(b/2+a) b/2+a

ψ1 2ψ

(iii) For b� a, same as (ii), but wave function very small in barrier region. Essentially two isolated finite
square wells; ψ1 and ψ2 are degenerate (in energy); they are even and odd linear combinations of the
ground states of the two separate wells.

ψ ψ1 2

x x
-(b/2+a)

-(b/2+a)
-b/2

-b/2
b/2b/2

b/2+a b/2+a

(b) From Eq. 2.157 we know that for b = 0 the energies fall slightly below

E1 + V0 ≈ π2
�
2

2m(2a)2 = h
4

E2 + V0 ≈ 4π2
�
2

2m(2a)2 = h

}
where h ≡ π2

�
2

2ma2
.

For b� a, the width of each (isolated) well is a, so

E1 + V0 ≈ E2 + V0 ≈
π2

�
2

2ma2
= h (again, slightly below this).

Hence the graph (next page). [Incidentally, within each well, d2ψ
dx2 = − 2m

�2 (V0 + E)ψ, so the more curved
the wave function, the higher the energy. This is consistent with the graphs above.]

(c) In the (even) ground state the energy is lowest in configuration (i), with b → 0, so the electron tends to
draw the nuclei together, promoting bonding of the atoms. In the (odd) first excited state, by contrast,

the electron drives the nuclei apart.
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h

h/4

b

E+V
0

E  +V

E  +V

0

01

2

Problem 2.48

(a)

dΨ
dx

=
2
√

3
a
√
a
·
{

1, (0 < x < a/2)
−1, (a/2 < x < a)

}
=

2
√

3
a
√
a

[
1− 2θ

(
x− a

2

)]
.

(b)

d2Ψ
dx2

=
2
√

3
a
√
a

[
− 2δ

(
x− a

2

)]
= −4

√
3

a
√
a
δ

(
x− a

2

)
.

(c)

〈H〉 = − �
2

2m

(
− 4

√
3

a
√
a

) ∫
Ψ∗δ

(
x− a

2

)
dx =

2
√

3�
2

ma
√
a

Ψ∗
(
a

2

)
︸ ︷︷ ︸√

3/a

=
2 · 3 · �2

m · a · a =
6�

2

ma2
. �

Problem 2.49

(a)

∂Ψ
∂t

=
(
−mω

2�

) [
a2

2
(
−2iωe−2iωt

)
+

i�

m
− 2ax(−iω)e−iωt

]
Ψ, so

i�
∂Ψ
∂t

=
[
−1

2
ma2ω2e−2iωt +

1
2

�ω + maxω2e−iωt

]
Ψ.

∂Ψ
∂x

=
[(
−mω

2�

) (
2x− 2ae−iωt

)]
Ψ = −mω

�

(
x− ae−iωt

)
Ψ;

∂2Ψ
∂x2

= −mω

�
Ψ− mω

�

(
x− ae−iωt

) ∂Ψ
∂x

=
[
−mω

�
+

(mω

�

)2 (
x− ae−iωt

)2
]

Ψ.
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CHAPTER 2. THE TIME-INDEPENDENT SCHRÖDINGER EQUATION 51

− �
2

2m
∂2Ψ
∂x2

+
1
2
mω2x2Ψ = − �

2

2m

[
−mω

�
+

(mω

�

)2 (
x− ae−iωt

)2
]

Ψ +
1
2
mω2x2Ψ

=
[
1
2

�ω − 1
2
mω2

(
x2 − 2axe−iωt + a2e−2iωt

)
+

1
2
mω2x2

]
Ψ

=
[
1
2

�ω + maxω2e−iωt − 1
2
mω2a2e−2iωt

]
Ψ

= i�
∂Ψ
∂t

(comparing second line above). �

(b)

|Ψ|2 =
√

mω

π�
e
−mω2�

[ (
x2+ a2

2 (1+e2iωt)− i�tm −2axeiωt
)
+

(
x2+ a2

2 (1+e−2iωt)+ i�t
m −2axe−iωt

) ]

=
√

mω

π�
e−

mω
2� [2x2+a2+a2 cos(2ωt)−4ax cos(ωt)]. But a2[1 + cos(2ωt)] = 2a2 cos2 ωt, so

=
√

mω

π�
e−

mω
� [x2−2ax cos(ωt)+a2 cos2(ωt)] =

√
mω

π�
e−

mω
�

(x−a cos ωt)2 .

The wave packet is a Gaussian of fixed shape, whose center oscillates back and forth sinusoidally, with
amplitude a and angular frequency ω.

(c) Note that this wave function is correctly normalized (compare Eq. 2.59). Let y ≡ x− a cosωt :

〈x〉 =
∫

x|Ψ|2dx =
∫

(y + a cosωt)|Ψ|2dy = 0 + a cosωt

∫
|Ψ|2dy = a cosωt.

〈p〉 = m
d〈x〉
dt

= −maω sinωt.
d〈p〉
dt

= −maω2 cosωt. V =
1
2
mω2x2 =⇒ dV

dx
= mω2x.

〈−dV

dx
〉 = −mω2〈x〉 = −mω2a cosωt =

d〈p〉
dt

, so Ehrenfest’s theorem is satisfied.

Problem 2.50

(a)

∂Ψ
∂t

=
[
−mα

�2

∂

∂t
|x− vt| − i

(E + 1
2mv2)
�

]
Ψ;

∂

∂t
|x− vt| =

{
−v, if x− vt > 0
v, if x− vt < 0

}
.

We can write this in terms of the θ-function (Eq. 2.143):

2θ(z)− 1 =
{

1, if z > 0
−1, if z < 0

}
, so

∂

∂t
|x− vt| = −v[2θ(x− vt)− 1].

i�
∂Ψ
∂t

=
{
i
mαv

�
[2θ(x− vt)− 1] + E +

1
2
mv2

}
Ψ. [�]
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∂Ψ
∂x

=
[
−mα

�2

∂

∂x
|x− vt|+ imv

�

]
Ψ

∂

∂x
|x− vt| = {1, if x > vt; −1, if x < vt} = 2θ(x− vt)− 1.

=
{
−mα

�2
[2θ(x− vt)− 1] +

imv

�

}
Ψ.

∂2Ψ
∂x2

=
{
−mα

�2
[2θ(x− vt)− 1] +

imv

�

}2

Ψ− 2mα

�2

[
∂

∂x
θ(x− vt)

]
Ψ.

But (from Problem 2.24(b)) ∂
∂xθ(x− vt) = δ(x− vt), so

− �
2

2m
∂2Ψ
∂x2

− αδ(x− vt)Ψ

=

(
− �

2

2m

{
−mα

�2
[2θ(x− vt)− 1] +

imv

�

}2

+ αδ(x− vt)− αδ(x− vt)

)
Ψ

= − �
2

2m

{
m2α2

�4
[2θ(x− vt)− 1]2︸ ︷︷ ︸

1

−m2v2

�2
− 2i

mv

�

mα

�2
[2θ(x− vt)− 1]

}
Ψ

=
{
−mα2

2�2
+

1
2
mv2 + i

mvα

�
[2θ(x− vt)− 1]

}
Ψ = i�

∂Ψ
∂t

(compare [�]). �

(b)

|Ψ|2 =
mα

�2
e−2mα|y|/�

2
(y ≡ x− vt).

Check normalization: 2
mα

�2

∫ ∞
0

e−2mαy/�
2
dy =

2mα

�2

�
2

2mα
= 1. �

〈H〉 =
∫ ∞
−∞

Ψ∗HΨdx. But HΨ = i�
∂Ψ
∂t

, which we calculated above [�].

=
∫ {

imαv

�
[2θ(y)− 1] + E +

1
2
mv2

}
|Ψ|2dy = E +

1
2
mv2.

(Note that [2θ(y)−1] is an odd function of y.) Interpretation: The wave packet is dragged along (at speed
v) with the delta-function. The total energy is the energy it would have in a stationary delta-function
(E), plus kinetic energy due to the motion (1

2mv2).

Problem 2.51

(a) Figure at top of next page.

(b)
dψ0

dx
= −Aa sech(ax) tanh(ax);

d2ψ0

dx2
= −Aa2

[
− sech(ax) tanh2(ax) + sech(ax) sech2(ax)

]
.
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V(x)

x

Hψ0 = − �
2

2m
d2ψ0

dx2
− �

2a2

m
sech2(ax)ψ0

=
�

2

2m
Aa2

[
− sech(ax) tanh2(ax) + sech3(ax)

]
− �

2a2

m
A sech3(ax)

=
�

2a2A

2m
[
− sech(ax) tanh2(ax) + sech3(ax)− 2 sech3(ax)

]
= −�

2a2

2m
A sech(ax)

[
tanh2(ax) + sech2(ax)

]
.

But (tanh2 θ + sech2 θ) =
sinh2 θ

cosh2 θ
+

1
cosh2 θ

=
sinh2 θ + 1

cosh2 θ
= 1, so

= −�
2a2

2m
ψ0. QED Evidently E = −�

2a2

2m
.

1 = |A|2
∫ ∞
−∞

sech2(ax)dx = |A|2 1
a

tanh(ax)
∣∣∣∣∞
−∞

=
2
a
|A|2 =⇒ A =

√
a

2
.

x

ψ(x)

(c)

dψk

dx
=

A

ik + a

[
(ik − a tanh ax)ik − a2 sech2 ax

]
eikx.

d2ψk

dx2
=

A

ik + a

{
ik

[
(ik − a tanh ax)ik − a2 sech2 ax

]
− a2ik sech2 ax + 2a3 sech2 ax tanh ax

}
eikx.
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− �
2

2m
d2ψk

dx2
+ V ψk =

A

ik + a

{−�
2ik

2m
[
−k2 − iak tanh ax− a2 sech2 ax

]
+

�
2a2

2m
ik sech2 ax

−�
2a3

m
sech2 ax tanh ax− �

2a2

m
sech2 ax(ik − a tanh ax)

}
eikx

=
Aeikx

ik + a

�
2

2m
(
ik3 − ak2 tanh ax + ia2k sech2 ax + ia2k sech2 ax

−2a3 sech2 ax tanh ax− 2ia2k sech2 ax + 2a3 sech2 ax tanh ax
)

=
Aeikx

ik + a

�
2

2m
k2(ik − a tanh ax) =

�
2k2

2m
ψk = Eψk. QED

As x→ +∞, tanh ax→ +1, so ψk(x)→ A

(
ik − a

ik + a

)
eikx, which represents a transmitted wave.

R = 0. T =
∣∣∣∣ ik − a

ik + a

∣∣∣∣2 =
(−ik − a

−ik + a

) (
ik − a

ik + a

)
= 1.

Problem 2.52

(a) (1) From Eq. 2.133: F + G = A + B.

(2) From Eq. 2.135: F −G = (1 + 2iβ)A− (1− 2iβ)B, where β = mα/�
2k.

Subtract: 2G = −2iβA + 2(1− iβ)B ⇒ B =
1

1− iβ
(iβA + G). Multiply (1) by (1− 2iβ) and add:

2(1− iβ)F − 2iβG = 2A⇒ F =
1

1− iβ
(A + iβG). S =

1
1− iβ

(
iβ 1
1 iβ

)
.

(b) For an even potential, V (−x) = V (x), scattering from the right is the same as scattering from the left, with
x↔ −x, A↔ G, B ↔ F (see Fig. 2.22): F = S11G+ S12A, B = S21G+ S22A. So S11 = S22, S21 = S12.
(Note that the delta-well S matrix in (a) has this property.) In the case of the finite square well, Eqs. 2.167
and 2.168 give

S21 =
e−2ika

cos 2la− i (k2+l2)
2kl sin 2la

; S11 =
i (l2−k2)

2kl sin 2la e−2ika

cos 2la− i (k2+l2)
2kl sin 2la

. So

S =
e−2ika

cos 2la− i (k2+l2)
2kl sin 2la

(
i (l2−k2)

2kl sin 2la 1
1 i (l2−k2)

2kl sin 2la

)
.

Problem 2.53

(a)

B = S11A + S12G⇒ G =
1

S12
(B − S11A) = M21A + M22B ⇒M21 = −S11

S12
, M22 =

1
S12

.
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F = S21A + S22B = S21A +
S22

S12
(B − S11A) = − (S11S22 − S12S21)

S12
A +

S22

S12
B = M11A + M12B.

⇒M11 = −detS
S12

, M12 =
S22

S12
. M =

1
S12

(
−det(S) S22

−S11 1

)
. Conversely:

G = M21A + M22B ⇒ B =
1

M22
(G−M21A) = S11A + S12G⇒ S11 = −M21

M22
; S12 =

1
M22

.

F = M11A + M12B = M11A +
M12

M22
(G−M21A) =

(M11M22 −M12M21)
M22

A +
M12

M22
G = S21A + S22G.

⇒ S21 =
detM
M22

; S22 =
M12

M22
. S =

1
M22

(
−M21 1
det(M) M12

)
.

[It happens that the time-reversal invariance of the Schrödinger equation, plus conservation of probability,
requires M22 = M∗11, M21 = M∗12, and det(M) = 1, but I won’t use this here. See Merzbacher’s Quantum
Mechanics. Similarly, for even potentials S11 = S22, S12 = S21 (Problem 2.52).]

Rl = |S11|2 =
∣∣∣∣M21

M22

∣∣∣∣2 , Tl = |S21|2 =
∣∣∣∣det(M)

M22

∣∣∣∣2 , Rr = |S22|2 =
∣∣∣∣M12

M22

∣∣∣∣2 , Tr = |S12|2 =
1

|M22|2
.

(b)

A

B

C

D

F

G

xM M1 2

(
F
G

)
= M2

(
C
D

)
,

(
C
D

)
= M1

(
A
B

)
, so

(
F
G

)
= M2M1

(
A
B

)
= M

(
A
B

)
, with M = M2M1. QED

(c)

ψ(x) =
{

Aeikx + Be−ikx (x < a)
Feikx + Ge−ikx (x > a)

}
.

{
Continuity of ψ : Aeika + Be−ika = Feika + Ge−ika

Discontinuity of ψ′ : ik
(
Feika −Ge−ika

)
− ik

(
Aeika −Be−ika

)
= − 2mα

�2 ψ(a) = − 2mα
�2

(
Aeika + Be−ika

)
.

(1) Fe2ika + G = Ae2ika + B.

(2) Fe2ika −G = Ae2ika −B + i 2mα
�2k

(
Ae2ika + B

)
.
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Add (1) and (2):

2Fe2ika = 2Ae2ika + i
2mα

�2k

(
Ae2ika + B

)
⇒ F =

(
1 + i

mα

�2k

)
A + i

mα

�2k
e−2ikaB = M11A + M12B.

So M11 = (1 + iβ); M12 = iβe−2ika; β ≡ mα

�2k
.

Subtract (2) from (1):

2G = 2B − 2iβe2ikaA− 2iβB ⇒ G = (1− iβ)B − iβe2ikaA = M21A + M22B.

So M21 = −iβe2ika; M22 = (1− iβ). M =
(

(1 + iβ) iβe−2ika

−iβe2ika (1− iβ)

)
.

(d)

M1 =
(

(1 + iβ) iβe−2ika

−iβe2ika (1− iβ)

)
; to get M2, just switch the sign of a: M2 =

(
(1 + iβ) iβe2ika

−iβe−2ika (1− iβ)

)
.

M = M2M1 =
(

[1 + 2iβ + β2(e4ika − 1)] 2iβ[cos 2ka + β sin 2ka]
−2iβ[cos 2ka + β sin 2ka] [1− 2iβ + β2(e−4ika − 1)]

)
.

T = Tl = Tr =
1

|M22|2
⇒

T−1 = [1 + 2iβ + β2(e4ika − 1)][1− 2iβ + β2(e−4ika − 1)]

= 1− 2iβ + β2e−4ika − β2 + 2iβ + 4β2 + 2iβ3e−4ika − 2iβ3 + β2e4ika

− β2 − 2iβ3e4ika + 2iβ3 + β4(1− e4ika − e−4ika + 1)

= 1 + 2β2 + β2(e4ika + e−4ika)− 2iβ3(e4ika − e−4ika) + 2β4 − β4(e4ika + e−4ika)

= 1 + 2β2 + 2β2 cos 4ka− 2iβ32i sin 4ka + 2β4 − 2β4 cos 4ka

= 1 + 2β2(1 + cos 4ka) + 4β3 sin 4ka + 2β4(1− cos 4ka)

= 1 + 4β2 cos2 2ka + 8β3 sin 2ka cos 2ka + 4β4 sin2 2ka

T =
1

1 + 4β2(cos 2ka + β sin 2ka)2

Problem 2.54

I’ll just show the first two graphs, and the last two. Evidently K lies between 0.9999 and 1.0001.
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Problem 2.55

The correct values (in Eq. 2.72) are K = 2n + 1 (corresponding to En = (n + 1
2 )�ω). I’ll start by “guessing”

2.9, 4.9, and 6.9, and tweaking the number until I’ve got 5 reliable significant digits. The results (see below)
are 3.0000, 5.0000, 7.0000. (The actual energies are these numbers multiplied by 1

2�ω.)
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Problem 2.56

The Schrödinger equation says − �
2

2mψ
′′ = Eψ, or, with the correct energies (Eq. 2.27) and a = 1, ψ′′+(nπ)2ψ =

0. I’ll start with a “guess” using 9 in place of π2 (that is, I’ll use 9 for the ground state, 36 for the first excited
state, 81 for the next, and finally 144). Then I’ll tweak the parameter until the graph crosses the axis right
at x = 1. The results (see below) are, to five significant digits: 9.8696, 39.478, 88.826, 157.91. (The actual
energies are these numbers multiplied by �

2/2ma2.)
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Chapter 3

Formalism

Problem 3.1

(a) All conditions are trivial except Eq. A.1: we need to show that the sum of two square-integrable functions
is itself square-integrable. Let h(x) = f(x) + g(x), so that |h|2 = (f + g)∗(f + g) = |f |2 + |g|2 + f∗g + g∗f
and hence ∫

|h|2 dx =
∫
|f |2 dx +

∫
|g|2 dx +

∫
f∗g dx +

(∫
f∗g dx

)∗
.

If f(x) and g(x) are square-integrable, then the first two terms are finite, and (by Eq. 3.7) so too are the
last two. So

∫
|h|2dx is finite. QED

The set of all normalized functions is certainly not a vector space: it doesn’t include 0, and the sum of
two normalized functions is not (in general) normalized—in fact, if f(x) is normalized, then the square
integral of 2f(x) is 4.

(b) Equation A.19 is trivial:

〈g|f〉 =
∫ b

a

g(x)∗f(x) dx =

(∫ b

a

f(x)∗g(x) dx

)∗
= 〈f |g〉∗.

Equation A.20 holds (see Eq. 3.9) subject to the understanding in footnote 6. As for Eq. A.21, this is
pretty obvious:

〈f |(b|g〉+ c|h〉) =
∫

f(x)∗ (bg(x) + ch(x)) dx = b

∫
f∗g dx + c

∫
f∗h dx = b〈f |g〉+ c〈f |h〉.

Problem 3.2

(a)

〈f |f〉 =
∫ 1

0

x2ν dx =
1

2ν + 1
x2ν+1

∣∣∣∣1
0

=
1

2ν + 1
(
1− 02ν+1

)
.

Now 02ν+1 is finite (in fact, zero) provided (2ν + 1) > 0, which is to say, ν > − 1
2 . If (2ν + 1) < 0 the

integral definitely blows up. As for the critical case ν = − 1
2 , this must be handled separately:

〈f |f〉 =
∫ 1

0

x−1 dx = lnx
∣∣1
0

= ln 1− ln 0 = 0 +∞.
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CHAPTER 3. FORMALISM 63

So f(x) is in Hilbert space only for ν strictly greater than -1/2.

(b) For ν = 1/2, we know from (a) that f(x) is in Hilbert space: yes.

Since xf = x3/2, we know from (a) that it is in Hilbert space: yes.

For df/dx = 1
2x
−1/2, we know from (a) that it is not in Hilbert space: no.

[Moral: Simple operations, such as differenting (or multiplying by 1/x), can carry a function out of Hilbert
space.]

Problem 3.3

Suppose 〈h|Q̂h〉 = 〈Q̂h|h〉 for all functions h(x). Let h(x) = f(x) + cg(x) for some arbitrary constant c. Then

〈h|Q̂h〉 = 〈(f + cg)|Q̂(f + cg)〉 = 〈f |Q̂f〉+ c〈f |Q̂g〉+ c∗〈g|Q̂f〉+ |c|2〈g|Q̂g〉;
〈Q̂h|h〉 = 〈Q̂(f + cg)|(f + cg)〉 = 〈Q̂f |f〉+ c〈Q̂f |g〉+ c∗〈Q̂g|f〉+ |c|2〈Q̂g|g〉.

Equating the two and noting that 〈f |Q̂f〉 = 〈Q̂f |f〉 and 〈g|Q̂g〉 = 〈Q̂g|g〉 leaves

c〈f |Q̂g〉+ c∗〈g|Q̂f〉 = c〈Q̂f |g〉+ c∗〈Q̂g|f〉.
In particlar, choosing c = 1:

〈f |Q̂g〉+ 〈g|Q̂f〉 = 〈Q̂f |g〉+ 〈Q̂g|f〉,
whereas if c = i:

〈f |Q̂g〉 − 〈g|Q̂f〉 = 〈Q̂f |g〉 − 〈Q̂g|f〉.
Adding the last two equations:

〈f |Q̂g〉 = 〈Q̂f |g〉. QED

Problem 3.4

(a) 〈f |(Ĥ + K̂)g〉 = 〈f |Ĥg〉+ 〈f |K̂g〉 = 〈Ĥf |g〉+ 〈K̂f |g〉 = 〈(Ĥ + K̂)f |g〉. �

(b) 〈f |αQ̂g〉 = α〈f |Q̂g〉; 〈αQ̂f |g〉 = α∗〈Q̂f |g〉. Hermitian ⇔ α is real.

(c) 〈f |ĤK̂g〉 = 〈Ĥf |K̂g〉 = 〈K̂Ĥf |g〉, so ĤK̂ is hermitian ⇔ ĤK̂ = K̂Ĥ, or [Ĥ, K̂] = 0.

(d) 〈f |x̂g〉 =
∫
f∗(xg) dx =

∫
(xf)∗g dx = 〈x̂f |g〉. �

〈f |Ĥg〉 =
∫

f∗
(
− �

2

2m
d2

dx2
+ V

)
g dx = − �

2

2m

∫
f∗

d2g

dx2
dx +

∫
f∗V g dx.

Integrating by parts (twice):∫ ∞
−∞

f∗
d2g

dx2
dx = f∗

dg

dx

∣∣∣∣∞
−∞

−
∫ ∞
−∞

df∗

dx

dg

dx
dx = f∗

dg

dx

∣∣∣∣∞
−∞

− df∗

dx
g

∣∣∣∣∞
−∞

+
∫ ∞
−∞

d2f∗

dx2
g dx.

But for functions f(x) and g(x) in Hilbert space the boundary terms vanish, so∫ ∞
−∞

f∗
d2g

dx2
dx =

∫ ∞
−∞

d2f∗

dx2
g dx, and hence (assuming that V (x) is real):

〈f |Ĥg〉 =
∫ ∞
−∞

(
− �

2

2m
d2f

dx2
+ V f

)∗
g dx = 〈Ĥf |g〉. �
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Problem 3.5

(a) 〈f |xg〉 =
∫
f∗(xg) dx =

∫
(xf)∗g dx = 〈xf |g〉, so x† = x.

〈f |ig〉 =
∫
f∗(ig) dx =

∫
(−if)∗g dx = 〈−if |g〉, so i† = −i.

〈f |dg
dx
〉 =

∫ ∞
−∞

f∗
dg

dx
dx = f∗g

∣∣∣∣∞
−∞

−
∫ ∞
−∞

(
df

dx

)∗
g dx = −〈xf |g〉, so

(
d

dx

)†
= − d

dx
.

(b) a+ =
1√

2�mω
(−ip + mωx). But p and x are hermitian, and i† = −i, so (a+)† =

1√
2�mω

(ip + mωx), or

(a+)† = (a−).

(c) 〈f |(Q̂R̂)g〉 = 〈Q̂†f |R̂g〉 = 〈R̂†Q̂†f |g〉 = 〈(Q̂R̂)†f |g〉, so (Q̂R̂)† = R̂†Q̂†. �

Problem 3.6

〈f |Q̂g〉 =
∫ 2π

0

f∗
d2g

dφ2
dφ = f∗

dg

dφ

∣∣∣∣2π

0

−
∫ 2π

0

df∗

dφ

dg

dφ
dφ = f∗

dg

dφ

∣∣∣∣2π

0

− df∗

dφ
g

∣∣∣∣2π

0

+
∫ 2π

0

d2f∗

dφ2
g dφ.

As in Example 3.1, for periodic functions (Eq. 3.26) the boundary terms vanish, and we conclude that 〈f |Q̂g〉 =
〈Q̂f |g〉, so Q̂ is hermitian: yes.

Q̂f = qf ⇒ d2f

dφ2
= qf ⇒ f±(φ) = Ae±

√
qφ.

The periodicity condition (Eq. 3.26) requires that
√
q(2π) = 2nπi, or

√
q = in, so the eigenvalues are

q = −n2, (n = 0, 1, 2, . . . ). The spectrum is doubly degenerate; for a given n there are two eigenfunctions
(the plus sign or the minus sign, in the exponent), except for the special case n = 0, which is not degenerate.

Problem 3.7

(a) Suppose Q̂f = qf and Q̂g = qg. Let h(x) = af(x) + bg(x), for arbitrary constants a and b. Then

Q̂h = Q̂(af + bg) = a(Q̂f) + b(Q̂g) = a(qf) + b(qg) = q(af + bg) = qh. �

(b)
d2f

dx2
=

d2

dx2
(ex) =

d

dx
(ex) = ex = f,

d2g

dx2
=

d2

dx2

(
e−x

)
=

d

dx

(
−e−x

)
= e−x = g.

So both of them are eigenfunctions, with the same eigenvalue 1. The simplest orthogonal linear combina-
tions are

sinhx =
1
2

(
ex − e−x

)
=

1
2
(f − g) and coshx =

1
2

(
ex + e−x

)
=

1
2
(f + g).

(They are clearly orthogonal, since sinhx is odd while coshx is even.)
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Problem 3.8

(a) The eigenvalues (Eq. 3.29) are 0,±1,±2, . . . , which are obviously real. � For any two eigenfunctions,
f = Aqe

−iqφ and g = Aq′e
−iq′φ (Eq. 3.28), we have

〈f |g〉 = A∗qAq′

∫ 2π

0

eiqφe−iq′φ dφ = A∗qAq′
ei(q−q′)φ

i(q − q′)

∣∣∣∣∣
2π

0

=
A∗qAq′

i(q − q′)

[
ei(q−q′)2π − 1

]
.

But q and q′ are integers, so ei(q−q′)2π = 1, and hence 〈f |g〉 = 0 (provided q �= q′, so the denominator is
nonzero). �

(b) In Problem 3.6 the eigenvalues are q = −n2, with n = 0, 1, 2, . . . , which are obviously real. � For any
two eigenfunctions, f = Aqe

±inφ and g = Aq′e
±in′φ, we have

〈f |g〉 = A∗qAq′

∫ 2π

0

e∓inφe±in′φ dφ = A∗qAq′
e±i(n′−n)φ

±i(n′ − n)

∣∣∣∣∣
2π

0

=
A∗qAq′

±i(n′ − n)

[
e±i(n′−n)2π − 1

]
= 0

(provided n �= n′). But notice that for each eigenvalue (i.e. each value of n) there are two eigenfunctions
(one with the plus sign and one with the minus sign), and these are not orthogonal to one another.

Problem 3.9

(a) Infinite square well (Eq. 2.19).

(b) Delta-function barrier (Fig. 2.16), or the finite rectangular barrier (Prob. 2.33).

(c) Delta-function well (Eq. 2.114), or the finite square well (Eq. 2.145) or the sech2 potential (Prob. 2.51).

Problem 3.10

From Eq. 2.28, with n = 1:

p̂ ψ1(x) =
�

i

d

dx

√
2
a

sin
(π

a
x
)

=
�

i

√
2
a

π

a
cos

(π

a
x
)

=
[
−i

π�

a
cot

(π

a
x
)]

ψ1(x).

Since p̂ ψ1 is not a (constant) multiple of ψ1, ψ1 is not an eigenfunction of p̂: no. It’s true that the magnitude
of the momentum,

√
2mE1 = π�/a, is determinate, but the particle is just as likely to be found traveling to the

left (negative momentum) as to the right (positive momentum).

Problem 3.11

Ψ0(x, t) =
(
mω

π�

)1/4

e−
mω
2�

x2
e−iωt/2; Φ(p, t) =

1√
2π�

(
mω

π�

)1/4

e−iω/2

∫ ∞
−∞

e−ipx/�e−
mω
2�

x2
dx.

From Problem 2.22(b):

Φ(p, t) =
1√
2π�

(
mω

π�

)1/4

e−iωt/2

√
2π�

mω
e−p2/2mω� =

1
(πmω�)1/4

e−p2/2mω�e−iωt/2.
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|Φ(p, t)|2 =
1√

πmω�
e−p2/mω�. Maximum classical momentum:

p2

2m
= E =

1
2

�ω =⇒ p =
√
mω�.

So the probability it’s outside classical range is:

P =
∫ −√mω�

−∞
|Φ|2dp +

∫ ∞
√

mω�

|Φ|2dp = 1− 2
∫ √mω�

0

|Φ|2dp. Now

∫ √mω�

0

|Φ|2dp =
1√

πmω�

∫ √mω�

0

e−p2/mω� dp. Let z ≡
√

2
mω�

p, so dp =

√
mω�

2
dz.

=
1√
2π

∫ √2

0

e−z2/2dz = F (
√

2)− 1
2
, in CRC Table notation.

P = 1− 2
[
(F (

√
2)− 1

2

]
= 1− 2F (

√
2) + 1 = 2

[
1− F (

√
2)

]
= 0.157.

To two digits: 0.16 (compare Prob. 2.15).

Problem 3.12

From Eq. 3.55: Ψ(x, t) =
1√
2π�

∫ ∞
−∞

eipx/�Φ(p, t)dp.

〈x〉 =
∫

Ψ∗xΨdx =
∫ [

1√
2π�

∫
e−ip′x/�Φ∗(p′, t)dp′

]
x

[
1√
2π�

∫
e+ipx/�Φ(p, t)dp

]
dx.

But xeipx/� = −i�
d

dp

(
eipx/�

)
, so (integrating by parts):

x

∫
eipx/�Φ dp =

∫
�

i

d

dp

(
eipx/�)Φ dp =

∫
eipx/�

[
− �

i

∂

∂p
Φ(p, t)

]
dp.

So 〈x〉 =
1

2π�

∫∫∫ {
e−ip′x/�Φ∗(p′, t)eipx/�

[
− �

i

∂

∂p
Φ(p, t)

]}
dp′dp dx.

Do the x integral first, letting y ≡ x/�:

1
2π�

∫
e−ip′x/�eipx/�dx =

1
2π

∫
ei(p−p′)ydy = δ(p− p′), (Eq. 2.144), so

〈x〉 =
∫∫

Φ∗(p′, t)δ(p− p′)
[
− �

i

∂

∂p
Φ(p, t)

]
dp′dp =

∫
Φ∗(p, t)

[
− �

i

∂

∂p
Φ(p, t)

]
dp. QED
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Problem 3.13

(a) [AB,C] = ABC − CAB = ABC −ACB + ACB − CAB = A[B,C] + [A,C]B. �

(b) Introducing a test function g(x), as in Eq. 2.50:

[xn, p]g = xn �

i

dg

dx
− �

i

d

dx
(xng) = xn �

i

dg

dx
− �

i

(
nxn−1g + xn dg

dx

)
= i�nxn−1g.

So, dropping the test function, [xn, p] = i�nxn−1. �

(c) [f, p]g = f
�

i

dg

dx
− �

i

d

dx
(fg) = f

�

i

dg

dx
− �

i

(
df

dx
g + f

dg

dx

)
= i�

df

dx
g ⇒ [f, p] = i�

df

dx
. �

Problem 3.14[
x,

p2

2m
+ V

]
=

1
2m

[
x, p2

]
+ [x, V ];

[
x, p2

]
= xp2 − p2x = xp2 − pxp + pxp− p2x = [x, p]p + p[x, p].

Using Eq. 2.51:
[
x, p2

]
= i�p + pi� = 2i�p. And [x, V ] = 0, so

[
x,

p2

2m
+ V

]
=

1
2m

2i�p =
i�p

m
.

The generalized uncertainty principle (Eq. 3.62) says, in this case,

σ2
xσ

2
H ≥

(
1
2i

i�

m
〈p〉

)2

=
(

�

2m
〈p〉

)2

⇒ σxσH ≥ �

2m
|〈p〉|. QED

For stationary states σH = 0 and 〈p〉 = 0, so it just says 0 ≥ 0.

Problem 3.15

Suppose P̂ fn = λnfn and Q̂fn = µnfn (that is: fn(x) is an eigenfunction both of P̂ and of Q̂), and the set {fn}
is complete, so that any function f(x) (in Hilbert space) can be expressed as a linear combination: f =

∑
cnfn.

Then

[P̂ , Q̂]f = (P̂ Q̂− Q̂P̂ )
∑

cnfn = P̂
(∑

cnµnfn

)
− Q̂

(∑
cnλnfn

)
=

∑
cnµnλnfn −

∑
cnλnµnfn = 0.

Since this is true for any function f , it follows that [P̂ , Q̂] = 0.

Problem 3.16

dΨ
dx

=
i

�
(iax− ia〈x〉+ 〈p〉)Ψ =

a

�

(
−x + 〈x〉+

i

a
〈p〉

)
Ψ.

dΨ
Ψ

=
a

�

(
− x + 〈x〉+

i〈p〉
a

)
dx⇒ ln Ψ =

a

�

(
− x2

2
+ 〈x〉x +

i〈p〉
a

x

)
+ constant.

Let constant = −〈x〉
2a

2�
+ B (B a new constant). Then ln Ψ = − a

2�
(x− 〈x〉)2 +

i〈p〉
�

x + B.

Ψ = e−
a
2�

(x−〈x〉)2ei〈p〉x/�eB = Ae−a(x−〈x〉)2/2�ei〈p〉x/�, where A ≡ eB .
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Problem 3.17

(a) 1 commutes with everything, so
d

dt
〈Ψ|Ψ〉 = 0 (this is the conservation of normalization, which we origi-

nally proved in Eq. 1.27).

(b) Anything commutes with itself, so [H,H] = 0, and hence
d

dt
〈H〉 = 0 (assuming H has no explicit time

dependence); this is conservation of energy, in the sense of the comment following Eq. 2.40.

(c) [H,x] = − i�p

m
(see Problem 3.14). So

d〈x〉
dt

=
i

�

(
− i�〈p〉

m

)
=

〈p〉
m

(Eq. 1.33).

(d) [H, p] =
[
p2

2m
+ V, p

]
= [V, p] = i�

dV

dx
(Problem 3.13(c)). So

d〈p〉
dt

=
i

�

(
i�

〈
∂V

∂x

〉)
= −

〈
∂V

∂x

〉
.

This is Ehrenfest’s theorem (Eq. 1.38).

Problem 3.18

Ψ(x, t) =
1√
2

(
ψ1e
−iE1t/� + ψ2e

−E2t/�
)
. H2Ψ =

1√
2

[
(H2ψ1)e−E1t/� + (H2ψ2)e−iEnt/�

]
.

Hψ1 = E1ψ1 ⇒ H2ψ1 = E1Hψ1 = E2
1ψ1, and H2ψ2 = E2

2ψ2, so

〈H2〉 =
1
2
〈
(
ψ1e
−iE1t/� + ψ2e

−iE2t/�
)
|
(
E2

1ψ1e
−iE1t/� + E2

2ψ2e
−iE2t/�

)
〉

=
1
2
(
〈ψ1|ψ1〉eiE1t/�E2

1e
−iE1t/� + 〈ψ1|ψ2〉eiE1t/�E2

2e
−iE2t/�

+ 〈ψ2|ψ1〉eiE2t/�E2
1e
−iE1t/� + 〈ψ2|ψ2〉eiE2t/�E2

2e
−iE2t/�

)
=

1
2
(
E2

1 + E2
2

)
.

Similarly, 〈H〉 = 1
2 (E1 + E2) (Problem 2.5(e)).

σ2
H = 〈H2〉 − 〈H〉2 =

1
2
(
E2

1 + E2
2

)
− 1

4
(E1 + E2)2 =

1
4
(
2E2

1 + 2E2
2 − E2

2 − E2
1 − 2E1E2 − E2

2

)
=

1
4
(
E2

1 − 2E1E2 + E2
2

)
=

1
4
(E2 − E1)2. σH =

1
2
(E2 − E1).

〈x2〉 =
1
2
[
〈ψ1|x2|ψ1〉+ 〈ψ2|x2|ψ2〉+ 〈ψ1|x2|ψ2〉ei(E1−E2)t/� + 〈ψ2|x2|ψ1〉ei(E2−E1)t/�

]
.

〈ψn|x2|ψm〉 =
2
a

∫ a

0

x2 sin
(
nπ

a
x

)
sin

(
mπ

a
x

)
dx =

1
a

∫ a

0

x2

[
cos

(
n−m

a
πx

)
− cos

(
n + m

a
πx

)]
dx.

Now
∫ a

0

x2 cos
(
k

a
πx

)
dx =

{
2a2x

k2π2
cos

(
k

a
πx

)
+

(
a

kπ

)3[(
kπx

a

)2

− 2
]

sin
(
k

a
πx

)}∣∣∣∣∣
a

0

=
2a3

k2π2
cos(kπ) =

2a3

k2π2
(−1)k (for k = nonzero integer).
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∴ 〈ψn|x2|ψm〉 =
2a2

π2

[
(−1)n−m

(n−m)2
− (−1)n+m

(n + m)2

]
=

2a2

π2
(−1)n+m 4nm

(n2 −m2)2
.

So 〈ψ1|x2|ψ2〉 = 〈ψ2|x2|ψ1〉 = −16a2

9π2
. Meanwhile, from Problem 2.4, 〈ψn|x2|ψn〉 = a2

[
1
3
− 1

2(nπ)2

]
.

Thus 〈x2〉 =
1
2

{
a2

[
1
3
− 1

2π2

]
+ a2

[
1
3
− 1

8π2

]
− 16a2

9π2

[
ei(E2−E1)t/� + e−i(E2−E1)t/�︸ ︷︷ ︸

2 cos(E2−E1
�

t)

]}
.

E2 − E1

�
=

(4− 1)π2
�

2

2ma2�
=

3π2
�

2ma2
= 3ω [in the notation of Problem 2.5(b)].

〈x2〉 =
a2

2

[
2
3
− 5

8π2
− 32

9π2
cos(3ωt)

]
. From Problem 2.5(c), 〈x〉 =

a

2

[
1− 32

9π2
cos(3ωt)

]
.

So σ2
x = 〈x2〉 − 〈x〉2 =

a2

4

[
4
3
− 5

4π2
− 64

9π2
cos(3ωt)− 1 +

64
9π2

cos(3ωt)−
(

32
9π2

)2

cos2(3ωt)
]
.

σ2
x =

a2

4

[
1
3
− 5

4π2
−

(
32
9π2

)2

cos2(3ωt)
]
. And, from Problem 2.5(d):

d〈x〉
dt

=
8�

3ma
sin(3ωt).

Meanwhile, the energy-time uncertainty principle (Eq. 3.72) says σ2
Hσ2

x ≥
�

2

4

(
d〈x〉
dt

)2

. Here

σ2
Hσ2

x =
1
4
(3�ω)2

a2

4

[
1
3
− 5

4π2
−

(
32
9π2

)2

cos2(3ωt)
]

= (�ωa)2
(

3
4

)2
[

1
3
− 5

4π2
−

(
32
9π2

)2

cos2(3ωt)

]
.

�
2

4

(
d〈x〉
dt

)2

=
(

�

2
8�

3ma2

)2

sin2(3ωt) =
(

8
3π2

)2

(�ωa)2 sin2(3ωt), since
�

ma
=

2aω
π

.

So the uncertainty principle holds if(
3
4

)2[1
3
− 5

4π2
−

(
32
9π2

)2

cos2(3ωt)
]
≥

(
8

3π2

)2

sin2(3ωt),

which is to say, if
1
3
− 5

4π2
≥

(
32
9π2

)2

cos2(3ωt) +
(

4
3

8
3π2

)2

sin2(3ωt) =
(

32
9π2

)2

.

Evaluating both sides:
1
3
− 5

4π2
= 0.20668;

( 32
9π2

)2 = 0.12978. So it holds. (Whew!)

Problem 3.19

From Problem 2.43, we have:

〈x〉 =
�l

m
t, so

d〈x〉
dt

=
�l

m
, σ2

x =
1

4w2
=

1 + θ2

4a
, where θ =

2�at

m
; 〈H〉 =

1
2m
〈p2〉 =

1
2m

�
2(a + l2).

We need 〈H2〉 (to get σH). Now, H =
p2

2m
, so

〈H2〉 =
1

4m2
〈p4〉 =

1
4m2

∫ ∞
−∞

p4|Φ(p, t)|2dp, where (Eq. 3.54): Φ(p, t) =
1√
2π�

∫ ∞
−∞

e−ipx/�Ψ(x, t) dx.
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From Problem 2.43: Ψ(x, t) =
(

2a
π

)1/4 1√
1 + iθ

e−
l2
4a ea(ix+ l

2a )
2
/(1+iθ).

So Φ(p, t) =
1√
2π�

(
2a
π

)1/4 1√
1 + iθ

e−l2/4a

∫ ∞
−∞

e−ipx/�ea(ix+ l
2a )

2
/(1+iθ)dx. Let y ≡ x− il

2a
.

=
1√
2π�

(
2a
π

)1/4 1√
1 + iθ

e−l2/4aepl/2a�

∫ ∞
−∞

e−ipy/�e−ay2/(1+iθ)dy.

[See Prob. 2.22(a) for the integral.]

=
1√
2π�

(
2a
π

)1/4 1√
1 + iθ

e−l2/4aepl/2a�

√
π(1 + iθ)

a
e−

p2(1+iθ)
4a�2

=
1√
�

(
1

2aπ

)1/4

e−
l2
4a e

pl
2a� e−

p2(1+iθ)
4a�2 .

|Φ(p, t)|2 =
1√
2aπ

1
�
e−l2/2aepl/a�e−p2/2a�

2
=

1
�
√

2aπ
e

1
2a

(
l2− 2pl

�
+ p2

�2

)
=

1
�
√

2aπ
e−(l−p/�)2/2a.

〈p4〉 =
1

�
√

2aπ

∫ ∞
−∞

p4e−(l−p/�)2/2adp. Let
p

�
− l ≡ z, so p = �(z + l).

=
1

�
√

2aπ
�

5

∫ ∞
−∞

(z + l)4e−z2/2adz. Only even powers of z survive:

=
�

4

√
2aπ

∫ ∞
−∞

(
z4 + 6z2l2 + l4

)
e−z2/2adz =

�
4

√
2aπ

[
3(2a)2

4

√
2aπ + 6l2

(2a)
2

√
2aπ + l4

√
2aπ

]
= �

4
(
3a2 + 6al2 + l4

)
. ∴ 〈H2〉 =

�
4

4m2

(
3a2 + 6al2 + l4

)
.

σ2
H = 〈H2〉 − 〈H〉2 =

�
2

4m2

(
3a2 + 6al2 + l4 − a2 − 2al2 − l4

)
=

�
4

4m2

(
2a2 + 4al2

)
=

�
4a

2m2

(
a + 2l2

)
.

σ2
Hσ2

x =
�

4a

2m2

(
a + 2l2

) 1
4a

[
1 +

(
2�at

m

)2]
=

�
4l2

4m2

(
1 +

a

2l2

)[
1 +

(
2�at

m

)2]
≥ �

4l2

4m2
=

�
2

4

(
�l

m

)2

=
�

2

4

(
d〈x〉
dt

)2

, so it works.

Problem 3.20

For Q = x, Eq. 3.72 says σHσx ≥
�

2

∣∣∣∣d〈x〉dt

∣∣∣∣. But 〈p〉 = m
d〈x〉
dt

, so σxσH ≥ �

2m
|〈p〉|, which is the Griffiths

uncertainty principle of Problem 3.14.

Problem 3.21

P 2|β〉 = P (P |β〉) = P (〈α|β〉|α〉) = 〈α|β〉(P |α〉) = 〈α|β〉 〈α|α〉︸ ︷︷ ︸
1

|α〉 = 〈α|β〉|α〉 = P |β〉.
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Since P 2|β〉 = P |β〉 for any vector |β〉, P 2 = P . QED [Note: To say two operators are equal means that
they have the same effect on all vectors.]

If |γ〉 is an eigenvector of P̂ with eigenvalue λ, then P̂ |γ〉 = λ|γ〉, and it follows that P̂ 2|γ〉 = λP̂ |γ〉 = λ2|γ〉.
But P̂ 2 = P̂ , and |γ〉 �= 0, so λ2 = λ, and hence the eigenvalues of P̂ are 0 and 1. Any (complex) multiple of
|α〉 is an eigenvector of P̂ , with eigenvalue 1; any vector orthogonal to |α〉 is an eigenvector of P̂ , with eigenvalue
0.

Problem 3.22

(a) 〈α| = −i〈1| − 2〈2|+ i〈3|; 〈β| = −i〈1|+ 2〈3|.

(b) 〈α|β〉 = (−i〈1| − 2〈2|+ i〈3|) (i|1〉+ 2|3〉) = (−i)(i)〈1|1〉+ (i)(2)〈3|3〉 = 1 + 2i.

〈β|α〉 = (−i〈1|+ 2〈3|) (i|1〉 − 2|2〉 − i|3〉) = (−i)(i)〈1|1〉+ (2)(−i)〈3|3〉 = 1− 2i = 〈α|β〉∗. �

(c)

A11 = 〈1|α〉〈β|1〉 = (i)(−i) = 1; A12 = 〈1|α〉〈β|2〉 = (i)(0) = 0; A13 = 〈1|α〉〈β|3〉 = (i)(2) = 2i;
A21 = 〈2|α〉〈β|1〉 = (−2)(−i) = 2i; A22 = 〈2|α〉〈β|2〉 = (−2)(0) = 0; A23 = 〈2|α〉〈β|3〉 = (−2)(2) = −4;
A31 = 〈3|α〉〈β|1〉 = (−i)(−i) = −1; A32 = 〈3|α〉〈β|2〉 = (−i)(0) = 0; A33 = 〈3|α〉〈β|3〉 = (−i)(2) = −2i.

A =

 1 0 2i
2i 0 −4
−1 0 −2i

 . No, it’s not hermitian.

Problem 3.23

Write the eigenvector as |ψ〉 = c1|1〉+ c2|2〉, and call the eigenvalue E. The eigenvalue equation is

Ĥ|ψ〉 = ε (|1〉〈1| − |2〉〈2|+ |1〉〈2|+ |2〉〈1|) (c1|1〉+ c2|2〉) = ε (c1|1〉+ c1|2〉 − c2|2〉+ c2|1〉)
= ε [(c1 + c2)|1〉+ (c1 − c2)|2〉] = E|ψ〉 = E(c1|1〉+ c2|2〉).

ε(c1 + c2) = Ec1 ⇒ c2 =
(
E

ε
− 1

)
c1; ε(c1 − c2) = Ec2 ⇒ c1 =

(
E

ε
+ 1

)
c2.

c2 =
(
E

ε
− 1

) (
E

ε
+ 1

)
c2 ⇒

(
E

ε

)2

− 1 = 1 ⇒ E = ±
√

2 ε.

The eigenvectors are: c2 = (±
√

2− 1)c1 ⇒ |ψ±〉 = c1

[
|1〉+ (±

√
2− 1)|2〉

]
.

The Hamiltonian matrix is H = ε

(
1 1
1 −1

)
.

Problem 3.24

|α〉 =
∑

n

cn|en〉 ⇒ Q̂|α〉 =
∑

n

cnQ̂|en〉 =
∑

n

〈en|α〉qn|en〉 =

(∑
n

qn|en〉〈en|
)
|α〉 ⇒ Q̂ =

∑
n

qn|en〉〈en|. �
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Problem 3.25

|e1〉 = 1; 〈e1|e1〉 =
∫ 1

−1

1 dx = 2. So |e′1〉 =
1√
2
.

|e2〉 = x; 〈e′1|e2〉 =
1√
2

∫ 1

−1

x dx = 0; 〈e2|e2〉 =
∫ 1

−1

x2dx =
x3

3

∣∣∣∣1
−1

=
2
3
. So |e′2〉 =

√
3
2
x.

|e3〉 = x2; 〈e′1|e3〉 =
1√
2

∫ 1

−1

x2dx =
1√
2

2
3
; 〈e′2|e3〉 =

√
2
3

∫ 1

−1

x3dx = 0.

So (Problem A.4): |e′′3〉 = |e3〉 −
1√
2

2
3
|e′1〉 = x2 − 1

3
.

〈e′′3 |e′′3〉 =
∫ 1

−1

(
x2 − 1

3

)2

dx =
(
x5

5
− 2

3
· x

3

3
+

x

9

)∣∣∣∣1
−1

=
2
5
− 4

9
+

2
9

=
8
45

. So

|e′3〉 =

√
45
8

(
x2 − 1

3

)
=

√
5
2

(
3
2
x2 − 1

2

)
.

|e4〉 = x3. 〈e′1|e4〉 =
1√
2

∫ 1

−1

x3dx = 0; 〈e′2|e4〉 =

√
3
2

∫ 1

−1

x4dx =

√
3
2
· 2
5
;

〈e′3|e4〉 =

√
5
2

∫ 1

−1

(
3
2
x5 − 1

2
x3

)
dx = 0. |e′′4〉 = |e4〉 − 〈e′2|e4〉|e′2〉 = x3 −

√
3
2

2
5

√
3
2
x = x3 − 3

5
x.

〈e′′4 |e′′4〉 =
∫ 1

−1

(
x3 − 3

5
x

)2

dx =
[
x7

7
− 2 · 3

5
x5

5
+

9
25

x3

3

]∣∣∣∣1
−1

=
2
7
− 12

25
+

18
75

=
8

7 · 25
.

|e′4〉 =
5
2

√
7
2

(
x3 − 3

5
x

)
=

√
7
2

(
5
2
x3 − 3

2
x

)
.

Problem 3.26

(a) 〈Q〉 = 〈ψ|Q̂ψ〉 = 〈Q̂†ψ|ψ〉 = −〈Q̂ψ|ψ〉 = −(〈ψ|Q̂ψ〉)∗ = −〈Q〉∗, so 〈Q〉 is imaginary. �

(b) From Problem 3.5(c) we know that (P̂ Q̂)† = Q̂†P̂ †, so if P̂ = P̂ † and Q̂ = Q̂† then

[P̂ , Q̂]† = (P̂ Q̂− Q̂P̂ )† = Q̂†P̂ † − P̂ †Q̂† = Q̂P̂ − P̂ Q̂ = −[P̂ , Q̂]. �

If P̂ = −P̂ † and Q̂ = −Q̂†, then [P̂ , Q̂]† = Q̂†P̂ † − P̂ †Q̂† = (−Q̂)(−P̂ )− (−P̂ )(−Q̂) = −[P̂ , Q̂].

So in either case the commutator is antihermitian.
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Problem 3.27

(a) ψ1.

(b) b1 (with probability 9/25) or b2 (with probability 16/25).

(c) Right after the measurement of B:

• With probability 9/25 the particle is in state φ1 = (3ψ1 + 4ψ2)/5; in that case the probability of
getting a1 is 9/25.

• With probability 16/25 the particle is in state φ2 = (4ψ1 − 3ψ2)/5; in that case the probability of
getting a1 is 16/25.

So the total probability of getting a1 is
9
25
· 9
25

+
16
25
· 16
25

=
337
625

= 0.5392.

[Note: The measurment of B (even if we don’t know the outcome of that measurement) collapses the wave
function, and thereby alters the probabilities for the second measurment of A. If the graduate student
inadvertantly neglected to measure B, the second measurement of A would be certain to reproduce the
result a1.]

Problem 3.28

Ψn(x, t) =

√
2
a

sin
(nπ

a
x
)
e−iEnt/�, with En =

n2π2
�

2

2ma2
.

Φn(p, t) =
1√
2π�

∫ ∞
−∞

e−ipx/�Ψn(x, t) dx =
1√
2π�

√
2
a
e−iEnt/�

∫ a

0

e−ipx/� sin
(nπ

a
x
)
dx

=
1√
π�a

e−iEnt/�
1
2i

∫ a

0

[
ei(nπ/a−p/�)x − ei(−nπ/a−p/�)x

]
dx

=
1√
π�a

e−iEnt/�
1
2i

[
ei(nπ/a−p/�)x

i(nπ/a− p/�)
− ei(−nπ/a−p/�)x

i(−nπ/a− p/�)

]∣∣∣∣a
0

=
−1

2
√
π�a

e−iEnt/�

[
ei(nπ−pa/�) − 1
(nπ/a− p/�)

+
e−i(nπ+pa/�) − 1
(nπ/a + p/�)

]
=

−1
2
√
π�a

e−iEnt/�

[
(−1)ne−ipa/� − 1

(nπ − ap/�)
a +

(−1)ne−ipa/� − 1
(nπ + ap/�)

a

]
= −1

2

√
a

π�
e−iEnt/�

2nπ
(nπ)2 − (ap/�)2

[
(−1)ne−ipa/� − 1

]
=

√
aπ

�

ne−iEnt/�

(nπ)2 − (ap/�)2
[
1− (−1)ne−ipa/�

]
.

Noting that

1− (−1)ne−ipa/� = e−ipa/2�
[
eipa/2� − (−1)ne−ipa/2�

]
= 2e−ipa/2�

{
cos(pa/2�) (n odd),
i sin(pa/2�) (n even),
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we have

|Φ1(p, t)|2 =
4πa
�

cos2(pa/2�)
[π2 − (pa/�)2]2

, |Φ2(p, t)|2 =
16πa

�

sin2(pa/2�)
[(2π)2 − (pa/�)2]2

.

Mathematica has no trouble with the points p = ±nπ�/a, where the denominator vanishes. The reason is that
the numerator is also zero there, and the function as a whole is finite—in fact, the graphs show no interesting
behavior at these points.

pp

|Φ  |1 2
22 |Φ  |

〈p2〉 =
∫ ∞
−∞

p2|Φn(p, t)|2 dp =
4n2πa

�

∫ ∞
−∞

p2

[(nπ)2 − (ap/�)2]2

{
cos2(pa/2�)
sin2(pa/2�)

}
dp [let x ≡ ap

nπ�
]

=
4n�

2

a2

∫ ∞
−∞

x2

(1− x2)2
Tn(x) dx =

4n�
2

a2
In,

where

Tn(x) ≡
{

cos2(nπx/2), if n is odd,
sin2(nπx/2), if n is even.

}
The integral can be evaluated by partial fractions:

x2

(x2 − 1)2
=

1
4

[
1

(x− 1)2
+

1
(x + 1)2

+
1

(x− 1)
− 1

(x + 1)

]
⇒

In =
1
4

[∫ ∞
−∞

1
(x− 1)2

Tn(x) dx +
∫ ∞
−∞

1
(x + 1)2

Tn(x) dx +
∫ ∞
−∞

1
(x− 1)

Tn(x) dx−
∫ ∞
−∞

1
(x + 1)

Tn(x) dx
]
.

For odd n: ∫ ∞
−∞

1
(x± 1)k

cos2
(nπx

2

)
dx =

∫ ∞
−∞

1
yk

cos2
[nπ

2
(y ∓ 1)

]
dy =

∫ ∞
−∞

1
yk

sin2
(nπy

2

)
dy.

For even n: ∫ ∞
−∞

1
(x± 1)k

sin2
(nπx

2

)
dx =

∫ ∞
−∞

1
yk

sin2
[nπ

2
(y ∓ 1)

]
dy =

∫ ∞
−∞

1
yk

sin2
(nπy

2

)
dy.

In either case, then,

In =
1
2

∫ ∞
−∞

1
y2

sin2
(nπy

2

)
dy =

nπ

4

∫ ∞
−∞

sin2u

u2
du =

nπ2

4
.

Therefore

〈p2〉 =
4n�

2

a2
In =

4n�
2

a2

nπ2

4
=

(
nπ�

a

)2

(same as Problem 2.4).
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Problem 3.29

Φ(p, 0) =
1√
2π�

∫ ∞
−∞

e−ipx/�Ψ(x, 0) dx =
1

2
√
nπ�λ

∫ nλ

−nλ

ei(2π/λ−p/�)xdx

=
1

2
√
nπ�λ

ei(2π/λ−p/�)x

i(2π/λ− p/�)

∣∣∣∣nλ

−nλ

=
1

2
√
nπ�λ

ei2πne−ipnλ/�) − e−i2πneipnλ/�)

i(2π/λ− p/�)

=

√
�λ

nπ

sin(npλ/�)
(pλ− 2π�)

.

|Ψ(x, 0)|2 =
1

2nλ
(−nλ < x < nλ); |Φ(p, 0)|2 =

λ�

nπ

sin2(npλ/�)
(pλ− 2π�)2

.

|Ψ|2 |Φ|2

-nλ nλ px 2πh/λ

The width of the |Ψ|2 graph is wx = 2nλ. The |Φ|2 graph is a maximum at 2π�/λ, and goes to zero on either

side at
2π�

λ

(
1± 1

2n

)
, so wp =

2π�

nλ
. As n → ∞, wx → ∞ and wp → 0; in this limit the particle has a

well-defined momentum, but a completely indeterminate position. In general,

wxwp = (2nλ)
2π�

nλ
= 4π� > �/2,

so the uncertainty principle is satisfied (using the widths as a measure of uncertainty). If we try to check the
uncertainty principle more rigorously, using standard deviation as the measure, we get an uninformative result,
because

〈p2〉 =
λ�

nπ

∫ ∞
−∞

p2 sin2(npλ/�)
(pλ− 2π�)2

dp =∞.

(At large |p| the integrand is approximately (1/λ2) sin2(npλ/�), so the integral blows up.) Meanwhile 〈p〉 is
zero, so σp = ∞, and the uncertainty principle tells us nothing. The source of the problem is the discontinuity
in Ψ at the end points; here p̂Ψ = −i� dΨ/dx picks up a delta function, and 〈Ψ|p̂2Ψ〉 = 〈p̂Ψ|p̂Ψ〉 → ∞ because
the integral of the square of the delta function blows up. In general, if you want σp to be finite, you cannot
allow discontinuities in Ψ.

Problem 3.30

(a)

1 = |A|2
∫ ∞
−∞

1
(x2 + a2)2

dx = 2|A|2
∫ ∞

0

1
(x2 + a2)2

dx = 2|A|2 1
2a2

[
x

x2 + a2
+

1
a

tan−1
(x

a

)]∣∣∣∣∞
0

=
1
a2
|A|2 1

a
tan−1(∞) =

π

2a3
|A|2 ⇒ A = a

√
2a
π

.
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(b)

〈x〉 = A2

∫ ∞
−∞

x

(a2 + x2)2
dx = 0.

〈x2〉 = 2A2

∫ ∞
0

x2

(a2 + x2)2
dx. [Let y ≡ x2

a2
, x = a

√
y, dx =

a

2
√
y
dy.]

=
2a2

π

∫ ∞
0

y1/2

(1 + y)2
dy =

2a2

π

Γ(3/2)Γ(1/2)
Γ(2)

=
2a2

π

(
√
π/2)(

√
π)

1
= a2.

σx =
√
〈x2〉 − 〈x〉2 = a.

(c)

Φ(p, 0) =
A√
2π�

∫ ∞
−∞

e−ipx/�
1

x2 + a2
dx. [But e−ipx/� = cos

(px

�

)
− i sin

(px

�

)
, and sine is odd.]

=
2A√
2π�

∫ ∞
0

cos(px/�)
x2 + a2

dx =
2A√
2π�

( π

2a
e−|p|a/�

)
=

√
a

�
e−|p|a/�.

∫ ∞
−∞

|Φ(p, 0)|2 dp =
a

�

∫ ∞
−∞

e−2|p|a/� dp =
2a
�

(
e−2pa/�

−2a/�

)∣∣∣∣∞
0

= 1. �

(d)

〈p〉 =
a

�

∫ ∞
−∞

pe−2|p|a/� dp = 0.

〈p2〉 = 2
a

�

∫ ∞
0

p2e−2pa/� dp =
2a
�

2
(

�

2a

)3

=
�

2

2a2
. σp =

√
〈p2〉 − 〈p〉2 =

�√
2 a

.

(e) σxσp = a
�√
2 a

=
√

2
�

2
>

�

2
. �

Problem 3.31

Equation 3.71 ⇒ d

dt
〈xp〉 =

i

�
〈[H,xp]〉; Eq. 3.64 ⇒ [H,xp] = [H,x]p + x[H, p]; Problem 3.14 ⇒ [H,x] =

− i�p

m
; Problem 3.17(d) ⇒ [H, p] = i�

dV

dx
. So

d

dt
〈xp〉 =

i

�

[
− i�

m
〈p2〉+ i�〈xdV

dx
〉
]

= 2〈 p
2

2m
〉 − 〈xdV

dx
〉 = 2〈T 〉 − 〈xdV

dx
〉. QED

In a stationary state all expectation values (at least, for operators that do not depend explicitly on t) are
time-independent (see item 1 on p. 26), so d〈xp〉/dt = 0, and we are left with Eq. 3.97.

For the harmonic oscillator:

V =
1
2
mω2x2 ⇒ dV

dx
= mω2x⇒ x

dV

dx
= mω2x2 = 2V ⇒ 2〈T 〉 = 2〈V 〉 ⇒ 〈T 〉 = 〈V 〉. QED

In Problem 2.11(c) we found that 〈T 〉 = 〈V 〉 = 1
4�ω (for n = 0); 〈T 〉 = 〈V 〉 = 3

4�ω (for n = 1). �
In Problem 2.12 we found that 〈T 〉 = 1

2

(
n+ 1

2

)
�ω, while 〈x2〉 = (n+ 1

2 )�/mω, so 〈V 〉 = 1
2mω2〈x2〉 = 1

2 (n+ 1
2 )�ω,

and hence 〈T 〉 = 〈V 〉 for all stationary states. �
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Problem 3.32

Ψ(x, t) =
1√
2

(
ψ1e
−iE1t/� + ψ2e

−iE2t/�
)
; 〈Ψ(x, t)|Ψ(x, 0)〉 = 0⇒

1
2
(
eiE1t/�〈ψ1|ψ1〉+ eiE1t/�〈ψ1|ψ2〉+ eiE2t/�〈ψ2|ψ1〉+ eiE2t/�〈ψ2|ψ2〉

)
=

1
2
(
eiE1t/� + eiE2t/�

)
= 0, or eiE2t/� = −eiE1t/�, so ei(E2−E1)t/� = −1 = eiπ.

Thus (E2 − E1)t/� = π (orthogonality also at 3π, 5π, etc., but this is the first occurrence).

∴ ∆t ≡ t

π
=

�

E2 − E1
. But ∆E = σH =

1
2
(E2 − E1) (Problem 3.18). So ∆t∆E =

�

2
. �

Problem 3.33

Equation 2.69: x =

√
�

2mω
(a+ + a−), p = i

√
�mω

2
(a+ − a−); Eq. 2.66 :

{
a+|n〉 =

√
n + 1 |n + 1〉,

a−|n〉 =
√
n |n− 1〉.

〈n|x|n′〉 =

√
�

2mω
〈n|(a+ + a−)|n′〉 =

√
�

2mω

[√
n′ + 1 〈n|n′ + 1〉+

√
n′ 〈n|n′ − 1〉

]
=

√
�

2mω

(√
n′ + 1 δn,n′+1 +

√
n′ δn,n′−1

)
=

√
�

2mω

(√
n δn′,n−1 +

√
n′ δn,n′−1

)
.

〈n|p|n′〉 = i

√
m�ω

2
(√

n δn′,n−1 −
√
n′ δn,n′−1

)
.

Noting that n and n′ run from zero to infinity, the matrices are:

X =

√
�

2mω



0
√

1 0 0 0 0√
1 0

√
2 0 0 0

0
√

2 0
√

3 0 0
.
:

0 0
√

3 0
√

4 0
0 0 0

√
4 0

√
5

· · ·

 ; P = i

√
m�ω

2



0 −
√

1 0 0 0 0√
1 0 −

√
2 0 0 0

0
√

2 0 −
√

3 0 0
.
:

0 0
√

3 0 −
√

4 0
0 0 0

√
4 −

√
5

· · ·

 .

Squaring these matrices:

X2 =
�

2mω


1 0

√
1 · 2 0 0 0

0 3 0
√

2 · 3 0 0√
1 · 2 0 5 0

√
3 · 4 0

.
:

0
√

2 · 3 0 7 0
√

4 · 5
· · ·

 ;

P2 = −m�ω

2


−1 0

√
1 · 2 0 0 0

0 −3 0
√

2 · 3 0 0√
1 · 2 0 −5 0

√
3 · 4 0

.
:

0
√

2 · 3 0 −7 0
√

4 · 5
· · ·

 .
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So the Hamiltonian, in matrix form, is

H =
1

2m
P2 +

mω2

2
X2

= −�ω

4


−1 0

√
1 · 2 0 0 0

0 −3 0
√

2 · 3 0 0√
1 · 2 0 −5 0

√
3 · 4 0

.
:

0
√

2 · 3 0 −7 0
√

4 · 5
· · ·



+
�ω

4


1 0

√
1 · 2 0 0 0

0 3 0
√

2 · 3 0 0√
1 · 2 0 5 0

√
3 · 4 0

.
:

0
√

2 · 3 0 7 0
√

4 · 5
· · ·

 =
�ω

2


1 0 0 0
0 3 0 0
0 0 5 0
0 0 0 7

. . .

 .

It’s plainly diagonal, and the nonzero elements are Hnn =
(
n + 1

2

)
�ω, as they should be.

Problem 3.34

Evidently Ψ(x, t) = c0ψ0(x)e−iE0t/� + c1ψ1(x)e−iE1t/�, with |c0|2 = |c1|2 = 1/2, so c0 = eiθ0/
√

2, c1 = eiθ1/
√

2,
for some real θ0, θ1.

〈p〉 = |c0|2〈ψ0|pψ0〉+ |c1|2〈ψ1|pψ1〉+ c∗0c1e
i(E0−E1)t/�〈ψ0|pψ1〉+ c∗1c0e

i(E1−E0)t/�〈ψ1|pψ0〉.

But E1 − E0 = ( 3
2�ω)− ( 1

2�ω) = �ω, and (Problem 2.11) 〈ψ0|pψ0〉 = 〈ψ1|pψ1〉 = 0, while (Eqs. 2.69 and 2.66)

〈ψ0|pψ1〉 = i

√
�mω

2
〈ψ0|(a+ − a−)ψ1〉 = i

√
�mω

2

[
〈ψ0|

√
2ψ2〉 − 〈ψ0|

√
1ψ0〉

]
= −i

√
�mω

2
; 〈ψ1|pψ0〉 = i

√
�mω

2
.

〈p〉 =
1√
2
e−iθ0

1√
2
eiθ1e−iωt

(
−i

√
�mω

2

)
+

1√
2
e−iθ1

1√
2
eiθ0eiωt

(
i

√
�mω

2

)

=
i

2

√
�mω

2

[
−e−i(ωt−θ1+θ0) + ei(ωt−θ1+θ0)

]
= −

√
�mω

2
sin(ωt + θ0 − θ1).

The maximum is
√

�mω/2; it occurs at t = 0 ⇔ sin(θ0 − θ1) = −1, or θ1 = θ0 + π/2. We might as well pick
θ0 = 0, θ1 = π/2; then

Ψ(x, t) =
1√
2

[
ψ0e
−iωt/2 + ψ1e

iπ/2e−3iωt/2
]

=
1√
2
e−iωt/2

(
ψ0 + iψ1e

−iωt
)
.
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Problem 3.35

(a) 〈x〉 = 〈α|xα〉 =

√
�

2mω
〈α|(a+ + a−)α〉 =

√
�

2mω
(〈a−α|α〉+ 〈α|a−α〉) =

√
�

2mω
(α + α∗).

x2 =
�

2mω

(
a2
+ + a+a− + a−a+ + a2

−
)
. But a−a+ = [a−, a+] + a+a− = 1 + a+a− (Eq. 2.55).

=
�

2mω

(
a2
+ + 2a+a− + 1 + a2

−
)
.

〈x2〉 =
�

2mω
〈α|

(
a2
+ + 2a+a− + 1 + a2

−
)
α〉 =

�

2mω

(
〈a2
−α|α〉+ 2〈a−α|a−α〉+ 〈α|α〉+ 〈α|a2

−α〉
)

=
�

2mω

[
(α∗)2 + 2(α∗)α + 1 + α2

]
=

�

2mω

[
1 + (α + α∗)2

]
.

〈p〉 = 〈α|pα〉 = i

√
�mω

2
〈α|(a+ − a−)α〉 = i

√
�mω

2
(〈a−α|α〉 − 〈α|a−α〉) = −i

√
�mω

2
(α− α∗).

p2 = −�mω

2
(
a2
+ − a+a− − a−a+ + a2

−
)

= −�mω

2
(
a2
+ − 2a+a− − 1 + a2

−
)
.

〈p2〉 = −�mω

2
〈α|

(
a2
+ − 2a+a− − 1 + a2

−
)
α〉 = −�mω

2
(
〈a2
−α|α〉 − 2〈a−α|a−α〉 − 〈α|α〉+ 〈α|a2

−α〉
)

= −�mω

2
[
(α∗)2 − 2(α∗)α− 1 + α2

]
=

�mω

2
[
1− (α− α∗)2

]
.

(b)

σ2
x = 〈x2〉 − 〈x〉2 =

�

2mω

[
1 + (α + α∗)2 − (α + α∗)2

]
=

�

2mω
;

σ2
p = 〈p2〉 − 〈p〉2 =

�mω

2
[
1− (α− α∗)2 + (α− α∗)2

]
=

�mω

2
. σxσp =

√
�

2mω

√
�mω

2
=

�

2
. QED

(c) Using Eq. 2.67 for ψn:

cn = 〈ψn|α〉 =
1√
n!
〈(a+)nψ0|α〉 =

1√
n!
〈ψ0|(a−)nα〉 =

1√
n!

αn〈ψ0|α〉 =
αn

√
n!

c0. �

(d) 1 =
∞∑

n=0

|cn|2 = |c0|2
∞∑

n=0

|α|2n

n!
= |c0|2e|α|

2 ⇒ c0 = e−|α|
2/2.

(e) |α(t)〉 =
∞∑

n=0

cne
−iEnt/�|n〉 =

∞∑
n=0

αn

√
n!

e−|α|
2/2e−i(n+ 1

2 )ωt|n〉 = e−iωt/2
∞∑

n=0

(
αe−iωt

)n

√
n!

e−|α|
2/2|n〉.

Apart form the overall phase factor e−iωt/2 (which doesn’t affect its status as an eigenfunction of a−, or
its eigenvalue), |α(t)〉 is the same as |α〉, but with eigenvalue α(t) = e−iωtα. �

(f) Equation 2.58 says a−|ψ0〉 = 0, so yes, it is a coherent state, with eigenvalue α = 0.
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Problem 3.36

(a) Equation 3.60 becomes |z|2 = [Re(z)]2 +[Im(z)]2 =
[
1
2
(z + z∗)

]2

+
[

1
2i

(z − z∗)
]2

; Eq. 3.61 generalizes to

σ2
Aσ2

B ≥
[
1
2

(〈f |g〉+ 〈g|f〉)
]2

+
[

1
2i

(〈f |g〉 − 〈g|f〉)
]2

.

But 〈f |g〉 − 〈g|f〉 = 〈[Â, B̂]〉 (p. 111), and, by the same argument,

〈f |g〉+ 〈g|f〉 = 〈ÂB̂〉 − 〈A〉〈B〉+ 〈B̂Â〉 − 〈A〉〈B〉 = 〈ÂB̂ + B̂Â− 2〈A〉〈B〉〉 = 〈D〉.

So σ2
Aσ2

B ≥
1
4

(
〈D〉2 + 〈C〉2

)
. �

(b) If B̂ = Â, then Ĉ = 0, D̂ = 2
(
Â2 − 〈A〉2

)
; 〈D〉 = 2

(
〈Â2〉 − 〈A〉2

)
= 2σ2

A. So Eq. 3.99 says

σ2
Aσ2

A ≥ (1/4)4σ4
A = σ4

A, which is true, but not very informative.

Problem 3.37

First find the eigenvalues and eigenvectors of the Hamiltonian. The characteristic equation says∣∣∣∣∣∣
(a− E) 0 b

0 (c− E) 0
b 0 (a− E)

∣∣∣∣∣∣ = (a− E)(c− E)(a− E)− b2(c− E) = (c− E)
[
(a− E)2 − b2

]
= 0,

Either E = c, or else (a− E)2 = b2 ⇒ E = a± b. So the eigenvalues are

E1 = c, E2 = a + b, E3 = a− b.

To find the corresponding eigenvectors, writea 0 b
0 c 0
b 0 a

 α
β
γ

 = En

α
β
γ

 .

(1)

aα + bγ = cα ⇒ (a− c)α + bγ = 0;
cβ = cβ (redundant) ;

bα + aγ = cγ ⇒ (a− c)γ + bα = 0.

⇒
[
(a− c)2 − b2

]
α = 0.

So (excluding the degenerate case a− c = ±b) α = 0, and hence also γ = 0.

(2)

aα + bγ = (a + b)α ⇒ α− γ = 0;
cβ = (a + b)β ⇒ β = 0;

bα + aγ = (a + b)γ (redundant).

So α = γ and β = 0.
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(3)

aα + bγ = (a− b)α ⇒ α + γ = 0;
cβ = (a− b)β ⇒ β = 0;

bα + aγ = (a− b)γ (redundant).

So α = −γ and β = 0.

Conclusion: The (normalized) eigenvectors of H are

|s1〉 =

0
1
0

 , |s2〉 =
1√
2

1
0
1

 , |s3〉 =
1√
2

 1
0
−1

 .

(a) Here |S(0)〉 = |s1〉, so

|S(t)〉 = e−iE1t/�|s1〉 = e−ict/�

0
1
0

 .

(b)

|S(0)〉 =
1√
2

(|s2〉+ |s3〉) .

|S(t)〉 =
1√
2

(
e−iE2t/�|s2〉+ e−iE3t/�|s3〉

)
=

1√
2

e−i(a+b)t/�
1√
2

1
0
1

 + e−i(a−b)t/�
1√
2

 1
0
−1


=

1
2
e−iat/�

e−ibt/� + eibt/�

0
e−ibt/� − eibt/�

 = e−iat/�

 cos(bt/�)
0

−i sin(bt/�)

 .

Problem 3.38

(a) H:

E1 = �ω, E2 = E3 = 2�ω; |h1〉 =

1
0
0

 , |h2〉 =

0
1
0

 , |h3〉 =

0
0
1

 .

A: ∣∣∣∣∣∣
−a λ 0
λ −a 0
0 0 (2λ− a)

∣∣∣∣∣∣ = a2(2λ− a)− (2λ− a)λ2 = 0⇒ a1 = 2λ, a2 = λ, a3 = −λ.

λ

0 1 0
1 0 0
0 0 2

 α
β
γ

 = a

α
β
γ

⇒


λβ = aα
λα = aβ

2λγ = aγ
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(1)

λβ = 2λα ⇒ β = 2α,
λα = 2λβ ⇒ α = 2β,

2λγ = 2λγ;

 α = β = 0; |a1〉 =

0
0
1

 .

(2)

λβ = λα ⇒ β = α,
λα = λβ ⇒ α = β,

2λγ = λγ; ⇒ γ = 0.

 |a2〉 =
1√
2

1
1
0

 .

(3)

λβ = −λα ⇒ β = −α,
λα = −λβ ⇒ α = −β,

2λγ = −λγ; ⇒ γ = 0.

 |a3〉 =
1√
2

 1
−1
0

 .

B: ∣∣∣∣∣∣
(2µ− b) 0 0

0 −b µ
0 µ −b

∣∣∣∣∣∣ = b2(2µ− b)− (2µ− b)µ2 = 0⇒ b1 = 2µ, b2 = µ, b3 = −µ.

µ

2 0 0
0 0 1
0 1 0

 α
β
γ

 = b

α
β
γ

 ⇒


2µα = bα
µγ = bβ
µβ = bγ

(1)

2µα = 2µα,
µγ = 2µβ ⇒ γ = 2β,
µβ = 2µγ ⇒ β = 2γ;

 β = γ = 0; |b1〉 =

1
0
0

 .

(2)

2µα = µα ⇒ α = 0,
µγ = µβ ⇒ γ = β,
µβ = µγ; ⇒ β = γ.

 |b2〉 =
1√
2

0
1
1

 .

(3)

2µα = −µα ⇒ α = 0,
µγ = −µβ ⇒ γ = −β,
µβ = −µγ; ⇒ β = −γ.

 |b3〉 =
1√
2

 0
1
−1

 .
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(b)

〈H〉 = 〈S(0)|H|S(0)〉 = �ω
(
c∗1 c∗2 c∗3

) 1 0 0
0 2 0
0 0 2

 c1
c2
c3

 = �ω
(
|c1|2 + 2|c2|2 + 2|c3|2

)
.

〈A〉 = 〈S(0)|A|S(0)〉 = λ
(
c∗1 c∗2 c∗3

) 0 1 0
1 0 0
0 0 2

 c1
c2
c3

 = λ
(
c∗1c2 + c∗2c1 + 2|c3|2

)
.

〈B〉 = 〈S(0)|B|S(0)〉 = µ
(
c∗1 c∗2 c∗3

) 2 0 0
0 0 1
0 1 0

 c1
c2
c3

 = µ
(
2|c1|2 + c∗2c3 + c∗3c2

)
.

(c)

|S(0)〉 = c1|h1〉+ c2|h2〉+ c3|h3〉 ⇒
|S(t)〉 = c1e

−iE1t/�|h1〉+ c2e
−iE2t/�|h2〉+ c3e

−iE3t/�|h3〉 = c1e
−iωt|h1〉+ c2e

−2iωt|h2〉+ c3e
−2iωt|h3〉

= e−2iωt

c1e
iωt

1
0
0

 + c2

0
1
0

 + c3

0
0
1

 = e−2iωt

c1e
iωt

c2
c3

 .

H: h1 = �ω, probability |c1|2; h2 = h3 = 2�ω, probability (|c2|2 + |c3|2).

A: a1 = 2λ, 〈a1|S(t)〉 = e−2iωt
(
0 0 1

) c1e
iωt

c2
c3

 = e−2iωtc3 ⇒ probability |c3|2.

a2 = λ, 〈a2|S(t)〉 = e−2iωt 1√
2

(
1 1 0

) c1e
iωt

c2
c3

 =
1√
2
e−2iωt

(
c1e

iωt + c2
)
⇒

probability =
1
2

(
c∗1e
−iωt + c∗2

) (
c1e

iωt + c2
)

=
1
2

(
|c1|2 + |c2|2 + c∗1c2e

−iωt + c∗2c1e
iωt

)
.

a3 = −λ, 〈a3|S(t)〉 = e−2iωt 1√
2

(
1 −1 0

) c1e
iωt

c2
c3

 =
1√
2
e−2iωt

(
c1e

iωt − c2
)
⇒

probability =
1
2

(
c∗1e
−iωt − c∗2

) (
c1e

iωt − c2
)

=
1
2

(
|c1|2 + |c2|2 − c∗1c2e

−iωt − c∗2c1e
iωt

)
.

Note that the sum of the probabilities is 1.

B: b1 = 2µ, 〈b1|S(t)〉 = e−2iωt
(
1 0 0

) c1e
iωt

c2
c3

 = e−2iωtc1 ⇒ probability |c1|2.

b2 = µ, 〈b2|S(t)〉 = e−2iωt 1√
2

(
0 1 1

) c1e
iωt

c2
c3

 =
1√
2
e−2iωt (c2 + c3)⇒

probability =
1
2

(c∗1 + c∗2) (c1 + c2) =
1
2

(
|c1|2 + |c2|2 + c∗1c2 + c∗2c1

)
.
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b3 = −µ, 〈b3|S(t)〉 = e−2iωt 1√
2

(
0 1 −1

) c1e
iωt

c2
c3

 =
1√
2
e−2iωt (c2 − c3)⇒

probability =
1
2

(c∗2 − c∗3) (c2 − c3) =
1
2

(
|c2|2 + |c3|2 − c∗2c3 − c∗3c2

)
.

Again, the sum of the probabilities is 1.

Problem 3.39

(a)

Expanding in a Taylor series: f(x + x0) =
∞∑

n=0

1
n!

xn
0

(
d

dx

)n

f(x).

But p =
�

i

d

dx
, so

d

dx
=

ip

�
. Therefore f(x + x0) =

∞∑
n=0

1
n!

xn
0

(
ip

�

)n

f(x) = eipx0/�f(x).

(b)

Ψ(x, t + t0) =
∞∑

n=0

1
n!

tn0

(
∂

∂t

)n

Ψ(x, t); i�
∂Ψ
∂t

= HΨ.

[Note: It is emphatically not the case that i� ∂
∂t = H. These two operators have the same effect only when

(as here) they are acting on solutions to the (time-dependent) Schrödinger equation.] Also,(
i�

∂

∂t

)2

Ψ = i�
∂

∂t
(HΨ) = H

(
i�

∂Ψ
∂t

)
= H2Ψ,

provided H is not explicitly dependent on t. And so on. So

Ψ(x, t + t0) =
∞∑

n=0

1
n!

tn0

(
− i

�
H

)n

Ψ = e−iHt0/�Ψ(x, t).

(c)

〈Q〉t+t0 = 〈Ψ(x, t + t0)|Q(x, p, t + t0)|Ψ(x, t + t0)〉.

But Ψ(x, t + t0) = e−iHt0/�Ψ(x, t), so, using the hermiticity of H to write
(
e−iHt0/�

)† = eiHt0/� :

〈Q〉t+t0 = 〈Ψ(x, t)|eiHt0/�Q(x, p, t + t0)e−iHt0/�|Ψ(x, t)〉.
If t0 = dt is very small, expanding to first order, we have:

〈Q〉t +
d〈Q〉
dt

dt = 〈Ψ(x, t)|
(

1 +
iH

�
dt

)[
Q(x, p, t) +

∂Q

∂t
dt

](
1− iH

�
dt

)
︸ ︷︷ ︸

�

|Ψ(x, t)〉

[
� = Q(x, p, t) +

iH

�
dtQ−Q

(
iH

�
dt

)
+

∂Q

∂t
dt = Q +

i

�
[H,Q]dt +

∂Q

∂t
dt

]
= 〈Q〉t +

i

�
〈[H,Q]〉dt + 〈∂Q

∂t
〉dt.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


CHAPTER 3. FORMALISM 85

∴ d〈Q〉
dt

=
i

�
〈[H,Q]〉+ 〈∂Q

∂t
〉. QED

Problem 3.40

(a) For the free particle, V (x) = 0, so the time-dependent Schrödinger equation reads

i�
∂Ψ
∂t

= − �
2

2m
∂2Ψ
∂x2

. Ψ(x, t) =
1√
2π�

∫ ∞
−∞

eipx/�Φ(p, t) dp ⇒

∂Ψ
∂t

=
1√
2π�

∫ ∞
−∞

eipx/�
∂Φ
∂t

dp,
∂2Ψ
∂x2

=
1√
2π�

∫ ∞
−∞

(
−p2

�2

)
eipx/�Φ dp. So

1√
2π�

∫ ∞
−∞

eipx/�

[
i�

∂Φ
∂t

]
dp =

1√
2π�

∫ ∞
−∞

eipx/�

[
p2

2m
Φ

]
dp.

But two functions with the same Fourier transform are equal (as you can easily prove using Plancherel’s
theorem), so

i�
∂Φ
∂t

=
p2

2m
Φ.

1
Φ

dΦ = − ip2

2m�
dt ⇒ Φ(p, t) = e−ip2t/2m�Φ(p, 0).

(b)

Ψ(x, 0) = Ae−ax2
eilx, A =

(
2a
π

)1/4

(Problem2.43(a)).

Φ(p, 0) =
1√
2π�

(
2a
π

)1/4 ∫ ∞
−∞

e−ipx/�e−ax2
eilx dx =

1
(2πa�2)1/4

e−(l−p/�)2/4a (Problem2.43(b)).

Φ(p, t) =
1

(2πa�2)1/4
e−(l−p/�)2/4ae−ip2t/2m�; |Φ(p, t)|2 =

1√
2πa �

e−(l−p/�)2/2a.

(c)

〈p〉 =
∫ ∞
−∞

p|Φ(p, t)|2 dp =
1√

2πa �

∫ ∞
−∞

pe−(l−p/�)2/2a dp

[Let y ≡ (p/�)− l, so p = �(y + l) and dp = � dy.]

=
�√
2πa

∫ ∞
−∞

(y + l)e−y2/2a dy [but the first term is odd]

=
2�l√
2πa

∫ ∞
0

e−y2/2a dy =
2�l√
2πa

√
πa

2
= �l [as in Problem 2.43(d)].

〈p2〉 =
∫ ∞
−∞

p2|Φ(p, t)|2 dp =
1√

2πa �

∫ ∞
−∞

p2e−(l−p/�)2/2a dp =
�

2

√
2πa

∫ ∞
−∞

(y2 + 2yl + l2)e−y2/2a dy

=
2�

2

√
2πa

[∫ ∞
0

y2e−y2/2a dy + l2
∫ ∞

0

e−y2/2a dy

]
=

2�
2

√
2πa

[
2
√
π

(√
a

2

)3

+ l2
√

πa

2

]
= (a + l2)�2 [as in Problem 2.43(d)].
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(d) H =
p2

2m
; 〈H〉 =

1
2m
〈p2〉 =

�
2

2m
(l2+a) =

1
2m
〈p〉2+�

2a

2m
. But 〈H〉0 =

1
2m
〈p2〉0 =

�
2a

2m
(Problem 2.22(d)).

So 〈H〉 =
1

2m
〈p〉2 + 〈H〉0. QED Comment: The energy of the traveling gaussian is the energy of the

same gaussian at rest, plus the kinetic energy (〈p〉2/2m) associated with the motion of the wave packet
as a whole.
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Chapter 4

Quantum Mechanics in Three
Dimensions

Problem 4.1

(a)

[x, y] = xy − yx = 0, etc., so [ri, rj ] = 0.

[px, py]f =
�

i

∂

∂x

(
�

i

∂f

∂y

)
− �

i

∂

∂y

(
�

i

∂f

∂x

)
= −�

2

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
= 0

(by the equality of cross-derivatives), so [pi, pj ] = 0.

[x, px]f =
�

i

(
x
∂f

∂x
− ∂

∂x
(xf)

)
=

�

i

(
x
∂f

∂x
− x

∂f

∂x
− f

)
= i�f,

so [x, px] = i� (likewise [y, py] = i� and [z, pz] = i�).

[y, px]f =
�

i

(
y
∂f

∂x
− ∂

∂x
(yf)

)
=

�

i

(
y
∂f

∂x
− y

∂f

∂y

)
= 0 (since

∂y

∂x
= 0). So [y, px] = 0,

and same goes for the other “mixed” commutators. Thus [ri, pj ] = −[pj , ri] = i�δij .

(b) The derivation of Eq. 3.71 (page 115) is identical in three dimensions, so
d〈x〉
dt

=
i

�
〈[H,x]〉;

[H,x] =
[
p2

2m
+ V, x

]
=

1
2m

[p2
x + p2

y + p2
z, x] =

1
2m

[p2
x, x]

=
1

2m
(px[px, x] + [px, x]px) =

1
2m

[(−i�)px + (−i�)px] = −i
�

m
px.

∴ d〈x〉
dt

=
i

�

(
−i

�

m
〈px〉

)
=

1
m
〈px〉. The same goes for y and z, so:

d〈r〉
dt

=
1
m
〈p〉.
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d〈px〉
dt

=
i

�
〈[H, px]〉; [H, px] =

[
p2

2m
+ V, px

]
= [V, px] = i�

∂V

∂x
(Eq. 3.65)

=
i

�
(i�)

〈
∂V

∂x

〉
=

〈
−∂V

∂x

〉
. Same for y and z, so:

d〈p〉
dt

= 〈−∇V 〉.

(c) From Eq. 3.62: σxσpx ≥
∣∣∣∣ 1
2i
〈[x, px]〉

∣∣∣∣ =
∣∣∣∣ 1
2i

i�

∣∣∣∣ =
�

2
. Generally, σriσpj ≥

�

2
δij .

Problem 4.2

(a) Equation 4.8 ⇒ − �
2

2m

(
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2

)
= Eψ (inside the box). Separable solutions: ψ(x, y, z) =

X(x)Y (y)Z(z). Put this in, and divide by XY Z:

1
X

d2X

dx2
+

1
Y

d2X

dy2
+

1
Z

d2Z

dz2
= −2m

�2
E.

The three terms on the left are functions of x, y, and z, respectively, so each must be a constant. Call the
separation constants k2

x, k2
y, and k2

z (as we’ll soon seen, they must be positive).

d2X

dx2
= −k2

xX;
d2Y

dy2
= −k2

yY ;
d2Z

dz2
= −k2

zZ, with E =
�

2

2m
(k2

x + k2
y + k2

z).

Solution:

X(x) = Ax sin kxx + Bx cos kxx; Y (y) = Ay sin kyy + By cos kyy; Z(z) = Az sin kzz + Bz cos kzz.

But X(0) = 0, so Bx = 0; Y (0) = 0, so By = 0; Z(0) = 0, so Bz = 0. And X(a) = 0 ⇒ sin(kxa) = 0 ⇒
kx = nxπ/a (nx = 1, 2, 3, . . . ). [As before (page 31), nx �= 0, and negative values are redundant.] Likewise
ky = nyπ/a and kz = nzπ/a. So

ψ(x, y, z) = AxAyAz sin
(nxπ

a
x
)

sin
(nyπ

a
y
)

sin
(nzπ

a
z
)
, E =

�
2

2m
π2

a2
(n2

x + n2
y + n2

z).

We might as well normalize X,Y, and Z separately: Ax = Ay = Az =
√

2/a. Conclusion:

ψ(x, y, z) =
(

2
a

)3/2

sin
(nxπ

a
x
)

sin
(nyπ

a
y
)

sin
(nzπ

a
z
)

; E =
π2

�
2

2ma2
(n2

x + n2
y + n2

z); nx, ny, nz = 1, 2, 3, . . .
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(b)

nx ny nz (n2
x + n2

y + n2
z)

1 1 1 3

1 1 2 6
1 2 1 6
2 1 1 6

1 2 2 9
2 1 2 9
2 2 1 9

1 1 3 11
1 3 1 11
3 1 1 11

2 2 2 12

1 2 3 14
1 3 2 14
2 1 3 14
2 3 1 14
3 1 2 14
3 2 1 14

Energy Degeneracy

E1 = 3
π2

�
2

2ma2
; d = 1

E2 = 6
π2

�
2

2ma2
; d = 3.

E3 = 9
π2

�
2

2ma2
; d = 3.

E4 = 11
π2

�
2

2ma2
; d = 3.

E5 = 12
π2

�
2

2ma2
; d = 1.

E6 = 14
π2

�
2

2ma2
; d = 6.

(c) The next combinations are: E7(322), E8(411), E9(331), E10(421), E11(332), E12(422), E13(431), and
E14(333 and 511). The degeneracy of E14 is 4. Simple combinatorics accounts for degeneracies of 1
(nx = ny = nz), 3 (two the same, one different), or 6 (all three different). But in the case of E14 there is
a numerical “accident”: 32 + 32 + 32 = 27, but 52 + 12 + 12 is also 27, so the degeneracy is greater than
combinatorial reasoning alone would suggest.

Problem 4.3

Eq. 4.32 ⇒ Y 0
0 =

1√
4π

P 0
0 (cos θ); Eq. 4.27 ⇒ P 0

0 (x) = P0(x); Eq. 4.28 ⇒ P0(x) = 1. Y 0
0 =

1√
4π

.

Y 1
2 = −

√
5
4π

1
3 · 2 eiφP 1

2 (cos θ); P 1
2 (x) =

√
1− x2

d

dx
P2(x);

P2(x) =
1

4 · 2

(
d

dx

)2 (
x2 − 1

)2
=

1
8

d

dx

[
2(x2 − 1)2x

]
=

1
2

[
x2 − 1 + x(2x)

]
=

1
2

(
3x2 − 1

)
;

P 1
2 (x) =

√
1− x2

d

dx

[
3
2
x2 − 1

2

]
=

√
1− x2 3x; P 1

2 (cos θ) = 3 cos θ sin θ. Y 1
2 = −

√
15
8π

eiφ sin θ cos θ.
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Normalization:
∫∫

|Y 0
0 |2 sin θ dθ dφ =

1
4π

[∫ π

0

sin θ dθ

] [∫ 2π

0

dφ

]
=

1
4π

(2)(2π) = 1. �

∫∫
|Y 1

2 |2 sin θ dθ dφ =
15
8π

∫ π

0

sin2 θ cos2 θ sin θ dθ

∫ 2π

0

dφ =
15
4

∫ π

0

cos2 θ(1− cos2 θ) sin θ dθ

=
15
4

[
−cos3 θ

3
+

cos5 θ

5

]∣∣∣∣π
0

=
15
4

[
2
3
− 2

5

]
=

5
2
− 3

2
= 1 �

Orthogonality:
∫∫

Y 0
0
∗
Y 1

2 sin θ dθ dφ = − 1√
4π

√
15
8π

[ ∫ π

0

sin θ cos θ sin θ dθ︸ ︷︷ ︸
(sin3 θ)/3|π0 =0

][ ∫ 2π

0

eiφdφ︸ ︷︷ ︸
(eiφ)/i|2π0 =0

]
= 0. �

Problem 4.4

dΘ
dθ

=
A

tan(θ/2)
1
2

sec2(θ/2) =
A

2
1

sin(θ/2) cos(θ/2)
=

A

sin θ
. Therefore

d

dθ

(
sin θ

dΘ
dθ

)
=

d

dθ
(A) = 0.

With l = m = 0, Eq. 4.25 reads:
d

dθ

(
sin θ

dΘ
dθ

)
= 0. So A ln[tan(θ/2)] does satisfy Eq. 4.25. However,

Θ(0) = A ln(0) = A(−∞); Θ(π) = A ln
(
tan

π

2

)
= A ln(∞) = A(∞). Θ blows up at θ = 0 and at θ = π.

Problem 4.5

Y l
l = (−1)l

√
(2l + 1)

4π
1

(2l)!
eilφP l

l (cos θ). P l
l (x) = (1− x2)l/2

(
d

dx

)l

Pl(x).

Pl(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l, so P l
l (x) =

1
2ll!

(1− x2)l/2

(
d

dx

)2l

(x2 − 1)l.

Now (x2− 1)l = x2l + · · · , where all the other terms involve powers of x less than 2l, and hence give zero when
differentiated 2l times. So

P l
l (x) =

1
2ll!

(1− x2)l/2

(
d

dx

)2l

x2l. But
(

d

dx

)n

xn = n!, so P l
l =

(2l)!
2ll!

(1− x2)l/2.

∴ Y l
l = (−1)l

√
(2l + 1)
4π(2l)!

eilφ (2l)!
2ll!

(sin θ)l =
1
l!

√
(2l + 1)!

4π

(
−1

2
eiφ sin θ

)l

.
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Y 2
3 =

√
7
4π
· 1
5!

e2iφP 2
3 (cos θ); P 2

3 (x) = (1− x2)
(

d

dx

)2

P3(x); P3(x) =
1

8 · 3!

(
d

dx

)3

(x2 − 1)3.

P3 =
1

8 · 3 · 2

(
d

dx

)2 [
6x(x2 − 1)2

]
=

1
8

d

dx

[
(x2 − 1)2 + 4x2(x2 − 1)

]
=

1
8

[
4x(x2 − 1) + 8x(x2 − 1) + 4x2 · 2x

]
=

1
2

(
x3 − x + 2x3 − 2x + 2x3

)
=

1
2

(
5x3 − 3x

)
.

P 2
3 (x) =

1
2

(
1− x2

) (
d

dx

)2 (
5x3 − 3x

)
=

1
2

(
1− x2

) d

dx

(
15x2 − 3

)
=

1
2
(1− x2)30x = 15x(1− x2).

Y 2
3 =

√
7
4π

1
5!

15e2iφ cos θ sin2 θ =
1
4

√
105
2π

e2iφ sin2 θ cos θ.

Check that Y l
l satisfies Eq. 4.18: Let

1
l!

√
(2l + 1)!

4π

(
−1

2

)l

≡ A, so Y l
l = A(eiφ sin θ)l.

∂Y l
l

∂θ
= Aeilφl(sin θ)l−1 cos θ; sin θ

∂Y l
l

∂θ
= l cos θY l

l ;

sin θ
∂

∂θ

(
sin θ

∂Y l
l

∂θ

)
= l cos θ

(
sin θ

∂Y l
l

∂θ

)
− l sin2 θY l

l =
(
l2 cos2 θ − l sin2 θ

)
Y l

l .
∂2Y l

l

∂φ2
= −l2Y l

l .

So the left side of Eq. 4.18 is
[
l2(1− sin2 θ)− l sin2 θ − l2

]
Y l

l = −l(l+1) sin2 θ Y l
l , which matches the right side.

Check that Y 2
3 satisfies Eq. 4.18: Let B ≡ 1

4

√
105
2π

, so Y 2
3 = Be2iφ sin2 θ cos θ.

∂Y 2
3

∂θ
= Be2iφ

(
2 sin θ cos2 θ − sin3 θ

)
; sin θ

∂

∂θ

(
sin θ

∂Y 2
3

∂θ

)
= Be2iφ sin θ

∂

∂θ

(
2 sin2 θ cos2 θ − sin4 θ

)

= Be2iφ sin θ
(
4 sin θ cos3 θ − 4 sin3 θ cos θ − 4 sin3 θ cos θ

)
= 4Be2iφ sin2 θ cos θ

(
cos2 θ − 2 sin2 θ

)
= 4(cos2 θ − 2 sin2 θ)Y 2

3 .
∂2Y 2

3

∂φ2
= −4Y 2

3 . So the left side of Eq. 4.18 is

4(cos2 θ − 2 sin2 θ − 1)Y 2
3 = 4(−3 sin2 θ)Y 2

3 = −l(l + 1) sin2 θ Y 2
3 ,

where l = 3, so it fits the right side of Eq. 4.18.

Problem 4.6

∫ 1

−1

Pl(x)Pl′(x)dx =
1

2ll!
1

2l′ l′!

∫ 1

−1

[(
d

dx

)l

(x2 − 1)l

] [(
d

dx

)l′

(x2 − 1)l′

]
dx.
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If l �= l′, we may as well let l be the larger of the two (l > l′). Integrate by parts, pulling successively each
derivative off the first term onto the second:

2ll!2l′ l′!
∫ 1

−1

Pl(x)Pl′(x)dx =

[(
d

dx

)l−1

(x2 − 1)l

] [(
d

dx

)l′

(x2 − 1)l′

]∣∣∣∣∣
1

−1

−
∫ 1

−1

[(
d

dx

)l−1

(x2 − 1)l

] [(
d

dx

)l′+1

(x2 − 1)l′

]
dx

= . . . (boundary terms) . . . + (−1)l

∫ 1

−1

(x2 − 1)l

(
d

dx

)l′+l

(x2 − 1)l′dx.

But (d/dx)l′+l (x2 − 1)l′ = 0, because (x2 − 1)l′ is a polynomial whose highest power is 2l′, so more than 2l′

derivatives will kill it, and l′ + l > 2l′. Now, the boundary terms are of the form:[(
d

dx

)l−n

(x2 − 1)l

] [(
d

dx

)l′+n−1

(x2 − 1)l′

]∣∣∣∣∣
+1

−1

, n = 1, 2, 3, . . . , l.

Look at the first term: (x2 − 1)l = (x2 − 1)(x2 − 1) . . . (x2 − 1); l factors. So 0, 1, 2, . . . , l − 1 derivatives will
still leave at least one overall factor of (x2 − 1). [Zero derivatives leaves l factors; one derivative leaves l − 1 :
d/dx(x2−1)l = 2lx(x2−1)l−1; two derivatives leaves l−2 : d2/dx2(x2−1)l = 2l(x2−1)l−1+2l(l−1)2x2(x2−1)l−2,
and so on.] So the boundary terms are all zero, and hence

∫ 1

−1
Pl(x)Pl′(x)dx = 0.

This leaves only the case l = l′. Again the boundary terms vanish, but this time the remaining integral does
not :

(2ll!)2
∫ 1

−1

[Pl(x)]2dx = (−1)l

∫ 1

−1

(x2 − 1)l

(
d

dx

)2l

(x2 − 1)l︸ ︷︷ ︸
(d/dx)2l(x2l)=(2l)!

dx

= (−1)l(2l)!
∫ 1

−1

(x2 − 1)ldx = 2(2l)!
∫ 1

0

(1− x2)ldx.

Let x ≡ cos θ, so dx = − sin θ dθ, (1− x2) = sin2 θ, θ : π/2→ 0. Then∫ 1

0

(1− x2)ldx =
∫ 0

π/2

(sin θ)2l(− sin θ)dθ =
∫ π/2

0

(sin θ)2l+1dθ

=
(2)(4) · · · (2l)

(1)(3)(5) · · · (2l + 1)
=

(2ll!)2

1 · 2 · 3 · · · · (2l + 1)
=

(2ll!)2

(2l + 1)!
.

∴
∫ 1

−1

[Pl(x)]2dx =
1

(2ll!)2
2(2l)!

(2ll!)2

(2l + 1)!
=

2
2l + 1

. So
∫ 1

−1

Pl(x)Pl′(x)dx =
2

2l + 1
δll′ . QED

Problem 4.7

(a)

n1(x) = −(−x)
1
x

d

dx

(
cosx
x

)
= −cosx

x2
− sinx

x
.
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 93

n2(x) = −(−x)2
(

1
x

d

dx

)2 cosx
x

= −x2

(
1
x

d

dx

)[
1
x

d

dx

(
cosx
x

)]
= −x

d

dx

(
1
x
· −x sinx− cosx

x2

)
= x

d

dx

(
sinx

x2
+

cosx
x3

)
= x

(
x2 cosx− 2x sinx

x4
+
−x3 sinx− 3x2 cosx

x6

)
=

cosx
x

− 2
sinx

x2
− sinx

x2
− 3 cosx

x3
= −

(
3
x3
− 1

x

)
cosx− 3

x2
sinx.

(b) Letting sinx ≈ x and cosx ≈ 1, and keeping only the lowest power of x:

n1(x) ≈ − 1
x2

+
1
x
x ≈ − 1

x2
. As x→ 0, this blows up.

n2(x) ≈ −
(

3
x3
− 1

x

)
− 3

x2
x ≈ − 3

x3
, which again blows up at the origin.

Problem 4.8

(a)

u = Arj1(kr) = A

[
sin(kr)
k2r

− cos(kr)
k

]
=

A

k

[
sin(kr)
(kr)

− cos(kr)
]
.

du

dr
=

A

k

[
k2r cos(kr)− k sin(kr)

(kr)2
+ k sin(kr)

]
= A

[
cos(kr)

kr
− sin(kr)

(kr)2
+ sin(kr)

]
.

d2u

dr2
= A

[−k2r sin(kr)− k cos(kr)
(kr)2

− k3r2 cos(kr)− 2k2r sin(kr)
(kr)4

+ k cos(kr)
]

= Ak

[
− sin(kr)

(kr)
− cos(kr)

(kr)2
− cos(kr)

(kr)2
+ 2

sin(kr)
(kr)3

+ cos(kr)
]

= Ak

[(
1− 2

(kr)2

)
cos(kr) +

(
2

(kr)3
− 1

(kr)

)
sin(kr)

]
.

With V = 0 and l = 1, Eq. 4.37 reads:
d2u

dr2
− 2

r2
u = −2mE

�2
u = −k2u. In this case the left side is

Ak

[(
1− 2

(kr)2

)
cos(kr) +

(
2

(kr)3
− 1

(kr)

)
sin(kr)− 2

(kr)2

(
sin(kr)
(kr)

− cos(kr)
)]

= Ak

[
cos(kr)− sin(kr)

kr

]
= −k2u. So this u does satisfy Eq. 4.37.
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(b) Equation 4.48 ⇒ j1(z) = 0, where z = ka. Thus sin z
z2 − cos z

z = 0, or tan z = z. For high z (large n,
if n = 1, 2, 3, . . . counts the allowed energies in increasing order), the intersections occur slightly below
z = (n + 1

2 )π.

∴ E =
�

2k2

2m
=

�
2z2

2ma2
=

�
2π2

2ma2

(
n +

1
2

)2

. QED

π/2 3π/2 z5π/2

z
tan z

Problem 4.9

For r ≤ a, u(r) = A sin(kr), with k ≡
√

2m(E + V0)/�. For r ≥ a, Eq. 4.37 with l = 0, V = 0, and (for a bound
state) E < 0 ⇒:

d2u

dr2
= −2m

�2
Eu = κ2u, with κ ≡

√
−2mE/� ⇒ u(r) = Ceκr + De−κr.

But the Ceκr term blows up as r →∞, so u(r) = De−κr.

Continuity of u at r = a : A sin(ka) = De−κa

Continuity of u′ at r = a : Ak cos(ka) = −Dκe−κa

}
divide:

1
k

tan(ka) = − 1
κ
, or − cot ka =

κ

k
.

Let ka ≡ z;
κ

k
=

√
2mV0a2/�2 − z2

z
. Let z0 ≡

√
2mV0

�
a. − cot z =

√
(z0/z)2 − 1. This is exactly the

same transcendental equation we encountered in Problem 2.29—see graph there. There is no solution if z0 < π/2,
which is to say, if 2mV0a

2/�
2 < π2/4, or V0a

2 < π2
�

2/8m. Otherwise, the ground state energy occurs somewhere
between z = π/2 and z = π:

E + V0 =
�

2k2a2

2ma2
=

�
2

2ma2
z2, so

�
2π2

8ma2
< (E0 + V0) <

�
2π2

2ma2
(precise value depends on V0).

Problem 4.10

R30 (n = 3, l = 0) : Eq. 4.62⇒ v(ρ) =
∑

j=0 cjρ
j .

Eq. 4.76⇒ c1 =
2(1− 3)
(1)(2)

c0 = −2c0; c2 =
2(2− 3)
(2)(3)

c1 = −1
3
c1 =

2
3
c0; c3 =

2(3− 3)
(3)(4)

c2 = 0.

Eq. 4.73⇒ ρ =
r

3a
; Eq. 4.75⇒ R30 =

1
r
ρe−ρv(ρ) =

1
r

r

3a
e−r/3a

[
c0 − 2c0

r

3a
+

2
3
c0

( r

3a

)2
]
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R30 =
( c0

3a

) [
1− 2

3

( r

a

)
+

2
27

( r

a

)2
]
e−r/3a.

R31 (n = 3, l = 1) : c1 =
2(2− 3)
(1)(4)

c0 = −1
2
c0; c2 =

2(3− 3)
(2)(5)

c1 = 0.

R31 =
1
r

( r

3a

)2

e−r/3a

(
c0 −

1
2
c0

r

3a

)
=

( c0
9a2

)
r

[
1− 1

6

( r

a

)]
e−r/3a.

R32 (n = 3, l = 2) : c1 =
2(3− 3)
(1)(6)

c0 = 0. R32 =
1
r

( r

3a

)3

e−r/3a(c0) =
( c0

27a3

)
r2e−r/3a.

Problem 4.11

(a)

Eq. 4.31⇒
∫ ∞

0

|R|2r2dr = 1. Eq. 4.82⇒ R20 =
( c0

2a

) (
1− r

2a

)
e−r/2a. Let z ≡ r

a
.

1 =
( c0

2a

)2

a3

∫ ∞
0

(
1− z

2

)2

e−zz2 dz =
c20a

4

∫ ∞
0

(
z2 − z3 +

1
4
z4

)
e−zdz =

c20a

4

(
2− 6 +

24
4

)
=

a

2
c20.

∴ c0 =

√
2
a
. Eq. 4.15⇒ ψ200 = R20Y

0
0 . Table 4.3⇒ Y 0

0 =
1√
4π

.

∴ ψ200 =
1√
4π

√
2
a

1
2a

(
1− r

2a

)
e−r/2a ⇒ ψ200 =

1√
2πa

1
2a

(
1− r

2a

)
e−r/2a.

(b)

R21 =
c0
4a2

re−r/2a; 1 =
( c0

4a2

)2

a5

∫ ∞
0

z4e−zdz =
c20a

16
24 =

3
2
ac20, so c0 =

√
2
3a

.

R21 =
1√
6a

1
2a2

re−r/2a; ψ21±1 =
1√
6a

1
2a2

re−r/2a

(
∓

√
3
8π

sin θe±iφ

)
= ∓ 1√

πa

1
8a2

re−r/2a sin θe±iφ;

ψ210 =
1√
6a

1
2a2

re−r/2a

(√
3
4π

cos θ

)
=

1√
2πa

1
4a2

re−r/2a cos θ.
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Problem 4.12

(a)

L0 = exe−x = 1. L1 = ex d

dx

(
e−xx

)
= ex

[
e−x − e−xx

]
= 1− x.

L2 = ex

(
d

dx

)2 (
e−xx2

)
= ex d

dx

(
2xe−x − e−xx2

)
= ex

(
2e−x − 2xe−x + e−xx2 − 2xe−x

)
= 2− 4x + x2.

L3 = ex

(
d

dx

)3 (
e−xx3

)
= ex

(
d

dx

)2 (
−e−xx3 + 3x2e−x

)
= ex d

dx

(
e−xx3 − 3x2e−x − 3x2e−x + 6xe−x

)
= ex

(
−e−xx3 + 3x2e−x + 6x2e−x − 12xe−x − 6xe−x + 6e−x

)
= 6− 18x + 9x2 − x3.

(b)

v(ρ) = L5
2(2ρ); L5

2(x) = L5
7−5(x) = (−1)5

(
d

dx

)5

L7(x).

L7(x) = ex

(
d

dx

)7 (
x7e−x

)
= ex

(
d

dx

)6 (
7x6e−x − x7e−x

)
= ex

(
d

dx

)5 (
42x5e−x − 7x6e−x − 7x6e−x + x7e−x

)
= ex

(
d

dx

)4 (
210x4e−x − 42x5e−x − 84x5e−x + 14x6e−x + 7x6e−x − x7e−x

)
= ex

(
d

dx

)3 [
840x3e−x − (210 + 630)x4e−x

+ (126 + 126)x5e−x − (21 + 7)x6e−x + x7e−x

]
= ex

(
d

dx

)2 (
2520x2e−x − (840 + 3360)x3e−x

+(840 + 1260)x4e−x − (252 + 168)x5e−x + (28 + 7)x6e−x − x7e−x
)

= ex

(
d

dx

) [
5040xe−x − (2520 + 12600)x2e−x + (4200 + 8400)x3e−x

− (2100 + 2100)x4e−x + (420 + 210)x5e−x − (35 + 7)x6e−x + x7e−x

]
= ex

[
5040e−x − (5040 + 30240)xe−x + (15120 + 37800)x2e−x

− (12600 + 8400 + 8400)x3e−x + (2100 + 2100 + 3150)x4e−x

− (630 + 252)x5e−x + (42 + 7)x6e−x − x7e−x

]
= 5040− 35280x + 52920x2 − 29400x3 + 7350x4 − 882x5 + 49x6 − x7.
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 97

L5
2 = −

(
d

dx

)5 (
−882x5 + 49x6 − x7

)
= −

[
−882(5 · 4 · 3 · 2) + 49(6 · 5 · 4 · 3 · 2)x− 7 · 6 · 5 · 4 · 3x2

]
= 60

[
(882× 2)− (49× 12)x + 42x2

]
= 2520(42− 14x + x2).

v(ρ) = 2520(42− 28ρ + 4ρ2) = 5040
(
21− 14ρ + 2ρ2

)
.

(c)

Eq. 4.62⇒ v(ρ) =
∞∑

j=0

cjρ
j . Eq. 4.76⇒ c1 =

2(3− 5)
(1)(6)

c0 = −2
3
c0.

c2 =
2(4− 5)
(2)(7)

c1 = −1
7
c1 =

2
21

c0; c3 =
2(5− 5)
(3)(8)

c2 = 0.

v(ρ) = c0 −
2
3
c0ρ +

2
21

c0ρ
2 =

c0
21

(
21− 14ρ + 2ρ2

)
. �

Problem 4.13

(a)

ψ =
1√
πa3

e−r/a, so 〈rn〉 =
1

πa3

∫
rne−2r/a

(
r2 sin θ dr dθ dφ

)
=

4π
πa3

∫ ∞
0

rn+2e−2r/adr.

〈r〉 =
4
a3

∫ ∞
0

r3e−2r/adr =
4
a3

3!
(a

2

)4

=
3
2
a; 〈r2〉 =

4
a3

∫ ∞
0

r4e−2r/adr =
4
a3

4!
(a

2

)5

= 3a2.

(b)

〈x〉 = 0; 〈x2〉 =
1
3
〈r2〉 = a2.

(c)

ψ211 = R21Y
1
1 = − 1√

πa

1
8a2

re−r/2a sin θeiφ (Problem 4.11(b)).

〈x2〉 =
1
πa

1
(8a2)2

∫ (
r2e−r/a sin2 θ

) (
r2 sin2 θ cos2 φ

)
r2 sin θ dr dθ dφ

=
1

64πa5

∫ ∞
0

r6e−r/a dr

∫ π

0

sin5 θ dθ

∫ 2π

0

cos2 φdφ

=
1

64πa5

(
6!a7

) (
2

2 · 4
1 · 3 · 5

) (
1
2
· 2π

)
= 12a2.
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98 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Problem 4.14

ψ =
1√
πa3

e−r/a; P = |ψ|24πr2 dr =
4
a3

e−2r/ar2 dr = p(r) dr; p(r) =
4
a3

r2e−2r/a.

dp

dr
=

4
a3

[
2re−2r/a + r2

(
−2

a
e−2r/a

)]
=

8r
a3

e−2r/a
(
1− r

a

)
= 0⇒ r = a.

Problem 4.15

(a) Ψ(r, t) =
1√
2

(
ψ2 1 1e

−iE2t/� + ψ2 1−1e
−iE2t/�

)
=

1√
2

(ψ2 1 1 + ψ2 1−1) e−iE2t/�; E2 =
E1

4
= − �

2

8ma2
.

From Problem 4.11(b):

ψ2 1 1 + ψ2 1−1 = − 1√
πa

1
8a2

re−r/2a sin θ
(
eiφ − e−iφ

)
= − i√

πa 4a2
re−r/2a sin θ sinφ.

Ψ(r, t) = − i√
2πa 4a2

re−r/2a sin θ sinφ e−iE2t/�.

(b)

〈V 〉 =
∫
|Ψ|2

(
− e2

4πε0
1
r

)
d3r =

1
(2πa)(16a4)

(
− e2

4πε0

) ∫ (
r2e−r/a sin2 θ sin2 φ

) 1
r
r2 sin θ dr dθ dφ

=
1

32πa5

(
− �

2

ma2

) ∫ ∞
0

r3e−r/a dr

∫ π

0

sin3 θ dθ

∫ 2π

0

sin2 φdφ = − �
2

32πma6

(
3!a4

) (
4
3

)
(π)

= − �
2

4ma2
=

1
2
E1 =

1
2
(−13.6eV) = −6.8eV (independent of t).

Problem 4.16

En(Z) = Z2En; E1(Z) = Z2E1; a(Z) = a/Z; R(Z) = Z2R.

Lyman lines range from ni = 2 to ni =∞ (with nf = 1); the wavelengths range from
1
λ 2

= R

(
1− 1

4

)
=

3
4
R⇒ λ2 =

4
3R

down to
1
λ 1

= R

(
1− 1

∞

)
= R⇒ λ1 =

1
R

.

For Z = 2 : λ1 =
1

4R
=

1
4(1.097× 107)

= 2.28× 10−8m to λ2 =
1

3R
= 3.04× 10−8 m, ultraviolet.

For Z = 3 : λ1 =
1

9R
= 1.01× 10−8 m to λ2 =

4
27R

= 1.35× 10−8 m, also ultraviolet.

Problem 4.17

(a) V (r) = −G
Mm

r
. So

e2

4πε0
→ GMm translates hydrogen results to the gravitational analogs.
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 99

(b) Equation 4.72: a =
(

4πε0
e2

)
�

2

m
, so ag =

�
2

GMm2

=
(1.0546× 10−34 Js)2

(6.6726× 10−11 m3/kg · s2)(1.9892× 1030 kg)(5.98× 1024kg)2
= 2.34× 10−138 m.

(c) Equation 4.70⇒ En = −
[ m

2�2
(GMm)2

] 1
n2

.

Ec =
1
2
mv2 −G

Mm

ro
. But G

Mm

r2
o

=
mv2

ro
⇒ 1

2
mv2 =

GMm

2ro
, so

Ec = −GMm

2ro
= −

[ m

2�2
(GMm)2

] 1
n2
⇒ n2 =

GMm2

�2
ro =

ro

ag
⇒ n =

√
ro

ag
.

ro = earth-sun distance = 1.496× 1011 m ⇒ n =

√
1.496× 1011

2.34× 10−138
= 2.53× 1074.

(d)

∆E = −
[
G2M2m3

2�2

] [
1

(n + 1)2
− 1

n2

]
.

1
(n + 1)2

=
1

n2(1 + 1/n)2
≈ 1

n2

(
1− 2

n

)
.

So
[

1
(n + 1)2

− 1
n2

]
≈ 1

n2

(
1− 2

n
− 1

)
= − 2

n3
; ∆E =

G2M2m3

�2n3
.

∆E =
(6.67× 10−11)2(1.99× 1030)2(5.98× 1024)3

(1.055× 10−34)2(2.53×74)3
= 2.09× 10−41J. Ep = ∆E = hν =

hc

λ
.

λ = (3× 108)(6.63× 10−34)/(2.09× 10−41) = 9.52× 1015 m.

But 1 ly = 9.46× 1015 m. Is it a coincidence that λ ≈ 1 ly? No: From part (c), n2 = GMm2ro/�
2, so

λ =
ch

∆E
= c2π�

�
2n3

G2M2m3
= c

2π�
3

G2M2m3

(
GMm2ro

�2

)3/2

= c

(
2π

√
r3
o

GM

)
.

But (from (c)) v =
√

GM/ro = 2πro/T , where T is the period of the orbit (in this case one year), so
T = 2π

√
r3
o/GM , and hence λ = cT (one light year). [Incidentally, the same goes for hydrogen: The

wavelength of the photon emitted in a transition from a highly excited state to the next lower one is equal
to the distance light would travel in one orbital period.]

Problem 4.18

〈f |L±g〉 = 〈f |Lxg〉 ± i〈f |Lyg〉 = 〈Lxf |g〉 ± i〈Lyf |g〉 = 〈(Lx ∓ iLy)f |g〉 = 〈L∓f |g〉, so (L±)† = L∓.

Now, using Eq. 4.112, in the form L∓L± = L2 − L2
z ∓ �Lz :

〈fm
l |L∓L±fm

l 〉 = 〈fm
l |(L2 − L2

z ∓ �Lz)fm
l 〉 = 〈fm

l |
[
�

2l(l + 1)− �
2m2 ∓ �

2m
]
fm

l 〉
= �

2 [l(l + 1)−m(m± 1)] 〈fm
l |fm

l 〉 = �
2 [l(l + 1)−m(m± 1)]

= 〈L±fm
l |L±fm

l 〉 = 〈Am
l fm±1

l |Am
l fm±1

l 〉 = |Am
l |2〈fm±1

l |fm±1
l 〉 = |Am

l |2.
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100 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

Conclusion: Am
l = �

√
l(l + 1)−m(m± 1).

Problem 4.19

(a)

[Lz, x] = [xpy − ypx, x] = [xpy, x]− [ypx, x] = 0− y[px, x] = i�y. �

[Lz, y] = [xpy − ypx, y] = [xpy, y]− [ypx, y] = x[py, y]− 0 = −i�x. �

[Lz, z] = [xpy − ypx, z] = [xpy, z]− [ypx, z] = 0− 0 = 0. �

[Lz, px] = [xpy − ypx, px] = [xpy, px]− [ypx, px] = py[x, px]− 0 = i�py. �

[Lz, py] = [xpy − ypx, py] = [xpy, py]− [ypx, py] = 0− px[y, py] = −i�px. �

[Lz, pz] = [xpy − ypx, pz] = [xpy, pz]− [ypx, pz] = 0− 0 = 0. �

(b)

[Lz, Lx] = [Lz, ypz − zpy] = [Lz, ypz]− [Lz, zpy] = [Lz, y]pz − [Lz, py]z
= −i�xpz + i�pxz = i�(zpx − xpz) = i�Ly.

(So, by cyclic permutation of the indices, [Lx, Ly] = i�Lz.)

(c)

[Lz, r
2] = [Lz, x

2] + [Lz, y
2] + [Lz, z

2] = [Lz, x]x + x[Lz, x] + [Lz, y]y + y[Lz, y] + 0

= i�yx + xi�y + (−i�x)y + y(−i�x) = 0.

[Lz, p
2] = [Lz, p

2
x] + [Lz, p

2
y] + [Lz, p

2
z] = [Lz, px]px + px[Lz, px] + [Lz, py]py + py[Lz, py] + 0

= i�pypx + pxi�py + (−i�px)py + py(−i�px) = 0.

(d) It follows from (c) that all three components of L commute with r2 and p2, and hence with the whole
Hamiltonian, since H = p2/2m + V (

√
r2). QED
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 101

Problem 4.20

(a)

Equation 3.71⇒ d〈Lx〉
dt

=
i

�
〈[H,Lx]〉. [H,Lx] =

1
2m

[p2, Lx] + [V,Lx].

The first term is zero (Problem 4.19(c)); the second would be too if V were a function only of r = |r|, but
in general

[H,Lx] = [V, ypz − zpy] = y[V, pz]− z[V, py]. Now (Problem 3.13(c)):

[V, pz] = i�
∂V

∂z
and [V, py] = i�

∂V

∂y
. So [H,Lx] = yi�

∂V

∂z
− zi�

∂V

∂y
= i�[r× (∇V )]x.

Thus
d〈Lx〉
dt

= −〈[r× (∇V )]x〉, and the same goes for the other two components:

d〈L〉
dt

= 〈[r× (−∇V )]〉 = 〈N〉. QED

(b)

If V (r) = V (r), then ∇V =
∂V

∂r
r̂, and r× r̂ = 0, so

d〈L〉
dt

= 0. QED

Problem 4.21

(a)

L+L−f = −�
2eiφ

(
∂

∂θ
+ i cot θ

∂

∂φ

) [
e−iφ

(
∂f

∂θ
− i cot θ

∂f

∂φ

)]
= −�

2eiφ

{
e−iφ

[
∂2f

∂θ2
− i

(
− csc2 θ

∂f

∂φ
+ cot θ

∂2f

∂θ ∂φ

)]
+i cot θ

[
−ie−iφ

(
∂f

∂θ
− i cot θ

∂f

∂φ

)
+ e−iφ

(
∂2f

∂φ ∂θ
− i cot θ

∂2f

∂φ2

)] }
= −�

2

(
∂2f

∂θ2
+ i csc2 θ

∂f

∂φ
− i cot θ

∂2f

∂θ ∂φ
+ cot θ

∂f

∂θ
− i cot2 θ

∂f

∂φ
+ i cot θ

∂2f

∂φ ∂θ
+ cot2 θ

∂2f

∂φ2

)
= −�

2

[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2
+ i(csc2 θ − cot2 θ)

∂

∂φ

]
f, so

L+L− = −�
2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2
+ i

∂

∂φ

)
. QED

(b) Equation 4.129 ⇒ Lz =
�

i

∂

∂φ
, Eq. 4.112 ⇒ L2 = L+L− + L2

z − �Lz, so, using (a):

L2 = −�
2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2
+ i

∂

∂φ

)
− �

2 ∂2

∂φ2
− �

(
�

i

)
∂

∂φ

= −�
2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ (cot2 θ + 1)

∂2

∂φ2
+ i

∂

∂φ
− i

∂

∂φ

)
= −�

2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
= −�

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
. QED
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Problem 4.22

(a) L+Y l
l = 0 (top of the ladder).

(b)

LzY
l
l = �lY l

l ⇒
�

i

∂

∂φ
Y l

l = �lY l
l , so

∂Y l
l

∂φ
= ilY l

l , and hence Y l
l = f(θ)eilφ.

[Note: f(θ) is the “constant” here—it’s constant with respect to φ . . . but still can depend on θ.]

L+Y l
l = 0⇒ �eiφ

(
∂

∂θ
+ i cot θ

∂

∂φ

) [
f(θ)eilφ

]
= 0, or

df

dθ
eilφ + if cot θ il eilφ = 0, so

df

dθ
= l cot θf ⇒ df

f
= l cot θdθ ⇒

∫
df

f
= l

∫
cos θ
sin θ

dθ ⇒ ln f = l ln(sin θ) + constant.

ln f = ln(sinl θ) + K ⇒ ln
(

f

sinl θ

)
= K ⇒ f

sinl θ
= constant⇒ f(θ) = A sinl θ.

Y l
l (θ, φ) = A(eiφ sin θ)l.

(c)

1 = A2

∫
sin2l θ sin θ dθ dφ = 2πA2

∫ π

0

sin(2l+1) θ dθ = 2πA2 2
(2 · 4 · 6 · · · · · (2l))

1 · 3 · 5 · · · · · (2l + 1)

= 4πA2 (2 · 4 · 6 · · · · · 2l)2
1 · 2 · 3 · 4 · 5 · · · · · (2l + 1)

= 4πA2 (2ll!)2

(2l + 1)!
, so A =

1
2l+1l!

√
(2l + 1)!

π
,

the same as Problem 4.5, except for an overall factor of (−1)l, which is arbitrary anyway.

Problem 4.23

L+Y 1
2 = �eiφ

(
∂

∂θ
+ i cot θ

∂

∂θ

) [
−

√
15
8π

sin θ cos θeiφ

]

= −
√

15
8π

�eiφ

[
eiφ(cos2 θ − sin2 θ) + i

cos θ
sin θ

sin θ cos θ ieiφ

]
= −

√
15
8π

�e2iφ
(
cos2 θ − sin2 θ − cos2 θ

)
=

√
15
8π

�
(
eiφ sin θ

)2

= �
√

2 · 3− 1 · 2Y 2
2 = 2�Y 2

2 . ∴ Y 2
2 =

1
4

√
15
2π

(
eiφ sin θ

)2
.
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Problem 4.24

(a)

H = 2
(

1
2
mv2

)
= mv2; |L| = 2

a

2
mv = amv, so L2 = a2m2v2, and hence H =

L2

ma2
.

But we know the eigenvalues of L2 : �
2l(l + 1); or, since we usually label energies with n:

En =
�

2n(n + 1)
ma2

(n = 0, 1, 2, . . . ).

(b) ψnm(θ, φ) = Y m
n (θ, φ), the ordinary spherical harmonics. The degeneracy of the nth energy level is the

number of m-values for given n: 2n + 1.

Problem 4.25

rc =
(1.6× 10−19)2

4π(8.85× 10−12)(9.11× 10−31)(3.0× 108)2
= 2.81× 10−15 m.

L =
1
2

� = Iω =
(

2
5
mr2

) (v

r

)
=

2
5
mrv so

v =
5�

4mr
=

(5)(1.055× 10−34)
(4)(9.11× 10−31)(2.81× 10−15)

= 5.15× 1010 m/s.

Since the speed of light is 3× 108 m/s, a point on the equator would be going more than 100 times the speed
of light. Nope : This doesn’t look like a very realistic model for spin.

Problem 4.26

(a)

[Sx,Sy] = SxSy − SySx =
�

2

4

[(
0 1
1 0

) (
0 −i
i 0

)
−

(
0 −i
i 0

) (
0 1
1 0

)]
=

�
2

4

[(
i 0
0 −i

)
−

(
−i 0
0 i

)]
=

�
2

4

(
2i 0
0 −2i

)
= i�

�

2

(
1 0
0 −1

)
= i�Sz. �

(b)

σxσx =
(

1 0
0 1

)
= 1 = σyσy = σzσz, so σjσj = 1 for j = x, y, or z.

σxσy =
(
i 0
0 −i

)
= iσz; σyσz =

(
0 i
i 0

)
= iσx; σzσx =

(
0 1
−1 0

)
= iσy;

σyσx =
(
−i 0
0 i

)
= −iσz; σzσy =

(
0 −i
−i 0

)
= −iσx; σxσz =

(
0 −1
1 0

)
= −iσy.

Equation 4.153 packages all this in a single formula. �
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Problem 4.27

(a)

χ†χ = |A|2(9 + 16) = 25|A|2 = 1⇒ A = 1/5.

(b)

〈Sx〉 = χ†Sxχ =
1
25

�

2
(
−3i 4

) (
0 1
1 0

) (
3i
4

)
=

�

50
(
−3i 4

) (
4
3i

)
=

�

50
(12i + 12i) = 0.

〈Sy〉 = χ†Syχ =
1
25

�

2
(
−3i 4

) (
0 −i
i 0

) (
3i
4

)
=

�

50
(
−3i 4

) (
−4i
−3

)
=

�

50
(−12− 12) = −12

25
�.

〈Sz〉 = χ†Szχ =
1
25

�

2
(
−3i 4

) (
1 0
0 −1

) (
3i
4

)
=

�

50
(
−3i 4

) (
3i
−4

)
=

�

50
(9− 16) = − 7

50
�.

(c)

〈S2
x〉 = 〈S2

y〉 = 〈S2
z 〉 =

�
2

4
(always, for spin 1/2), so σ2

Sx = 〈S2
x〉 − 〈Sx〉2 =

�
2

4
− 0, σSx =

�

2
.

σ2
Sy = 〈S2

y〉 − 〈Sy〉2 =
�

4
−

(
12
25

)2

�
2 =

�
2

2500
(625− 576) =

49
2500

�
2, σSy =

7
50

�.

σ2
Sz = 〈S2

z 〉 − 〈Sz〉2 =
�

2

4
−

(
7
50

)2

�
2 =

�
2

2500
(625− 49) =

576
2500

�
2, σSz =

12
25

�.

(d)

σSxσSy =
�

2
· 7
50

�
?
≥ �

2
|〈Sz〉| =

�

2
· 7
50

� (right at the uncertainty limit). �

σSyσSz =
7
50

� · 12
25

�
?
≥ �

2
|〈Sx〉| = 0 (trivial). �

σSzσSx =
12
25

� · �

2
?
≥ �

2
|〈Sy〉| =

�

2
· 12
25

� (right at the uncertainty limit). �
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Problem 4.28

〈Sx〉 =
�

2
(
a∗ b∗

) (
0 1
1 0

) (
a
b

)
=

�

2
(
a∗ b∗

) (
b
a

)
=

�

2
(a∗b + b∗a) = � Re(ab∗).

〈Sy〉 =
�

2
(
a∗ b∗

) (
0 −i
i 0

) (
a
b

)
=

�

2
(
a∗ b∗

) (
−ib
ia

)
=

�

2
(−ia∗b + iab∗) =

�

2
i(ab∗ − a∗b) = −� Im(ab∗).

〈Sz〉 =
�

2
(
a∗ b∗

) (
1 0
0 −1

) (
a
b

)
=

�

2
(
a∗ b∗

) (
a
−b

)
=

�

2
(a∗a− b∗b) =

�

2
(|a|2 − |b|2).

S2
x =

�
2

4

(
0 1
1 0

) (
0 1
1 0

)
=

�
2

4

(
1 0
0 1

)
=

�
2

4
; S2

y =
�

2

4

(
0 −i
i 0

) (
0 −i
i 0

)
=

�
2

4
;

S2
z =

�
2

4

(
1 0
0 −1

) (
1 0
0 −1

)
=

�
2

4
; so 〈S2

x〉 = 〈S2
y〉 = 〈S2

z 〉 =
�

2

4
.

〈S2
x〉+ 〈S2

y〉+ 〈S2
z 〉 =

3
4

�
2 ?= s(s + 1)�2 =

1
2
(
1
2

+ 1)�2 =
3
4

�
2 = 〈S2〉. �

Problem 4.29

(a)

Sy =
�

2

(
0 −i
i 0

)
;

∣∣∣∣ −λ −i�/2
i�/2 −λ

∣∣∣∣ = λ2 − �
2

4
⇒ λ = ±�

2
(of course).

�

2

(
0 −i
i 0

) (
α
β

)
= ±�

2

(
α
β

)
⇒ −iβ = ±α; |α|2 + |β|2 = 1⇒ |α|2 + |α|2 = 1⇒ α =

1√
2
.

χ
(y)
+ =

1√
2

(
1
i

)
; χ

(y)
− =

1√
2

(
1
−i

)
.

(b)

c+ =
(
χ

(y)
+

)†
χ =

1√
2

(
1 −i

) (
a
b

)
=

1√
2
(a− ib); +

�

2
, with probability

1
2
|a− ib|2.

c− =
(
χ

(y)
−

)†
χ =

1√
2

(
1 i

) (
a
b

)
=

1√
2
(a + ib); −�

2
, with probability

1
2
|a + ib|2.

P+ + P− =
1
2

[(a∗ + ib∗)(a− ib) + (a∗ − ib∗)(a + ib)]

=
1
2

[
|a|2 − ia∗b + iab∗ + |b|2 + |a|2 + ia∗b− iab∗ + |b|2

]
= |a|2 + |b|2 = 1. �
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(c)
�

2

4
, with probability 1.

Problem 4.30

Sr = S · r̂ = Sx sin θ cosφ + Sy sin θ sinφ + Sz cos θ

=
�

2

[(
0 sin θ cosφ

sin θ cosφ 0

)
+

(
0 −i sin θ sinφ

i sin θ sinφ 0

)
+

(
cos θ 0

0 − cos θ

)]
=

�

2

(
cos θ sin θ(cosφ− i sinφ)

sin θ(cosφ + i sinφ) − cos θ

)
=

�

2

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
.

∣∣∣∣(�

2 cos θ − λ) �

2 e
−iφ sin θ

�

2 e
iφ sin θ (−�

2 cos θ − λ)

∣∣∣∣ = −�
2

4
cos2 θ + λ2 − �

2

4
sin2 θ = 0 ⇒

λ2 =
�

2

4
(sin2 θ + cos2 θ) =

�
2

4
⇒ λ = ±�

2
(of course).

�

2

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

) (
α
β

)
= ±�

2

(
α
β

)
⇒ α cos θ + βe−iφ sin θ = ±α; β = eiφ (±1− cos θ)

sin θ
α.

Upper sign: Use 1− cos θ = 2 sin2 θ
2 , sin θ = 2 sin θ

2 cos θ
2 . Then β = eiφ sin(θ/2)

cos(θ/2)
α. Normalizing:

1 = |α|2+|β|2 = |α2|+ sin2(θ/2)
cos2(θ/2)

|α|2 = |α|2 1
cos2(θ/2)

⇒ α = cos
θ

2
, β = eiφ sin

θ

2
, χ

(r)
+ =

(
cos(θ/2)

eiφ sin(θ/2)

)
.

Lower sign: Use 1 + cos θ = 2 cos2
θ

2
, β = −eiφ cos(θ/2)

sin(θ/2)
α; 1 = |α|2 +

cos2(θ/2)
sin2(θ/2)

|α|2 = |α|2 1
sin2(θ/2)

.

Pick α = e−iφ sin(θ/2); then β = − cos(θ/2), and χ
(r)
− =

(
e−iφ sin(θ/2)
− cos(θ/2)

)
.

Problem 4.31

There are three states: χ+ =

1
0
0

 , χ0 =

0
1
0

 , χ− =

0
0
1

 .

Szχ+ = �χ+, Szχ0 = 0, Szχ− = −�χ−, ⇒ Sz = �

1 0 0
0 0 0
0 0 −1

 . From Eq. 4.136:
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 107

S+χ+ = 0, S+χ0 = �
√

2χ+, S+χ− = �
√

2χ0

S−χ+ = �
√

2χ0, S−χ0 = �
√

2χ−, S−χ− = 0

}
⇒ S+ =

√
2�

0 1 0
0 0 1
0 0 0

 , S− =
√

2�

0 0 0
1 0 0
0 1 0

 .

Sx =
1
2
(S+ + S−) =

�√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1
2i

(S+ − S−) =
i�√
2

0 −1 0
1 0 −1
0 1 0

 .

Problem 4.32

(a) Using Eqs. 4.151 and 4.163:

c
(x)
+ = χ

(x)†
+ χ =

1√
2

(
1 1

) (
cos α

2 e
iγB0t/2

sin α
2 e
−iγB0t/2

)
=

1√
2

[
cos

α

2
eiγB0t/2 + sin

α

2
e−iγB0t/2

]
.

P
(x)
+ (t) = |c(x)

+ |2 =
1
2

[
cos

α

2
e−iγB0t/2 + sin

α

2
eiγB0t/2

] [
cos

α

2
eiγB0t/2 + sin

α

2
e−iγB0t/2

]
=

1
2

[
cos2

α

2
+ sin2 α

2
+ sin

α

2
cos

α

2
(
eiγB0t + e−iγB0t

)]
=

1
2

[
1 + 2 sin

α

2
cos

α

2
cos(γB0t)

]
=

1
2

[1 + sinα cos(γB0t)] .

(b) From Problem 4.29(a): χ
(y)
+ =

1√
2

(
1
i

)
.

c
(y)
+ = χ

(y)†
+ χ =

1√
2

(
1 −i

) (
cos α

2 e
iγB0t/2

sin α
2 e

iγB0t/2

)
=

1√
2

[
cos

α

2
eiγB0t/2 − i sin

α

2
e−iγB0t/2

]
;

P
(y)
+ (t) = |c(y)

+ |2 =
1
2

[
cos

α

2
e−iγB0t/2 + i sin

α

2
eiγB0t/2

] [
cos

α

2
eiγB0t/2 − i sin

α

2
e−iγB0t/2

]
=

1
2

[
cos2

α

2
+ sin2 α

2
+ i sin

α

2
cos

α

2
(
eiγB0t − e−iγB0t

)]
=

1
2

[
1− 2 sin

α

2
cos

α

2
sin(γB0t)

]
=

1
2

[1− sinα sin(γB0t)] .

(c)

χ
(z)
+ =

(
1
0

)
; c

(z)
+ =

(
1 0

) (
cos α

2 e
iγB0t/2

sin α
2 e
−iγB0t/2

)
= cos

α

2
eiγB0t/2; P

(z)
+ (t) = |c(z)

+ |2 = cos2
α

2
.

Problem 4.33

(a)

H = −γB · S = −γB0 cosωt Sz = −γB0�

2
cosωt

(
1 0
0 −1

)
.
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108 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

(b)

χ(t) =
(
α(t)
β(t)

)
, with α(0) = β(0) =

1√
2
.

i�
∂χ

∂t
= i�

(
α̇

β̇

)
= Hχ = −γB0�

2
cosωt

(
1 0
0 −1

) (
α
β

)
= −γB0�

2
cosωt

(
α
−β

)
.

α̇ = i

(
γB0

2

)
cosωtα⇒ dα

α
= i

(
γB0

2

)
cosωt dt⇒ lnα =

iγB0

2
sinωt

ω
+ constant.

α(t) = Aei(γB0/2ω) sin ωt; α(0) = A =
1√
2
, so α(t) =

1√
2
ei(γB0/2ω) sin ωt.

β̇ = −i

(
γB0

2

)
cosωt β ⇒ β(t) =

1√
2
e−i(γB0/2ω) sin ωt. χ(t) =

1√
2

(
ei(γB0/2ω) sin ωt

e−i(γB0/2ω) sin ωt

)
.

(c)

c
(x)
− = χ

(x)†
− χ =

1
2
(1− 1)

(
ei(γB0/2ω) sin ωt

e−i(γB0/2ω) sin ωt

)
=

1
2

[
ei(γB0/2ω) sin ωt − e−i(γB0/2ω) sin ωt

]
= i sin

[
γB0

2ω
sinωt

]
. P

(x)
− (t) = |c(x)

− |2 = sin2

[
γB0

2ω
sinωt

]
.

(d) The argument of sin2 must reach π/2 (so P = 1) ⇒ γB0

2ω
=

π

2
, or B0 =

πω

γ
.

Problem 4.34

(a)

S−|1 0〉 = (S(1)
− + S

(2)
− )

1√
2
(↑↓ + ↓↑) =

1√
2

[(S− ↑) ↓ +(S− ↓) ↑ + ↑ (S− ↓)+ ↓ (S− ↑)] .

But S− ↑= � ↓, S− ↓= 0 (Eq. 4.143), so S−|10〉 =
1√
2

[� ↓↓ +0 + 0 + � ↓↓] =
√

2� ↓↓=
√

2�|1− 1〉.�

(b)

S±|0 0〉 = (S(1)
± + S

(2)
± )

1√
2
(↑↓ − ↓↑) =

1√
2

[(S± ↑) ↓ −(S± ↓) ↑ + ↑ (S± ↓)− ↓ (S± ↑)] .

S+|0 0〉 =
1√
2
(0− � ↑↑ +� ↑↑ −0) = 0; S−|0 0〉 =

1√
2
(� ↓↓ −0 + 0− � ↓↓) = 0. �
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(c)

S2|1 1〉 =
[
(S(1))2 + (S(2))2 + 2S(1) · S(2)

]
↑↑

= (S2 ↑) ↑ + ↑ (S2 ↑) + 2 [(Sx ↑)(Sx ↑) + (Sy ↑)(Sy ↑) + (Sz ↑)(Sz ↑)]

=
3
4

�
2 ↑↑ +

3
4

�
2 ↑↑ +2

[
�

2
↓ �

2
↓ +

i�

2
↓ i�

2
↓ +

�

2
↑ �

2
↑
]

=
3
2

�
2 ↑↑ +2

(
�

2

4
↑↑

)
= 2�

2 ↑↑= 2�
2|1 1〉 = (1)(1 + 1)�2|1 1〉, as it should be.

S2|1 − 1〉 =
[
(S(1))2 + (S(2))2 + 2S(1) · S(2)

]
↓↓

=
3�

2

4
↓↓ +

3�
2

4
↓↓ +2 [(Sx ↓)(Sx ↓) + (Sy ↓)(Sy ↓) + (Sz ↓)(Sz ↓)]

=
3
2

�
2 ↓↓ +2

[(
�

2
↑
) (

�

2
↑
)

+
(
− i�

2
↑
) (

− i�

2
↑
)

+
(
−�

2
↓
) (

−�

2
↓
)]

=
3
2

�
2 ↓↓ +2

�
2

4
↓↓= 2�

2 ↓↓= 2�
2|1 − 1〉. �

Problem 4.35

(a) 1/2 and 1/2 gives 1 or zero; 1/2 and 1 gives 3/2 or 1/2; 1/2 and 0 gives 1/2 only. So baryons can have
spin 3/2 or spin 1/2 (and the latter can be acheived in two distinct ways). [Incidentally, the lightest

baryons do carry spin 1/2 (proton, neutron, etc.) or 3/2 (∆,Ω−, etc.); heavier baryons can have higher
total spin, but this is because the quarks have orbital angular momentum as well.]

(b) 1/2 and 1/2 gives spin 1 or spin 0. [Again, these are the observed spins for the lightest mesons: π’s and
K’s have spin 0, ρ’s and ω’s have spin 1.]

Problem 4.36

(a) From the 2× 1 Clebsch-Gordan table we get

|3 1〉 =

√
1
15
|2 2〉|1 − 1〉+

√
8
15
|2 1〉|1 0〉+

√
6
15
|2 0〉|1 1〉,

so you might get 2� (probability 1/15), � (probability 8/15), or (probability 6/15).

(b) From the 1× 1
2 table: |1 0〉| 12 − 1

2 〉 =
√

2
3 | 32 − 1

2 〉+
√

1
3 | 12 − 1

2 〉. So the total is 3/2 or 1/2, with l(l+1)�2 =

15/4�
2 and 3/4�

2, respectively. Thus you get
15
4

�
2 (probability 2/3), or

3
4

�
2 (probability 1/3).
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Problem 4.37

Using Eq. 4.179: [S2, S
(1)
z ] = [S(1)2 , S

(1)
z ] + [S(2)2 , S

(1)
z ] + 2[S(1) · S(2), S

(1)
z ]. But [S2, Sz] = 0 (Eq. 4.102), and

anything with superscript (2) commutes with anything with superscript (1). So

[S2, S(1)
z ] = 2

{
S(2)

x [S(1)
x , S(1)

z ] + S(2)
y [S(1)

y , S(1)
z ] + S(2)

z [S(1)
z , S(1)

z ]
}

= 2
{
−i�S(1)

y S(2)
x + i�S(1)

x S(2)
y

}
= 2i�(S(1) × S(2))z.

[S2, S(1)
z ] = 2i�(S(1)

x S(2)
y − S(1)

y S(2)
x ), and [S2,S(1)] = 2i�(S(1)×S(2)). Note that [S2,S(2)] = 2i�(S(2)×S(1)) =

−2i�(S(1) × S(2)), so [S2, (S(1) + S(2))] = 0.]

Problem 4.38

(a)

− �
2

2m

(
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2

)
+

1
2
mω2

(
x2 + y2 + z2

)
ψ = Eψ.

Let ψ(x, y, z) = X(x)Y (y)Z(z); plug it in, divide by XY Z, and collect terms:(
− �

2

2m
1
X

d2X

dx2
+

1
2
mω2x2

)
+

(
− �

2

2m
1
Y

d2Y

dy2
+

1
2
mω2y2

)
+

(
− �

2

2m
1
Z

d2Z

dz2
+

1
2
mω2z2

)
= E.

The first term is a function only of x, the second only of y, and the third only of z. So each is a constant
(call the constants Ex, Ey, Ez, with Ex + Ey + Ez = E). Thus:

− �
2

2m
d2X

dx2
+

1
2
mω2x2X = ExX; − �

2

2m
d2Y

dy2
+

1
2
mω2y2Y = EyY ; − �

2

2m
d2Z

dz2
+

1
2
mω2z2Z = EzZ.

Each of these is simply the one-dimensional harmonic oscillator (Eq. 2.44). We know the allowed energies
(Eq. 2.61):

Ex = (nx + 1
2 )�ω; Ey = (ny + 1

2 )�ω; Ez = (nz + 1
2 )�ω; where nx, ny, nz = 0, 1, 2, 3, . . . .

So E = (nx + ny + ny + 3
2 )�ω = (n + 3

2 )�ω, with n ≡ nx + ny + nz.

(b) The question is: “How many ways can we add three non-negative integers to get sum n?”

If nx = n, then ny = nz = 0; one way.
If nx = n− 1, then ny = 0, nz = 1, or else ny = 1, nz = 0; two ways.
If nx = n− 2, then ny = 0, nz = 2, or ny = 1, nz = 1, or ny = 2, nz = 0; three ways.

And so on. Evidently d(n) = 1 + 2 + 3 + · · ·+ (n + 1) =
(n + 1)(n + 2)

2
.
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Problem 4.39

Eq. 4.37: − �
2

2m
d2u

dr2
+

[
1
2
mω2r2 +

�
2

2m
l(l + 1)

r2

]
u = Eu.

Following Eq. 2.71, let ξ ≡
√

mω

�
r. Then − �

2

2m
mω

�

d2u

dξ2
+

[
1
2
mω2 �

mω
ξ2 +

�
2

2m
mω

�

l(l + 1)
ξ2

]
u = Eu,

or
d2u

dξ2
=

[
ξ2 +

l(l + 1)
ξ2

−K

]
u, where K ≡ 2E

�ω
(as in Eq. 2.73).

At large ξ,
d2u

dξ2
≈ ξ2u, and u ∼ ( )e−ξ2/2 (see Eq. 2.77).

At small ξ,
d2u

dξ2
≈ l(l + 1)

ξ2
u, and u ∼ ( )ξl+1 (see Eq. 4.59).

So let u(ξ) ≡ ξl+1e−ξ2/2v(ξ). [This defines the new function v(ξ).]

du

dξ
= (l + 1)ξle−ξ2/2v − ξl+2e−ξ2/2v + ξl+1e−ξ2/2v′.

d2u

dξ2
= l(l + 1)ξl−1e−ξ2/2v − (l + 1)ξl+1e−ξ2/2v + (l + 1)ξle−ξ2/2v′ − (l + 2)ξl+1e−ξ2/2v

+ ξl+3e−ξ2/2v − ξl+2e−ξ2/2v′ + (l + 1)ξle−ξ2/2v′ − ξl+2e−ξ2/2v′ + ξl+1e−ξ2/2v′′

=✭✭✭✭
✭✭✭✭l(l + 1)ξl−1e−ξ2/2v − (2l + 3)ξl+1e−ξ2/2v +✘✘✘

✘✘
ξl+3e−ξ2/2v + 2(l + 1)ξle−ξ2/2v′

− 2ξl+2e−ξ2/2v′ + ξl+1e−ξ2/2v′′ =✘✘✘
✘✘

ξl+3e−ξ2/2v +✭✭✭✭
✭✭✭✭l(l + 1)ξl−1e−ξ2/2v −Kξl+1e−ξ2/2v.

Cancelling the indicated terms, and dividing off ξl+1e−ξ2/2, we have:

v′′ + 2v′
(
l + 1
ξ

− ξ

)
+ (K − 2l − 3) v = 0.

Let v(ξ) ≡
∞∑

j=0

ajξ
j , so v′ =

∞∑
j=0

jajξ
j−1; v′′ =

∞∑
j=2

j(j − 1)ajξ
j−2. Then

∞∑
j=2

j(j − 1)ajξ
j−2 + 2(l + 2)

∞∑
j=1

jajξ
j−2 − 2

∞∑
j=1

jajξ
j + (K − 2l − 3)

∞∑
j=0

ajξ
j = 0.

In the first two sums, let j → j + 2 (rename the dummy index):

∞∑
j=0

(j + 2)(j + 1)aj+2ξ
j + 2(l + 1)

∞∑
j=0

(j + 2)aj+2ξ
j − 2

∞∑
j=0

jajξ
j + (K − 2l − 3)

∞∑
j=0

ajξ
j = 0.
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Note: the second sum should start at j = −1; to eliminate this term (there is no compensating one in ξ−1) we
must take a1 = 0. Combining the terms:

∞∑
j=0

[(j + 2)(j + 2l + 3)aj+2 + (K − 2j − 2l − 3)aj ] = 0, so aj+2 =
(2j + 2l + 3−K)
(j + 2)(j + 2l + 3)

aj .

Since a1 = 0, this gives us a single sequence: a0, a2, a4, . . . . But the series must terminate (else we get the
wrong behavior as ξ →∞), so there occurs some maximal (even) number jmax such that ajmax+2 = 0. Thus

K = 2jmax + 2l + 3. But E =
1
2

�ωK, so E =
(
jmax + l +

3
2

)
�ω. Or, letting jmax + l ≡ n,

En = (n + 3
2 )�ω, and n can be any nonnegative integer.

[Incidentally, we can also determine the degeneracy of En. Suppose n is even; then (since jmax is even)
l = 0, 2, 4, . . . , n. For each l there are (2l + 1) values for m. So

d(n) =
n∑

l=0,2,4,...

(2l + 1). Let j = l/2; then d(n) =
n/2∑
j=0

(4j + 1) = 4
n/2∑
j=0

j +
n/2∑
j=0

1

= 4
(n

2 )(n
2 + 1)
2

+ (n
2 + 1) = (n

2 + 1)(n + 1) =
(n + 1)(n + 2)

2
, as before (Problem 4.38(b)).]

Problem 4.40

(a)

d

dt
〈r · p〉 =

i

�
〈[H, r · p]〉.

[H, r · p] =
3∑

i=1

[H, ripi] =
3∑

i=1

([H, ri]pi + ri[H, pi]) =
3∑

i=1

(
1

2m
[p2, ri]pi + ri[V, pi]

)
.

[p2, ri] =
3∑

j=1

[pjpj , ri] =
3∑

j=1

(pj [pj , ri] + [pj , ri]pj) =
3∑

j=1

[pj(−iδij) + (−i�δij)pj ] = −2i�pi.

[V, pi] = i�
∂V

∂ri
(Problem 3.13(c)). [H, r · p] =

3∑
i=1

[
1

2m
(−2i�)pipi + ri

(
i�

∂V

∂ri

)]

= i�

(
−p2

m
+ r · ∇V

)
.

d

dt
〈r · p〉 = 〈p

2

m
− r · ∇V 〉 = 2〈T 〉 − 〈r · ∇V 〉.

For stationary states
d

dt
〈r · p〉 = 0, so 2〈T 〉 = 〈r · ∇V 〉. QED

(b)

V (r) = − e2

4πε0
1
r
⇒ ∇V =

e2

4πε0
1
r2

r̂ ⇒ r · ∇V =
e2

4πε0
1
r

= −V. So 2〈T 〉 = −〈V 〉.

But 〈T 〉 = 〈V 〉 = En, so 〈T 〉 − 2〈T 〉 = En, or 〈T 〉 = −En; 〈V 〉 = 2En. QED
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(c)

V =
1
2
mω2r2 ⇒ ∇V = mω2r r̂ ⇒ r · ∇V = mω2r2 = 2V. So 2〈T 〉 = 2〈V 〉, or 〈T 〉 = 〈V 〉.

But 〈T 〉+ 〈V 〉 = En, so 〈T 〉 = 〈V 〉 =
1
2
En. QED

Problem 4.41

(a) ∇ · J =
i�

2m
[
∇Ψ · ∇Ψ∗ + Ψ(∇2Ψ∗)−∇Ψ∗ · ∇Ψ−Ψ∗(∇2Ψ)

]
=

i�

2m
[
Ψ(∇2Ψ∗)−Ψ∗(∇2Ψ)

]
.

But the Schrödinger equation says i�
∂Ψ
∂t

= − �
2

2m
∇2Ψ + V Ψ, so

∇2Ψ =
2m
�2

(
V Ψ− i�

∂Ψ
∂t

)
, ∇2Ψ∗ =

2m
�2

(
V Ψ∗ + i�

∂Ψ∗

∂t

)
. Therefore

∇ · J =
i�

2m
2m
�2

[
Ψ

(
V Ψ∗ + i�

∂Ψ∗

∂t

)
−Ψ∗

(
V Ψ− i�

∂Ψ
∂t

)]
=

i

�
i�

(
Ψ

∂Ψ∗

∂t
+ Ψ∗

∂Ψ
∂t

)
= − ∂

∂t
(Ψ∗Ψ) = − ∂

∂t
|Ψ|2. �

(b) From Problem 4.11(b), Ψ2 1 1 = − 1√
πa

1
8a2

re−r/2a sin θeiφe−iE2t/�. In spherical coordinates,

∇Ψ =
∂Ψ
∂r

r̂ +
1
r

∂Ψ
∂θ

θ̂ +
1

r sin θ

∂Ψ
∂φ

φ̂, so

∇Ψ2 1 1 = − 1√
πa

1
8a2

[(
1− r

2a

)
e−r/2a sin θeiφe−iE2t/� r̂ +

1
r
re−r/2a cos θeiφe−iE2t/� θ̂

+
1

r sin θ
re−r/2a sin θ ieiφe−iE2t/� φ̂

]
=

[(
1− r

2a

)
r̂ + cot θ θ̂ +

i

sin θ
φ̂

]
1
r
Ψ2 1 1.

Therefore

J =
i�

2m

[(
1− r

2a

)
r̂ + cot θ θ̂ − i

sin θ
φ̂−

(
1− r

2a

)
r̂ − cot θ θ̂ − i

sin θ
φ̂

]
1
r
|Ψ2 1 1|2

=
i�

2m
(−2i)
r sin θ

|Ψ2 1 1|2 φ̂ =
�

m

1
πa

1
64a4

r2e−r/a sin2 θ

r sin θ
φ̂ =

�

64πma5
re−r/a sin θ φ̂.

(c) Now r× J =
�

64πma5
r2e−r/a sin θ

(
r̂ × φ̂

)
, while

(
r̂ × φ̂

)
= −θ̂ and ẑ · θ̂ = − sin θ, so

r× Jz =
�

64πma5
r2e−r/a sin2 θ, and hence

Lz = m
�

64πma5

∫ (
r2e−r/a sin2 θ

)
r2 sin θ dr dθ dφ

=
�

64πa5

∫ ∞
0

r4e−r/a dr

∫ π

0

sin3 θ dθ

∫ 2π

0

dφ =
�

64πa5

(
4!a5

) (
4
3

)
(2π) = �,
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as it should be, since (Eq. 4.133) Lz = �m, and m = 1 for this state.

Problem 4.42

(a)

ψ =
1√
πa3

e−r/a ⇒ φ(p) =
1

(2π�)3/2

1√
πa3

∫
e−ip·r/�e−r/ar2 sin θ dr dθ dφ.

With axes as suggested, p · r = pr cos θ. Doing the (trivial) φ integral:

φ(p) =
2π

(2πa�)3/2

1√
π

∫ ∞
0

r2e−r/a

[∫ π

0

e−ipr cos θ/� sin θ dθ

]
dr.

∫ π

0

e−ipr cos θ/� sin θ dθ =
�

ipr
e−ipr cos θ/�

∣∣∣π
0

=
�

ipr

(
eipr/� − e−ipr/�

)
=

2�

pr
sin

(pr

�

)
.

φ(p) =
1

π
√

2
1

(a�)3/2

2�

p

∫ ∞
0

re−r/a sin
(pr

�

)
dr.

∫ ∞
0

re−r/a sin
(pr

�

)
dr =

1
2i

[∫ ∞
0

re−r/aeipr/�dr −
∫ ∞

0

re−r/ae−ipr/�dr

]
=

1
2i

[
1

(1/a− ip/�)2
− 1

(1/a + ip/�)2

]
=

1
2i

(2ip/a�)2[
(1/a)2 + (p/�)2

]2

=
(2p/�)a3

[1 + (ap/�)2]2
.

φ(p) =

√
2
�

1
a3/2

1
πp

2pa3

�

1
[1 + (ap/�)2]2

=
1
π

(
2a
�

)3/2 1
[1 + (ap/�)2]2

.

(b) ∫
|φ|2 d3p = 4π

∫ ∞
0

p2|φ|2dp = 4π
1
π2

(
2a
�

)3 ∫ ∞
0

p2

[1 + (ap/�)2]4
dp.

From math tables:
∫ ∞

0

x2

(m + x2)4
dx =

π

32
m−5/2, so

∫ ∞
0

p2

[1 + (ap/�)2]4
dp =

(
�

a

)8
π

32

(
�

a

)−5

=
π

32

(
�

a

)3

;
∫
|φ|2d3p =

32
π

(a

�

)3 π

32

(
�

a

)3

= 1. �
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(c)

〈p2〉 =
∫

p2|φ|2 d3p =
1
π2

(
2a
�

)3

4π
∫ ∞

0

p4

[1 + (ap/�)2]4
dp. From math tables:

∫ ∞
0

x4

[m + x2]4
dx =

( π

32

)
m−3/2. So 〈p2〉 =

4
π

(
2a
�

)3 (
�

a

)8
π

32

(
�

a

)−3

=
�

2

a2
.

(d)

〈T 〉 =
1

2m
〈p2〉 =

1
2m

�
2

a2
=

�
2

2m
m2

�4

(
e2

4πε0

)2

=
m

2�2

(
e2

4πε0

)2

= −E1,

which is consistent with Eq. 4.191.

Problem 4.43

(a) From Tables 4.3 and 4.7,

ψ321 = R32Y
1
2 =

4
81
√

30
1

a3/2

( r

a

)2

e−r/3a

[
−

√
15
8π

sin θ cos θeiφ

]
= − 1√

π

1
81a7/2

r2e−r/3a sin θ cos θeiφ.

(b) ∫
|ψ|2d3r =

1
π

1
(81)2a7

∫ (
r4e−2r/3a sin2 θ cos2 θ

)
r2 sin θ dr dθ dφ

=
1

π(81)2a7
2π

∫ ∞
0

r6e−2r/3a dr

∫ π

0

(1− cos2 θ) cos2 θ sin θ dθ

=
2

(81)2a7

[
6!

(
3a
2

)7
] [
−cos3 θ

3
+

cos5 θ

5

]∣∣∣∣π
0

=
2

38a7
6 · 5 · 4 · 3 · 237a7

27

[
2
3
− 2

5

]
=

3 · 5
4
· 4
15

= 1. �

(c)

〈rs〉 =
∫ ∞

0

rs|R32|2r2dr =
(

4
81

)2 1
30

1
a7

∫ ∞
0

rs+6e−2r/3adr

=
8

15(81)2a7
(s + 6)!

(
3a
2

)s+7

= (s + 6)!
(

3a
2

)5 1
720

=
(s + 6)!

6!

(
3a
2

)3

.

Finite for s > −7 .
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Problem 4.44

(a) From Tables 4.3 and 4.7,

ψ433 = R43Y
3
3 =

1
768
√

35
1

a3/2

( r

a

)3

e−r/4a

(
−

√
35
64π

sin3 θ cos θe3iφ

)
= − 1

6144
√
πa9/2

r3e−r/4a sin3 θe3iφ.

(b)

〈r〉 =
∫

r|ψ|2d3r =
1

(6144)2πa9

∫
r
(
r6e−r/2a sin6 θ

)
r2 sin θ dr dθ dφ

=
1

(6144)2πa9

∫ ∞
0

r9e−r/2a dr

∫ π

0

sin7 θ dθ

∫ 2π

0

dφ

=
1

(6144)2πa9

[
9!(2a)10

](
2
2 · 4 · 6
3 · 5 · 7

)
(2π) = 18a.

(c) Using Eq. 4.133: L2
x + L2

y = L2 − L2
z = 4(5)�2 − (3�)2 = 11�

2, with probability 1.

Problem 4.45

(a)

P =
∫
|ψ|2 d3r =

4π
πa3

∫ b

0

e−2r/ar2dr =
4
a3

[
−a

2
r2e−2r/a +

a3

4
e−2r/a

(
−2r

a
− 1

)]∣∣∣∣b
0

= −
(

1 +
2r
a

+
2r2

a2

)
e−2r/a

∣∣∣∣b
0

= 1−
(

1 +
2b
a

+ 2
b2

a2

)
e−2b/a.

(b)

P = 1−
(

1 + ε +
1
2
ε2

)
e−ε ≈ 1−

(
1 + ε +

1
2
ε2

) (
1− ε +

ε2

2
− ε3

3!

)
≈ 1− 1 + ε− ε2

2
+

ε3

6
− ε + ε2 − ε3

2
− ε2

2
+

ε3

2
= ε3

(
1
6
− 1

2
+

1
2

)

=
1
6

(
2b
a

)3

=
4
3

(
b

a

)3

.

(c)

|ψ(0)|2 =
1

πa3
⇒ P ≈ 4

3
πb3

1
πa3

=
4
3

(
b

a

)3

. �

(d)

P =
4
3

(
10−15

0.5× 10−10

)3

=
4
3

(
2× 10−5

)3
=

4
3
· 8× 10−15 =

32
3
× 10−15 = 1.07× 10−14.
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Problem 4.46

(a) Equation 4.75 ⇒ Rn(n−1) =
1
r
ρne−ρv(ρ), where ρ ≡ r

na
; Eq. 4.76 ⇒ c1 =

2(n− n)
(1)(2n)

c0 = 0.

So v(ρ) = c0, and hence Rn(n−1) = Nnr
n−1e−r/na, where Nn ≡

c0
(na)n

.

1 =
∫ ∞

0

|R|2r2dr = (Nn)2
∫ ∞

0

r2ne−2r/nadr = (Nn)2(2n)!
(
na

2

)2n+1

; Nn =
(

2
na

)n
√

2
na(2n)!

.

(b)

〈rl〉 =
∫ ∞

0

|R|2rl+2dr = N2
n

∫ ∞
0

r2n+le−2r/nadr.

〈r〉 =
(

2
na

)2n+1 1
(2n)!

(2n + 1)!
(
na

2

)2n+2

=
(
n +

1
2

)
na.

〈r2〉 =
(

2
na

)2n+1 1
(2n)!

(2n + 2)!
(
na

2

)2n+3

= (2n + 2)(2n + 1)
(
na

2

)2

=
(
n +

1
2

)
(n + 1)(na)2.

(c)

σ2
r = 〈r2〉 − 〈r〉2 =

[(
n +

1
2

)
(n + 1)(na)2 −

(
n +

1
2

)2

(na)2
]

=
1
2

(
n +

1
2

)
(na)2 =

1
2(n + 1/2)

〈r〉2; σr =
〈r〉√

2n + 1
.

r r r6aa 650a

R10 32 26 25R R

Maxima occur at:
dRn,n−1

dr
= 0⇒ (n− 1)rn−2e−r/na − 1

na
rn−1e−r/na = 0⇒ r = na(n− 1).

Problem 4.47

Here are a couple of examples: {32, 28} and {224,56}; {221, 119} and {119, 91}. For further discussion see
D. Wyss and W. Wyss, Foundations of Physics 23, 465 (1993).
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Problem 4.48

(a) Using Eqs. 3.64 and 4.122: [A,B] = [x2, Lz] = x[x, Lz] + [x, Lz]x = x(−i�y) + (−i�y)x = −2i�xy.

Equation 3.62 ⇒ σ2
Aσ2

B ≥
[

1
2i

(−2i�)〈xy〉
]2

= �
2〈xy〉2 ⇒ σAσB ≥ �|〈xy〉|.

(b) Equation 4.113 ⇒ 〈B〉 = 〈Lz〉 = m�; 〈B2〉 = 〈L2
z〉 = m2

�
2; so σB = m2

�
2 −m2

�
2 = 0.

(c) Since the left side of the uncertainty principle is zero, the right side must also be: 〈xy〉 = 0, for eigenstates
of Lz.

Problem 4.49

(a) 1 = |A|2(1 + 4 + 4) = 9|A|2; A = 1/3.

(b)
�

2
, with probability

5
9
; −�

2
, with probability

4
9
. 〈Sz〉 =

5
9

�

2
+

4
9

(
−�

2

)
=

�

18
.

(c) From Eq. 4.151,

c
(x)
+ =

(
χ

(x)
+

)†
χ =

1
3

1√
2

(
1 1

) (
1− 2i

2

)
=

1
3
√

2
(1− 2i + 2) =

3− 2i
3
√

2
; |c(x)

+ |2 =
9 + 4
9 · 2 =

13
18

.

c
(x)
− =

(
χ

(x)
−

)†
χ =

1
3

1√
2

(
1 −1

) (
1− 2i

2

)
=

1
3
√

2
(1− 2i− 2) = −1 + 2i

3
√

2
; |c(x)

− |2 =
1 + 4
9 · 2 =

5
18

.

�

2
, with probability

13
18

; −�

2
, with probability

5
18

. 〈Sx〉 =
13
18

�

2
+

5
18

(
−�

2

)
=

2�

9
.

(d) From Problem 4.29(a),

c
(y)
+ =

(
χ

(y)
+

)†
χ =

1
3

1√
2

(
1 −i

) (
1− 2i

2

)
=

1
3
√

2
(1− 2i− 2i) =

1− 4i
3
√

2
; |c(y)

+ |2 =
1 + 16
9 · 2 =

17
18

.

c
(y)
− =

(
χ

(y)
−

)†
χ =

1
3

1√
2

(
1 i

) (
1− 2i

2

)
=

1
3
√

2
(1− 2i + 2i) =

1
3
√

2
; |c(y)

− |2 =
1

9 · 2 =
1
18

.

�

2
, with probability

17
18

; −�

2
, with probability

1
18

. 〈Sy〉 =
17
18

�

2
+

1
18

(
−�

2

)
=

4�

9
.

Problem 4.50

We may as well choose axes so that â lies along the z axis and b̂ is in the xz plane. Then S
(1)
a = S

(1)
z , and S

(2)
b =

cos θ S
(2)
z + sin θ S

(2)
x . 〈0 0|S(1)

a S
(2)
b |0 0〉 is to be calculated.

S(1)
a S

(2)
b |0 0〉 =

1√
2

[
S(1)

z (cos θ S(2)
z + sin θ S(2)

x )
]
(↑↓ − ↓↑)
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=
1√
2

[(Sz ↑)(cos θ Sz ↓ + sin θ Sx ↓)− (Sz ↓)(cos θ Sz ↑ + sin θ Sx ↑)]

=
1√
2

{(
�

2
↑
) [

cos θ
(
−�

2
↓
)

+ sin θ

(
�

2
↑
)]
−

(
−�

2
↓
) [

cos θ
(

�

2
↑
)

+ sin θ

(
�

2
↓
)]}

(using Eq. 4.145)

=
�

2

4

[
cos θ

1√
2
(− ↑↓ + ↓↑) + sin θ

1√
2
(↑↑ + ↓↓)

]
=

�
2

4

[
− cos θ|0 0〉+ sin θ

1√
2

(|1 1〉+ |1 − 1〉)
]
.

so 〈S(1)
a S

(2)
b 〉 = 〈0 0|S(1)

a S
(2)
b |0 0〉 =

�
2

4
〈0 0|

[
− cos θ|0 0〉+ sin θ

1√
2
(|1 1〉+ |1 − 1〉)

]
= −�

2

4
cos θ〈0 0|0 0〉

(by orthogonality), and hence 〈S(1)
a S

(2)
b 〉 = −�

2

4
cos θ. QED

Problem 4.51

(a) First note from Eqs. 4.136 and 4.144 that

Sx|s m〉 =
1
2

[S+|s m〉+ S−|s m〉]

=
�

2

[√
s(s + 1)−m(m + 1)|s m + 1〉+

√
s(s + 1)−m(m− 1)|s m− 1〉

]

Sy|s m〉 =
1
2i

[S+|s m〉 − S−|s m〉]

=
�

2i

[√
s(s + 1)−m(m + 1)|s m + 1〉 −

√
s(s + 1)−m(m− 1)|s m− 1〉

]
Now, using Eqs. 4.179 and 4.147:

S2|s m〉 =
[
(S(1))2 +(S(2))2 +2(S(1)

x S
(2)
x +S

(1)
y S

(2)
y +S

(1)
z S

(2)
z )

][
A| 12 1

2 〉|S2 m− 1
2 〉+B| 12 − 1

2 〉|s2 m+ 1
2 〉

]
= A

{ (
S2| 12 1

2 〉
)
|s2 m− 1

2 〉+ | 12 1
2 〉

(
S2|s2 m− 1

2 〉
)

+2
[ (

Sx| 12 1
2 〉

) (
Sx|s2 m− 1

2 〉
)

+
(
Sy| 12 1

2 〉
) (

Sy|s2 m− 1
2 〉

)
+

(
Sz| 12 1

2 〉
) (

Sz|s2 m− 1
2 〉

) ]}
+B

{ (
S2| 12 − 1

2 〉
)
|s2 m + 1

2 〉+ | 12 − 1
2 〉

(
S2|s2 m + 1

2 〉
)

+2
[ (

Sx| 12 − 1
2 〉

) (
Sx|s2 m + 1

2 〉
)

+
(
Sy| 12 − 1

2 〉
) (

Sy|s2 m + 1
2 〉

)
+

(
Sz| 12 − 1

2 〉
) (

Sz|s2 m + 1
2 〉

) ]}
= A

{
3
4�

2| 12 1
2 〉|s2 m− 1

2 〉+ �
2s2(s2 + 1)| 12 1

2 〉|s2 m− 1
2 〉

+2
[

�

2 | 12 − 1
2 〉�

2

(√
s2(s2 + 1)− (m− 1

2 )(m + 1
2 )|s2 m + 1

2 〉
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+
√

s2(s2 + 1)− (m− 1
2 )(m− 3

2 )|s2 m− 3
2 〉

)
+

(
i�
2

)
| 12 − 1

2 〉 �

2i

(√
s2(s2 + 1)− (m− 1

2 )(m + 1
2 )|s2 m + 1

2 〉

−
√

s2(s2 + 1)− (m− 1
2 )(m− 3

2 )|s2 m− 3
2 〉

)
+ �

2 | 12 1
2 〉�(m− 1

2 )|s2 m− 1
2 〉

]}
+B

{
3
4�

2| 12 − 1
2 〉|s2 m + 1

2 〉+ �
2s2(s2 + 1)| 12 − 1

2 〉|s2 m + 1
2 〉

+2
[

�

2 | 12 1
2 〉�

2

(√
s2(s2 + 1)− (m + 1

2 )(m + 3
2 )|s2 m + 3

2 〉+
√

s2(s2 + 1)− (m + 1
2 )(m− 1

2 )|s2 m− 1
2 〉

)
+

(
−i�
2

)
| 12 1

2 〉 �

2i

(√
s2(s2 + 1)− (m + 1

2 )(m + 3
2 )|s2 m + 3

2 〉

−
√

s2(s2 + 1)− (m + 1
2 )(m− 1

2 )|s2 m− 1
2 〉

)
+

(−�

2

)
| 12 − 1

2 〉�(m + 1
2 )|s2 m + 1

2 〉
]}

= �
2

{
A

[
3
4 + s2(s2 + 1) + m− 1

2

]
+ B

√
s2(s2 + 1)−m2 + 1

4

}
| 12 1

2 〉|s2 m− 1
2 〉

+�
2

{
B

[
3
4 + s2(s2 + 1)−m− 1

2

]
+ A

√
s2(s2 + 1)−m2 + 1

4

}
| 12 − 1

2 〉|s2 m + 1
2 〉

= �
2s(s + 1)|s m〉 = �

2s(s + 1)
[
A| 12 1

2 〉|s2 m− 1
2 〉+ B| 12 − 1

2 〉|s2 m + 1
2 〉

]
.

 A
[
s2(s2 + 1) + 1

4 + m
]

+B
√

s2(s2 + 1)−m2 + 1
4 = s(s + 1)A,

B
[
s2(s2 + 1) + 1

4 −m
]

+A
√

s2(s2 + 1)−m2 + 1
4 = s(s + 1)B,

 or

 A
[
s2(s2 + 1)− s(s + 1) + 1

4 + m
]

+B
√

s2(s2 + 1)−m2 + 1
4 = 0,

B
[
s2(s2 + 1)− s(s + 1) + 1

4 −m
]

+A
√

s2(s2 + 1)−m2 + 1
4 = 0,

 or
{

A(a + m) +Bb = 0
B(a−m) +Ab = 0

}
,

where a ≡ s2(s2 + 1)− s(s+ 1) + 1
4 , b ≡

√
s2(s2 + 1)−m2 + 1

4 . Multiply by (a− b) and b, then subtract:

A(a2 −m2) + Bb(a−m) = 0; Bb(a−m) + Ab2 = 0⇒ A(a2 −m2 − b2) = 0⇒ a2 − b2 = m2, or:[
s2(s2 + 1)− s(s + 1) + 1

4

]2 − s2(s2 + 1) + m2 − 1
4 = m2,[

s2(s2 + 1)− s(s + 1) + 1
4

]2 = s2
2 + s2 + 1

4 =
(
s2 + 1

2

)2, so

s2(s2 + 1)− s(s + 1) + 1
4 = ±

(
s2 + 1

2

)
; s(s + 1) = s2(s2 + 1)∓

(
s2 + 1

2

)
+ 1

4 .

Add 1
4 to both sides:

s2 + s + 1
4 =

(
s + 1

2

)2 = s2(s2 + 1)∓
(
s2 + 1

2

)
+ 1

2 =


s2
2 + s2 − s2 − 1

2 + 1
2 = s2

2

s2
2 + s2 + s2 + 1

2 + 1
2 = (s2 + 1)2

 .

So


s + 1

2 = ±s2 ⇒ s = ±s2 − 1
2 =

{
s2 − 1

2
−s2 − 1

2

s + 1
2 = ±(s2 + 1) ⇒ s = ±(s2 + 1)− 1

2 =
{

s2 + 1
2

−s2 − 3
2

 .
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But s ≥ 0, so the possibilities are s = s2 ± 1/2. Then:

a = s2
2 + s2 −

(
s2 ±

1
2

) (
s2 ±

1
2

+ 1
)

+
1
4

= s2
2 + s2 − s2

2 ∓
1
2
s2 − s2 ∓

1
2
s2 −

1
4
∓ 1

2
+

1
4

= ∓s2 ∓
1
2

= ∓
(
s2 +

1
2

)
.

b =

√(
s2
2 + s2 +

1
4

)
−m2 =

√(
s2 +

1
2

)2

−m2 =

√(
s2 +

1
2

+ m

) (
s2 +

1
2
−m

)
.

∴ A
[
∓

(
s2 + 1

2

)
+ m

]
= ∓A

(
s2 + 1

2 ∓m
)

= −Bb = −B
√(

s2 + 1
2 + m

) (
s2 + 1

2 −m
)

⇒ A
√

s2 + 1
2 ∓m = ±B

√
s2 + 1

2 ±m. But |A|2 + |B|2 = 1, so

|A|2 + |A|2
(
s2 + 1

2 ∓m

s2 + 1
2 ±m

)
=

|A|2
(s2 + 1

2 ±m)

[
s2 +

1
2
±m + s2 +

1
2
∓m

]
=

(2s2 + 1)
(s2 + 1

2 ±m)
|A|2.

⇒ A =

√
s2 ±m + 1

2

2s2 + 1
. B = ±A

√
s2 + 1

2 ∓m√
s2 + 1

2 ±m
= ±

√
s2 ∓m + 1

2

2s2 + 1
.

(b) Here are four examples:

(i) From the 1/2× 1/2 table (s2 = 1/2), pick s = 1 (upper signs), m = 0. Then

A =
√

1
2+0+ 1

2
1+1 = 1√

2
; B =

√
1
2−0+ 1

2
1+1 = 1√

2
.

(ii) From the 1× 1/2 table (s2 = 1), pick s = 3/2 (upper signs), m = 1/2. Then

A =
√

1+ 1
2+ 1

2
2+1 =

√
2
3 ; B =

√
1− 1

2+ 1
2

2+1 = 1√
3
.

(iii) From the 3/2× 1/2 table (s2 = 3/2), pick s = 1 (lower signs), m = −1. Then

A =
√

3
2+1+ 1

2
3+1 =

√
3

2 ; B = −
√

3
2−1+ 1

2
3+1 = − 1

2 .

(iv) From the 2× 1/2 table (s2 = 2), pick s = 3/2 (lower signs), m = 1/2. Then

A =
√

2− 1
2+ 1

2
4+1 =

√
2
5 ; B = −

√
2+ 1

2+ 1
2

4+1 = −
√

3
5 .

These all check with the values on Table 4.8, except that the signs (which are conventional) are reversed
in (iii) and (iv). Normalization does not determine the sign of A (nor, therefore, of B).

Problem 4.52

| 32 3
2 〉 =


1
0
0
0

 ; | 32 1
2 〉 =


0
1
0
0

 ; | 32 −1
2 〉 =


0
0
1
0

 ; | 32 −3
2 〉 =


0
0
0
1

 . Equation 4.136 ⇒


S+| 32 3

2 〉 = 0, S+| 32 1
2 〉 =

√
3�| 32 3

2 〉, S+| 32 −1
2 〉 = 2�| 32 1

2 〉, S+| 32 −3
2 〉 =

√
3�| 32 −1

2 〉;

S−| 32 3
2 〉 =

√
3�| 32 1

2 〉, S−| 32 1
2 〉 = 2�| 32 −1

2 〉, S−| 32 −1
2 〉 =

√
3�| 32 −3

2 〉, S−| 32 −3
2 〉 = 0.
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So: S+ = �


0
√

3 0 0
0 0 2 0
0 0 0

√
3

0 0 0 0

 ; S− = �


0 0 0 0√
3 0 0 0

0 2 0 0
0 0

√
3 0

 ; Sx =
1
2
(S+ + S−) =

�

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

 .

∣∣∣∣∣∣∣∣
−λ

√
3 0 0√

3 −λ 2 0
0 2 −λ

√
3

0 0
√

3 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣
−λ 2 0
2 −λ

√
3

0
√

3 −λ

∣∣∣∣∣∣−√3

∣∣∣∣∣∣
√

3 2 0
0 −λ

√
3

0
√

3 −λ

∣∣∣∣∣∣
= −λ

[
−λ3 + 3λ + 4λ

]
−
√

3
[√

3λ2 − 3
√

3
]

= λ4 − 7λ2 − 3λ2 + 9 = 0,

or λ4 − 10λ2 + 9 = 0; (λ2 − 9)(λ2 − 1) = 0; λ = ±3,±1. So the eigenvalues of Sx are 3
2�, 1

2�, − 1
2�, − 3

2�.

Problem 4.53

From Eq. 4.135, Sz|sm〉 = �m|sm〉. Since s is fixed, here, let’s just identify the states by the value of m (which
runs from −s to +s). The matrix elements of Sz are

Snm = 〈n|Sz|m〉 = �m〈n|m〉 = �mδn m.

It’s a diagonal matrix, with elements m�, ranging from m = s in the upper left corner to m = −s in the lower
right corner:

Sz = �


s 0 0 · · · 0
0 s− 1 0 · · · 0
0 0 s− 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −s

 .

From Eq. 4.136,

S±|sm〉 = �

√
s(s + 1)−m(m± 1) |s (m± 1)〉 = �

√
(s∓m)(s±m + 1) |s (m± 1)〉.

(S+)nm = 〈n|S+|m〉 = �

√
(s−m)(s + m + 1) 〈n|m + 1〉 = �bm+1δn (m+1) = �bnδn (m+1).

All nonzero elements have row index (n) one greater than the column index (m), so they are on the diagonal
just above the main diagonal (note that the indices go down, here: s, s− 1, s− 2 . . . , −s):

S+ = �



0 bs 0 0 · · · 0
0 0 bs−1 0 · · · 0
0 0 0 bs−2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · b−s+1

0 0 0 0 · · · 0


.

Similarly
(S−)nm = 〈n|S−|m〉 = �

√
(s + m)(s−m + 1) 〈n|m− 1〉 = �bmδn (m−1).
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This time the nonzero elements are on the diagonal just below the main diagonal:

S− = �


0 0 0 · · · 0 0
bs 0 0 · · · 0 0
0 bs−1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · b−s+1 0

 .

To construct Sx = 1
2 (S+ + S−) and Sy = 1

2i (S+ − S−), simply add and subtract the matrices S+ and S−:

Sx =
�

2



0 bs 0 0 · · · 0 0
bs 0 bs−1 0 · · · 0 0
0 bs−1 0 bs−2 · · · 0 0
0 0 bs−2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 b−s+1

0 0 0 0 · · · b−s+1 0


; Sy =

�

2i



0 bs 0 0 · · · 0 0
−bs 0 bs−1 0 · · · 0 0
0 −bs−1 0 bs−2 · · · 0 0
0 0 −bs−2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 b−s+1

0 0 0 0 · · · −b−s+1 0


.

Problem 4.54

L+Y m
l = �

√
l(l + 1)−m(m + 1)Y m±1

l (Eqs. 4.120 and 121). Equation 4.130 ⇒

�eiφ

(
∂

∂θ
+ i cot θ

∂

∂φ

)
Bm

l eimφPm
l (cos θ) = �

√
l(l + 1)−m(m + 1)Bm+1

l ei(m+1)φPm+1
l (cos θ).

Bm
l

(
d

dθ
−m cot θ

)
Pm

l (cos θ) =
√

l(l + 1)−m(m + 1)Bm+1
l Pm+1

l (cos θ).

Let x ≡ cos θ; cot θ =
cos θ
sin θ

=
x√

1− x2
;

d

dθ
=

dx

dθ

d

dx
= − sin θ

d

dx
= −

√
1− x2

d

dx
.

Bm
l

[
−

√
1− x2

d

dx
−m

x√
1− x2

]
Pm

l (x) = −Bm
l

1√
1− x2

[
(1− x2)

dPm
l

dx
+ mxPm

l

]
= −Bm

l Pm+1
l

=
√

l(l + 1)−m(m + 1)Bm+1
l Pm+1

l (x). ⇒ Bm+1
l =

−1√
l(l + 1)−m(m + 1)

Bm
l .

Now l(l + 1)−m(m + 1) = (l −m)(l + m + 1), so

Bm+1
l =

−1√
l −m

√
l + 1 + m

Bm
l ⇒ B1

l =
−1√

l
√
l + 1

B0
l ; B2

l =
−1√

l − 1
√
l + 2

B1
l =

1√
l(l − 1)

√
(l + 1)(l + 2)

B0
l ;

B3
l =

−1√
l − 2

√
l + 3

B2
l =

−1√
(l + 3)(l + 2)(l + 1)l(l − 1)(l − 2)

B0
l , etc.

Evidently there is an overall sign factor (−1)m, and inside the square root the quantity is [(l + m)!/(l −m)!].

Thus: Bm
l = (−1)m

√
(l −m)!
(l + m)!

C(l) (where C(l) ≡ B0
l ), for m ≥ 0. For m < 0, we have

B−1
l =

−B0
l√

(l + 1)l
; B−2

l =
−1√

(l + 2)(l − 1)
B−1

l =
1√

(l + 2)(l + 1)l(l − 1)
B0

l , etc.
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Thus B−m
l = Bm

l , so in general: Bm
l = (−1)m

√
(l−|m|)!
(l+|m|! C(l). Now, Problem 4.22 says:

Y l
l =

1
2ll!

√
(2l + 1)!

π
(eiφ sin θ)l = Bl

le
ilφP l

l (cos θ). But

P l
l (x) = (1− x2)l/2

(
d

dx

)l 1
2ll!

(
d

dx

)l

(x2 − 1)l =
(1− x2)l/2

2ll!

(
d

dx

)2l

(x2l − . . . )︸ ︷︷ ︸
(2l)!

=
(2l)!
2ll!

(1− x2)l/2,

so P l
l (cos θ) =

(2l)!
2ll!

(sin θ)l. Therefore

1
2ll!

√
(2l + 1)!

π
(eiφ sin θ)l = Bl

le
ilφ (2l)!

2ll!
(sin θ)l ⇒ Bl

l =
1

(2l)!

√
(2l + 1)!

π
=

√
(2l + 1)
π(2l)!

.

But Bl
l = (−1)l

√
1

(2l)!
C(l), so C(l) = (−1)l

√
2l + 1

π
, and hence Bm

l = (−1)l+m

√
(2l + 1)

π

(l − |m|)!
(l + |m|)! .

This agrees with Eq. 4.32 except for the overall sign, which of course is purely conventional.

Problem 4.55

(a) For both terms, l = 1, so �
2(1)(2) = 2�

2, P = 1.

(b) 0, P =
1
3
, or �, P =

2
3
.

(c)
3
4

�
2, P = 1.

(d)
�

2
, P =

1
3

, or −�

2
, P =

2
3
.

(e) From the 1× 1
2 Clebsch-Gordan table (or Problem 4.51):

1√
3
| 12 1

2 〉|1 0〉+
√

2
3 | 12 −1

2 〉|1 1〉 = 1√
3

[√
2
3 | 32 1

2 〉 − 1√
3
| 12 1

2 〉
]

+
√

2
3

[
1√
3
| 32 1

2 〉+
√

2
3 | 12 1

2 〉
]

=
(
2
√

2
3

)
| 32 1

2 〉+
(

1
3

)
| 12 1

2 〉. So s = 3
2 or 1

2 .
15
4

�
2, P =

8
9
, or

3
4

�
2, P =

1
9
.

(f)
1
2

�, P = 1.

(g)

|ψ|2 = |R21|2
{

1
3
|Y 0

1 |2 (χ†+χ+)︸ ︷︷ ︸
1

+
√

2
3

[
Y 0∗

1 Y 1
1 (χ†+χ−)︸ ︷︷ ︸

0

+Y 1∗
1 Y 0

1 (χ†−χ+)︸ ︷︷ ︸
0

]
+

2
3
|Y 1

1 |2 (χ†−χ−)︸ ︷︷ ︸
1

}

=
1
3
|R21|2

(
|Y 0

1 |2 + 2|Y 1
1 |2

)
=

1
3
· 1
24
· 1
a3
· r

2

a2
e−r/a

[
3
4π

cos2 θ + 2
3
8π

sin2 θ

]
[Tables 4.3, 4.7]

=
1

3 · 24 · a5
r2e−r/a · 3

4π
(cos2 θ + sin2 θ) =

1
96πa5

r2e−r/a.
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(h)

1
3
|R21|2

∫
|Y 0

1 |2 sin2 θ dθ dφ =
1
3
|R21|2 =

1
3
· 1
24a3

r2e−r/a =
1

72a5
r2e−r/a.

Problem 4.56

(a) Equation 4.129 says Lz = �

i
∂

∂φ , so this problem is identical to Problem 3.39, with p̂→ Lz and x→ φ.

(b) First note that if M is a matrix such that M2 = 1, then

eiMφ = 1 + iMφ +
1
2
(iMφ)2 +

1
3!

(iMφ)3 + · · · = 1 + iMφ− 1
2
φ2 − iM

1
3!

φ3 + · · ·

= (1− 1
2
φ2 +

1
4!

φ4 − · · · ) + iM(φ− 1
3!

φ3 +
1
5!

φ5 − · · · ) = cosφ + iM sinφ.

So R = eiπσx/2 = cos π
2 + iσx sin π

2 (because σ2
x = 1 – see Problem 4.26) = iσx = i

(
0 1
1 0

)
.

Thus Rχ+ = i

(
0 1
1 0

) (
1
0

)
= i

(
0
1

)
= iχ−; it converts “spin up” into “spin down” (with a factor of i).

(c)

R = eiπσy/4 = cos
π

4
+ iσy sin

π

4
=

1√
2
(1 + iσy) =

1√
2

[(
1 0
0 1

)
+ i

(
0 −i
i 0

)]
=

1√
2

(
1 1
−1 1

)
.

Rχ+ =
1√
2

(
1 1
−1 1

) (
1
0

)
=

1√
2

(
1
−1

)
=

1√
2
(χ+ − χ−) = χ

(x)
− (Eq. 4.151).

What had been spin up along z is now spin down along x′ (see figure).

y

y'

z

x'

x

z'

(d) R = eiπσz = cosπ + iσz sinπ = −1; rotation by 360◦ changes the sign of the spinor. But since the sign
of χ is arbitrary, it doesn’t matter.

(e)

(σ · n̂)2 = (σxnx + σyny + σznz)(σxnx + σyny + σznz)

= σ2
xn

2
x + σ2

yn
2
y + σ2

zn
2
z + nxny(σxσy + σyσx) + nxnz(σxσz + σzσx) + nynz(σyσz − σzσy).
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But σ2
x = σ2

y = σ2
z = 1, and σxσy + σyσx = σxσz + σzσx = σyσz + σzσy = 0 (Problem 4.26), so

(σ · n̂)2 = n2
x + n2

y + n2
z = 1. So ei(σ·n̂)φ/2 = cos

φ

2
+ i(σ · n̂) sin

φ

2
. QED

Problem 4.57

(a)

[q1, q2] =
1
2

[
x +

(
a2/�

)
py, x−

(
a2/�

)
py

]
= 0, because [x, py] = [x, x] = [py, py] = 0.

[p1, p2] =
1
2

[
px −

(
�/a2

)
y, px +

(
�/a2

)
y
]

= 0, because [y, px] = [y, y] = [px, px] = 0.

[q1, p1] =
1
2

[
x +

(
a2/�

)
py, px −

(
�/a2

)
y
]

=
1
2

([x, px]− [py, y]) =
1
2

[i�− (−i�)] = i�.

[q2, p2] =
1
2

[
x−

(
a2/�

)
py, px +

(
�/a2

)
y
]

=
1
2

([x, px]− [py, y]) = i�.

[See Eq. 4.10 for the canonical commutators.]

(b)

q2
1 − q2

2 =
1
2

[
x2 +

a2

�
(xpy + pyx) +

(
a2

�

)2

p2
y − x2 +

a2

�
(xpy + pyx)−

(
a2

�

)2

p2
y

]
=

2a
�

xpy.

p2
1 − p2

2 =
1
2

[
p2

x −
�

a2
(pxy + ypx) +

(
�

a2

)2

y2 − p2
x −

�

a2
(pxy + ypx)−

(
�

a2

)2

y2

]
= −2�

a2
ypx.

So
�

2a2
(q2

1 − q2
2) +

a2

2�
(p2

1 − p2
2) = xpy − ypx = Lz.

(c)

H =
1

2m
p2 +

1
2
mω2x2 =

a2

2�
p2 +

�

2a2
x2 = H(x, p).

Then H(q1, p1) =
a2

2�
p2
1 +

�

2a2
q2
1 ≡ H1, H(q2, p2) =

a2

2�
p2
2 +

�

2a2
q2
2 ≡ H2; Lz = H1 −H2.

(d) The eigenvalues of H1 are (n1 + 1
2 )�, and those of H2 are (n2 + 1

2 )�, so the eigenvalues of Lz are

(n1 + 1
2 )�− (n2 + 1

2 )� = (n1 − n2)� = m�, and m is an integer, because n1 and n2 are.
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Problem 4.58

From Problem 4.28 we know that in the generic state χ =
(
a
b

)
(with |a|2 + |b|2 = 1),

〈Sz〉 =
�

2
(
|a|2 − |b|2

)
, 〈Sx〉 = �Re(ab∗), 〈Sy〉 = −�Im(ab∗); 〈S2

x〉 = 〈S2
y〉 =

�
2

4
.

Writing a = |a|eiφa , b = |b|eiφb , we have ab∗ = |a||b|ei(φa−φb) = |a||b|eiθ, where θ ≡ φa − φb is the phase
difference between a and b. Then

〈Sx〉 = �Re(|a||b|eiθ) = �|a||b| cos θ, 〈Sy〉 = −�Im(|a||b|eiθ) = −�|a||b| sin θ.

σ2
Sx = 〈S2

x〉 − 〈Sx〉2 =
�

2

4
− �

2|a|2|b|2 cos2 θ; σ2
Sy = 〈S2

y〉 − 〈Sy〉2 =
�

2

4
− �

2|a|2|b|2 sin2 θ.

We want σ2
Sxσ

2
Sy =

�
2

4
〈Sz〉2, or

�
2

4
(
1− 4|a|2|b|2 cos2 θ

) �
2

4
(
1− 4|a|2|b|2 sin2 θ

)
=

�
2

4
�

2

4
(
|a|2 − |b|2

)2
.

1− 4|a|2|b|2
(
cos2 θ + sin2 θ

)
+ 16|a|4|b|4 sin2 θ cos2 θ = |a|4 − 2|a|2|b|2 + |b|4.

1 + 16|a|4|b|4 sin2 θ cos2 θ = |a|4 + 2|a|2|b|2 + |b|4 =
(
|a|2 + |b|2

)2
= 1 ⇒ |a|2|b|2 sin θ cos θ = 0.

So either θ = 0 or π, in which case a and b are relatively real, or else θ = ±π/2, in which case a and b are
relatively imaginary (these two options subsume trivially the solutions a = 0 and b = 0).

Problem 4.59

(a)

Start with Eq. 3.71:
d〈r〉
dt

=
i

�
〈[H, r]〉.

H =
1

2m
(p− qA) · (p− qA) + qϕ =

1
2m

[
p2 − q(p ·A + A · p) + q2A2

]
+ qϕ.

[H,x] =
1

2m
[p2, x]− q

2m
[(p ·A + A · p), x].

[p2, x] = [(p2
x + p2

y + p2
z), x] = [p2

x, x] = px[px, x] + [px, x]px = px(−i�) + (−i�)px = −2i�px.

[p ·A, x] = [(pxAx + pyAy + pzAz), x] = [pxAx, x] = px[Ax, x] + [px, x]Ax = −i�Ax.

[A · p, x] = [(Axpx + Aypy + Azpz), x] = [Axpx, x] = Ax[px, x] + [Ax, x]px = −i�Ax.

[H,x] =
1

2m
(−2i�px)− q

2m
(−2i�Ax) = − i�

m
(px − qAx); [H, r] = − i�

m
(p− qA).

d〈r〉
dt

=
1
m
〈(p− qA)〉. QED

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


128 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

(b)

We define the operator v ≡ 1
m

(p− qA);
d〈v〉
dt

=
i

�
〈[H,v]〉+ 〈∂v

∂t
〉; ∂v

∂t
= − q

m

∂A
∂t

.

H =
1
2
mv2 + qϕ⇒ [H,v] =

m

2
[v2,v] + q[ϕ,v]; [ϕ,v] =

1
m

[ϕ,p].

[ϕ, px] = i�
∂ϕ

∂x
(Eq. 3.65), so [ϕ,p] = i�∇ϕ, and [ϕ,v] =

i�

m
∇ϕ.

[v2, vx] = [(v2
x + v2

y + v2
z), vx] = [v2

y, vx] + [v2
z , vx] = vy[vy, vx] + [vy, vx]vy + vz[vz, vx] + [vz, vx]vz.

[vy, vx] =
1
m2

[(py − qAy), (px − qAx)] = − q

m2
([Ay, px] + [py, Ax])

= − q

m2

(
i�

∂Ay

∂x
− i�

∂Ax

∂y

)
= − i�q

m2
(∇×A)z = − i�q

m2
Bz.

[vz, vx] =
1
m2

[(pz − qAz), (px − qAx)] = − q

m2
([Az, px] + [pz, Ax])

= − q

m2

(
i�

∂Az

∂x
− i�

∂Ax

∂y

)
=

i�q

m2
(∇×A)y =

i�q

m2
By.

∴ [v2, vx] =
i�q

m2
(−vyBz −Bzvy + vzBy + Byvz) =

i�q

m2
[−(v ×B)x + (B× v)x] .

[v2,v] =
i�q

m2
[(B× v)− (v ×B)] . Putting all this together:

d〈v〉
dt

=
i

�

〈[
m

2
i�q

m2
(B× v − v ×B) +

qi�

m
∇ϕ

]〉
− q

m
〈∂A
∂t
〉.

[�] m
d〈v〉
dt

=
q

2
〈(v ×B)− (B× v)〉+ q

〈
−∇ϕ− ∂A

dt

〉
=

q

2
〈(v ×B−B× v)〉+ q〈E〉. Or, since

v ×B−B× v =
1
m

[(p− qA)×B−B× (p− qA)] =
1
m

[p×B−B× p]− q

m
[A×B−B×A] .

[Note: p does not commute with B, so the order does matter in the first term. But A commutes with B,
so B×A = −A×B in the second.]

m
d〈v〉
dt

= q〈E〉+
q

2m
〈p×B−B× p〉 − q2

m
〈A×B〉. QED

(c) Go back to Eq. �, and use 〈E〉 = E, 〈v ×B〉 = 〈v〉 ×B; 〈B× v〉 = B× 〈v〉 = −〈v〉 ×B. Then

m
d〈v〉
dt

= q〈v〉 ×B + qE. QED
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Problem 4.60

(a)

E = −∇ϕ = −2Kzk̂. B = ∇×A =

∣∣∣∣∣∣
î ĵ k̂

∂/∂x ∂/∂y ∂/∂z
−B0y/2 B0x/2 0

∣∣∣∣∣∣ = B0k̂.

(b) For time-independent potentials Eq. 4.205 separates in the usual way:

1
2m

(
�

i
∇− qA

)
·
(

�

i
∇− qA

)
ψ + qϕψ = Eψ, or

− �
2

2m
∇2ψ+

iq�

2m
[∇ · (Aψ) + A · (∇ψ)]+

q2

2m
A2 +qϕψ = Eψ. But ∇· (Aψ) = (∇·A)ψ+A · (∇ψ), so

− �
2

2m
∇2ψ +

iq�

2m
[2A · (∇ψ) +∇ · (Aψ)] +

(
q2

2m
A2 + qϕ

)
ψ = Eψ.

This is the time-independent Schrödinger equation for electrodynamics. In the present case

∇ ·A = 0, A · (∇ψ) =
B0

2

(
x
∂ψ

∂y
− y

∂ψ

∂x

)
, A2 =

B2
0

4
(
x2 + y2

)
, ϕ = Kz2.

But Lz =
�

i

(
x

∂

∂y
− y

∂

∂x

)
, so − �

2

2m
∇2ψ − qB0

2m
Lzψ +

[
q2B2

0

8m
(
x2 + y2

)
+ qKz2

]
ψ = Eψ.

Since Lz commutes with H, we may as well pick simultaneous eigenfunctions of both: Lzψ = m̄�ψ,
where m̄ = 0,±1,±2, . . . (with the overbar to distinguish the magnetic quantum number from the mass).
Then [

− �
2

2m
∇2 +

(qB0)2

8m
(
x2 + y2

)
+ qKz2

]
ψ =

(
E +

qB0�

2m
m̄

)
ψ.

Now let ω1 ≡ qB0/m, ω2 ≡
√

2Kq/m, and use cylindrical coordinates (r, φ, z):

− �
2

2m

[
1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2

∂2ψ

∂φ2
+

∂2ψ

∂z2

]
+

[
1
8
mω2

1

(
x2 + y2

)
+

1
2
mω2

2z
2

]
ψ =

(
E +

1
2
m̄�ω1

)
ψ.

But Lz =
�

i

∂

∂φ
, so

∂2ψ

∂φ2
= − 1

�2
L2

zψ = − 1
�2

m̄2
�

2ψ = −m̄2ψ. Use separation of variables: ψ(r, φ, z) =

R(r)Φ(φ)Z(z) :

− �
2

2m

[
ΦZ

1
r

d

dr

(
r
dR

dr

)
− m̄2

r2
RΦZ + RΦ

d2Z

dz2

]
+

(
1
8
mω2

1r
2 +

1
2
mω2

2z
2

)
RΦZ =

(
E +

1
2
m̄�ω1

)
RΦZ.

Divide by RΦZ and collect terms:{
− �

2

2m

[
1
rR

d

dr

(
r
dR

dr

)
− m̄2

r2

]
+

1
8
mω2

1r
2

}
+

{
− �

2

2m
1
Z

d2Z

dz2
+

1
2
mω2

2z
2

}
=

(
E +

1
2
m̄�ω1

)
.

The first term depends only on r, the second only on z, so they’re both constants; call them Er and Ez:

− �
2

2m

[
1
r

d

dr

(
r
dR

dr

)
− m̄2

r2
R

]
+

1
8
mω2

1r
2R = ErR; − �

2

2m
d2Z

dz2
+

1
2
mω2

2z
2Z = EzZ; E = Er+Ez−

1
2
m̄�ω1.
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130 CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS

The z equation is a one-dimensional harmonic oscillator, and we can read off immediately that Ez =
(n2 + 1/2)�ω2, with n2 = 0, 1, 2, . . . . The r equation is actually a two-dimensional harmonic oscillator; to
get Er, let u(r) ≡ √r R, and follow the method of Sections 4.1.3 and 4.2.1:

R =
u√
r
,

dR

dr
=

u′√
r
− u

2r3/2
, r

dR

dr
=
√
r u′ − u

2
√
r
,

d

dr

(
r
dR

dr

)
=
√
r u′′ +

u

4r3/2
,

1
r

d

dr

(
r
dR

dr

)
=

u′′√
r

+
u

4r5/2
; − �

2

2m

(
u′′√
r

+
1
4

u

r2

1√
r
− m̄2

r2

u√
r

)
+

1
8
mω2

1r
2 u√

r
= Er

u√
r

− �
2

2m

[
d2u

dr2
+

(
1
4
− m̄2

)
u

r2

]
+

1
8
mω2

1r
2u = Eru.

This is identical to the equation we encountered in Problem 4.39 (the three-dimentional harmonic oscil-
lator), only with ω → ω1/2, E → Er, and l(l + 1) → m̄2 − 1/4, which is to say, l2 + l + 1/4 = m̄2, or
(l + 1/2)2 = m̄2, or l = |m̄| − 1/2. [Our present equation depends only on m̄2, and hence is the same for
either sign, but the solution to Problem 4.39 assumed l + 1/2 ≥ 0 (else u is not normalizable), so we need
|m| here.] Quoting 4.39:

E = (jmax + l + 3/2)�ω → Er = (jmax + |m̄|+ 1)�ω1/2, where jmax = 0, 2, 4, . . . .

E = jmax + |m̄|+ 1)�ω1/2 + (n2 + 1/2)�ω2 − m̄�ω1/2 = (n1 + 1
2 )�ω1 + (n2 + 1

2 )�ω2,

where n1 = 0, 1, 2, . . . (if m̄ ≥ 0, then n1 = jmax/2; if m̄ < 0, then n1 = jmax/2− m̄).

Problem 4.61

(a)

B′ = ∇×A′ = ∇×A +∇× (∇λ) = ∇×A = B.

[∇×∇λ = 0, by equality of cross-derivatives: (∇×∇λ)x =
∂

∂y

(
∂λ

∂z

)
− ∂

∂z

(
∂λ

∂y

)
= 0, etc.]

E′ = −∇ϕ′ − ∂A′

∂t
= −∇ϕ +∇

(
∂Λ
∂t

)
− ∂A

∂t
− ∂

∂t
(∇Λ) = −∇ϕ− ∂A

∂t
= E.

[Again: ∇
(
∂Λ
∂t

)
=

∂

∂t
(∇Λ) by the equality of cross-derivatives.]

(b) [
�

i
∇− qA− q(∇Λ)

]
eiqΛ/�Ψ = q(∇Λ)eiqΛ/�Ψ +

�

i
eiqΛ/�∇Ψ− qAeiqΛ/�Ψ− q(∇Λ)eiqΛ/�Ψ

=
�

i
eiqΛ/�∇Ψ− qAeiqΛ/�Ψ.

[
�

i
∇− qA− q(∇Λ)

]2

eiqΛ/�Ψ =
(

�

i
∇− qA− q(∇Λ)

) [
�

i
eiqΛ/�∇Ψ− qAeiqΛ/�Ψ

]
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CHAPTER 4. QUANTUM MECHANICS IN THREE DIMENSIONS 131

= −�
2

[
iq

�
(∇Λ · ∇Ψ)eiqΛ/� + eiqΛ/�∇2Ψ

]
− �q

i
(∇ ·A)eiqΛ/�Ψ− q2(A · ∇Λ)eiqΛ/�Ψ

− q�

i
eiqΛ/�A · (∇Ψ)− q�

i
eiqΛ/�(A · ∇Ψ) + q2A2eiqΛ/�Ψ

− q�

i
eiqΛ/�(∇Λ · ∇Ψ) + q2(A · ∇Λ)eiqΛ/�Ψ

= eiqΛ/�
{[
−�

2∇2Ψ + i�q(∇ ·A)Ψ + 2iq�(A · ∇Ψ) + q2A2Ψ
]

−iq�(∇Λ) · (∇Ψ)− q2(A · ∇Λ)Ψ + iq�(∇Λ) · (∇Ψ) + q2(A · ∇Λ)Ψ
}

= eiqΛ/�

[(
�

i
∇− qA

)2

Ψ

]
.

So:

[
1

2m

(
�

i
∇− qA′

)2

+ qϕ′
]

Ψ′ = eiqΛ/�

[
1

2m

(
�

i
∇− qA

)2

+ qϕ− q
∂Λ
∂t

]
Ψ

[using Eq. 4.205] = eiqΛ/�

(
i�

∂Ψ
∂t
− q

∂Λ
∂t

Ψ
)

= i�
∂

∂t

(
eiqΛ/�Ψ

)
= i�

∂Ψ′

∂t
. QED
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Chapter 5

Identical Particles

Problem 5.1

(a)

(m1 + m2)R = m1r1 + m2r2 = m1r1 + m2(r1 − r) = (m1 + m2)r1 −m2r ⇒

r1 = R +
m2

m1 + m2
r = R +

µ

m1
r. �

(m1 + m2)R = m1(r2 + r) + m2r2 = (m1 + m2)r2 + m1r⇒ r2 = R− m1

m1 + m2
r = R− µ

m2
r. �

Let R = (X,Y, Z), r = (x, y, z).

(∇1)x =
∂

∂x1
=

∂X

∂x1

∂

∂X
+

∂x

∂x1

∂

∂x

=
(

m1

m1 + m2

)
∂

∂X
+ (1)

∂

∂x
=

µ

m2
(∇R)x + (∇r)x, so ∇1 =

µ

m2
∇R +∇r. �

(∇2)x =
∂

∂x2
=

∂X

∂x2

∂

∂X
+

∂x

∂x2

∂

∂x

=
(

m2

m1 + m2

)
∂

∂X
− (1)

∂

∂x
=

µ

m1
(∇R)x − (∇r)x, so ∇2 =

µ

m1
∇R −∇r. �

(b)

∇2
1ψ = ∇1 · (∇1ψ) = ∇1 ·

[
µ

m2
∇Rψ +∇rψ

]
=

µ

m2
∇R ·

(
µ

m2
∇Rψ +∇rψ

)
+∇r ·

(
µ

m2
∇Rψ +∇rψ

)
=

(
µ

m2

)2

∇2
Rψ + 2

µ

m2
(∇r · ∇R)ψ +∇2

rψ.
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CHAPTER 5. IDENTICAL PARTICLES 133

Likewise, ∇2
2ψ =

(
µ

m1

)2

∇2
Rψ − 2

µ

m1
(∇r · ∇R) +∇2

rψ.

∴ Hψ = − �
2

2m1
∇2

1ψ −
�

2

2m2
∇2

2ψ + V (r1, r2)ψ

= −�
2

2

(
µ2

m1m2
2

∇2
R +

2µ
m1m2

∇r · ∇R +
1
m1
∇2

r +
µ2

m2m2
1

∇2
R −

2µ
m2m1

∇r · ∇R +
1
m2
∇2

r

)
ψ

+ V (r)ψ = −�
2

2

[
µ2

m1m2

(
1
m2

+
1
m1

)
∇2

R +
(

1
m1

+
1
m2

)
∇2

r

]
ψ + V (r)ψ = Eψ.

But
(

1
m1

+
1
m2

)
=

m1 + m2

m1m2
=

1
µ
, so

µ2

m1m2

(
1
m2

+
1
m1

)
=

µ

m1m2
=

m1m2

m1m2(m1 + m2)
+

1
m1 + m2

.

− �
2

2(m1 + m2)
∇2

Rψ − �
2

2µ
∇2

rψ + V (r)ψ = Eψ. �

(c) Put in ψ = ψr(r)ψR(R), and divide by ψrψR:[
− �

2

2(m1 + m2)
1
ψR
∇2

RψR

]
+

[
− �

2

2µ
1
ψr
∇2

rψr + V (r)
]

= E.

The first term depends only on R, the second only on r, so each must be a constant; call them ER and
Er, respectively. Then:

− �
2

2(m1 + m2)
∇2ψR = ERψR; − �

2

2µ
∇2ψr + V (r)ψr = Erψr, with ER + Er = E.

Problem 5.2

(a) From Eq. 4.77, E1 is proportional to mass, so
∆E1

E1
=

∆m

µ
=

m− µ

µ
=

m(m + M)
mM

− M

M
=

m

M
.

The fractional error is the ratio of the electron mass to the proton mass:
9.109× 10−31 kg
1.673× 10−27 kg

= 5.44× 10−4. The percent error is 0.054% (pretty small).

(b) From Eq. 4.94, R is proportional to m, so
∆(1/λ)
(1/λ)

=
∆R

R
=

∆µ

µ
= − (1/λ2)∆λ

(1/λ)
= −∆λ

λ
.

So (in magnitude) ∆λ/λ = ∆µ/µ. But µ = mM/(m + M), where m = electron mass, and M =
nuclear mass.

∆µ =
m(2mp)
m + 2mp

− mmp

m + mp
=

mmp

(m + mp)(m + 2mp)
(2m + 2mp −m− 2mp)

=
m2mp

(m + mp)(m + 2mp)
=

mµ

m + 2mp
.
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134 CHAPTER 5. IDENTICAL PARTICLES

∆λ

λ
=

∆µ

µ
=

m

m + 2mp
≈ m

2mp
, so ∆λ =

m

2mp
λh , where λh is the hydrogen wavelength.

1
λ

= R

(
1
4
− 1

9

)
5
36

R⇒ λ =
36
5R

=
36

5(1.097× 107)
m = 6.563× 10−7 m.

∴ ∆λ =
9.109× 10−31

2(1.673× 10−27)
(6.563× 10−7)m = 1.79× 10−10 m.

(c) µ =
mm

m + m
=

m

2
, so the energy is half what it would be for hydrogen: (13.6/2)eV = 6.8 eV.

(d) µ =
mpmµ

mp + mµ
; R ∝ µ, so R is changed by a factor

mpmµ

mp + mµ
· mp + me

mpme
=

mµ(mp + me)
me(mp + mµ)

, as compared

with hydrogen. For hydrogen, 1/λ = R(1−1/4) = 3
4R⇒ λ = 4/3R = 4/3(1.097×107) m = 1.215×10−7 m,

and λ ∝ 1/R, so for muonic hydrogen the Lyman-alpha line is at

λ =
me(mp + mµ)
mµ(mp + me)

(1.215× 10−7m) =
1

206.77
(1.673× 10−27 + 206.77× 9.109× 10−31)

(1.673× 10−27 + 9.109× 10−31)
(1.215× 10−7m)

= 6.54× 10−10 m.

Problem 5.3

The energy of the emitted photon, in a transition from vibrational state ni to state nf , is
Ep = (ni + 1

2 )�ω − (nf + 1
2 )�ω = n�ω, (where n ≡ ni − nf ). The frequency of the photon is

ν =
Ep

h
=

nω

2π
=

n

2π

√
k

µ
. The splitting of this line is given by

∆ν =
∣∣∣∣ n

2π

√
k

(
− 1

2µ3/2
∆µ

)∣∣∣∣ =
1
2

n

2π

√
k

µ

∆µ

µ
=

1
2
ν

∆µ

µ
.

Now

µ =
mhmc

mh + mc
=

1
1

mc
+ 1

mh

⇒ ∆µ =
−1(

1
mc

+ 1
mh

)2

(
− 1

m2
c

∆mc

)
=

µ2

m2
c

∆mc.

∆ν =
1
2
ν
µ∆mc

m2
c

=
1
2
ν

(∆mc/mc)(
1 + mc

mh

) .

Using the average value (36) for mc, we have ∆mc/mc = 2/36, and mc/mh = 36/1, so

∆ν =
1
2

(1/18)
(1 + 36)

ν =
1

(36)(37)
ν = 7.51× 10−4 ν.
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CHAPTER 5. IDENTICAL PARTICLES 135

Problem 5.4

(a)

1 =
∫
|ψ±|2d3r1d3r2

= |A|2
∫

[ψa(r1)ψb(r2)± ψb(r1)ψa(r2)]
∗ [ψa(r1)ψb(r2)± ψb(r1)ψa(r2)] d3r1d3r2

= |A|2
[∫

|ψa(r1)|2d3r1
∫
|ψb(r2)|2d3r2 ±

∫
ψa(r1)∗ψb(r1)d3r1

∫
ψb(r2)∗ψa(r2)d3r2

±
∫

ψb(r1)∗ψa(r1)d3r1
∫

ψa(r2)∗ψb(r2)d3r2 +
∫
|ψb(r1)|2d3r1

∫
|ψa(r2)|2d3r2

]

= |A|2(1 · 1± 0 · 0± 0 · 0 + 1 · 1) = 2|A|2 =⇒ A = 1/
√

2.

(b)

1 = |A|2
∫

[2ψa(r1)ψa(r2)]
∗ [2ψa(r1)ψa(r2)] d3r1d3r2

= 4|A|2
∫
|ψa(r1)|2d3r1

∫
|ψa(r2)|2d3r2 = 4|A|2. A = 1/2.

Problem 5.5

(a)

− �
2

2m
∂2ψ

∂x2
1

− �
2

2m
∂2ψ

∂x2
2

= Eψ (for 0 ≤ x1, x2 ≤ a, otherwise ψ = 0).

ψ =
√

2
a

[
sin

(πx1

a

)
sin

(
2πx2

a

)
− sin

(
2πx1

a

)
sin

(πx2

a

)]

d2ψ

dx2
1

=
√

2
a

[
−

(π

a

)2

sin
(πx1

a

)
sin

(
2πx2

a

)
+

(
2π
a

)2

sin
(

2πx1

a

)
sin

(πx2

a

)]

d2ψ

dx2
2

=
√

2
a

[
−

(
2π
a

)2

sin
(πx1

a

)
sin

(
2πx2

a

)
+

(π

a

)2

sin
(

2πx1

a

)
sin

(πx2

a

)]
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136 CHAPTER 5. IDENTICAL PARTICLES

(
d2ψ

dx2
1

+
d2ψ

dx2
2

)
= −

[(π

a

)2

+
(

2π
a

)2
]
ψ = −5

π2

a2
ψ,

− �
2

2m

(
d2ψ

dx2
1

+
d2ψ

dx2
2

)
=

5π2
�

2

2ma2
ψ = Eψ, with E =

5π2
�

2

2ma2
= 5K. �

(b) Distinguishable:

ψ22 = (2/a) sin (2πx1/a) sin (2πx2/a) , with E22 = 8K (nondegenerate).

ψ13 = (2/a) sin (πx1/a) sin (3πx2/a)
ψ31 = (2/a) sin (3πx1/a) sin (πx2/a)

}
, with E13 = E31 = 10K (doubly degenerate).

Identical Bosons:

ψ22 = (2/a) sin (2πx1/a) sin (2πx2/a), E22 = 8K (nondegenerate).

ψ13 = (
√

2/a) [sin (πx1/a) sin (3πx2/a) + sin (3πx1/a) sin (πx2/a)], E13 = 10K (nondegenerate).

Identical Fermions:

ψ13 = (
√

2/a)
[
sin

(
πx1
a

)
sin

(
3πx2

a

)
− sin

(
3πx1

a

)
sin

(
πx2
a

)]
, E13 = 10K (nondegenerate).

ψ23 = (
√

2/a)
[
sin

(
2πx1

a

)
sin

(
3πx2

a

)
− sin

(
3πx1

a

)
sin

(
2πx2

a

)]
, E23 = 13K (nondegenerate).

Problem 5.6

(a) Use Eq. 5.19 and Problem 2.4, with 〈x〉n = a/2 and 〈x2〉n = a2
(

1
3 − 1

2(nπ)2

)
.

〈(x1 − x2)2〉 = a2
(

1
3 − 1

2(nπ)2

)
+ a2

(
1
3 − 1

2(mπ)2

)
− 2 · a

2 · a
2 = a2

[
1
6
− 1

2π2

(
1
n2

+
1
m2

)]
.

(b) 〈x〉mn = 2
a

∫ a

0
x sin

(
mπ
a x

)
sin

(
nπ
a x

)
dx = 1

a

∫ a

0
x

[
cos

(
(m−n)π

a x
)
− cos

(
(m+n)π

a x
)]

dx

= 1
a

[(
a

(m−n)π

)2

cos
(

(m−n)π
a x

)
+

(
ax

(m−n)π

)
sin

(
(m−n)π

a x
)

−
(

a
(m+n)π

)2

cos
(

(m+n)π
a x

)
−

(
ax

(m+n)π

)
sin

(
(m+n)π

a x
)]∣∣∣∣a

0

= 1
a

[(
a

(m−n)π

)2

(cos[(m− n)π]− 1)−
(

a
(m+n)π

)2

(cos[(m + n)π]− 1)
]
.

But cos[(m± n)π] = (−1)m+n, so

〈x〉mn =
a

π2

[
(−1)m+n − 1

](
1

(m− n)2
− 1

(m + n)2

)
=

{
a(−8mn)

π2(m2−n2)2 , if m and n have opposite parity,
0, if m and n have same parity.

So Eq. 5.21 ⇒ 〈(x1 − x2)2〉 = a2

[
1
6
− 1

2π2

(
1
n2

+
1
m2

)]
− 128a2m2n2

π4(m2 − n2)4
.

(The last term is present only when m, n have opposite parity.)
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(c) Here Eq. 5.21 ⇒ 〈(x1 − x2)2〉 = a2

[
1
6
− 1

2π2

(
1
n2

+
1
m2

)]
+

128a2m2n2

π4(m2 − n2)4
.

(Again, the last term is present only when m, n have opposite parity.)

Problem 5.7

(a) ψ(x1, x2, x3) = ψa(x1)ψb(x2)ψc(x3).

(b) ψ(x1, x2, x3) =
1√
6
[ψa(x1)ψb(x2)ψc(x3) + ψa(x1)ψc(x2)ψb(x3) + ψb(x1)ψa(x2)ψc(x3)

+ψb(x1)ψc(x2)ψa(x3) + ψc(x1)ψb(x2)ψa(x3) + ψc(x1)ψa(x2)ψb(x3)]
.

(c) ψ(x1, x2, x3) =
1√
6
[ψa(x1)ψb(x2)ψc(x3)− ψa(x1)ψc(x2)ψb(x3)− ψb(x1)ψa(x2)ψc(x3)

+ψb(x1)ψc(x2)ψa(x3)− ψc(x1)ψb(x2)ψa(x3) + ψc(x1)ψa(x2)ψb(x3)]
.

Problem 5.8

ψ = A
[
ψ(r1, r2, r3, . . . , rZ)± ψ(r2, r1, r3, . . . , rZ) + ψ(r2, r3, r1, . . . , rZ) + etc.

]
,

where “etc.” runs over all permutations of the arguments r1, r2, . . . , rZ , with a + sign for all even permutations
(even number of transpositions ri ↔ rj , starting from r1, r2, . . . , rZ), and ± for all odd permutations (+ for
bosons, − for fermions). At the end of the process, normalize the result to determine A. (Typically A = 1/

√
Z!,

but this may not be right if the starting function is already symmetric under some interchanges.)

Problem 5.9

(a) The energy of each electron is E = Z2E1/n
2 = 4E1/4 = E1 = −13.6eV, so the total initial energy is

2 × (−13.6) eV= −27.2 eV. One electron drops to the ground state Z2E1/1 = 4E1, so the other is left
with 2E1 − 4E1 = −2E1 = 27.2 eV.

(b) He+ has one electron; it’s a hydrogenic ion (Problem 4.16) with Z = 2, so the spectrum is

1/λ = 4R
(
1/n2

f − 1/n2
i

)
, where R is the hydrogen Rydberg constant, and ni, nf are the initial and final

quantum numbers (1, 2, 3, . . . ).

Problem 5.10

(a) The ground state (Eq. 5.30) is spatially symmetric, so it goes with the symmetric (triplet) spin configura-
tion. Thus the ground state is orthohelium, and it is triply degerate. The excited states (Eq. 5.32) come
in ortho (triplet) and para (singlet) form; since the former go with the symmetric spatial wave function,
the orthohelium states are higher in energy than the corresponding (nondegenerate) para states.
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(b) The ground state (Eq. 5.30) and all excited states (Eq. 5.32) come in both ortho and para form. All are
quadruply degenerate (or at any rate we have no way a priori of knowing whether ortho or para are higher
in energy, since we don’t know which goes with the symmetric spatial configuration).

Problem 5.11

(a) 〈
1

|r1 − r2|

〉
=

(
8

πa3

)2 ∫ [∫
e−4(r1+r2)/a√

r2
1 + r2

2 − 2r1r2 cos θ2

d3r2

]
︸ ︷︷ ︸

�

d3r1

� = 2π
∫ ∞

0

e−4(r1+r2)/a

[∫ π

0

sin θ2√
r2
1 + r2

2 − 2r1r2 cos θ2

dθ2

]
︸ ︷︷ ︸

�

r2
2 dr2

� =
1

r1r2

√
r2
1 + r2

2 − 2r1r2 cos θ2

∣∣∣∣π
0

=
1

r1r2

[√
r2
1 + r2

2 + 2r1r2 −
√

r2
1 + r2

2 − 2r1r2

]

=
1

r1r2
[(r1 + r2)− |r1 − r2|] =

{
2/r1 (r2 < r1)
2/r2 (r2 > r1)

� = 4πe−4r1/a

[
1
r1

∫ r1

0

r2
2e
−4r2/adr2 +

∫ ∞
r1

r2e
−4r2/adr2

]
.

1
r1

∫ r1

0

r2
2e
−4r2/adr2 =

1
r1

[
−a

4
r2
2e
−4r2/a +

a

2

(a

4

)2

e−4r2/a

(
−4r2

a
− 1

)]∣∣∣∣r1

0

= − a

4r1

[
r2
1e
−4r1/a +

ar1

2
e−4r1/a +

a2

8
e−4r1/a − a2

8

]
.

∫ ∞
r1

r2e
−4r2/adr2 =

(a

4

)2

e−4r2/a

(
−4r2

a
− 1

)∣∣∣∣∞
r1

=
ar1

4
e−4r1/a +

a2

16
e−4r1/a.

� = 4π
{

a3

32r1
e−4r1/a +

[
−ar1

a
− a2

8
− a3

32r1
+

ar1

4
+

a2

16

]
e−8r1/a

}
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=
πa2

8

{
a

r1
e−4r1/a −

(
2 +

a

r1

)
e−8r1/a

}
.

〈
1

|r1 − r2|

〉
=

8
πa4

· 4π
∫ ∞

0

[
a

r1
e−4r1/a −

(
2 +

a

r1

)
e−8r1/a

]
r2
1 dr1

=
32
a4

{
a

∫ ∞
0

r1e
−4r1/adr1 − 2

∫ ∞
0

r2
1e
−8r1/adr1 − a

∫ ∞
0

r1e
−8r1/adr1

}

=
32
a4

{
a ·

(a

4

)2

− 2 · 2
(a

8

)3

− a ·
(a

8

)2
}

=
32
a

(
1
16
− 1

128
− 1

64

)
=

5
4a

.

(b)

Vee ≈
e2

4πε0

〈
1

|r1 − r2|

〉
=

5
4

e2

4πε0
1
a

=
5
4
m

�2

(
e2

4πε0

)2

=
5
2
(−E1) =

5
2
(13.6 eV) = 34 eV.

E0 + Vee = (−109 + 34)eV = −75 eV, which is pretty close to the experimental value (−79 eV).

Problem 5.12

(a) Hydrogen: (1s); helium: (1s)2; lithium: (1s)2(2s); beryllium: (1s)2(2s)2;
boron: (1s)2(2s)2(2p); carbon: (1s)2(2s)2(2p)2; nitrogen: (1s)2(2s)2(2p)3;
oxygen: (1s)2(2s)2(2p)4; fluorine: (1s)2(2s)2(2p)5; neon: (1s)2(2s)2(2p)6.
These values agree with those in Table 5.1—no surprises so far.

(b) Hydrogen: 2S1/2; helium: 1S0; lithium: 2S1/2; beryllium 1S0. (These four are unambiguous,
because the orbital angular momentum is zero in all cases.) For boron, the spin (1/2) and orbital (1)
angular momenta could add to give 3/2 or 1/2, so the possibilities are 2P3/2 or 2P1/2. For carbon, the
two p electrons could combine for orbital angular momentum 2, 1, or 0, and the spins could add to 1 or 0:
1S0,

3S1,
1P1,

3P2,
3P1,

3P0,
1D2,

3D3,
3D2,

3D1. For nitrogen, the 3 p electrons can add to orbital angular
momentum 3, 2, 1, or 0, and the spins to 3/2 or 1/2:

2S1/2,
4S3/2,

2P1/2,
2P3/2,

4P1/2,
4P3/2,

4P5/2,
2D3/2,

2D5/2,
4D1/2,

4D3/2,
4D5/2,

4D7/2,
2F5/2,

2F3/2,
4F3/2,

4F5/2,
4F7/2,

4F9/2.
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Problem 5.13

(a) Orthohelium should have lower energy than parahelium, for corresponding states (which is true).

(b) Hund’s first rule says S = 1 for the ground state of carbon. But this (the triplet) is symmetric, so the
orbital state will have to be antisymmetric. Hund’s second rule favors L = 2, but this is symmetric, as
you can see most easily by going to the “top of the ladder”: |2 2〉 = |1 1〉1||1 1〉2. So the ground state of
carbon will be S = 1, L = 1. This leaves three possibilities: 3P2,

3P1, and 3P0.

(c) For boron there is only one electron in the 2p subshell (which can accommodate a total of 6), so Hund’s
third rule says the ground state will have J = |L − S|. We found in Problem 5.12(b) that L = 1 and
S = 1/2, so J = 1/2, and the configuration is 2P1/2.

(d) For carbon we know that S = 1 and L = 1, and there are only two electrons in the outer subshell, so
Hund’s third rule says J = 0, and the ground state configuration must be 3P0.

For nitrogen Hund’s first rule says S = 3/2, which is symmetric (the top of the ladder is | 32 3
2 〉 =

| 12 1
2 〉1| 12 1

2 〉2| 12 1
2 〉3). Hund’s second rule favors L = 3, but this is also symmetric. In fact, the only

antisymmetric orbital configuration here is L = 0. [You can check this directly by working out the
Clebsch-Gordan coefficients, but it’s easier to reason as follows: Suppose the three outer electrons are in
the “top of the ladder” spin state, so each one has spin up (| 12 1

2 〉); then (since the spin states are all the
same) the orbital states have to be different: |1 1〉, |1 0〉, and |1−1〉. In particular, the total z-component of
orbital angular momentum has to be zero. But the only configuration that restricts Lz to zero is L = 0.]
The outer subshell is exactly half filled (three electrons with n = 2, l = 1), so Hund’s third rule says
J = |L − S| = |0 − 3

2 | = 3/2. Conclusion: The ground state of nitrogen is 4S3/2. (Table 5.1 confirms

this.)

Problem 5.14

S = 2; L = 6; J = 8. (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6︸ ︷︷ ︸
definite (36 electrons)

(4d)10(5s)2(5p)6(4f)10(6s)2︸ ︷︷ ︸
likely (30 electrons)

.

Problem 5.15

Divide Eq. 5.45 by Eq. 5.43, using Eq. 5.42:

Etot/Nq

EF
=

�
2(3π2Nq)5/3

10π2mV 2/3

1
Nq

2m
�2(3π2Nq/V )2/3

=
3
5
.

Problem 5.16

(a) EF =
�

2

2m
(3ρπ2)2/3. ρ =

Nq

V
=

N

V
=

atoms
mole

× moles
gm

× gm
volume

=
NA

M
· d, where NA is Avogadro’s

number (6.02× 1023), M = atomic mass = 63.5 gm/mol, d = density = 8.96 gm/cm3.

ρ =
(6.02× 1023)(8.96 gm/cm3)

(63.5 gm)
= 8.49× 1022/cm3 = 8.49× 1028/m3.

EF =
(1.055× 10−34J · s)(6.58× 10−16eV · s)

(2)(9.109× 10−31kg)
(3π2 8.49× 1028/m3)2/3 = 7.04 eV.
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(b)

7.04 eV =
1
2
(0.511× 106eV/c2)v2 ⇒ v2

c2
=

14.08
.511× 106

= 2.76× 10−5 ⇒ v

c
= 5.25× 10−3,

so it’s nonrelativistic. v = (5.25× 10−3)× (3× 108) = 1.57 ×106 m/s.

(c)

T =
7.04 eV

8.62× 10−5 eV/K
= 8.17× 104 K.

(d)

P =
(3π2)2/3

�
2

5m
ρ5/3 =

(3π2)2/3(1.055× 10−34)2

5(9.109× 10−31)
(8.49× 1028)5/3N/m2 = 3.84× 1010 N/m2.

Problem 5.17

P =
(3π2)2/3

�
2

5m

(
Nq

V

)5/3

= AV −5/3 ⇒ B = −V
dP

dV
= −V A

(−5
3

)
V −5/3−1 =

5
3
AV −5/3 =

5
3
P.

For copper, B = 5
3 (3.84× 1010 N/m2) = 6.4× 1010 N/m2.

Problem 5.18

(a) Equations 5.59 and 5.63 ⇒ ψ = A sin kx + B cos kx; A sin ka =
[
eiKa − cos ka

]
B. So

ψ = A sin kx +
A sin ka

(eiKa − cos ka)
cos kx =

A

(eiKa − cos ka)
[
eiKa sin kx− sin kx cos ka + cos kx sin ka

]
= C

{
sin kx + e−iKa sin[k(a− x)]

}
, where C ≡ AeiKa

eiKa − cos ka
.

(b) If z = ka = jπ, then sin ka = 0, Eq. 5.64 ⇒ cosKa = cos ka = (−1)j ⇒ sinKa = 0, so eiKa =
cosKa + i sinKa = (−1)j , and the constant C involves division by zero. In this case we must go back to
Eq. 5.63, which is a tautology (0=0) yielding no constraint on A or B, Eq. 5.61 holds automatically, and
Eq. 5.62 gives

kA− (−1)jk
[
A(−1)j − 0

]
=

2mα

�2
B ⇒ B = 0. So ψ = A sin kx.

Here ψ is zero at each delta spike, so the wave function never “feels” the potential at all.

Problem 5.19

We’re looking for a solution to Eq. 5.66 with β = 10 and z � π: f(z) = cos z + 10
sin z

z
= 1.

Mathematica gives z = 2.62768. So E =
�

2k2

2m
=

�
2z2

2ma2
=

z2

2β
α

a
=

(2.62768)2

20
eV = 0.345 eV.
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Problem 5.20

Positive-energy solutions. These are the same as before, except that α (and hence also β) is now a negative
number.

Negative-energy solutions. On 0 < x < a we have

d2ψ

dx2
= κ2ψ, where κ ≡

√
−2mE

�
⇒ ψ(x) = A sinh kx + B cosh kx.

According to Bloch’s theorem the solution on −a < x < 0 is

ψ(x) = e−iKa [A sinhκ(x + a) + B coshκ(x + a)] .

Continuity at x = 0⇒

B = e−iKa [A sinhκa + B coshκa] , or A sinhκa = B
[
eiKa − coshκa

]
. (1)

The discontinuity in ψ′ (Eq. 2.125) ⇒

κA−e−iKaκ [A coshκa + B sinhκa] =
2mα

�2
B, or A

[
1− e−iKa coshκa

]
= B

[
2mα

�2κ
+ e−iKa sinhκa

]
. (2)

Plugging (1) into (2) and cancelling B:(
eiKa − coshκa

) (
1− e−iKa coshκa

)
=

2mα

�2κ
sinhκa + e−iKa sinh2 κa.

eiKa − 2 coshκa + e−iKa cosh2 κa− e−iKa sinh2 κa =
2mα

�2κ
sinhκa.

eiKa + e−iKa = 2 coshκa +
2ma

�2κ
sinhκa, cosKa = coshκa +

mα

�2κ
sinhκa.

This is the analog to Eq. 5.64. As before, we let β ≡ mαa/�
2 (but remember it’s now a negative number), and

this time we define z ≡ −κa, extending Eq. 5.65 to negative z, where it represents negative-energy solutions.
In this region we define

f(z) = cosh z + β
sinh z

z
. (3)

In the Figure I have plotted f(z) for β = −1.5, using Eq. 5.66 for postive z and (3) for negative z. As
before, allowed energies are restricted to the range −1 ≤ f(z) ≤ 1, and occur at intersections of f(z) with the
N horizontal lines cosKa = cos(2πn/Na), with n = 0, 1, 2 . . . N − 1. Evidently the first band (partly negative,
and partly positive) contains N states, as do all the higher bands.

0

1

-1
0 π 2π 3π 4π
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Problem 5.21

Equation 5.56 says K =
2πn
Na

⇒ Ka = 2π
n

N
; at the bottom of page 227 we found that n = 0, 1, 2, . . . , N − 1.

Each value of n corresponds to a distinct state. To find the allowed energies we draw N horizontal lines on
Figure 5.6, at heights cosKa = cos(2πn/N), and look for intersections with f(z). The point is that almost all
of these lines come in pairs—two different n’s yielding the same value of cosKa:

N = 1 ⇒ n = 0⇒ cosKa = 1. Nondegenerate.

N = 2 ⇒ n = 0, 1 ⇒ cosKa = 1,−1. Nondegenerate.

N = 3 ⇒ n = 0, 1, 2 ⇒ cosKa = 1,− 1
2 ,− 1

2 . The first is nondegenerate, the other two are degenerate.

N = 4 ⇒ n = 0, 1, 2, 3 ⇒ cosKa = 1, 0,−1, 0. Two are nondegenerate, the others are degenerate.

Evidently they are doubly degenerate (two different n’s give same cosKa) except when cosKa = ±1, i.e., at
the top or bottom of a band. The Bloch factors eiKa lie at equal angles in the complex plane, starting with
1 (see Figure, drawn for the case N = 8); by symmetry, there is always one with negative imaginary part
symmetrically opposite each one with positive imaginary part; these two have the same real part (cosKa).
Only points which fall on the real axis have no twins.

n=0

n=1
n=2

n=3

n=4

n=5
n=6

n=7

cos(Ka)

sin(Ka)

Problem 5.22

(a)

ψ(xA, xB , xC) =
1√
6

(√
2
a

)3 [
sin

(
5πxA

a

)
sin

(
7πxB

a

)
sin

(
17πxC

a

)
− sin

(
5πxA

a

)
sin

(
17πxB

a

)
sin

(
7πxC

a

)
+ sin

(
7πxA

a

)
sin

(
17πxB

a

)
sin

(
5πxC

a

)
− sin

(
7πxA

a

)
sin

(
5πxB

a

)
sin

(
17πxC

a

)
+ sin

(
17πxA

a

)
sin

(
5πxB

a

)
sin

(
7πxC

a

)
− sin

(
17πxA

a

)
sin

(
7πxB

a

)
sin

(
5πxC

a

) ]
.

(b) (i)

ψ =

(√
2
a

)3 [
sin

(
11πxA

a

)
sin

(
11πxB

a

)
sin

(
11πxC

a

) ]
.
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(ii)

ψ =
1√
3

(√
2
a

)3 [
sin

(πxA

a

)
sin

(πxB

a

)
sin

(
19πxC

a

)
+ sin

(πxA

a

)
sin

(
19πxB

a

)
sin

(πxC

a

)
+ sin

(
19πxA

a

)
sin

(πxB

a

)
sin

(πxC

a

) ]
.

(iii)

ψ =
1√
6

(√
2
a

)3 [
sin

(
5πxA

a

)
sin

(
7πxB

a

)
sin

(
17πxC

a

)
+ sin

(
5πxA

a

)
sin

(
17πxB

a

)
sin

(
7πxC

a

)
+ sin

(
7πxA

a

)
sin

(
17πxB

a

)
sin

(
5πxC

a

)
+ sin

(
7πxA

a

)
sin

(
5πxB

a

)
sin

(
17πxC

a

)
+ sin

(
17πxA

a

)
sin

(
5πxB

a

)
sin

(
7πxC

a

)
+ sin

(
17πxA

a

)
sin

(
7πxB

a

)
sin

(
5πxC

a

) ]
.

Problem 5.23

(a) En1n2n3 = (n1 + n2 + n3 + 3
2 )�ω = 9

2�ω ⇒ n1 + n2 + n3 = 3. (n1, n2, n3 = 0, 1, 2, 3 . . . ).

State Configuration # of States
n1 n2 n3 (N0, N1, N2 . . . )
0 0 3
0 3 0 (2,0,0,1,0,0 . . . ) 3
3 0 0
0 1 2
0 2 1
1 0 2 (1,1,1,0,0,0 . . . ) 6
1 2 0
2 0 1
2 1 0
1 1 1 (0,3,0,0,0 . . . ) 1

Possible single-particle energies:

E0 = �ω/2 : P0 = 12/30 = 4/10.
E1 = 3�ω/2 : P1 = 9/30 = 3/10.
E2 = 5�ω/2 : P2 = 6/30 = 2/10.
E3 = 7�ω/2 : P3 = 3/30 = 1/10.

Most probable configuration: (1,1,1,0,0,0 . . . ).

Most probable single-particle energy: E0 = 1
2�ω.

(b) For identical fermions the only configuration is (1,1,1,0,0,0 . . . ) (one state), so this is also the most
probable configuration. The possible one-particle energies are

E0 (P0 = 1/3), E1 (P1 = 1/3), E2 (P2 = 1/3),

and they are all equally likely, so it’s a 3-way tie for the most probable energy.

(c) For identical bosons all three configurations are possible, and there is one state for each. Possible one-

particle energies: E0(P0 = 1/3), E1(P1 = 4/9), E2(P2 = 1/9), E3(P3 = 1/9). Most probable energy: E1.
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Problem 5.24

Here N = 3, and dn = 1 for all states, so:


Eq. 5.74 ⇒ Q = 6

∞∏
n=1

1
Nn!

(distinguishable),

Eq. 5.75 ⇒ Q =
∞∏

n=1

1
Nn!(1−Nn)!

(fermions),

Eq. 5.77 ⇒ Q = 1 (bosons).

(In the products, most factors are 1/0! or 1/1!, both of which are 1, so I won’t write them.)

Configuration 1 (N11 = 3, others 0):


Q = 6× 1

3!
= 1 (distinguishable),

Q =
1
3!
× 1

(−2)!
= 0 (fermions),

Q = 1 (bosons).

Configuration 2 (N5 = 1, N13 = 2):


Q = 6× 1

1!
× 1

2!
= 3 (distinguishable),

Q =
1

1!0!
× 1

2!(−1)!
= 0 (fermions),

Q = 1 (bosons).

Configuration 3 (N1 = 2, N19 = 1):


Q = 6× 1

2!
× 1

1!
= 3 (distinguishable),

Q =
1

2!(−1)!
× 1

1!0!
= 0 (fermions),

Q = 1 (bosons).

Configuration 4 (N5 = N7 = N17 = 1):


Q = 6× 1

1!
× 1

1!
× 1

1!
= 6 (distinguishable),

Q =
1

1!0!
× 1

1!0!
× 1

1!0!
= 1 (fermions),

Q = 1 (bosons).

All of these agree with what we got “by hand” at the top of page 231.

Problem 5.25

N = 1 : - can put the ball in any of d baskets, so d ways.

N = 2 :


- could put both balls in any of the d baskets : d ways, or
- could put one in one basket (d ways), the other in another(d− 1) ways—but it
doesn’t matter which is which, so divide by 2.

Total: d + 1
2d(d− 1) = 1

2d(2 + d− 1) = 1
2d(d + 1) ways.

N = 3 :


- could put all three in one basket : d ways, or
- 2 in one basket, one in another : d(d− 1) ways, or
- 1 each in 3 baskets : d(d− 1)(d− 2)/3! ways.

Total: d + d(d− 1) + d(d− 1)(d− 2)/6 = 1
6d(6 + 6d− 6 + d2 − 3d + 2) = 1

6d(d
2 + 3d + 2)
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=
d(d + 1)(d + 2)

6
ways.

N = 4 :


- all in one basket: d ways, or
- 3 in one basket, 1 in another: d(d− 1) ways, or
- 2 in one basket, 2 in another: d(d− 1)/2 ways, or
- 2 in one basket, one each in others: d(d− 1)(d− 2)/2, or
- all in different baskets: d(d− 1)(d− 2)(d− 3)/4!

Total: d + d(d− 1) + d(d− 1)/2 + d(d− 1)(d− 2)/2 + d(d− 1)(d− 2)(d− 3)/24
= 1

24 (24 + 24d− 24 + 12d− 12 + 12d2 − 36d + 24 + d3 − 6d2 + 11d− 6)

= 1
24d(d

3 + 6d2 + 11d + 6) =
d(d + 1)(d + 2)(d + 3)

24
ways.

The general formula seems to be f(N, d) =
d(d + 1)(d + 2) · · · (d + N − 1)

N !
=

(d + N − 1)!
N !(d− 1)!

=
(
d + N − 1

N

)
.

Proof: How many ways to put N identical balls in d baskets? Call it f(N, d).
- Could put all of them in the first basket: 1 way.
- Could put all but one in the first basket; there remains 1 ball for d− 1 baskets: f(1, d− 1) ways.
- Could put all but two in the first basket; there remain 2 for d− 1 baskets: f(2, d− 1) ways.
...
- Could put zero in the first basket, leaving N for d− 1 baskets: f(N, d− 1) ways.

Thus: f(N, d) = f(0, d−1)+f(1, d−1)+f(2, d−1)+ · · ·+f(N, d−1) =
∑N

j=0 f(j, d−1) (where f(0, d) ≡ 1).
It follows that f(N, d) =

∑N−1
j=0 f(j, d− 1)+ f(N, d− 1) = f(N − 1, d)+ f(N, d− 1). Use this recursion relation

to confirm the conjectured formula by induction:

(
d + N − 1

N

)
?=

(
d + N − 2
N − 1

)
+

(
d + N − 2

N

)
=

(d + N − 2)!
(N − 1)!(d− 1)!

+
(d + N − 2)!
N !(d− 2)!

=
(d + N − 2)!
N !(d− 1)!

(N + d− 1) =
(d + N − 1)!
N !(d− 1)!

=
(
d + N − 1

d− 1

)
. �

It works for N = 0 :
(
d−1
0

)
= 1, and for d = 1 :

(
N
N

)
= 1 (which is obviously correct for just one basket). QED

Problem 5.26

A(x, y) = (2x)(2y) = 4xy; maximize, subject to the constraint (x/a)2 + (y/b)2 = 1.

(x,y)

a

b
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G(x, y, λ) ≡ 4xy + λ
[
(x/a)2 + (y/b)2 − 1

]
.

∂G

∂x
= 4y +

2λx
a2

= 0⇒ y = − λx

2a2
.

∂G

∂y
= 4x +

2λy
b2

= 0⇒ 4x = −2λ
b2

(
− λx

2a2

)
⇒ 4x =

λ2

a2b2
x⇒ x = 0 (minimum), or else λ = ±2ab.

So y = ∓2abx
2a2

= ∓ b

a
x. We may as well pick x and y positive, (as in the figure); then y = (b/a)x (and

λ = −2ab).
∂G

∂λ
= 0⇒

(x

a

)2

+
(y

b

)2

= 1 (of course), so
x2

a2
+

b2x2

a2b2
= 1, or

2
a2

x2 = 1, or x = a/
√

2, and hence

y = ba/(a
√

2)⇒ y = b/
√

2. A = 4
a√
2

b√
2

= 2ab.

Problem 5.27

(a) ln(10!) = ln(3628800) = 15.1044; 10 ln(10) − 10 = 23.026 − 10 = 13.0259; 15.1044 − 13.0259 =
2.0785; 2.0785/15.1044 = 0.1376, or 14% .

(b) The percent error is:
ln(z!)− z ln(z) + z

ln(z!)
× 100.

z %
20 5.7

100 0.89
50 1.9
90 0.996
85 1.06
89 1.009

Since my calculator cannot compute factorials greater than 69! I used Mathematica to construct the table.
Evidently, the smallest integer for which the error is < 1% is 90.

Problem 5.28

Equation 5.108 ⇒ N =
V

2π2

∫ ∞
0

k2n(ε) dk, where n(ε) is given (as T → 0) by Eq. 5.104.

So N =
V

2π2

∫ kmax

0

k2 dk =
V

2π2

k3
max

3
, where kmax is given by

�
2k2

max

2m
= µ(0) = EF ⇒ kmax =

√
2mEF

�
.

N =
V

6π2�3
(2mEF )3/2. Compare Eq. 5.43, which says

EF =
�

2

2m

(
3π2Nq

V

)2/3

, or
(2mEF )3/2

�3
= 3π2Nq

V
, or N =

V

3π2q�3
(2mEF )3/2.

Here q = 1, and Eq. 5.108 needs an extra factor of 2 on the right, to account for spin, so the two formulas agree.

Equation 5.109 ⇒ Etot =
V �

2

4π2m

∫ kmax

0

k4 dk =
V �

2

4π2m

k5
max

5
⇒ Etot =

V

20π2m�3
(2mEF )5/2.

Compare Eq. 5.45, which says Etot =
V �

2

10π2m
k5
max. Again, Eq. 5.109 for electrons has an extra factor of 2, so

the two agree.
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Problem 5.29

(a) Equation 5.103, n(ε) > 0 ⇒ 1
e(ε−µ)/kBT − 1

> 0 ⇒ e(ε−µ)/kBT > 1 ⇒ (ε− µ)
kBT

> 0 ⇒ ε > µ(T ), for all

allowed energies ε.

(b) For a free particle gas, E =
�

2

2m
k2 → 0 (as k → 0, in the continuum limit), so µ(T ) is always negative.

(Technically, the lowest energy is
�

2π2

2m

(
1
l2x

+
1
l2y

+
1
l2z

)
, but we take the dimensions lxlylz to be very large

in the continuum limit.) Equation 5.108 ⇒ N/V =
1

2π2

∫ ∞
0

k2

e(�2k2/2m−µ)/kBT − 1
dk. The integrand is

always positive, and the only T dependence is in µ(T ) and kBT . So, as T decreases, (�2k2/2m) − µ(T )
must also decrease, and hence −µ(T ) decreases, or µ(T ) increases (always negative).

(c)
N

V
=

1
2π2

∫ ∞
0

k2

e�2k2/2mkBT − 1
dk. Let x ≡ �

2k2

2mkBT
, so k =

√
2mkBT

�
x1/2; dk =

√
2mkBT

�

1
2
x−1/2 dx.

N

V
=

1
2π2

(
2mkBT

�2

)3/2 1
2

∫ ∞
0

x1/2

ex − 1
dx, where

∫ ∞
0

x3/2−1

ex − 1
dx = Γ(3/2)ζ(3/2).

Now Γ(3/2) =
√
π/2; ζ(3/2) = 2.61238, so

N

V
= 2.612

(
mkBT

2π�2

)3/2

; Tc =
2π�

2

mkB

(
N

2.612V

)2/3

.

(d)

N

V
=

mass/volume
mass/atom

=
0.15× 103 kg/m3

4(1.67× 10−27 kg)
= 2.2× 1028/m3.

Tc =
2π(1.05× 10−34J · s)2

4(1.67× 10−27 kg)(1.38× 10−23 J/K)

(
2.2× 1028

2.61 m3

)2/3

= 3.1 K.

Problem 5.30

(a)

ω = 2πν =
2πc
λ

, so dω = −2πc
λ2

dλ, and ρ(ω) =
�

π2c3
(2πc)3

λ3(e2π�c/kBTλ − 1)
.

ρ(ω)|dω| = 8π�
1

λ3(e2π�c/kBTλ − 1)

∣∣∣∣−2πc
λ2

dλ

∣∣∣∣ = ρ(λ) dλ⇒ ρ(λ) =
16π2

�c

λ5(e2π�c/kBTλ − 1)
.

(For density, we want only the size of the interval, not its sign.)

(b) To maximize, set dρ/dλ = 0:

0 = 16π2
�c

[ −5
λ6(e2π�c/kBTλ − 1)

− e2π�c/kBTλ(2π�c/kBT )
λ5(e2π�c/kBTλ − 1)2

(
− 1

λ2

)]
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CHAPTER 5. IDENTICAL PARTICLES 149

1 2 3 4 5

1

2

3

4

5

5-x

5e-x

⇒ 5(e2π�c/kBTλ − 1) = e2π�c/kBTλ

(
2π�c

kBTλ

)
.

Let x ≡ 2π�c/kBTλ; then 5(ex − 1) = xex; or 5(1 − e−x) = x, or 5e−x = 5 − x. From the graph, the
solution occurs slightly below x = 5.

Mathematica says x = 4.966, so λmax =
2π�c

(4.966)kB

1
T

=
(6.626× 10−34 J · s)(2.998× 108 m/s)

(4.966)(1.3807× 10−23 J/K)
1
T

=

2.897× 10−3 m·K/T.

Problem 5.31

From Eq. 5.113:

E

V
=

∫ ∞
0

ρ(ω) dω =
�

π2c3

∫ ∞
0

ω3

(e�ω/kBT − 1)
dω. Let x ≡ �ω

kBT
. Then

E

V
=

�

π2c3

(
kBT

�

)4 ∫ ∞
0

x3

ex − 1
dx =

(kBT )4

π2c3�3
Γ(4)ζ(4) =

(kBT )4

π2c3�3
· 6 · π

4

90
=

(
π2k4

B

15c3�3

)
T 4

=
[

π2(1.3807× 10−23 J/K)4

15(2.998× 108 m/s)3(1.0546× 10−34 J · s)3
]
T 4 = 7.566× 10−16 J

m3K4T
4. QED

Problem 5.32

From Problem 2.11(a),

〈x〉0 = 〈x〉1 = 0; 〈x2〉0 =
�

2mω
; 〈x2〉1 =

3�

2mω
.

From Eq. 3.98,

〈x〉01 =
∫ ∞
−∞

xψ0(x)ψ1(x) dx = 〈0|x|1〉 =

√
�

2mω

(√
1 δ0 0 +

√
0 δ1−1

)
=

√
�

2mω
.

(a) Equation 5.19 ⇒ 〈(x1 − x2)2〉d =
�

2mω
+

3�

2mω
− 0 =

2�

mω
.

(b) Equation 5.21 ⇒ 〈(x1 − x2)2〉+ =
2�

mω
− 2

�

2mω
=

�

mω
.
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150 CHAPTER 5. IDENTICAL PARTICLES

(c) Equation 5.21 ⇒ 〈(x1 − x2)2〉− =
2�

mω
+ 2

�

2mω
=

3�

mω
.

Problem 5.33

(a) Each particle has 3 possible states: 3× 3× 3 = 27.

(b) All in same state: aaa, bbb, ccc ⇒ 3.

2 in one state: aab, aac, bba, bbc, cca, ccb ⇒ 6 (each symmetrized).

3 different states: abc (symmetrized) ⇒ 1.

Total: 10.

(c) Only abc (antisymmetrized) =⇒ 1.

Problem 5.34

Equation 5.39 ⇒ Enxny =
π2

�
2

2m

(
n2

x

l2x
+

n2
y

l2y

)
=

�
2k2

2m
, with k =

(
πnx

lx
,
πny

ly

)
. Each state is represented by an

intersection on a grid in “k-space”—this time a plane—and each state occupies an area π2/lxly = π2/A (where
A ≡ lxly is the area of the well). Two electrons per state means

1
4
πk2

F =
Nq

2

(
π2

A

)
, or kF =

(
2π

Nq

A

)1/2

= (2πσ)1/2,

where σ ≡ Nq/A is the number of free electrons per unit area.

∴ EF =
�

2k2
F

2m
=

�
2

2m
2πσ =

π�
2σ

m
.

k

ky

x
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Problem 5.35

(a)

V =
4
3
πR3, so E =

�
2(3π2Nq)5/3

10π2m

(
4
3
πR3

)−2/3

=
2�

2

15πmR2

(
9
4
πNq

)5/3

.

(b) Imagine building up a sphere by layers. When it has reached mass m, and radius r, the work necessary
to bring in the next increment dm is: dW = −(Gm/r) dm. In terms of the mass density ρ, m = 4

3πr
3ρ,

and dm = 4πr2drρ, where dr is the resulting increase in radius. Thus:

dW = −G
4
3
πr3ρ 4πr2ρ

dr

r
= −16π2

3
ρ2Gr4dr,

and the total energy of a sphere of radius R is therefore

Egrav = −16π2

3
ρ2G

∫ R

0

r4 dr = −16π2ρ2R5

15
G. But ρ =

NM

4/3πR3
, so

Egrav = −16π2R5

15
G

9N2M2

16π2R6
= −3

5
G

N2M2

R
.

(c)

Etot =
A

R2
− B

R
, where A ≡ 2�

2

15πm

(
9
4
πNq

)5/3

and B ≡ 3
5
GN2M2.

dEtot

dR
= −2A

R3
+

B

R2
= 0⇒ 2A = BR, so R =

2A
B

=
4�

15πm

(
9
4
πNq

)5/3 5
3GN2M2

.

R =

[(
4
9π

) (
9π
4

)5/3
] (

N5/3

N2

)
�

2

GmM2
q5/3 =

(
9π
4

)2/3
�

2

GmM2

q5/3

N1/3
.

R =
(

9π
4

)2/3 (1.055× 10−34 J · s)2(1/2)5/3

(6.673× 10−11 Nm2/kg2)(9.109× 10−31 kg)(1.674× 10−27 kg)2
N−1/3

= (7.58× 1025 m)N−1/3.

(d) Mass of sun: 1.989× 1030 kg, so N =
1.989× 1030

1.674× 10−27
= 1.188× 1057; N−1/3 = 9.44× 10−20.

R = (7.58× 1025)(9.44× 10−20) m = 7.16× 106 m (slightly larger than the earth).

(e)

From Eq. 5.43: EF =
�

2

2m

(
3π2 Nq

4/3πR3

)2/3

=
�

2

2mR2

(
9π
4

Nq

)2/3

. Numerically:
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EF =
(1.055× 10−34 J · s)2

2(9.109× 10−31 kg)(7.16× 106 m)2

[
9π
4

(1.188× 1057)
1
2

]2/3

= 3.102× 10−14 J,

or, in electron volts: EF =
3.102× 10−14

1.602× 10−19
eV = 1.94× 105 eV.

Erest = mc2 = 5.11× 105 eV, so the Fermi energy (which is the energy of the most energetic electrons) is
comparable to the rest energy, so they are getting fairly relativistic.

Problem 5.36

(a)

dE = (�ck)
V

π2
k2 dk ⇒ Etot =

�cV

π2

∫ kF

0

k3 dk =
�cV

4π2
k4

F ; kF =
(

3π2Nq

V

)1/3

.

So Etot =
�c

4π2
(3π2Nq)4/3V −1/3.

(b)

V =
4
3
πR3 ⇒ Edeg =

�c

4π2R
(3π2Nq)4/3

(
4π
3

)−1/3

=
�c

3πR

(
9
4
πNq

)4/3

.

Adding in the gravitational energy, from Problem 5.35(b),

Etot =
A

R
− B

R
, where A ≡ �c

3π

(
9
4
πNq

)4/3

and B ≡ 3
5
GN2M2.

dEtot

dR
= − (A−B)

R2
= 0⇒ A = B,

but there is no special value of R for which Etot is minimal. Critical value: A = B(Etot = 0) ⇒
�c

3π

(
9
4
πNq

)4/3

=
3
5
GN2M2, or

Nc =
15
16

√
5π

(
�c

G

)3/2
q2

M3
=

15
16

√
5π

(
1.055× 10−34 J · s× 2.998× 108 m/s

6.673× 10−11 N ·m2/kg2

)3/2 (1/2)2

(1.674× 10−27 kg)3

= 2.04× 1057. (About twice the value for the sun—Problem 5.35(d).)

(c) Same as Problem 5.35(c), with m→M and q → 1, so multiply old answer by (2)5/3m/M :

R = 25/3 (9.109× 10−31)
(1.674× 10−27)

(7.58× 1025 m)N−1/3 = (1.31× 1023 m)N−1/3. Using N = 1.188× 1057,

R = (1.31 × 1023 m)(9.44 × 10−20) = 12.4 km. To get EF , use Problem 5.35(e) with q = 1, the new R,
and the neutron mass in place of m:

EF = 22/3

(
7.16× 106

1.24× 104

)2 (
9.11× 10−31

1.67× 10−27

)
(1.94× 105 eV) = 5.60× 107 eV = 56.0 MeV.

The rest energy of a neutron is 940 MeV, so a neutron star is reasonably nonrelativistic.
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Problem 5.37

(a) From Problem 4.38: En = (n + 3
2 )�ω, with n = 0, 1, 2, . . . ; dn = 1

2 (n + 1)(n + 2).

From Eq. 5.103, n(ε) = e−(ε−µ)/kBT , so Nn = 1
2 (n + 1)(n + 2)e(µ− 3

2 �ω)/kBT e−n�ω/kBT .

N =
∞∑

n=0

Nn =
1
2
e(µ− 3

2 �ω)/kBT
∞∑

n=0

(n + 1)(n + 2)xn, where x ≡ e−�ω/kBT . Now

1
1− x

=
∞∑

n=0

xn ⇒ x

1− x
=
∞∑

n=0

xn+1 ⇒ d

dx

(
x

1− x

)
=
∞∑

n=0

(n + 1)xn ⇒ 1
(1− x)2

=
∞∑

n=0

(n + 1)xn.

x2

(1− x)2
=
∞∑

n=0

(n + 1)xn+2, and hence
d

dx

(
x2

(1− x)2

)
=
∞∑

n=0

(n + 1)(n + 2)xn+1 =
2x

(1− x)3
.

∞∑
n=0

(n + 1)(n + 2)xn =
2

(1− x)3
. So N = eµ/kBT e−

3
2 �ω/kBT 1

(1− e−�ω/kBT )3
.

eµ/kBT = N(1− e−�ω/kBT )3e
3
2 �ω/kBT ; µ = kBT

[
lnN + 3 ln(1− e−�ω/kBT ) + 3

2�ω/kBT
]
.

E =
∞∑

n=0

NnEn =
1
2

�ωe(µ− 3
2 �ω)/kBT

∞∑
n=0

(n + 3/2)(n + 1)(n + 2)xn. From above,

2x3/2

(1− x)3
=
∞∑

n=0

(n + 1)(n + 2)xn+3/2 ⇒ d

dx

(
2x3/2

(1− x)3

)
=
∞∑

n=0

(n + 3/2)(n + 1)(n + 2)xn+1/2, or

∞∑
n=0

(n + 3/2)(n + 1)(n + 2)xn =
1

x1/2

d

dx

(
2x3/2

(1− x)3

)
=

2
x1/2

[
3
2x

1/2

(1− x)3
+

3x3/2

(1− x)4

]
=

3(1 + x)
(1− x)4

.

E =
1
2

�ωe(µ− 3
2 �ω)/kBT 3(1 + e−�ω/kBT )

(1− e−�ω/kBT )4
. But e(µ− 3

2 �ω)/kBT = N(1− e−�ω/kBT )3, so

E =
3
2
N�ω

(
1 + e−�ω/kBT

)(
1− e−�ω/kBT

) .

(b) kBT << �ω (low temperature) ⇒ e−�ω/kBT ≈ 0, so E ≈ 3
2N�ω (µ ≈ 3

2�ω). In this limit, all particles

are in the ground state, E0 = 3
2�ω.

(c) kBT >> �ω (high temperature) ⇒ e−�ω/kBT ≈ 1− (�ω/kBT ), so E ≈ 3NkBT

(µ ≈ kBT [lnN + 3 ln (�ω/kBT )]) . The equipartition theorem says E = N# 1
2kBT , where # is the number

of degrees of freedom for each particle. In this case #/2 = 3, or # = 6 (3 kinetic, 3 potential, for each
particle—one of each for each direction in space).
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Chapter 6

Time-Independent Perturbation
Theory

Problem 6.1

(a)

ψ0
n(x) =

√
2
a

sin
(nπ

a
x
)
, so E1

n = 〈ψ0
n|H ′|ψ0

n〉 =
2
a
α

∫ a

0

sin2
(nπ

a
x
)
δ
(
x− a

2

)
dx.

E1
n =

2α
a

sin2
(nπ

a

a

2

)
=

2α
a

sin2
(nπ

2

)
=

{
0, if n is even,

2α/a, if n is odd.

}

For even n the wave function is zero at the location of the perturbation (x = a/2), so it never “feels” H ′.

(b) Here n = 1, so we need

〈ψ0
m|H ′|ψ0

1〉 =
2α
a

∫
sin

(mπ

a
x
)
δ
(
x− a

2

)
sin

(π

a
x
)

dx =
2α
a

sin
(mπ

2

)
sin

(π

2

)
=

2α
a

sin
(mπ

2

)
.

This is zero for even m, so the first three nonzero terms will be m = 3, m = 5, and m = 7. Meanwhile,

E0
1 − E0

m =
π2

�
2

2ma2
(1−m2), so

ψ1
1 =

∑
m=3,5,7,...

(2α/a) sin(mπ/2)
E0

1 − E0
m

ψ0
m =

2α
a

2ma2

π2�2

[ −1
1− 9

ψ0
3 +

1
1− 25

ψ0
5 +

−1
1− 49

ψ0
7 + . . .

]

=
4maα

π2�2

√
2
a

[
1
8

sin
(

3π
a

x

)
− 1

24
sin

(
5π
a

x

)
+

1
48

sin
(

7π
a

x

)
+ . . .

]

=
mα

π2�2

√
a

2

[
sin

(
3π
a

x

)
− 1

3
sin

(
5π
a

x

)
+

1
6

sin
(

7π
a

x

)
+ . . .

]
.
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Problem 6.2

(a) En = (n + 1
2 )�ω′, where ω′ ≡

√
k(1 + ε)/m = ω

√
1 + ε = ω(1 + 1

2ε− 1
8ε

2 + 1
16ε

3 · · · ), so

En = (n + 1
2 )�ω

√
1 + ε = (n + 1

2 )�ω(1 + 1
2ε− 1

8ε
2 + · · · ).

(b) H ′ = 1
2k
′x2 − 1

2kx
2 = 1

2kx
2(1 + ε− 1) = ε( 1

2kx
2) = εV , where V is the unperturbed potential energy. So

E1
n = 〈ψ0

n|H ′|ψ0
n〉 = ε〈n|V |n〉, with 〈n|V |n〉 the expectation value of the (unperturbed) potential energy

in the nth unperturbed state. This is most easily obtained from the virial theorem (Problem 3.31), but it
can also be derived algebraically. In this case the virial theorem says 〈T 〉 = 〈V 〉. But 〈T 〉+ 〈V 〉 = En. So

〈V 〉 = 1
2E

0
n = 1

2 (n + 1
2 )�ω; E1

n = ε
2 (n + 1

2 )�ω, which is precisely the ε1 term in the power series from

part (a).

Problem 6.3

(a) In terms of the one-particle states (Eq. 2.28) and energies (Eq. 2.27):

Ground state: ψ0
1(x1, x2) = ψ1(x1)ψ1(x2) =

2
a

sin
(πx1

a

)
sin

(πx2

a

)
; E0

1 = 2E1 =
π2

�
2

ma2
.

First excited state: ψ0
2(x1, x2) = 1√

2
[ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2)]

=
√

2
a

[
sin

(πx1

a

)
sin

(
2πx2

a

)
+ sin

(
2πx1

a

)
sin

(πx2

a

)]
; E0

2 = E1 + E2 =
5
2
π2

�
2

ma2
.

(b)

E1
1 = 〈ψ0

1 |H ′|ψ0
1〉 = (−aV0)

(
2
a

)2 ∫ a

0

∫ a

0

sin2
(πx1

a

)
sin2

(πx2

a

)
δ(x2 − x2) dx1 dx2

= −4V0

a

∫ a

0

sin4
(πx

a

)
dx = −4V0

a

a

π

∫ π

0

sin4 y dy = −4V0

π
· 3π

8
= −3

2
V0.

E1
2 = 〈ψ0

2 |H ′|ψ0
2〉

= (−aV0)
(

2
a2

) ∫∫ a

0

[
sin

(πx1

a

)
sin

(
2πx2

a

)
+ sin

(
2πx1

a

)
sin

(πx2

a

)]2

δ(x1 − x2) dx1 dx2

= −2V0

a

∫ a

0

[
sin

(πx

a

)
sin

(
2πx
a

)
+ sin

(
2πx
a

)
sin

(πx

a

)]2

dx

= −8V0

a

∫ a

0

sin2
(πx

a

)
sin2

(
2πx
a

)
dx = −8V0

a
· a
π

∫ π

0

sin2 y sin2(2y) dy

= −8V0

π
· 4

∫ π

0

sin2 y sin2 y cos2 y dy = −32V0

π

∫ π

0

(sin4 y − sin6 y) dy

= −32V0

π

(
3π
8
− 5π

16

)
= −2V0.
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Problem 6.4

(a)

〈ψ0
m|H|ψ0

n〉 =
2
a
α

∫ a

0

sin
(mπ

a
x
)
δ
(
x− a

2

)
sin

(nπ

a
x
)

dx =
2α
a

sin
(mπ

2

)
sin

(nπ

2

)
,

which is zero unless both m and n are odd—in which case it is ±2α/a. So Eq. 6.15 says

E2
n =

∑
m�=n, odd

(
2α
a

)2 1
(E0

n − E0
m)

. But Eq. 2.27 says E0
n =

π2
�

2

2ma2
n2, so

E2
n =


0, if n is even;

2m
(

2α
π�

)2 ∑
m�=n, odd

1
(n2 −m2)

, if n is odd.

To sum the series, note that
1

(n2 −m2)
=

1
2n

(
1

m + n
− 1

m− n

)
. Thus,

for n = 1:
∑

=
1
2

∑
3,5,7,...

(
1

m + 1
− 1

m− 1

)

=
1
2

(
1
4

+
1
6

+
1
8

+ · · · − 1
2
− 1

4
− 1

6
− 1

8
· · ·

)
=

1
2

(
−1

2

)
= −1

4
;

for n = 3:
∑

=
1
6

∑
1,5,7,...

(
1

m + 3
− 1

m− 3

)

=
1
6

(
1
4

+
1
8

+
1
10

+ · · ·+ 1
2
− 1

2
− 1

4
− 1

6
− 1

8
− 1

10
· · ·

)
=

1
6

(
−1

6

)
= − 1

36
.

In general, there is perfect cancellation except for the “missing” term 1/2n in the first sum, so the total

is
1
2n

(
− 1

2n

)
= − 1

(2n)2
. Therefore: E2

n =
{

0, if n is even;
−2m (α/π�n)2 , if n is odd.

(b)

H ′ =
1
2
εkx2; 〈ψ0

m|H ′|ψ0
n〉 =

1
2
εk〈m|x2|n〉. Using Eqs. 2.66 and 2.69:

〈m|x2|n〉 =
�

2mω
〈m|(a2

+ + a+a− + a−a+ + a2
−)|n〉

=
�

2mω

[√
(n + 1)(n + 2)〈m|n + 2〉+ n〈m|n〉+ (n + 1)〈m|n〉+

√
n(n− 1)〈m|n− 2〉

]
.
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So, for m �= n, 〈ψ0
m|H ′|ψ0

n〉 =
(

1
2
kε

) (
�

2mω

) [√
(n + 1)(n + 2) δm,n+2 +

√
n(n− 1) δm,n−2

]
.

E2
n =

(
ε�ω

4

)2 ∑
m�=n

[√
(n + 1)(n + 2) δm,n+2 +

√
n(n− 1) δm,n−2

]2

(n + 1
2 )�ω − (m + 1

2 )�ω

=
ε2�ω

16

∑
m�=n

[(n + 1)(n + 2) δm,n+2 + n(n− 1) δm,n−2]
(n−m)

=
ε2�ω

16

[
(n + 1)(n + 2)
n− (n + 2)

+
n(n− 1)

n− (n− 2)

]
=

ε2�ω

16

[
−1

2
(n + 1)(n + 2) +

1
2
n(n− 1)

]

=
ε2�ω

32
(
−n2 − 3n− 2 + n2 − n

)
=

ε2�ω

32
(−4n− 2) = −ε2

1
8

�ω

(
n +

1
2

)
(which agrees with the ε2 term in the exact solution—Problem 6.2(a)).

Problem 6.5

(a)

E1
n = 〈ψ0

n|H ′|ψ0
n〉 = −qE〈n|x|n〉 = 0 (Problem 2.12).

From Eq. 6.15 and Problem 3.33: E2
n = (qE)2

∑
m�=n

|〈m|x|n〉|2
(n−m)�ω

=
(qE)2

�ω

�

2mω

∑
m�=n

[
√
n + 1 δm,n+1 +

√
n, δm,n−1]2

(n−m)
=

(qE)2

2mω2

∑
m�=n

[(n + 1) δm,n+1 + n δm,n−1]
(n−m)

=
(qE)2

2mω2

[
(n + 1)

n− (n + 1)
+

n

n− (n− 1)

]
=

(qE)2

2mω2
[−(n + 1) + n] = − (qE)2

2mω2
.

(b) − �
2

2m
d2ψ

dx2
+

(
1
2
mω2x2 − qEx

)
ψ = Eψ. With the suggested change of variables,

(
1
2
mω2x2 − qEx

)
=

1
2
mω2

[
x′ +

(
qE

mω2

)]2

− qE

[
x′ +

(
qE

mω2

)]

=
1
2
mω2x′

2 + mω2x′
qE

mω2
+

1
2
mω2 (qE)2

m2ω4
− qEx′ − (qE)2

mω2
=

1
2
mω2x′

2 − 1
2

(qE)2

mω2
.
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So the Schrödinger equation says

− �
2

2m
d2ψ

dx′2
+

1
2
mω2x′

2
ψ =

[
E +

1
2

(qE)2

mω2

]
ψ,

which is the Schrödinger equation for a simple harmonic oscillator, in the variable x′. The constant on
the right must therefore be (n + 1

2 )�ω, and we conclude that

En = (n +
1
2
)�ω − 1

2
(qE)2

mω2
.

The subtracted term is exactly what we got in part (a) using perturbation theory. Evidently all the higher
corrections (like the first-order correction) are zero, in this case.

Problem 6.6

(a)

〈ψ0
+|ψ0
−〉 = 〈(α+ψ0

a + β+ψ0
b )|(α−ψ0

a + β−ψ
0
b )〉

= α∗+α−〈ψ0
a|ψ0

a〉+ α∗+β−〈ψ0
a|ψ0

b 〉+ β∗+α−〈ψ0
b |ψ0

a〉+ β∗+β−〈ψ0
b |ψ0

b 〉

= α∗+α− + β∗+β−. But Eq. 6.22 ⇒ β± = α±(E1
± −Waa)/Wab, so

〈ψ0
+|ψ0
−〉 = α∗+α−

[
1 +

(E1
+ −Waa)(E1

− −Waa)
Wab

∗Wab

]
=

α∗+α−
|Wab|2

[
|Wab|2 + (E1

+ −Waa)(E1
− −Waa)

]
.

The term in square brackets is:

[ ] = E1
+E1
− −Waa(E1

+ + E1
−) + |Wab|2 + W 2

aa. But Eq. 6.27 ⇒ E1
± = 1

2 [(Waa + Wbb)±
√

], where
√

is
shorthand for the square root term. So E1

+ + E1
− = Waa + Wbb, and

E1
+E1
− =

1
4

[
(Waa + Wbb)2 − (

√
)2

]
=

1
4

[
(Waa + Wbb)2 − (Waa −Wbb)2 − 4|Wab|2

]
= WaaWbb − |Wab|2.

Thus [ ] = WaaWbb − |Wab|2 −Waa(Waa + Wbb) + |Wab|2 + W 2
aa = 0, so 〈ψ0

+|ψ0
−〉 = 0. QED

(b)

〈ψ0
+|H ′|ψ0

−〉 = α∗+α−〈ψ0
a|H ′|ψ0

a〉+ α∗+β−〈ψ0
a|H ′|ψ0

b 〉+ β∗+α−〈ψ0
b |H ′|ψ0

a〉+ β∗+β−〈ψ0
b |H ′|ψ0

b 〉

= α∗+α−Waa + α∗+β−Wab + β∗+α−Wba + β∗+β−Wbb

= α∗+α−

[
Waa + Wab

(E1
− −Waa)
Wab

+ Wba
(E1

+ −Waa)
W ∗ab

+ Wbb
(E1

+ −Waa)
W ∗ab

(E1
− −Waa)
Wab

]

= α∗+α−

[
Waa + E1

− −Waa + E1
+ −Waa + Wbb

(E1
+ −Waa)(E1

− −Waa)
|Wab|2

]
.

But we know from (a) that
(E1

+ −Waa)(E1
− −Waa)

|Wab|2
= −1, so

〈ψ0
+|H ′|ψ0

−〉 = α∗+α−[E1
− + E1

+ −Waa −Wbb] = 0. QED
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 159

(c)

〈ψ0
±|H ′|ψ0

±〉 = α∗±α±〈ψ0
a|H ′|ψ0

a〉+ α∗±β±〈ψ0
a|H ′|ψ0

b 〉+ β∗±α±〈ψ0
b |H ′|ψ0

a〉+ β∗±β±〈ψ0
b |H ′|ψ0

b 〉

= |α±|2
[
Waa + Wab

(E1
± −Waa)
Wab

]
+ |β±|2

[
Wba

(E1
± −Wbb)
Wba

+ Wbb

]
(this time I used Eq. 6.24 to express α in terms of β, in the third term).

∴ 〈ψ0
±|H ′|ψ0

±〉 = |α±|2(E1
±) + |β±|2(E1

±) =
(
|α±|2 + |β±|2

)
E1
± = E1

±. QED

Problem 6.7

(a) See Problem 2.46.

(b) With a→ n, b→ −n, we have:

Waa = Wbb = −V0

L

∫ L/2

−L/2

e−x2/a2
dx ≈ −V0

L

∫ ∞
−∞

e−x2/a2
dx = −V0

L
a
√
π.

Wab = −V0

L

∫ L/2

−L/2

e−x2/a2
e−4πnix/Ldx ≈ −V0

L

∫ ∞
−∞

e−(x2/a2+4πnix/L)dx = −V0

L
a
√
πe−(2πna/L)2 .

(We did this integral in Problem 2.22.) In this case Waa = Wbb, and Wab is real, so Eq. 6.26 ⇒

E1
± = Waa ± |Wab|, or E1

± = −
√
π
V0a

L

(
1∓ e−(2πna/L)2

)
.

(c) Equation 6.22 ⇒ β = α
(E1
− −Waa)
Wab

= α

[
±√π(V0a/L)e−(2πna/L)2

−√π(V0a/L)e−(2πna/L)2

]
= ∓α. Evidently, the “good” linear

combinations are:

ψ+ = αψn − αψ−n =
1√
2

1√
L

[
ei2πnx/L − e−i2πnx/L

]
= i

√
2
L

sin
(

2πnx
L

)
and

ψ− = αψn + αψ−n =

√
2
L

cos
(

2πnx
L

)
. Using Eq. 6.9, we have :

E1
+ = 〈ψ+|H ′|ψ+〉 =

2
L

(−V0)
∫ L/2

−L/2

e−x2/a2
sin2

(
2πnx
L

)
dx,

E1
− = 〈ψ−|H ′|ψ−〉 =

2
L

(−V0)
∫ L/2

−L/2

e−x2/a2
cos2

(
2πnx
L

)
dx.
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160 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

But sin2 θ = (1− cos 2θ)/2, and cos2 θ = (1 + cos 2θ)/2, so

E1
± ≈ −

V0

L

∫ ∞
−∞

e−x2/a2
[
1∓ cos

(
4πnx
L

)]
dx = −V0

L

[∫ ∞
−∞

e−x2/a2
dx∓

∫ ∞
−∞

e−x2/a2
cos

(
4πnx
L

)
dx

]

= −V0

L

[√
π a∓ a

√
πe−(2πna/L)2

]
= −

√
π
V0a

L

[
1∓ e−(2πna/L)2

]
, same as (b).

(d) Af(x) = f(−x) (the parity operator). The eigenstates are even functions (with eigenvalue +1) and odd
functions (with eigenvalue −1). The linear combinations we found in (c) are precisely the odd and even
linear combinations of ψn and ψ−n.

Problem 6.8

Ground state is nondegenerate; Eqs. 6.9 and 6.31 ⇒

E1 =
(

2
a

)3

a3V0

∫∫∫ a

0

sin2
(π

a
x
)

sin2
(π

a
y
)

sin2
(π

a
z
)
δ(x− a

4
)δ(y − a

2
)δ(z − 3a

4
) dx dy dz

= 8V0 sin2
(π

4

)
sin2

(π

2

)
sin2

(
3π
4

)
= 8V0

(
1
2

)
(1)

(
1
2

)
= 2V0.

First excited states (Eq. 6.34):

Waa = 8V0

∫∫∫
sin2

(π

a
x
)

sin2
(π

a
y
)

sin2

(
2π
a

z

)
δ(x− a

4
)δ(y − a

2
)δ(z − 3a

4
) dx dy dz

= 8V0

(
1
2

)
(1)(1) = 4V0.

Wbb = 8V0

∫∫∫
sin2

(π

a
x
)

sin2

(
2π
a

y

)
sin2

(π

a
z
)
δ(x− a

4
)δ(y − a

2
)δ(z − 3a

4
) dx dy dz

= 8V0

(
1
2

)
(0)

(
1
2

)
= 0.

Wcc = 8V0

∫∫∫
sin2

(
2π
a

x

)
sin2

(π

a
y
)

sin2
(π

a
z
)
δ(x− a

4
)δ(y − a

2
)δ(z − 3a

4
) dx dy dz

= 8V0(1)(1)
(

1
2

)
= 4V0.

Wab = 8V0 sin2
(π

4

)
sin

(π

2

)
sin(π) sin

(
3π
2

)
sin

(
3π
4

)
= 0.

Wac = 8V0 sin
(π

4

)
sin

(π

2

)
sin2

(π

2

)
sin

(
3π
2

)
sin

(
3π
4

)
= 8V0

(
1√
2

)
(1)(1)(−1)

(
1√
2

)
= −4V0.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 161

Wbc = 8V0 sin
(π

4

)
sin

(π

2

)
sin(π) sin

(π

2

)
sin

(
3π
4

)
= 0.

W = 4V0

 1 0 −1
0 0 0
−1 0 1

 = 4V0D; det(D− λ) =

∣∣∣∣∣∣
(1− λ) 0 −1

0 −λ 0
−1 0 (1− λ)

∣∣∣∣∣∣ = −λ(1− λ)2 + λ = 0 ⇒

λ = 0, or (1− λ)2 = 1⇒ 1− λ = ±1 ⇒ λ = 0 or λ = 2.

So the first-order corrections to the energies are 0, 0, 8V0.

Problem 6.9

(a) χ1 =

 1
0
0

, eigenvalue V0; χ2 =

 0
1
0

, eigenvalue V0; χ3 =

 0
0
1

, eigenvalue 2V0.

(b) Characteristic equation: det(H− λ) =

∣∣∣∣∣∣
[V0(1− ε)− λ] 0 0

0 [V0 − λ] εV0

0 εV0 [2V0 − λ]

∣∣∣∣∣∣ = 0;

[V0(1− ε)− λ][(V0 − λ)(2V0 − λ)− (εV0)2] = 0⇒ λ1 = V0(1− ε).

(V0 − λ)(2V0 − λ)− (εV0)2 = 0⇒ λ2 − 3V0λ + (2V 2
0 − ε2V 2

0 ) = 0⇒

λ =
3V0 ±

√
9V 2

0 − 4(2V 2
0 − ε2V 2

0 )
2

=
V0

2

[
3±

√
1 + 4ε2

]
≈ V0

2
[
3± (1 + 2ε2)

]
.

λ2 =
V0

2

(
3−

√
1 + 4ε2

)
≈ V0(1− ε2); λ3 =

V0

2

(
3 +

√
1 + 4ε2

)
≈ V0(2 + ε2).

(c)

H′ = εV0

−1 0 0
0 0 1
0 1 0

 ; E1
3 = 〈χ3|H ′|χ3〉 = εV0

(
0 0 1

) −1 0 0
0 0 1
0 1 0

  0
0
1



= εV0

(
0 0 1

)  0
1
0

 = 0 (no first-order correction).

E2
3 =

∑
m=1,2

|〈χm|H ′|χ3〉|2
E0

3 − E0
m

; 〈χ1|H ′|χ3〉 = εV0

(
1 0 0

) −1 0 0
0 0 1
0 1 0

  0
0
1

 = εV0

(
1 0 0

)  0
1
0

 = 0,

〈χ2|H ′|χ3〉 = εV0

(
0 1 0

)  0
0
1

 = εV0.

E0
3 − E0

2 = 2V0 − V0 = V0. So E2
3 = (εV0)2/V0 = ε2V0. Through second-order, then,

E3 = E0
3 + E1

3 + E2
3 = 2V0 + 0 + ε2V0 = V0(2 + ε2) (same as we got for λ3 in (b)).
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162 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

(d)

Waa = 〈χ1|H ′|χ1〉 = εV0

(
1 0 0

) −1 0 0
0 0 1
0 1 0

  1
0
0

 = εV0

(
1 0 0

) −1
0
0

 = −εV0.

Wbb = 〈χ2|H ′|χ2〉 = εV0

(
0 1 0

) −1 0 0
0 0 1
0 1 0

  0
1
0

 = εV0

(
0 1 0

)  0
0
1

 = 0.

Wab = 〈χ1|H ′|χ2〉 = εV0

(
1 0 0

) −1 0 0
0 0 1
0 1 0

  0
1
0

 = εV0

(
1 0 0

)  0
0
1

 = 0.

Plug the expressions for Waa, Wbb, and Wab into Eq. 6.27:

E1
± =

1
2

[
−εV0 + 0±

√
ε2V 2

0 + 0
]

=
1
2
(−εV0 ± εV0) = {0,−εV0}.

To first-order, then, E1 = V0 − εV0, E2 = V0, and these are consistent (to first order in ε) with what
we got in (b).

Problem 6.10

Given a set of orthonornal states {ψ0
j } that are degenerate eigenfunctions of the unperturbed Hamiltonian:

Hψ0
j = E0ψ0

j , 〈ψ0
j |ψ0

l 〉 = δjl,

construct the general linear combination,

ψ0 =
n∑

j=1

αjψ
0
j .

It too is an eigenfunction of the unperturbed Hamiltonian, with the same eigenvalue:

H0ψ0 =
n∑

j=1

αjH
0ψ0

j = E0
n∑

j=1

αjψ
0
j = E0ψ0.

We want to solve the Schrödinger equation Hψ = Eψ for the perturbed Hamiltonian H = H0 + λH ′.
Expand the eigenvalues and eigenfunctions as power series in λ:

E = E0 + λE1 + λ2E2 + . . . , ψ = ψ0 + λψ1 + λ2ψ2 + . . . .

Plug these into the Schrödinger equation and collect like powers:

(H0 + λH ′)(ψ0 + λψ1 + λ2ψ2 + . . . ) = (E0 + λE1 + λ2E2 + . . . )(ψ0 + λψ1 + λ2ψ2 + . . . ) ⇒

H0ψ0 + λ(H0ψ1 + H ′ψ0) + . . . = E0ψ0 + λ(E0ψ1 + E1ψ0) + . . .
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 163

The zeroth-order terms cancel; to first order

H0ψ1 + H ′ψ0 = E0ψ1 + E1ψ0.

Take the inner product with ψ0
j :

〈ψ0
j |H0ψ1〉+ 〈ψ0

j |H ′ψ0〉 = E0〈ψ0
j |ψ1〉+ E1〈ψ0

j |ψ0〉.

But 〈ψ0
j |H0ψ1〉 = 〈H0ψ0

j |ψ1〉 = E0〈ψ0
j |ψ1〉, so the first terms cancel, leaving

〈ψ0
j |H ′ψ0〉 = E1〈ψ0

j |ψ0〉.

Now use ψ0 =
n∑

l=1

αlψ
0
l , and exploit the orthonormality of {ψ0

l }:

n∑
l=1

αl〈ψ0
j |H ′|ψ0

l 〉 = E1
n∑

l=1

αl〈ψ0
j |ψ0

l 〉 = E1αj ,

or, defining

Wjl ≡ 〈ψ0
j |H ′|ψ0

l 〉,
n∑

l=1

Wjlαl = E1αl.

This (the generalization of Eq. 6.22 for the case of n-fold degeneracy) is the eigenvalue equation for the matrix
W (whose jlth element, in the {ψ0

j } basis, is Wjl); E1 is the eigenvalue, and the eigenvector (in the {ψ0
j } basis)

is χj = αj . Conclusion: The first-order corrections to the energy are the eigenvalues of W. QED

Problem 6.11

(a) From Eq. 4.70: En = −
[

m

2�2

(
e2

4πε0

)2
]

1
n2

= −1
2
mc2

(
1
�c

e2

4πε0

)2 1
n2

= −α2mc2

2n2
.

(b) I have found a wonderful solution—unfortunately, there isn’t enough room on this page for the proof.

Problem 6.12

Equation 4.191 ⇒ 〈V 〉 = 2En, for hydrogen. V = − e2

4πε0
1
r
; En = −

[
m

2�2

(
e2

4πε0

)2
]

1
n2

. So

− e2

4πε0

〈
1
r

〉
= −2

[
m

2�2

(
e2

4πε0

)2
]

1
n2

⇒
〈

1
r

〉
=

(
me2

4πε0�2

)
1
n2

=
1

an2
(Eq. 4.72). QED
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164 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Problem 6.13

In Problem 4.43 we found (for n = 3, l = 2, m = 1) that 〈rs〉 =
(s + 6)!

6!

(
3a
2

)s

.

s = 0 : 〈1〉 =
6!
6!

(1) = 1 (of course). �

s = −1 :
〈

1
r

〉
=

5!
6!

(
3a
2

)−1

=
1
6
· 2
3a

=
1
9a

(
Eq. 6.55 says

1
32a

=
1
9a

)
. �

s = −2 :
〈

1
r2

〉
=

4!
6!

(
3a
2

)−2

=
1

6 · 5 ·
4

9a2
=

2
135a2

(
Eq. 6.56 says

1
(5/2) · 27 · a2

=
2

135a2

)
. �

s = −3 :
〈

1
r3

〉
=

3!
6!

(
3a
2

)−3

=
1

6 · 5 · 4 ·
8

27a3
=

1
405a3

(
Eq. 6.64 says

1
2(5/2)3 · 27 · a3

=
1

405a3

)
. �

For s = −7 (or smaller) the integral does not converge: 〈1/r7〉 = ∞ in this state; this is reflected in the fact
that (−1)! =∞.

Problem 6.14

Equation 6.53 ⇒ E1
r = − 1

2mc2
[
E2 − 2E〈V 〉+ 〈V 2〉

]
. Here E = (n +

1
2
)�ω, V =

1
2
mω2x2 ⇒

E1
r = − 1

2mc2

[(
n +

1
2

)2

�
2ω2 − 2

(
n +

1
2

)
�ω

1
2
mω2〈x2〉+

1
4
m2ω4〈x4〉

]
.

But Problem 2.12 ⇒ 〈x2〉 = (n +
1
2
)

�

mω
, so

E1
r = − 1

2mc2

[(
n +

1
2

)2

�
2ω2 −

(
n +

1
2

)2

�
2ω2 +

1
4
m2ω4〈x4〉

]
= −mω4

8c2
〈x4〉.

From Eq. 2.69: x4 =
�

2

4m2ω2

(
a2
+ + a+a− + a−a+ + a2

−
) (

a2
+ + a+a− + a−a+ + a2

−
)
,

〈x4〉 =
�

2

4m2ω2
〈n|

(
a2
+a2
− + a+a−a+a− + a+a−a−a+ + a−a+a+a− + a−a+a−a+ + a2

−a
2
+

)
|n〉.

(Note that only terms with equal numbers of raising and lowering operators will survive). Using Eq. 2.66,

〈x4〉 =
�

2

4m2ω2
〈n|

[
a2
+

(√
n(n− 1) |n− 2〉

)
+ a+a−(n |n〉) + a+a−

(
(n + 1) |n〉

)
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 165

+a−a+ (n |n〉) + a−a+

(
(n + 1) |n〉

)
+ a2
−

(√
(n + 1)(n + 2) |n + 2〉

)]

=
�

2

4m2ω2
〈n|

[√
n(n− 1)

(√
n(n− 1) |n〉

)
+ n (n |n〉) + (n + 1) (n |n〉)

+n
(
(n + 1) |n〉

)
+ (n + 1)

(
(n + 1) |n〉

)
+

√
(n + 1)(n + 2)

(√
(n + 1)(n + 2) |n〉

)]

=
�

2

4m2ω2

[
n(n− 1) + n2 + (n + 1)n + n(n + 1) + (n + 1)2 + (n + 1)(n + 2)

]

=
(

�

2mω

)2

(n2 − n + n2 + n2 + n + n2 + n + n2 + 2n + 1 + n2 + 3n + 2) =
(

�

2mω

)2

(6n2 + 6n + 3).

E1
r = −mω4

8c2
· �

2

4m2ω2
· 3(3n2 + 2n + 1) = − 3

32

(
�

2ω2

mc2

)
(2n2 + 2n + 1).

Problem 6.15

Quoting the Laplacian in spherical coordinates (Eq. 4.13), we have, for states with no dependence on θ or φ:

p2 = −�
2∇2 = −�

2

r2

d

dr

(
r2 d

dr

)
.

Question: Is it Hermitian?
Using integration by parts (twice), and test functions f(r) and g(r):

〈f |p2g〉 = −�
2

∫ ∞
0

f
1
r2

d

dr

(
r2 dg

dr

)
4πr2 dr = −4π�

2

∫ ∞
0

f
d

dr

(
r2 dg

dr

)
dr

= −4π�
2

{
r2f

dg

dr

∣∣∣∞
0
−

∫ ∞
0

r2 df

dr

dg

dr
dr

}
= −4π�

2

{
r2f

dg

dr

∣∣∣∞
0
− r2g

df

dr

∣∣∣∞
0

+
∫ ∞

0

d

dr

(
r2 df

dr

)
g dr

}
= −4π�

2

(
r2f

dg

dr
− r2g

df

dr

) ∣∣∣∣∞
0

+ 〈p2f |g〉.

The boundary term at infinity vanishes for functions f(r) and g(r) that go to zero exponentially; the boundary
term at zero is killed by the factor r2, as long as the functions (and their derivatives) are finite. So

〈f |p2g〉 = 〈p2f |g〉,

and hence p2 is Hermitian.
Now we apply the same argument to

p4 =
�

4

r2

d

dr

{
r2 d

dr

[
1
r2

d

dr

(
r2 d

dr

)]}
,
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integrating by parts four times:

〈f |p4g〉 = 4π�
4

∫ ∞
0

f
d

dr

{
r2 d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]}
dr

= 4π�
4

{
r2f

d

dr

[
1
r2

d

dr

(
r2 dg

dr

)] ∣∣∣∣∞
0

−
∫ ∞

0

r2 df

dr

d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]
dr

}
= 4π�

4

{[
r2f

d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]
− df

dr

d

dr

(
r2 dg

dr

)] ∣∣∣∣∞
0

+
∫ ∞

0

1
r2

d

dr

(
r2 df

dr

)
d

dr

(
r2 dg

dr

)
dr

}
= 4π�

4

{[
r2f

d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]
− df

dr

d

dr

(
r2 dg

dr

)
+

d

dr

(
r2 df

dr

)
dg

dr

] ∣∣∣∣∞
0

−
∫ ∞

0

r2 d

dr

[
1
r2

d

dr

(
r2 df

dr

)]
dg

dr
dr

}
= 4π�

4

{[
r2f

d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]
− df

dr

d

dr

(
r2 dg

dr

)
+

d

dr

(
r2 df

dr

)
dg

dr
− r2g

d

dr

[
1
r2

d

dr

(
r2 df

dr

)]] ∣∣∣∣∞
0

+
∫ ∞

0

d

dr

(
r2 d

dr

[
1
r2

d

dr

(
r2 df

dr

)])
g dr

}
= 4π�

4

{
r2f

d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]
− r2g

d

dr

[
1
r2

d

dr

(
r2 df

dr

)]} ∣∣∣∣∞
0

− 4π�
4

{
df

dr

d

dr

(
r2 dg

dr

)
− d

dr

(
r2 df

dr

)
dg

dr

} ∣∣∣∣∞
0

+ 〈p4f |g〉

This time there are four boundary terms to worry about. Infinity is no problem; the trouble comes at r = 0.
If the functions f and g went to zero at the origin (as they do for states with l > 0) we’d be OK, but states
with l = 0 go like exp(−r/na). So let’s test the boundary terms using

f(r) = e−r/na, g(r) = e−r/ma.

In this case

r2 dg

dr
= − 1

ma
r2e−r/ma

d

dr

(
r2 dg

dr

)
=

1
(ma)2

(
r2 − 2mar

)
e−r/ma

df

dr

d

dr

(
r2 dg

dr

)
= − 1

na
e−r/na 1

(ma)2
(
r2 − 2mar

)
e−r/ma.

This goes to zero as r → 0, so the second pair of boundary terms vanishes—but not the first pair:

1
r2

d

dr

(
r2 dg

dr

)
=

1
(ma)2

(
1− 2ma

r

)
e−r/ma

d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]
=

1
(ma)3r2

[
2(ma)2 + 2mar − r2

]
e−r/ma

r2f
d

dr

[
1
r2

d

dr

(
r2 dg

dr

)]
=

1
(ma)3

[
2(ma)2 + 2mar − r2

]
e−r/mae−r/na

This does not vanish as r → 0; rather, it goes to 2/ma. For these particular states, then,

〈f |p4g〉 =
8π�

4

a

(
1
m
− 1

n

)
+ 〈p4f |g〉,
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 167

or, tacking on the normalization factor,

ψn00 =
1√

π (na)3/2
e−r/na, 〈ψn00|p4ψm00〉 =

8�
4

a4

(n−m)
(nm)5/2

+ 〈p4ψn00|ψm00〉,

and hence p4 is not Hermitian, for such states.

Problem 6.16

(a)

[L · S, Lx] = [LxSx + LySy + LzSz, Lx] = Sx [Lx, Lx] + Sy [Ly, Lx] + Sz [Lz, Lx]

= Sx(0) + Sy(−i�Lz) + Sz(i�Ly) = i�(LySz − LzSy) = i�(L× S)x.

Same goes for the other two components, so [L · S,L] = i�(L× S).

(b) [L · S,S] is identical, only with L↔ S: [L · S,S] = i�(S× L).

(c) [L · S,J] = [L · S,L] + [L · S,S] = i�(L× S + S× L) = 0.

(d) L2 commutes with all components of L (and S) , so
[
L · S, L2

]
= 0.

(e) Likewise,
[
L · S, S2

]
= 0.

(f)
[
L · S, J2

]
=

[
L · S, L2

]
+

[
L · S, S2

]
+ 2 [L · S,L · S] = 0 + 0 + 0 =⇒

[
L · S, J2

]
= 0.

Problem 6.17

With the plus sign, j = l + 1/2 (l = j − 1/2) : Eq. 6.57⇒ E1
r = − (En)2

2mc2

(
4n
j
− 3

)
.

Equation 6.65⇒ E1
so =

(En)2

mc2
n

[
j(j + 1)− (j − 1

2 )(j + 1
2 )− 3

4

]
(j − 1

2 )j(j + 1
2 )

=
(En)2

mc2
n(j2 + j − j2 + 1

4 − 3
4 )

(j − 1
2 )j(j + 1

2 )
=

(En)2

mc2
n

j(j + 1
2 )

.

E1
fs = E1

r + E1
so =

(En)2

2mc2

(
−4n

j
+ 3 +

2n
j(j + 1

2 )

)

=
(En)2

2mc2

{
3 +

2n
j(j + 1

2 )

[
1− 2

(
j +

1
2

)]}
=

(En)2

2mc2

(
3− 4n

j + 1
2

)
.
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With the minus sign, j = l − 1/2 (l = j + 1/2) : Eq. 6.57⇒ E1
r = − (En)2

2mc2

(
4n

j + 1
− 3

)
.

Equation 6.65⇒ E1
so =

(En)2

mc2
n

[
j(j + 1)− (j + 1

2 )(j + 3
2 )− 3

4

]
(j + 1

2 )(j + 1)(j + 3
2 )

=
(En)2

mc2
n(j2 + j − j2 − 2j − 3

4 − 3
4 )

(j + 1
2 )(j + 1)(j + 3

2 )
=

(En)2

mc2
−n

(j + 1)(j + 1
2 )

.

E1
fs =

(En)2

2mc2

[
− 4n

j + 1
− 3 +

2n
(j + 1)(j + 1

2 )

]
=

(En)2

2mc2

{
3− 2n

(j + 1)(j + 1
2 )

[
1 + 2

(
j +

1
2

)]}

=
(En)2

2mc2

(
3− 4n

j + 1
2

)
. For both signs, then, E1

fs =
(En)2

2mc2

(
3− 4n

j + 1
2

)
. QED

Problem 6.18

E0
3 − E0

2 = hν =
2π�c

λ
= E1

(
1
9
− 1

4

)
= − 5

36
E1 ⇒ λ = −36

5
2π�c

E1
; E1 = −13.6 eV;

�c = 1.97× 10−11 MeV·cm; λ =
36
5

(2π)(1.97× 10−11 × 106 eV · cm)
(13.6 eV)

= 6.55× 10−5 cm= 655 nm.

ν =
c

λ
=

3.00× 108 m/s
6.55× 10−7 m

= 4.58× 1014 Hz. Equation 6.66 ⇒ E1
fs =

(En)2

2mc2

(
3− 4n

j + 1
2

)
:

For n = 2: l = 0 or l = 1, so j = 1/2 or 3/2. Thus n = 2 splits into two levels :

j = 1/2 : E1
2 =

(E2)2

2mc2

(
3− 8

1

)
= −5

2
(E2)2

mc2
= −5

2

(
1
4

)2 (E1)2

mc2
= − 5

32
(13.6 eV)2

(.511× 106 eV)
= −5.66× 10−5eV.

j = 3/2 : E1
2 =

(E2)2

2mc2

(
3− 8

2

)
= −1

2
(E2)2

mc2
= − 1

32
(3.62× 10−4 eV) = −1.13× 10−5eV.

For n = 3: l = 0, 1 or 2, so j = 1/2, 3/2 or 5/2. Thus n = 3 splits into three levels :

j = 1/2 : E1
3 =

(E3)2

2mc2

(
3− 12

1

)
= −9

(E3)2

mc2
= −9

2

(
1
92

)
(E1)2

mc2
= − 1

18
(3.62× 10−4eV) = −2.01× 10−5eV.

j = 3/2 : E1
3 =

(E3)2

2mc2

(
3− 12

2

)
= −3

2
(E3)2

mc2
= − 1

54
(3.62× 10−4 eV) = −0.67× 10−5 eV.

j = 5/2 : E1
3 =

(E3)2

2mc2

(
3− 12

3

)
= −1

2
(E3)2

mc2
= − 1

162
(3.62× 10−4 eV) = −0.22× 10−5 eV.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com
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E

E

0

0

3

2

1 2 3

4 5 6

5/2

3/2

1/2

3/2

1/2

j=

j=
j=

j=
j=

There are six transitions here; their energies are (E0
3 + E1

3)− (E0
2 + E1

2) = (E0
3 − E0

2) + ∆E, where
∆E ≡ E1

3 − E1
2 . Let β ≡ (E1)2/mc2 = 3.62× 10−4 eV. Then:

(
1
2
→ 3

2
) : ∆E =

[(
− 1

18

)
−

(
− 1

32

)]
β = − 7

288
β = −8.80× 10−6 eV.

(
3
2
→ 3

2
) : ∆E =

[(
− 1

54

)
−

(
− 1

32

)]
β =

11
864

β = 4.61× 10−6 eV.

(
5
2
→ 3

2
) : ∆E =

[(
− 1

162

)
+

(
1
32

)]
β =

65
2592

β = 9.08× 10−6 eV.

(
1
2
→ 1

2
) : ∆E =

[(
5
32

)
−

(
1
18

)]
β =

29
288

β = 36.45× 10−6 eV.

(
3
2
→ 1

2
) : ∆E =

[(
− 1

54

)
+

(
5
32

)]
β =

119
864

β = 49.86× 10−6 eV.

(
5
2
→ 1

2
) : ∆E =

[(
− 1

162

)
+

(
5
32

)]
β =

389
2592

β = 54.33× 10−6 eV.

Conclusion: There are six lines; one of them (1
2 → 3

2 ) has a frequency less than the unperturbed line, the
other five have (slightly) higher frequencies. In order they are: 3

2 → 3
2 ; 5

2 → 3
2 ; 1

2 → 1
2 ; 3

2 → 1
2 ; 5

2 → 1
2 . The

frequency spacings are:

ν2 − ν1 = (∆E2 −∆E1)/2π� = 3.23× 109 Hz
ν3 − ν3 = (∆E3 −∆E2)/2π� = 1.08× 109 Hz
ν4 − ν3 = (∆E4 −∆E3)/2π� = 6.60× 109 Hz
ν5 − ν4 = (∆E5 −∆E4)/2π� = 3.23× 109 Hz
ν6 − ν5 = (∆E6 −∆E5)/2π� = 1.08× 109 Hz
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170 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Problem 6.19

√(
j +

1
2

)2

− α2 =
(
j +

1
2

) √
1−

(
α

j + 1
2

)2

≈
(
j +

1
2

) [
1− 1

2

(
α

j + 1
2

)2
]

= (j +
1
2
)− α2

2(j + 1
2 )

.

α

n− (j + 1
2 ) +

√(
j + 1

2

)2 − α2

≈ α

n−
(
j + 1

2

)
+

(
j + 1

2

)
− α2

2(j+ 1
2 )

=
α

n− α2

2(j+ 1
2 )

=
α

n
[
1− α2

2n(j+ 1
2 )

] ≈ α

n

[
1 +

α2

2n(j + 1
2 )

]
.

1 +

 α

n− (j + 1
2 ) +

√(
j + 1

2

)2 − α2

2

−1/2

≈
[
1 +

α2

n2

(
1 +

α2

n(j + 1
2 )

)]−1/2

≈ 1− 1
2
α2

n2

(
1 +

α2

n(j + 1
2 )

)
+

3
8
α4

n4
= 1− α2

2n2
+

α4

2n4

( −n

j + 1
2

+
3
4

)
.

Enj ≈ mc2
[
1− α2

2n2
+

α4

2n4

( −n

j + 1
2

+
3
4

)
− 1

]
= −α2mc2

2n2

[
1 +

α2

n2

(
n

j + 1
2

− 3
4

)]

= −13.6 eV
n2

[
1 +

α2

n2

(
n

j + 1
2

− 3
4

)]
, confirming Eq. 6.67.

Problem 6.20

Equation 6.59 ⇒ B =
1

4πε0
e

mc2r3
L. Say L = �, r = a; then

B =
1

4πε0
e�

mc2a3

=
(1.60× 10−19 C)(1.05× 10−34 J · s)

4π
(
8.9× 10−12 C2/N ·m2

)
(9.1× 10−31 kg) (3× 108 m/s)2 (0.53× 10−10 m)3

= 12 T.

So a “strong” Zeeman field is Bext � 10 T, and a “weak” one is Bext �10 T. Incidentally, the earth’s field
(10−4 T) is definitely weak.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 171

Problem 6.21

For n = 2, l = 0 (j = 1/2) or l = 1 (j = 1/2 or 3/2). The eight states are:

|1〉 = |2 0 1
2

1
2 〉

|2〉 = |2 0 1
2 − 1

2 〉

 gJ =
[
1 +

(1/2)(3/2) + (3/4)
2(1/2)(3/2)

]
= 1 +

3/2
3/2

= 2.

|3〉 = |2 1 1
2

1
2 〉

|4〉 = |2 1 1
2 − 1

2 〉

 gJ =
[
1 +

(1/2)(3/2)− (1)(2) + (3/4)
2(1/2)(3/2)

]
= 1 +

−1/2
3/2

= 2/3.

In these four cases, Enj = −13.6 eV
4

[
1 +

α2

4

(
2
1
− 3

4

)]
= −3.4 eV

(
1 +

5
16

α2

)
.

|5〉 = |2 1 3
2

3
2 〉

|6〉 = |2 1 3
2

1
2 〉

|7〉 = |2 1 3
2 − 1

2 〉

|8〉 = |2 1 3
2 − 3

2 〉


gJ =

[
1 +

(3/2)(5/2)− (1)(2) + (3/4)
2(3/2)(5/2)

]
= 1 +

5/2
15/2

= 4/3.

In these four cases, Enj = −3.4 eV
[
1 +

α2

4

(
2
2
− 3

4

)]
= −3.4 eV

(
1 +

1
16

α2

)
.

The energies are:

E1 = −3.4 eV
(
1 + 5

16α
2
)

+ µBBext.

E2 = −3.4 eV
(
1 + 5

16α
2
)
− µBBext.

E3 = −3.4 eV
(
1 + 5

16α
2
)

+ 1
3µBBext.

E4 = −3.4 eV
(
1 + 5

16α
2
)
− 1

3µBBext.

E5 = −3.4 eV
(
1 + 1

16α
2
)

+ 2µBBext.

E6 = −3.4 eV
(
1 + 1

16α
2
)

+ 2
3µBBext.

E7 = −3.4 eV
(
1 + 1

16α
2
)
− 2

3µBBext.

E8 = −3.4 eV
(
1 + 1

16α
2
)
− 2µBBext.
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172 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

E BextB
µ

2 (slope -1)

4 (slope -1/3)

3 (slope 1/3)

1 (slope 1)

8 (slope -2)

7 (slope -2/3)

6 (slope 2/3)

5 (slope 2)

-3.4 (1+α /16) eV2

-3.4 (1+5α /16) eV2

Problem 6.22

E1
fs = 〈nlmlms|(H ′r + H ′so)|nlmlms〉 = − E2

n

2mc2

[
4n

l + 1/2
− 3

]
+

e2

8πε0m2c2
�

2mlms

l(l + 1/2)(l + 1)n3a3
.

Now


2E2

n

mc2
=

(
− 2E1

mc2

) (
−E1

n4

)
=

α2

n4
(13.6 eV). (Problem 6.11.)

e2
�

2

8πε0m2c2a3
=

e2
�

2(me2)3

2 · 4πε0m2c2(4πε0�2)3
=

[
m

2�2

(
e2

4πε0

)2
] (

e2

4πε0�c

)2

= α2(13.6 eV).

E1
fs =

13.6 eV
n3

α2

{
− 1

(l + 1/2)
+

3
4n

+
mlms

l(l + 1/2)(l + 1)

}
=

13.6 eV
n3

α2

{
3
4n
− l(l + 1)−mlms

l(l + 1/2)(l + 1)

}
. QED

Problem 6.23

The Bohr energy is the same for all of them: E2 = −13.6 eV/22 = −3.4 eV. The Zeeman contribution is the
second term in Eq. 6.79: µBBext(ml+2ms). The fine structure is given by Eq. 6.82: E1

fs = (13.6 eV/8)α2{· · · } =
(1.7 eV)α2{· · · }. In the table below I record the 8 states, the value of (ml + 2ms), the value of {· · · } ≡
3
8
−

[
l(l + 1)−mlms

l(l + 1/2)(l + 1)

]
, and (in the last column) the total energy, −3.4 eV [1−(α2/2){· · · }]+(ml+2ms)µBBext.

State = |nlmlms〉 (ml + 2ms) {· · · } Total Energy
|1〉 = |2 0 0 1

2 〉 1 −5/8 -3.4 eV [1 + (5/16)α2] + µBBext

|2〉 = |2 0 0− 1
2 〉 −1 −5/8 -3.4 eV [1 + (5/16)α2]− µBBext

|3〉 = |2 1 1 1
2 〉 2 −1/8 -3.4 eV [1 + (1/16)α2] + 2µBBext

|4〉 = |2 1− 1− 1
2 〉 −2 −1/8 -3.4 eV [1 + (1/16)α2]− 2µBBext

|5〉 = |2 1 0 1
2 〉 1 −7/24 -3.4 eV [1 + (7/48)α2] + µBBext

|6〉 = |2 1 0− 1
2 〉 −1 −7/24 -3.4 eV [1 + (7/48)α2]− µBBext

|7〉 = |2 1 1− 1
2 〉 0 −11/24 -3.4 eV [1 + (11/48)α2]

|8〉 = |2 1− 1 1
2 〉 0 −11/24 -3.4 eV [1 + (11/48)α2]
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Ignoring fine structure there are five distinct levels—corresponding to the possible values of (ml + 2ms):

2 (d = 1); 1 (d = 2); 0 (d = 2); −1 (d = 2); −2 (d = 1).

Problem 6.24

Equation 6.72 ⇒ E1
z =

e

2m
Bext · 〈L+2S〉 =

e

2m
Bext2ms� = 2msµBBext (same as the Zeeman term in Eq. 6.79,

with ml = 0). Equation 6.67 ⇒ Enj = −13.6 eV
n2

[
1 +

α2

n2

(
n− 3

4

)]
(since j = 1/2). So the total energy is

E = −13.6 eV
n2

[
1 +

α2

n2

(
n− 3

4

)]
+ 2msµBBext.

Fine structure is the α2 term: E1
fs = −13.6 eV

n4
α2

(
n− 3

4

)
=

13.6 eV
n3

α2

(
3
4n
− 1

)
, which is the same as

Eq. 6.82, with the term in square brackets set equal to 1. QED

Problem 6.25

Equation 6.66 ⇒ E1
fs =

E2
2

2mc2

(
3− 8

j + 1/2

)
=

E2
1

32mc2

(
3− 8

j + 1/2

)
;

E1

mc2
= −α2

2
(Problem 6.11), so

E1
fs = −E1

32

(
α2

2

) (
3− 8

j + 1/2

)
=

13.6 eV
64

α2

(
3− 8

j + 1/2

)
= γ

(
3− 8

j + 1/2

)
.

For j = 1/2 (ψ1, ψ2, ψ6, ψ8), H1
fs = γ(3− 8) = −5γ. For j = 3/2 (ψ3, ψ4, ψ5, ψ7), H1

fs = γ(3− 8
2
) = −γ.

This confirms all the γ terms in −W (p. 281). Meanwhile, H ′z = (e/2m)Bext(Lz +2Sz) (Eq. 6.71); ψ1, ψ2, ψ3, ψ4

are eigenstates of Lz and Sz; for these there are only diagonal elements:

〈H ′z〉 =
e�

2m
Bext(ml + 2ms) = (ml + 2ms)β; 〈H ′z〉11 = β; 〈H ′z〉22 = −β; 〈H ′z〉33 = 2β; 〈H ′z〉44 = −2β.

This confirms the upper left corner of −W. Finally:

(Lz + 2Sz)|ψ5〉 = +�

√
2
3 |1 0〉| 12 1

2 〉
(Lz + 2Sz)|ψ6〉 = −�

√
1
3 |1 0〉| 12 1

2 〉
(Lz + 2Sz)|ψ7〉 = −�

√
2
3 |1 0〉| 12 − 1

2 〉
(Lz + 2Sz)|ψ8〉 = −�

√
1
3 |1 0〉| 12 − 1

2 〉


so

〈H ′z〉55 = (2/3)β,
〈H ′z〉66 = (1/3)β,
〈H ′z〉77 = −(2/3)β,
〈H ′z〉88 = −(1/3)β,
〈H ′z〉56 = 〈H ′z〉65 = −(

√
2/3)β,

〈H ′z〉78 = 〈H ′z〉87 = −(
√

2/3)β,

which confirms the remaining elements.
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174 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Problem 6.26

There are eighteen n = 3 states (in general, 2n2).

WEAK FIELD

Equation 6.67 ⇒ E3j = −13.6 eV
9

[
1 +

α2

9

(
3

j + 1/2
− 3

4

)]
= −1.51 eV

[
1 +

α2

3

(
1

j + 1/2
− 1

4

)]
.

Equation 6.76 ⇒ E1
z = gJmjµBBext.

State |3 l j mj〉 gJ(Eq. 6.75) 1
3

(
1

j+1/2 − 1
4

)
Total Energy

l = 0, j = 1/2 |3 0 1
2

1
2 〉 2 1/4 −1.51 eV

(
1 + α2

4

)
+ µBBext

l = 0, j = 1/2 |3 0 1
2 − 1

2 〉 2 1/4 −1.51 eV
(
1 + α2

4

)
− µBBext

l = 1, j = 1/2 |3 1 1
2

1
2 〉 2/3 1/4 −1.51 eV

(
1 + α2

4

)
+ 1

3µBBext

l = 1, j = 1/2 |3 1 1
2 − 1

2 〉 2/3 1/4 −1.51 eV
(
1 + α2

4

)
− 1

3µBBext

l = 1, j = 3/2 |3 1 3
2

3
2 〉 4/3 1/12 −1.51 eV

(
1 + α2

12

)
+ 2µBBext

l = 1, j = 3/2 |3 1 3
2

1
2 〉 4/3 1/12 −1.51 eV

(
1 + α2

12

)
+ 2

3µBBext

l = 1, j = 3/2 |3 1 3
2 − 1

2 〉 4/3 1/12 −1.51 eV
(
1 + α2

12

)
− 2

3µBBext

l = 1, j = 3/2 |3 1 3
2 − 3

2 〉 4/3 1/12 −1.51 eV
(
1 + α2

12

)
− 2µBBext

l = 2, j = 3/2 |3 2 3
2

3
2 〉 4/5 1/12 −1.51 eV

(
1 + α2

12

)
+ 6

5µBBext

l = 2, j = 3/2 |3 2 3
2

1
2 〉 4/5 1/12 −1.51 eV

(
1 + α2

12

)
+ 2

5µBBext

l = 2, j = 3/2 |3 2 3
2 − 1

2 〉 4/5 1/12 −1.51 eV
(
1 + α2

12

)
− 2

5µBBext

l = 2, j = 3/2 |3 2 3
2 − 3

2 〉 4/5 1/12 −1.51 eV
(
1 + α2

12

)
− 6

5µBBext

l = 2, j = 5/2 |3 2 5
2

5
2 〉 6/5 1/36 −1.51 eV

(
1 + α2

36

)
+ 3µBBext

l = 2, j = 5/2 |3 2 5
2

3
2 〉 6/5 1/36 −1.51 eV

(
1 + α2

36

)
+ 9

5µBBext

l = 2, j = 5/2 |3 2 5
2

1
2 〉 6/5 1/36 −1.51 eV

(
1 + α2

36

)
+ 3

5µBBext

l = 2, j = 5/2 |3 2 5
2 − 1

2 〉 6/5 1/36 −1.51 eV
(
1 + α2

36

)
− 3

5µBBext

l = 2, j = 5/2 |3 2 5
2 − 3

2 〉 6/5 1/36 −1.51 eV
(
1 + α2

36

)
− 9

5µBBext

l = 2, j = 5/2 |3 2 5
2 − 5

2 〉 6/5 1/36 −1.51 eV
(
1 + α2

36

)
− 3µBBext

STRONG FIELD

Equation 6.79 ⇒ −1.51 eV + (ml + 2ms)µBBext;

Equation 6.82 ⇒ 13.6 eV
27

α2

{
1
4
−

[
l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}
= −1.51 eV

α2

3

{[
l(l + 1)−mlms

l(l + 1/2)(l + 1)
− 1

4

]}
.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 175

Etot = −1.51 eV(1 + α2A) + (ml + 2ms)µBBext, where A ≡ 1
3

{[
l(l + 1)−mlms

l(l + 1/2)(l + 1)
− 1

4

]}
.

These terms are given in the table below:

State |n l ml ms〉 (ml + 2ms) A Total Energy

l = 0 |3 0 0 1
2 〉 1 1/4 −1.51 eV

(
1 + α2

4

)
+ µBBext

l = 0 |3 0 0− 1
2 〉 −1 1/4 −1.51 eV

(
1 + α2

4

)
− µBBext

l = 1 |3 1 1 1
2 〉 2 1/12 −1.51 eV

(
1 + α2

12

)
+ 2µBBext

l = 1 |3 1− 1− 1
2 〉 −2 1/12 −1.51 eV

(
1 + α2

12

)
− 2µBBext

l = 1 |3 1 0 1
2 〉 1 5/36 −1.51 eV

(
1 + 5α2

36

)
+ µBBext

l = 1 |3 1 0− 1
2 〉 −1 5/36 −1.51 eV

(
1 + 5α2

36

)
− µBBext

l = 1 |3 1− 1 1
2 〉 0 7/36 −1.51 eV

(
1 + 7α2

36

)
l = 1 |3 1 1− 1

2 〉 0 7/36 −1.51 eV
(
1 + 7α2

36

)
l = 2 |3 2 2 1

2 〉 3 1/36 −1.51 eV
(
1 + α2

36

)
+ 3µBBext

l = 2 |3 2− 2− 1
2 〉 −3 1/36 −1.51 eV

(
1 + α2

36

)
− 3µBBext

l = 2 |3 2 1 1
2 〉 2 7/180 −1.51 eV

(
1 + 7α2

180

)
+ 2µBBext

l = 2 |3 2− 1− 1
2 〉 −2 7/180 −1.51 eV

(
1 + 7α2

180

)
− 2µBBext

l = 2 |3 2 0 1
2 〉 1 1/20 −1.51 eV

(
1 + α2

20

)
+ µBBext

l = 2 |3 2 0− 1
2 〉 −1 1/20 −1.51 eV

(
1 + α2

20

)
− µBBext

l = 2 |3 2− 1 1
2 〉 0 11/180 −1.51 eV

(
1 + 11α2

180

)
l = 2 |3 2 1− 1

2 〉 0 11/180 −1.51 eV
(
1 + 11α2

180

)
l = 2 |3 2− 2 1

2 〉 −1 13/180 −1.51 eV
(
1 + 13α2

180

)
− µBBext

l = 2 |3 2 2− 1
2 〉 1 13/180 −1.51 eV

(
1 + 13α2

180

)
+ µBBext

INTERMEDIATE FIELD
As in the book, I’ll use the basis |n l j mj〉 (same as for weak field); then the fine structure matrix elements

are diagonal: Eq. 6.66 ⇒

E1
fs =

E2
3

2mc2

(
3− 12

j + 1/2

)
=

E2
1

54mc2

(
1− 4

j + 1/2

)
= −E1α

2

108

(
1− 4

j + 1/2

)
= 3γ

(
1− 4

j + 1/2

)
,

γ ≡ 13.6 eV
324

α2. For j = 1/2, E1
fs = −9γ; for j = 3/2, E1

fs = −3γ; for j = 5/2, E1
fs = −γ.

The Zeeman Hamiltonian is Eq. 6.71: H ′z = 1
�
(Lz + 2Sz)µBBext. The first eight states (l = 0 and l = 1) are

the same as before (p. 281), so the β terms in W are unchanged; recording just the non-zero blocks of −W:

(9γ − β), (9γ + β), (3γ − 2β), (3γ + 2β),

(
(3γ − 2

3β)
√

2
3 β√

2
3 β (9γ − 1

3β)

)
,

(
(3γ + 2

3β)
√

2
3 β√

2
3 β (9γ + 1

3β)

)
.
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176 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

The other 10 states (l = 2) must first be decomposed into eigenstates of Lz and Sz:

| 52 5
2 〉 = |2 2〉| 12 1

2 〉 =⇒ (γ − 3β)

| 52 − 5
2 〉 = |2− 2〉| 12 − 1

2 〉 =⇒ (γ + 3β)

| 52 3
2 〉 =

√
1
5 |2 2〉| 12 − 1

2 〉+
√

4
5 |2 1〉| 12 1

2 〉
| 32 3

2 〉 =
√

4
5 |2 2〉| 12 − 1

2 〉 −
√

1
5 |2 1〉| 12 1

2 〉

 =⇒
(

(γ − 9
5β) 2

5β
2
5β (3γ − 6

5β)

)

| 52 1
2 〉 =

√
2
5 |2 1〉| 12 − 1

2 〉+
√

3
5 |2 0〉| 12 1

2 〉
| 32 1

2 〉 =
√

3
5 |2 1〉| 12 − 1

2 〉 −
√

2
5 |2 0〉| 12 1

2 〉

 =⇒
(

(γ − 3
5β)

√
6

5 β√
6

5 β (3γ − 2
5β)

)

| 52 − 1
2 〉 =

√
3
5 |2 0〉| 12 − 1

2 〉+
√

2
5 |2− 1〉| 12 1

2 〉
| 32 − 1

2 〉 =
√

2
5 |2 0〉| 12 − 1

2 〉 −
√

3
5 |2− 1〉| 12 1

2 〉

 =⇒
(

(γ + 3
5β)

√
6

5 β√
6

5 β (3γ + 2
5β)

)

| 52 − 3
2 〉 =

√
4
5 |2− 1〉| 12 − 1

2 〉+
√

1
5 |2− 2〉| 12 1

2 〉
| 32 − 3

2 〉 =
√

1
5 |2− 1〉| 12 − 1

2 〉 −
√

4
5 |2− 2〉| 12 1

2 〉

 =⇒
(

(γ + 9
5β) 2

5β
2
5β (3γ + 6

5β)

)

[Sample Calculation: For the last two, letting Q ≡ 1
�
(Lz + 2Sz), we have

Q| 52 − 3
2 〉 = −2

√
4
5 |2− 1〉| 12 − 1

2 〉 −
√

1
5 |2− 2〉| 12 1

2 〉;

Q| 32 − 3
2 〉 = −2

√
1
5 |2− 1〉| 12 − 1

2 〉+
√

4
5 |2− 2〉| 12 1

2 〉.
〈 52 − 3

2 |Q| 52 − 3
2 〉 = (−2) 4

5 − 1
5 = − 9

5 ; 〈 32 − 3
2 |Q| 32 − 3

2 〉 = (−2) 1
5 − 4

5 = − 6
5 ;

〈 52 − 3
2 |Q| 32 − 3

2 〉 = −2
√

4
5

√
1
5 +

√
1
5

√
4
5 = − 4

5 + 2
5 = − 2

5 = 〈 32 − 3
2 |Q| 52 − 3

2 〉.]
So the 18× 18 matrix −W splits into six 1× 1 blocks and six 2× 2 blocks. We need the eigenvalues of the

2× 2 blocks. This means solving 3 characteristic equations (the other 3 are obtained trivially by changing the
sign of β):(

3γ − 2
3
β − λ

) (
9γ − 1

3
β − λ

)
− 2

9
β2 = 0 =⇒ λ2 + λ(β − 12γ) + γ(27γ − 7β) = 0.

(
γ − 9

5
β − λ

) (
3γ − 6

5
β − λ

)
− 4

25
β2 = 0 =⇒ λ2 + λ(3β − 4γ) + γ

(
3γ2 − 33

5
γβ + 2β2

)
= 0.

(
γ − 3

5
β − λ

) (
3γ − 2

5
β − λ

)
− 6

25
β2 = 0 =⇒ λ2 + λ(β − 4γ) + γ

(
3γ − 11

5
β

)
= 0.

The solutions are:
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 177

λ = −β/2 + 6γ ±
√

(β/2)2 + βγ + 9γ2

λ = −3β/2 + 2γ ±
√

(β/2)2 + 3
5βγ + γ2

λ = −β/2 + 2γ ±
√

(β/2)2 + 1
5βγ + γ2

⇒

ε1 = E3 − 9γ + β
ε2 = E3 − 3γ + 2β
ε3 = E3 − γ + 3β
ε4 = E3 − 6γ + β/2 +

√
9γ2 + βγ + β2/4

ε5 = E3 − 6γ + β/2−
√

9γ2 + βγ + β2/4

ε6 = E3 − 2γ + 3β/2 +
√

γ2 + 3
5βγ + β2/4

ε7 = E3 − 2γ + 3β/2−
√

γ2 + 3
5βγ + β2/4

ε8 = E3 − 2γ + β/2 +
√

γ2 + 1
5βγ + β2/4

ε9 = E3 − 2γ + β/2−
√

γ2 + 1
5βγ + β2/4

(The other 9 ε’s are the same, but with β → −β.) Here γ = 13.6 eV
324 α2, and β = µBBext.

In the weak-field limit (β � γ):

ε4 ≈ E3 − 6γ + β/2 + 3γ
√

1 + β/9γ ≈ E3 − 6γ + β/2 + 3γ(1 + β/18γ) = E3 − 3γ +
2
3
β.

ε5 ≈ E3 − 6γ + β/2− 3γ(1 + β/18γ) = E3 − 9γ +
1
3
β.

ε6 ≈ E3 − 2γ + 3β/2 + γ(1 + 3β/10γ) = E3 − γ +
9
5
β.

ε7 ≈ E3 − 2γ + 3β/2− γ(1 + 3β/10γ) = E3 − 3γ +
6
5
β.

ε8 ≈ E3 − 2γ + β/2 + γ(1 + β/10γ) = E3 − γ +
3
5
β.

ε9 ≈ E3 − 2γ + β/2− γ(1 + β/10γ) = E3 − 3γ +
2
5
β.

Noting that γ = −(E3/36)α2 = 1.51 eV
36 α2, we see that the weak field energies are recovered as in the first table.

In the strong-field limit (β � γ):

ε4 ≈ E3 − 6γ + β/2 + β/2
√

1 + 4γ/β ≈ E3 − 6γ + β/2 + β/2(1 + 2γ/β) = E3 − 5γ + β.

ε5 ≈ E3 − 6γ + β/2− β/2(1 + 2γ/β) = E3 − 7γ.

ε6 ≈ E3 − 2γ + 3β/2 + β/2(1 + 6γ/5β) = E3 −
7
5
γ + 2β.

ε7 ≈ E3 − 2γ + 3β/2− β/2(1 + 6γ/5β) = E3 −
13
5
γ + β.

ε8 ≈ E3 − 2γ + β/2 + β/2(1 + 2γ/5β) = E3 −
9
5
γ + β.

ε9 ≈ E3 − 2γ + β/2− β/2(1 + 2γ/5β) = E3 −
11
5
γ.

Again, these reproduce the strong-field results in the second table.
In the figure below each line is labeled by the level number and (in parentheses) the starting and ending

slope; for each line there is a corresponding one starting from the same point but sloping down.
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E

Ε3

Ε3

Ε3−3γ

−γΕ3

−9γ

3(3)

6(9/5−> 2)

8(3/5−>1)
2(2)
7(6/5−>1)
4(2/5−>1)

9(2/5−>0)

1(1)

5(1/3−>0)

Problem 6.27

I ≡
∫

(a · r̂)(b · r̂) sin θ dθ dφ

=
∫

(ax sin θ cosφ + ay sin θ sinφ + az cos θ)(bx sin θ cosφ + by sin θ sinφ + bz cos θ) sin θ dθ dφ.

But
∫ 2π

0

sinφdφ =
∫ 2π

0

cosφdφ =
∫ 2π

0

sinφ cosφdφ = 0, so only three terms survive :

I =
∫

(axbx sin2 θ cos2 φ + ayby sin2 θ sin2 φ + azbz cos2 θ) sin θ dθ dφ.

But
∫ 2π

0

sin2 φdφ =
∫ 2π

0

cos2 φdφ = π,

∫ 2π

0

dφ = 2π, so

I =
∫ π

0

[
π(axbx + ayby) sin2 θ + 2πazbz cos2 θ

]
sin θ dθ. But

∫ π

0

sin3 θ dθ =
4
3
,

∫ π

0

cos2 θ sin θ dθ =
2
3
,

so I = π(axbx + ayby)
4
3

+ 2πazbz
2
3

=
4π
3

(axbx + ayby + azbz) =
4π
3

(a · b). QED

[Alternatively, noting that I has to be a scalar bilinear in a and b, we know immediately that I = A(a·b), where
A is some constant (same for all a and b). To determine A, pick a = b = k̂; then I = A =

∫
cos2 θ sin θ dθ dφ =

4π/3.]
For states with l = 0, the wave function is independent of θ and φ (Y 0

0 = 1/
√

4π), so〈
3(Sp · r̂)(Se · r̂)− Sp · Se

r3

〉
=

{∫ ∞
0

1
r3
|ψ(r)|2r2dr

} ∫
[3(Sp · r̂)(Se · r̂)] sin θ dθ dφ.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 179

The first angular integral is 3(4π/3)(Sp · Se) = 4π(Sp · Se), while the second is −(Sp · Se)
∫

sin θ dθ dφ =
−4π(Sp · Se), so the two cancel, and the result is zero. QED [Actually, there is a little sleight-of-hand here,
since for l = 0, ψ → constant as r → 0, and hence the radial integral diverges logarithmically at the origin.
Technically, the first term in Eq. 6.86 is the field outside an infinitesimal sphere; the delta-function gives the
field inside. For this reason it is correct to do the angular integral first (getting zero) and not worry about the
radial integral.]

Problem 6.28

From Eq. 6.89 we see that ∆E ∝
(

g

mpmea3

)
; we want reduced mass in a, but not in mpme (which come from

Eq. 6.85); the notation in Eq. 6.93 obscures this point.

(a) g and mp are unchanged; me → mµ = 207me, and a→ aµ. From Eq. 4.72, a ∝ 1/m, so

a

aµ
=

mµ(reduced)
me

=
mµmp

mµ + mp
· 1
me

=
207

1 + 207(me/mp)
=

207

1 + 207 (9.11×10−31)
1.67×10−27)

=
207
1.11

= 186.

∆E = (5.88× 10−6 eV) (1/207) (186)3 = 0.183 eV.

(b) g : 5.59→ 2; mp → me;
a

ap
=

mp(reduced)
me

=
m2

e

me + me
· 1
me

=
1
2
.

∆E = (5.88× 10−6 eV)
(

2
5.59

) (
1.67× 10−27

9.11× 10−31

) (
1
2

)3

= 4.82 ×10−4 eV.

(c) g : 5.59→ 2; mp → mµ;
a

am
=

mm(reduced)
me

=
memµ

me + mµ
· 1
me

=
207
208

.

∆E = (5.88× 10−6)
(

2
5.59

) (
1.67× 10−27

(207)(9.11× 10−31)

) (
207
208

)3

= 1.84×10−5 eV.

Problem 6.29

Use perturbation theory:

H ′ = − e2

4πε0

(
1
b
− 1

r

)
, for 0 < r < b. ∆E = 〈ψ|H ′|ψ〉, with ψ ≡ 1√

πa3
e−r/a.

∆E = − e2

4πε0
1

πa3
4π

∫ b

0

(
1
b
− 1

r

)
e−2r/ar2dr = − e2

πε0a3

(
1
b

∫ b

0

r2e−2r/adr −
∫ b

0

re−2r/adr

)

= − e2

πε0a3

{
1
b

[
− a

2
r2e−2r/a + a

(
a

2

)2

e−2r/a

(
− 2r

a
− 1

)]
−

[(
a

2

)2

e−2r/a

(
− 2r

a
− 1

)]}∣∣∣∣∣
b

0

= − e2

πε0a3

[
− a

2b
b2e−2b/a +

a3

4b
e−2b/a

(
− 2b

a
− 1

)
− a2

4
e−2b/a

(
− 2b

a
− 1

)
+

a3

4b
− a2

4

]
= − e2

πε0a3

[
e−2b/a

(
− ab

2
− a2

2
− a3

4b
+

ab

2
+

a2

4

)
+

a2

4

(
a

b
− 1

)]
= − e2

πε0a3

[
e−2b/a

(
− a2

4

)(
a

b
+ 1

)
+

a2

4

(
a

b
− 1

)]
=

e2

4πε0a

[(
1− a

b

)
+

(
1 +

a

b

)
e−2b/a

]
.
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180 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Let +2b/a = ε (very small). Then the term in square brackets is:(
1− 2

ε

)
+

(
1 +

2
ε

)(
1− ε +

ε2

2
− ε3

6
+ · · ·

)
= ✁1−

✄
✄✄2
ε

+ ✁1 +
✄
✄✄2
ε
− ✁ε− ✁2 +

ε2

2
+ ✁ε−

ε3

6
− ε2

3
+ ( )ε3 + · · · = ε2

6
+ ( )ε3 + ( )ε4 · · ·

To leading order, then, ∆E =
e2

4πε0
1
a

4b2

6a2
.

E = E1 = − me4

2(4πε0)2�2
; a =

4πε0�
2

me2
; so Ea = − e2

2(4πε0)
.

∆E

E
=

e2

4πε0

(
− 2(4πε0)

e2

)
2b2

3a2
= −4

3

(
b

a

)2

.

Putting in a = 5× 10−11 m:

∆E

E
= −4

3

(
10−15

5× 10−11

)
= −16

3
× 10−10 ≈ −5× 10−10.

By contrast,
{

fine structure: ∆E/E ≈ α2 = (1/137)2 = 5× 10−5,
hyperfine structure: ∆E/E ≈ (me/mp)α2 = (1/1800)(1/137)2 = 3× 10−8.

So the correction for the finite size of the nucleus is much smaller (about 1% of hyperfine).

Problem 6.30

(a) In terms of the one-dimensional harmonic oscillator states {ψn(x)}, the unperturbed ground state is

|0〉 = ψ0(x)ψ0(y)ψ0(z).

E1
0 = 〈0|H ′|0〉 = 〈ψ0(x)ψ0(y)ψ0(z)|λx2yz|ψ0(x)ψ0(y)ψ0(z)〉 = λ〈x2〉0〈y〉0〈z〉0.

But 〈y〉0 = 〈z〉0 = 0. So there is no change, in first order.

(b) The (triply degenerate) first excited states are
|1〉 = ψ0(x)ψ0(y)ψ1(z)
|2〉 = ψ0(x)ψ1(y)ψ0(z)
|3〉 = ψ1(x)ψ0(y)ψ0(z)

In this basis the perturbation matrix is Wij = 〈i|H ′|j〉, i = 1, 2, 3.

〈1|H ′|1〉 = 〈ψ0(x)ψ0(y)ψ1(z)|λx2yz|ψ0(x)ψ0(y)ψ1(z)〉 = λ〈x2〉0〈y〉0〈z〉1 = 0,

〈2|H ′|2〉 = 〈ψ0(x)ψ1(y)ψ0(z)|λx2yz|ψ0(x)ψ1(y)ψ0(z)〉 = λ〈x2〉0〈y〉1〈z〉0 = 0,

〈3|H ′|3〉 = 〈ψ1(x)ψ0(y)ψ0(z)|λx2yz|ψ1(x)ψ0(y)ψ0(z)〉 = λ〈x2〉1〈y〉0〈z〉0 = 0,

〈1|H ′|2〉 = 〈ψ0(x)ψ0(y)ψ1(z)|λx2yz|ψ0(x)ψ1(y)ψ0(z)〉 = λ〈x2〉0〈0|y|1〉〈1|z|0〉

= λ
�

2mω
|〈0|x|1〉|2 = λ

(
�

2mω

)2

[using Problems 2.11 and 3.33].

〈1|H ′|3〉 = 〈ψ0(x)ψ0(y)ψ1(z)|λx2yz|ψ1(x)ψ0(y)ψ0(z)〉 = λ〈0|x2|1〉〈y〉0〈1|z|0〉 = 0,

〈2|H ′|3〉 = 〈ψ0(x)ψ1(y)ψ0(z)|λx2yz|ψ1(x)ψ0(y)ψ0(z)〉 = λ〈0|x2|1〉〈1|y|0〉0〈z〉0 = 0.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 181

W =

0 a 0
a 0 0
0 0 0

 , where a ≡ λ

(
�

2mω

)2

.

Eigenvalues of W :

∣∣∣∣∣∣
−E a 0
a −E 0
0 0 −E

∣∣∣∣∣∣ = −E3 + Ea2 = 0⇒ E = {0,±a} = 0, ±λ

(
�

2mω

)2

.

Problem 6.31

(a) The first term is the nucleus/nucleus interaction, the second is the interaction between the nucleus of
atom 2 and the electron in atom 1, the third is between nucleus 1 and electron 2, and the last term is the
interaction between the electrons.

1
R− x

=
1
R

(
1− x

R

)−1

=
1
R

[
1 +

( x

R

)
+

( x

R

)2

+ . . .

]
,

so

H ′ ∼= 1
4πε0

e2

R

{
1−

[
1 +

(x1

R

)
+

(x1

R

)2
]
−

[
1−

(x2

R

)
+

(x2

R

)2
]

+

[
1 +

(
x1 − x2

R

)
+

(
x1 − x2

R

)2
]}

≈ 1
4πε0

e2

R

(
−2x1x2

R2

)
= − e2x1x2

2πε0R3
. �

(b) Expanding Eq. 6.99:

H =
1

2m
(
p2
+ + p2

−
)

+
1
2
k

(
x2

+ + x2
−

)
− e2

4πε0R3

(
x2

+ − x2
−

)
=

1
2m

(
p2
1 + p2

2

)
+

1
2
k

(
x2

1 + x2
2

)
− e2

4πε0R3
(2x1x2) = H0 + H ′ (Eqs. 6.96 and 6.98).

(c)

ω± =

√
k

m

(
1∓ e2

2πε0R3k

)1/2

∼= ω0

[
1∓ 1

2

(
e2

2πε0R3mω2
0

)
− 1

8

(
e2

2πε0R3mω2
0

)2

+ . . .

]
.

∆V ∼= 1
2

�ω0

[
1− 1

2

(
e2

2πε0R3mω2
0

)
− 1

8

(
e2

2πε0R3mω2
0

)2

+

1 +
1
2

(
e2

2πε0R3mω2
0

)
− 1

8

(
e2

2πε0R3mω2
0

)2 ]
− �ω0

=
1

2�ω0

(
−1

4

) (
e2

2πε0R3mω2
0

)2

= −1
8

�

m2ω3
0

(
e2

2πε0

)2 1
R6

. �

(d) In first order:

E1
0 = 〈0|H ′|0〉 = − e2

2πε0R3
〈ψ0(x1)ψ0(x2)|x1x2|ψ0(x1)ψ0(x2)〉 = − e2

2πε0R3
〈x〉0〈x〉0 = 0.
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182 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

In second order:

E2
0 =

∞∑
n=1

|〈ψn|H ′|ψ0〉|2
E0 − En

. Here |ψ0〉 = |0〉|0〉, |ψn〉 = |n1〉|n2〉, so

=
(

e2

2πε0R3

)2 ∞∑
n1=1

∞∑
n2=1

|〈n1|x1|0〉|2 |〈n2|x2|0〉|2
E0,0 − En1,n2

[use Problem 3.33]

=
(

e2

2πε0R3

)2 |〈1|x|0〉|2 |〈1|x|0〉|2
( 1
2�ω0 + 1

2�ω0)− ( 3
2�ω0 + 3

2�ω0)
[zero unless n1 = n2 = 1]

=
(

e2

2πε0R3

)2 (
− 1

2�ω0

) (
�

2mω0

)2

= − �

8m2ω3
0

(
e2

2πε0

)2 1
R6

. �

Problem 6.32

(a) Let the unperturbed Hamiltonian be H(λ0), for some fixed value λ0. Now tweak λ to λ0 + dλ. The
perturbing Hamiltonian is H ′ = H(λ0 + dλ)−H(λ0) = (∂H/∂λ) dλ (derivative evaluated at λ0).

The change in energy is given by Eq. 6.9:

dEn = E1
n = 〈ψ0

n|H ′|ψ0
n〉 = 〈ψn|

∂H

∂λ
|ψn〉 dλ (all evaluated at λ0); so

∂En

∂λ
= 〈ψn|

∂H

∂λ
|ψn〉.

[Note: Even though we used perturbation theory, the result is exact, since all we needed (to calculate the
derivative) was the infinitesimal change in En.]

(b) En = (n + 1
2 )�ω; H = − �

2

2m
d2

dx2
+

1
2
mω2x2.

(i)

∂En

∂ω
= (n +

1
2
)�;

∂H

∂ω
= mωx2; so F-H ⇒ (n +

1
2
)� = 〈n|mωx2|n〉. But

V =
1
2
mω2x2, so 〈V 〉 = 〈n|1

2
mω2x2|n〉 =

1
2
ω(n +

1
2
)�; 〈V 〉 = 1

2 (n + 1
2 )�ω.

(ii)

∂En

∂�
= (n +

1
2
)ω;

∂H

∂�
= − �

m

d2

dx2
=

2
�

(
− �

2

2m
d2

dx2

)
=

2
�
T ;

so F-H ⇒ (n +
1
2
)ω =

2
�
〈n|T |n〉, or 〈T 〉 = 1

2 (n + 1
2 )�ω.

(iii)

∂En

∂m
= 0;

∂H

∂m
=

�
2

2m2

d2

dx2
+

1
2
ω2x2 = − 1

m

(
− �

2

2m
d2

dx2

)
+

1
m

(
1
2
mω2x2

)
= − 1

m
T +

1
m

V.

So F-H ⇒ 0 = − 1
m
〈T 〉+

1
m
〈V 〉, or 〈T 〉 = 〈V 〉. These results are consistent with what we found in

Problems 2.12 and 3.31.
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Problem 6.33

(a)

∂En

∂e
= − 4me3

32π2ε20�2(jmax + l + 1)2
=

4
e
En;

∂H

∂e
= − 2e

4πε0
1
r
. So the F-H theorem says:

4
e
En = − e

2πε0

〈
1
r

〉
, or

〈
1
r

〉
= −8πε0

e2
En = −8πε0E1

e2n2
= −8πε0

e2

[
− m

2�2

(
e2

4πε0

)2
]

1
n2

=
e2m

4πε0�2

1
n2

.

But
4πε0�

2

me2
= a (by Eq. 4.72), so

〈
1
r

〉
=

1
n2a

. (Agrees with Eq. 6.55.)

(b)

∂En

∂l
=

2me4

32π2ε20�2(jmax + l + 1)3
= −2En

n
;

∂H

∂l
=

�
2

2mr2
(2l + 1); so F-H says

−2En

n
=

�
2(2l + 1)

2m

〈
1
r2

〉
, or

〈
1
r2

〉
= − 4mEn

n(2l + 1)�2
= − 4mE1

n3(2l + 1)�2
.

But − 4mE1

�2
=

2
a2

, so
〈

1
r2

〉
=

1
n3(l + 1

2 )a2
. (Agrees with Eq. 6.56.)

Problem 6.34

Equation 4.53 ⇒ u′′ =
[
l(l + 1)

r2
− 2mEn

�2
− 2m

�2

(
e2

4πε0

)
1
r

]
u.

But
me2

4πε0�2
=

1
a

(Eq. 4.72), and − 2mEn

�2
=

2m
�2

m

2�2

(
e2

4πε0

)2 1
n2

=
1

a2n2
. So

� u′′ =
[
l(l + 1)

r2
− 2

ar
+

1
n2a2

]
u.

∴
∫

(ursu′′) dr =
∫

urs

[
l(l + 1)

r2
− 2

ar
+

1
n2a2

]
u dr = l(l + 1)〈rs−2〉 − 2

a
〈rs−1〉+

1
n2a2

〈rs〉

� = −
∫

d

dr
(urs)u′ dr = −

∫
(u′rsu′) dr − s

∫
(urs−1u′) dr.
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Lemma 1:
∫

(ursu′) dr = −
∫

d

dr
(urs)u dr = −

∫
(u′rsu) dr − s

∫
urs−1u dr ⇒

2
∫

(ursu′) dr = −s〈rs−1〉, or
∫

(ursu′) dr = −s

2
〈rs−1〉.

Lemma 2:
∫

(u′′rs+1u′) dr = −
∫

u′
d

dr
(rs+1u′) dr = −(s + 1)

∫
(u′rsu′) dr −

∫
(u′rs+1u′′) dr.

2
∫

(u′′rs+1u′) dr = −(s + 1)
∫

(u′rsu′) dr, or:
∫

(u′rsu′) dr = − 2
s + 1

∫
(u′′rs+1u′) dr.

Lemma 3: Use � in Lemma 2, and exploit Lemma 1:

∫
(u′rsu′) dr = − 2

s + 1

∫ [
l(l + 1)

r2
− 2

ar
+

1
n2a2

]
(urs+1u′) dr

= − 2
s + 1

[
l(l + 1)

∫
(urs−1u′) dr − 2

a

∫
(ursu′) dr +

1
n2a2

∫
(urs+1u′) dr

]
= − 2

s + 1

[
l(l + 1)

(
−s− 1

2
〈rs−2〉

)
− 2

a

(
−s

2
〈rs−1〉

)
+

1
n2a2

(
−s + 1

2
〈rs〉

)]
= l(l + 1)

(
s− 1
s + 1

)
〈rs−2〉 − 2

a

(
s

s + 1

)
〈rs−1〉+

1
n2a2

〈rs〉.

Plug Lemmas 1 and 3 into �:

l(l + 1)〈rs−2〉 − 2
a
〈rs−1〉+

1
n2a2

〈rs〉

= −l(l + 1)
(
s− 1
s + 1

)
〈rs−2〉+

2
a

(
s

s + 1

)
〈rs−1〉 − 1

n2a2
〈rs〉+

s(s− 1)
2

〈rs−2〉.

2
n2a2

〈rs〉 − 2
a

[
1 +

s

s + 1

]
︸ ︷︷ ︸

2s+1
s+1

〈rs−1〉+
{
l(l + 1)

[
1 +

s− 1
s + 1

]
︸ ︷︷ ︸

2s
s+1

−s(s− 1)
2

}
〈rs−2〉 = 0.

2(s + 1)
n2a2

〈rs〉 − 2
a
(2s + 1)〈rs−1〉+ 2s

[
l2 + l − (s2 − 1)

4

]
〈rs−2〉 = 0, or, finally,

(s + 1)
n2

〈rs〉 − a(2s + 1)〈rs−1〉+
sa2

4
(4l2 + 4l + 1︸ ︷︷ ︸

(2l+1)2

−s2)〈rs−2〉 = 0. QED
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Problem 6.35

(a)

1
n2
〈1〉 − a

〈
1
r

〉
+ 0 = 0⇒

〈
1
r

〉
=

1
n2a

.

2
n2
〈r〉 − 3a〈1〉+

1
4

[
(2l + 1)2 − 1

]
a2

〈
1
r

〉
= 0⇒ 2

n2
〈r〉 = 3a− l(l + 1)a2 1

n2a
=

a

n2

[
3n2 − l(l + 1)

]
.

〈r〉 =
a

2
[
3n2 − l(l + 1)

]
.

3
n2
〈r2〉 − 5a〈r〉+

1
2

[
(2l + 1)2 − 4

]
a2 = 0⇒ 3

n2
〈r2〉 = 5a

a

2
[
3n2 − l(l + 1)

]
− a2

2
[
(2l + 1)2 − 4

]
3
n2
〈r2〉 =

a2

2
[
15n2 − 5l(l + 1)− 4l(l + 1)− 1 + 4

]
=

a2

2
[
15n2 − 9l(l + 1) + 3

]
=

3a2

2
[
5n2 − 3l(l + 1) + 1

]
; 〈r2〉 =

n2a2

2
[
5n2 − 3l(l + 1) + 1

]
.

4
n2
〈r3〉 − 7a〈r2〉+

3
4

[
(2l + 1)2 − 9

]
a2〈r〉 = 0 =⇒

4
n2
〈r3〉 = 7a

n2a2

2
[
5n2 − 3l(l + 1) + 1

]
− 3

4
[4l(l + 1)− 8] a2 a

2
[
3n2 − l(l + 1)

]
=

a3

2
{
35n4 − 21l(l + 1)n2 + 7n2 − [3l(l + 1)− 6]

[
3n2 − l(l + 1)

]}
=

a3

2
[
35n4 − 21l(l + 1)n2 + 7n2 − 9l(l + 1)n2 + 3l2(l + 1)2 + 18n2 − 6l(l + 1)

]
=

a3

2
[
35n4 + 25n2 − 30l(l + 1)n2 + 3l2(l + 1)2 − 6l(l + 1)

]
.

〈r3〉 =
n2a3

8
[
35n4 + 25n2 − 30l(l + 1)n2 + 3l2(l + 1)2 − 6l(l + 1)

]
.

(b)

0 + a

〈
1
r2

〉
− 1

4
[
(2l + 1)2 − 1

]
a2

〈
1
r3

〉
= 0⇒

〈
1
r2

〉
= al(l + 1)

〈
1
r3

〉
.

(c)

al(l + 1)
〈

1
r3

〉
=

1
(l + 1/2)n3a2

⇒
〈

1
r3

〉
=

1
l(l + 1/2)(l + 1)n3a3

. Agrees with Eq. 6.64.
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186 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

Problem 6.36

(a)

|1 0 0〉 =
1√
πa3

e−r/a (Eq. 4.80), E1
s = 〈1 0 0|H ′|1 0 0〉 = eEext

1
πa3

∫
e−2r/a(r cos θ)r2 sin θ dr dθ dφ.

But the θ integral is zero:
∫ π

0

cos θ sin θ dθ =
sin2 θ

2

∣∣∣∣π
0

= 0. So E1
s = 0. QED

(b) From Problem 4.11:



|1〉 = ψ2 0 0 =
1√
2πa

1
2a

(
1− r

2a

)
e−r/2a

|2〉 = ψ2 1 1 = − 1√
πa

1
8a2

re−r/2a sin θeiφ

|3〉 = ψ2 1 0 =
1√
2πa

1
4a2

re−r/2a cos θ

|4〉 = ψ2 1−1 =
1√
πa

1
8a2

re−r/2a sin θe−iφ

〈1|H ′s|1〉 = {. . . }
∫ π

0

cos θ sin θ dθ = 0

〈2|H ′s|2〉 = {. . . }
∫ π

0

sin2 θ cos θ sin θ dθ = 0

〈3|H ′s|3〉 = {. . . }
∫ π

0

cos2 θ cos θ sin θ dθ = 0

〈4|H ′s|4〉 = {. . . }
∫ π

0

sin2 θ cos θ sin θ dθ = 0

〈1|H ′s|2〉 = {. . . }
∫ 2π

0

eiφ dφ = 0

〈1|H ′s|4〉 = {. . . }
∫ 2π

0

e−iφ dφ = 0

〈2|H ′s|3〉 = {. . . }
∫ 2π

0

e−iφ dφ = 0

〈2|H ′s|4〉 = {. . . }
∫ 2π

0

e−2iφ dφ = 0

〈3|H ′s|4〉 = {. . . }
∫ 2π

0

e−iφ dφ = 0



All matrix elements of H ′s are zero
except 〈1|H ′s|3〉 and 〈3|H ′s|1〉
(which are complex conjugates,
so only one needs to be evaluated).

〈1|H ′s|3〉 = eEext
1√
2πa

1
2a

1√
2πa

1
4a2

∫ (
1− r

2a

)
e−r/2are−r/2a cos θ(r cos θ)r2 sin θ dr dθ dφ

=
eEext

2πa8a3
(2π)

[∫ π

0

cos2 θ sin θ dθ

] ∫ ∞
0

(
1− r

2a

)
e−r/ar4 dr

=
eEext

8a4

2
3

{∫ ∞
0

r4e−r/a dr − 1
2a

∫ ∞
0

r5e−r/a dr

}
=

eEext

12a4

(
4!a5 − 1

2a
5!a6

)
=

eEext

12a4
24a5

(
1− 5

2

)
= eaEext(−3) = −3aeEext.

W = −3aeEext


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 .
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 187

We need the eigenvalues of this matrix. The characteristic equation is:∣∣∣∣∣∣∣∣
−λ 0 1 0
0 −λ 0 0
1 0 −λ 0
0 0 0 −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣
−λ 0 0
0 −λ 0
0 0 −λ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
0 −λ 0
1 0 0
0 0 −λ

∣∣∣∣∣∣ = −λ(−λ)3 + (−λ2) = λ2(λ2 − 1) = 0.

The eigenvalues are 0, 0, 1, and −1, so the perturbed energies are

E2, E2, E2 + 3aeEext, E2 − 3aeEext. Three levels.

(c) The eigenvectors with eigenvalue 0 are |2〉 =


0
1
0
0

 and |4〉 =


0
0
0
1

; the eigenvectors with eigenvalues ±1

are |±〉 ≡ 1√
2


1
0
±1
0

. So the “good” states are ψ2 1 1, ψ2 1−1,
1√
2
(ψ2 0 0 + ψ2 1 0),

1√
2
(ψ2 0 0 − ψ2 1 0).

〈pe〉4 = −e
1
πa

1
64a4

∫
r2e−r/a sin2 θ

[
r sin θ cosφî + r sin θ sinφĵ + r cos θk̂

]
r2 sin θ dr dθ dφ.

But
∫ 2π

0

cosφdφ =
∫ 2π

0

sinφdφ = 0,
∫ π

0

sin3 θ cos θ dθ =
∣∣∣∣ sin4 θ

4

∣∣∣∣π
0

= 0, so

〈pe〉4 = 0. Likewise 〈pe〉2 = 0.

〈pe〉± = −1
2
e

∫
(ψ1 ± ψ3)2(r)r2 sin θ dr dθ dφ

= −1
2
e

1
2πa

1
4a2

∫ [(
1− r

2a

)
± r

2a
cos θ

]2

e−r/ar(sin θ cosφ î + sin θ sinφ ĵ + cos θ k̂)r2 sin θ dr dθ dφ

= −e

2
k̂

2πa
1

4a2
2π

∫ [(
1− r

2a

)
± r

2a
cos θ

]2

r3e−r/a cos θ sin θ dr dθ.

But
∫ π

0
cos θ sin θ dθ =

∫ π

0
cos3 θ sin θ dθ = 0, so only the cross-term survives:

〈pe〉± = − e

8a3
k̂

(
±1

a

) ∫ (
1− r

2a

)
r cos θ r3e−r/a cos θ sin θ dr dθ

= ∓
( e

8a4
k̂
) [∫ π

0

cos2 θ sin θ dθ

] ∫ ∞
0

(
1− r

2a

)
r4e−r/adr = ∓

( e

8a4
k̂
) 2

3

[
4!a5 − 1

2a
5!a6

]
= ∓ek̂

(
1

12a4

)
24a5

(
1− 5

2

)
= ±3aek̂.

Problem 6.37

(a) The nine states are:
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188 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY



l = 0 : |3 0 0〉 = R30Y
0
0

l = 1 : |3 1 1〉 = R31Y
1
1

|3 1 0〉 = R31Y
0
1

|3 1− 1〉 = R31Y
−1
1

l = 2 : |3 2 2〉 = R32Y
2
2

|3 2 1〉 = R32Y
1
2

|3 2 0〉 = R32Y
0
2

|3 2− 1〉 = R32Y
−1
2

|3 2− 2〉 = R32Y
−2
2

H ′s contains no φ dependence, so the φ integral will be:

〈n lm|H ′s|n′ l′m′〉 = {· · · }
∫ 2π

0

e−imφeim′φ dφ, which is zero unless m′ = m.

For diagonal elements: 〈n lm|H ′s|n lm〉 = {· · · }
∫ π

0
[Pm

l (cos θ)]2 cos θ sin θ dθ. But (p. 137 in the text)
Pm

l is a polynomial (even or odd) in cos θ, multiplied (if m is odd) by sin θ. Since sin2 θ = 1 − cos2 θ,
[Pm

l (cos θ)]2 is a polynomial in even powers of cos θ. So the θ integral is of the form∫ π

0

(cos θ)2j+1 sin θ dθ = − (cos θ)2j+2

(2j + 2)

∣∣∣∣π
0

= 0. All diagonal elements are zero.

There remain just 4 elements to calculate:

m = m′ = 0 : 〈3 0 0|H ′s|3 1 0〉, 〈3 0 0|H ′s|3 2 0〉, 〈3 1 0|H ′s|3 2 0〉; m = m′ = ±1 : 〈3 1 ± 1|H ′s|3 2 ± 1〉.

〈3 0 0|H ′s|3 1 0〉 = eEext

∫
R30R31r

3dr

∫
Y 0

0 Y 0
1 cos θ sin θ dθ dφ. From Table 4.7 :

∫
R30R31r

3 dr =
2√
27

1
a3/2

8
27
√

6
1

a3/2

1
a

∫ (
1− 2r

3a
+

2r2

27a2

)
e−r/3a

(
1− r

6a

)
re−r/3ar3 dr.

Let x ≡ 2r/3a:

∫
R30R31r

3 dr =
24

35
√

2a4

(
3a
2

)5 ∫ ∞
0

(
1− x +

x2

6

) (
1− x

4

)
x4e−xdx

=
a

2
√

2

∫ ∞
0

(
1− 5

4
x +

5
12

x2 − 1
24

x3

)
x4e−xdx =

a

2
√

2

(
4!− 5

4
5! +

5
12

6!− 1
24

7!
)

= −9
√

2a.∫
Y 0

0 Y 0
1 cos θ sin θ dθ dφ =

1√
4π

√
3
4π

∫
cos θ cos θ sin θ dθ dφ =

√
3

4π
2π

∫ π

0

cos3 θ sin θ dθ =
√

3
2

2
3

=
√

3
3

.

〈3 0 0|H ′s|3 1 0〉 = eEext(−9
√

2a)

(√
3

3

)
= −3

√
6aeEext.

〈3 0 0|H ′s|3 2 0〉 = eEext

∫
R30R31r

3dr

∫
Y 0

0 Y 0
2 cos θ sin θ dθ dφ.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 189

∫
Y 0

0 Y 0
2 cos θ sin θ dθ dφ =

1√
4π

√
5

16π

∫
(3 cos2 θ − 1) cos θ sin θ dθ dφ = 0. 〈3 0 0 |H ′s|3 2 0〉 = 0.

〈3 1 0|H ′s|3 2 0〉 = eEext

∫
R31R32r

3dr

∫
Y 0

1 Y 0
2 cos θ sin θ dθ dφ.

∫
R31R32r

3dr =
8

27
√

6
1

a3/2

1
a

4
81
√

30
1

a3/2

1
a2

∫ (
1− r

6a

)
re−r/3ar2e−r/3ar3dr

=
24

38
√

5a6

(
3a
2

)7 ∫ ∞
0

(
1− x

4

)
x6e−xdx =

a

24
√

5

(
6!− 1

4
7!

)
= −9

√
5

2
a.

∫
Y 0

1 Y 0
2 sin θ cos θ dθ dφ =

√
3
4π

√
5

16π

∫
cos θ(3 cos2 θ − 1) cos θ sin θ dθ dφ

=
√

15
8π

2π
∫ π

0

(3 cos4 θ − cos2 θ) sin θ dθ =
√

15
4

[
−3

5
cos5 θ +

1
3

cos3 θ

]∣∣∣∣π
0

=
2√
15

.

〈3 1 0|H ′s|3 2 0〉 = eEext

(
−9
√

5
2

a

)(
2√
15

)
= −3

√
3aeEext.

〈3 1 ± 1|H ′s|3 2 ± 1〉 = eEext

∫
R31R32r

3dr

∫ (
Y ±1

1

)∗
Y ±1

2 cos θ sin θ dθ dφ.

∫ (
Y ±1

1

)∗
Y ±1

2 cos θ sin θ dθ dφ =

(
∓

√
3
8π

) (
∓

√
15
8π

)∫
sin θe∓iφ sin θ cos θe±iφ cos θ sin θ dθ dφ

=
3
√

5
8π

2π
∫ π

0

cos2 θ(1− cos2 θ) sin θ dθ =
3
4

√
5

(
−cos3 θ

3
+

cos5 θ

5

)∣∣∣∣π
0

=
1√
5
.

〈3 1 ± 1|H ′s|3 2 ± 1〉 = eEext

(
−9
√

5
2

a

)(
1√
5

)
= −9

2
aeEext.

Thus the matrix representing H ′s is (all empty boxes are zero; all numbers multiplied by −aeEext):

(b) The perturbing matrix (below) breaks into a 3×3 block, two 2× 2 blocks, and two 1× 1 blocks, so we can
work out the eigenvalues in each block separately.

3× 3 : 3
√

3

 0
√

2 0√
2 0 1

0 1 0

 ;

∣∣∣∣∣∣
−λ

√
2 0√

2 −λ 1
0 1 −λ

∣∣∣∣∣∣ = −λ3 + λ + 2λ = −λ(λ2 − 3) = 0;

λ = 0,±
√

3 ⇒ E1
1 = 0, E1

2 = 9aeEext, E1
3 = −9aeEext.

2× 2 :
9
2

(
0 1
1 0

)
;

∣∣∣∣−λ 1
1 −λ

∣∣∣∣ = λ2 − 1 = 0⇒ λ = ±1.
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190 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

300 310 320 311 321 31-1 32-1 322 32-2

300

310

320

311

321

31-1

32-1

322

32-2

3√6

3√6

3√3

3√3

9/2

9/2

9/2

9/2

E1
4 =

9
2
aeEext, E1

5 = −9
2
aeEext. From the other 2×2 we get E1

6 = E1
4 , E1

7 = E1
5 , and from the 1×1’s we

get E1
8 = E1

9 = 0. Thus the perturbations to the energy (E3) are:

0 (degeneracy 3)
(9/2)aeEext (degeneracy 2)
−(9/2)aeEext (degeneracy 2)
9aeEext (degeneracy 1)
−9aeEext (degeneracy 1)

Problem 6.38

Equation 6.89 ⇒ E1
hf =

µ0gde
2

3πmdmea3
〈Sd · Se〉; Eq. 6.91⇒ Sd · Se =

1
2
(S2 − S2

e − S2
d).

Electron has spin 1
2 , so S2

e = 1
2

(
3
2

)
�

2 = 3
4�

2; deuteron has spin 1, so S2
d = 1(2)�2 = 2�

2.
Total spin could be 3

2 [in which case S2 = 3
2

(
5
2

)
�

2 = 15
4 �

2] or 1
2 [in which case S2 = 3

4�
2]. Thus

〈Sd · Se〉 =


1
2

(
15
4 �

2 − 3
4�

2 − 2�
2
)

= 1
2�

2

1
2

(
3
4�

2 − 3
4�

2 − 2�
2
)

= −�
2

 ; the difference is
3
2

�
2, so ∆E =

µ0gde
2
�

2

2πmdmea3
.

But µ0ε0 =
1
c2
⇒ µ0 =

1
ε0c2

, so ∆E =
2gde

2
�

2

4πε0mdmec2a3
=

2gd�
4

mdm2
ec

2a4
=

3
2
gd

gp

mp

md
∆Ehydrogen (Eq. 6.98).

Now, λ =
c

ν
=

ch

∆E
, so λd =

2
3
gp

gd

md

mp
λh, and since md = 2mp, λd =

4
3

(
5.59
1.71

)
(21 cm) = 92 cm.

Problem 6.39

(a) The potential energy of the electron (charge −e) at (x, y, z) due to q’s at x = ±d alone is:

V = − eq

4πε0

[
1√

(x + d)2 + y2 + z2
+

1√
(x− d)2 + y2 + z2

]
. Expanding (with d� x, y, z) :
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 191

1√
(x± d)2 + y2 + z2

= (x2 ± 2dx + d2 + y2 + z2)−1/2 = (d2 ± 2dx + r2)−1/2 =
1
d

(
1± 2x

d
+

r2

d2

)−1/2

≈ 1
d

(
1∓ x

d
− r2

2d2
+

3
8

4x2

d2

)
=

1
d

[
1∓ x

d
+

1
2d2

(3x2 − r2)
]
.

V = − eq

4πε0d

[
1− x

d
+

1
2d2

(3x2 − r2) + 1 +
x

d
+

1
2d2

(3x2 − r2)
]

= − 2eq
4πε0d

− eq

4πε0d3
(3x2 − r2)

= 2βd2 + 3βx2 − βr2, where β ≡ − e

4πε0
q

d3
.

Thus with all six charges in place

H ′ = 2(β1d
2
1 + β2d

2
2 + β3d

2
3) + 3(β1x

2 + β2y
2 + β3z

2)− r2(β1 + β2 + β3). QED

(b) 〈1 0 0|H ′|1 0 0〉 =
1

πa3

∫
e−2r/aH ′r2 sin θ dr dθ dφ

= V0 +
3

πa3

∫
e−2r/a(β1x

2 + β2y
2 + β3z

2)r2 sin θdr dθ dφ− (β1 + β2 + β3)
πa3

∫
r2e−2r/ar2 sin θ dr dθ dφ.

I1 ≡
∫

r2e−2r/ar2 sin θ dr dθ dφ = 4π
∫ ∞

0

r4e−2r/adr = 4π4!(
a

2
)5 = 3πa5.

I2 ≡
∫

e−2r/a(β1x
2 + β2y

2 + β3z
2)r2 sin θ dr dθ dφ

=
∫

r4e−2r/a(β1 sin2 θ cos2 φ + β2 sin2 θ sin2 φ + β3 cos2 θ) sin θ dr dθ dφ.

But
∫ 2π

0

cos2 φdφ =
∫ 2π

0

sin2 φdφ = π,

∫ 2π

0

dφ = 2π. So

=
∫ ∞

0

r4e−2r/adr

∫ π

0

[
π(β1 + β2) sin2 θ + 2πβ3 cos2 θ

]
sin θ dθ.

But
∫ π

0

sin3 θ dθ =
4
3
,

∫ π

0

cos2 θ sin θ dθ =
2
3
. So

= 4!
(a

2

)5
[
4π
3

(β1 + β2) +
4π
3

β3

]
= πa5(β1 + β2 + β3).

〈1 0 0|H ′|1 0 0〉 = V0 +
3

πa3
πa5(β1 + β2 + β3)−

(β1 + β2 + β3)
πa3

3πa5 = V0.

(c) The four states are


|2 0 0〉 = R20Y

0
0

|2 1 1〉 = R21Y
1
1

|2 1− 1〉 = R21Y
−1
1

|2 1 0〉 = R21Y
0
1

 (functional forms in Problem 4.11).

Diagonal elements: 〈n lm|H ′|n lm〉 = V0 + 3
(
β1〈x2〉+ β2〈y2〉+ β3〈z2〉

)
− (β1 + β2 + β3)〈r2〉.
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192 CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY

For |2 0 0〉, 〈x2〉 = 〈y2〉 = 〈z2〉 = 1
3 〈r2〉 (Y 0

0 does not depend on φ, θ; this state has spherical symmetry),

so 〈2 0 0|H ′|2 0 0〉 = V0. (I could have used the same argument in (b).)

From Problem 6.35(a), 〈r2〉 =
n2a2

2
[
5n2 − 3l(l + 1) + 1

]
, so for n = 2, l = 1 : 〈r2〉 = 30a2. Moreover,

since 〈x2〉 = {. . . }
∫ 2π

0

cos2 φdφ = {. . . }
∫ 2π

0

sin2 φdφ = 〈y2〉, and 〈x2〉 + 〈y2〉 + 〈z2〉 = 〈r2〉, it follows

that 〈x2〉 = 〈y2〉 =
1
2
(〈r2〉 − 〈z2〉) = 15a2 − 1

2
〈z2〉. So all we need to calculate is 〈z2〉.

〈2 1 0|z2|2 1 0〉 =
1

2πa
1

16a4

∫
r2e−r/a cos2 θ(r2 cos2 θ)r2 sin θ dr dθ dφ

=
1

16a5

∫ ∞
0

r6e−r/adr

∫ π

0

cos4 θ sin θ dθ =
1

16a5
6!a7 2

5
= 18a2; 〈x2〉 = 〈y2〉 = 15a2 − 9a2 = 6a2.

〈2 1 0|H ′|2 1 0〉 = V0 + 3(6a2β1 + 6a2β2 + 18a2β3)− 30a2(β1 + β2 + β3)

= V0 − 12a2(β1 + β2 + β3) + 36a2β3.

〈2 1 ± 1|z2|2 1 ± 1〉 =
1
πa

1
64a4

∫
r2e−r/a sin2 θ(r2 cos2 θ)r2 sin θ dr dθ dφ

=
1

32a5

∫ ∞
0

r6e−r/adr

∫ π

0

(1− cos2 θ) cos2 θ sin θ dθ =
1

32a5
6!a7

(
2
3
− 2

5

)
= 6a2;

〈x2〉 = 〈y2〉 = 15a2 − 3a2 = 12a2.

〈2 1 ± 1|H ′|2 1 ± 1〉 = V0 + 3(12a2β1 + 12a2β2 + 6a2β3)− 30a2(β1 + β2 + β3)

= V0 + 6a2(β1 + β2 + β3)− 18a2β3.

Off-diagonal elements: We need 〈2 0 0|H ′|2 1 0〉, 〈2 0 0|H ′|2 1±1〉, 〈2 1 0|H ′|2 1±1〉, and 〈2 1−1|H ′|2 1 1〉.
Now 〈n lm|V0|n′ l′m′〉 = 0, by orthogonality, and 〈n lm|r2|n′ l′m′〉 = 0, by orthogonality of Y m

l , so
all we need are the matrix elements of x2 and y2 (〈|z2|〉 = −〈|x2|〉 − 〈|y2〉). For 〈2 0 0|x2|2 1 ± 1〉 and
〈2 1 0|x2|2 1 ± 1〉 the φ integral is

∫ 2π

0
cos2 φe±iφ dφ =

∫ 2π

0
cos3 φdφ ± i

∫ 2π

0
cos2 φ sinφdφ = 0, and the

same goes for y2. So 〈2 0 0|H ′|2 1± 1〉 = 〈2 1 0|H ′|2 1± 1〉 = 0.

For 〈2 0 0|x2|2 1 0〉 and 〈2 0 0|y2|2 1 0〉 the θ integral is
∫ π

0
cos θ(sin2 θ) sin θ dθ = sin4 θ/4

∣∣π
0

= 0, so

〈2 0 0|H ′|2 1 0〉 = 0. Finally:

〈2 1− 1|x2|2 1 1〉 = − 1
πa

1
64a4

∫
r2e−r/a sin2 θe2iφ(r2 sin2 θ cos2 φ)r2 sin θ dr dθ dφ

= − 1
64πa5

∫ ∞
0

r6e−r/adr︸ ︷︷ ︸
6!a7

∫ π

0

sin5 θdθ︸ ︷︷ ︸
16/15

∫ 2π

0

e2iφ cos2 φdφ︸ ︷︷ ︸
π/2

= − 1
64πa5

6!a7 16
15

π

2
= −6a2.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 193

For y2, the φ integral is
∫ 2π

0
e2iφ sin2 φdφ = −π/2, so 〈2 1 − 1|y2|2 1 1〉 = 6a2, and 〈2 1− 1|z2|2 1 1〉 = 0.

〈2 1− 1|H ′|2 1 1〉 = 3
[
β1(−6a2) + β2(6a2)

]
= −18a2(β1 − β2).

The perturbation matrix is:

2 0 0 2 1 0 2 1 1 2 1 -1
2 0 0 V0 0 0 0
2 1 0 0 V0 − 12a2(β1 + β2) + 24a2β3 0 0
2 1 1 0 0 V0 + 6a2(β1 + β2)− 12a2β3 −18a2(β1 − β2)
2 1 -1 0 0 −18a2(β1 − β2) V0 + 6a2(β1 + β2)− 12a2β3

The 2×2 block has the form
(

A B
B A

)
; its characteristic equation is (A−λ)2−B2 = 0, so A−λ = ±B,

or

λ = A∓B = V0 + 6a2(β1 + β2)− 12a2β3 ± 18a2(β1 − β2) =
{

V0 + 24a2β1 − 12a2β2 − 12a2β3,
V0 − 12a2β1 + 24a2β2 − 12a2β3.

The first-order corrections to the energy (E2) are therefore:

ε1 = V0

ε2 = V0 − 12a2(β1 + β2 − 2β3)
ε3 = V0 − 12a2(−2β1 + β2 + β3)
ε4 = V0 − 12a2(β1 − 2β2 + β3)

(i) If β1 = β2 = β3, then ε1 = ε2 = ε3 = ε4 = V0: one level (still 4-fold degenerate).

(ii) If β1 = β2 �= β3, then ε1 = V0, ε2 = V0 − 24a2(β1 − β3), ε3 = ε4 = V0 + 12a2(β1 − β3): three levels
(one remains doubly degenerate).

(iii) If all three β’s are different, there are four levels (no remaining degeneracy).

Problem 6.40

(a) (i) Equation 6.10: (H0 − E0
0)ψ1

0 = −(H ′ − E1
0)ψ0

0 .

H0 = − �
2

2m
∇2 − e2

4πε0
1
r

= − �
2

2m

(
∇2 +

2
ar

)
, since a =

4πε0�
2

me2
.

E0
0 = − �

2

2ma2
.

H ′ = eEextr cos θ; E1
0 = 0 (Problem6.36(a)).

ψ0
0 =

1√
πa3

e−r/a; ψ1
0 = f(r)e−r/a cos θ.
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Equation 4.13 ⇒

∇2ψ1
0 =

cos θ
r2

d

dr

[
r2 d

dr

(
fe−r/a

)]
+

fe−r/a

r2 sin θ

d

dθ

[
sin θ

d

dθ
(cos θ)

]
=

cos θ
r2

d

dr

[
r2

(
f ′ − 1

a
f

)
e−r/a

]
+

fe−r/a

r2 sin θ

d

dθ

[
− sin2 θ

]
=

cos θ
r2

[
2r

(
f ′ − 1

a
f

)
e−r/a + r2

(
f ′′ − 2

a
f ′ +

1
a2

f

)
e−r/a

]
− 2 cos θ

r2
fe−r/a

= cos θe−r/a

[(
f ′′ − 2

a
f ′ +

1
a2

f

)
+ 2

(
f ′ − 1

a
f

)
1
r
− 2f

1
r2

]
.

Plug this into Eq. 6.10:

− �
2

2m
cos θe−r/a

[(
f ′′ − 2

a
f ′ +

1
a2

f

)
+ 2

(
f ′ − 1

a
f

)
1
r
− 2f

1
r2

+ 2f
1
a

1
r
− f

1
a2

]
= −eEextr cos θ

1√
πa3

e−r/a,

�
(
f ′′ − 2

a
f ′

)
+ 2f ′

1
r
− 2f

1
r2

=
(

2meEext

�2
√
πa3

)
r =

4γ
a

r, where γ ≡ meEext

2�2
√
πa

.

Now let f(r) = A + Br + Cr2, so f ′ = B + 2Cr and f ′′ = 2C. Then

2C − 2
a
(B + 2Cr) +

2
r
(B + 2Cr)− 2

r2
(A + Br + Cr2) =

4γ
a

r.

Collecting like powers of r:

r−2 : A = 0.
r−1 : 2B − 2B = 0 (automatic).
r0 : 2C − 2B/a + 4C − 2C = 0⇒ B = 2aC.

r1 : −4C/a = 4γ/a⇒ C = −γ.

Evidently the function suggested does satisfy Eq. 6.10, with the coefficients A = 0, B = −2aγ, C = −γ;
the second-order correction to the wave function is

ψ1
0 = −γr(r + 2a)e−r/a cos θ.

(ii) Equation 6.11 says, in this case:

E2
0 = 〈ψ0

0 |H ′|ψ1
0〉 = − 1√

πa3

meEext

2�2
√
πa

eEext

∫
e−r/a(r cos θ)r(r + 2a)e−r/a cos θ r2 sin θ dr dθ dφ

= −m(eEext)2

2πa2�2
2π

∫ ∞
0

r4(r + 2a)e−2r/adr

∫ π

0

cos2 θ sin θ dθ

= −m

(
eEext

a�

)2 [
5!

(a

2

)6

+ 2a 4!
(a

2

)5
] (
−cos3 θ

3

) ∣∣∣∣π
0

= −m

(
eEext

a�

)2 (
27
8
a6

)
2
3

= −m

(
3eEexta

2

2�

)2

.
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CHAPTER 6. TIME-INDEPENDENT PERTURBATION THEORY 195

(b) (i) This is the same as (a) [note that E1
0 = 0, as before, since ψ0

0 is spherically symmetric, so 〈cos θ〉 = 0]
except for the r-dependence of H ′. So Eq. �⇒

f ′′ + 2f ′
(

1
r
− 1

a

)
− 2f

1
r2

= −
(

2mep

4πε0�2
√
πa3

)
1
r2

= −2β
r2

, where β ≡ mep

4πε0�2
√
πa3

.

The solution this time it obvious: f(r) = β (constant). [For the general solution we would add the general
solution to the homogeneous equation (right side set equal to zero), but this would simply reproduce the
unperturbed ground state, ψ0

0 , which we exclude—see p. 253.] So

ψ1
0 = βe−r/a cos θ.

(ii) The electric dipole moment of the electron is

〈pe〉 = 〈−er cos θ〉 = −e〈ψ0
0+ψ1

0 |r cos θ|ψ0
0+ψ1

0〉 = −e
(
〈ψ0

0 |r cos θ|ψ0
0〉+ 2〈ψ0

0 |r cos θ|ψ1
0〉+ 〈ψ1

0 |r cos θ|ψ1
0〉

)
.

But the first term is zero, and the third is higher order, so

〈pe〉 = −2e
1√
πa3

β

∫
e−r/a(r cos θ)e−r/a cos θ r2 sin θ dr dθ dφ

= −2e
(

mep

4πε0�2πa3

)
2π

∫ ∞
0

r3e−2r/adr

∫ π

0

cos2 θ sin θ dθ = −
(

me2p

ε0�2πa3

) [
3!

(a

2

)4
] (

2
3

)
= −

(
me2p

ε0�2πa3

) (
3a4

8

) (
2
3

)
= −

(
me2pa

4πε0�2

)
= −p.

Evidently the dipole moment associated with the perturbation of the electron cloud cancels the dipole
moment of the nucleus, and the total dipole moment of the atom is zero.

(iii) The first-order correction is zero (as noted in (i)). The second-order correction is

E2
0 = 〈ψ0

0 |H ′|ψ1
0〉 =

1√
πa3

(
− ep

4πε0

) (
mep

4πε0�2
√
πa3

) ∫
e−r/a

(
cos θ
r2

)
e−r/a cos θ r2 sin θ dr dθ dφ

= −m
(ep)2

(4πε0)2�2πa3
2π

∫ ∞
0

e−2r/adr

∫ π

0

cos2 θ sin θ dθ = −2m
(ep)2

(4πε0)2�2a3

(a

2

) (
2
3

)
=

4
3

(
− me4

2(4πε0)2�2

)
p2

e2a2
=

4
3

( p

ea

)2

E1.
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Chapter 7

The Variational Principle

Problem 7.1

(a)

〈V 〉 = 2αA2

∫ ∞
0

xe−2bx2
dx = 2αA2

(
− 1

4b
e−2bx2

)∣∣∣∣∞
0

=
αA2

2b
=

α

2b

√
2b
π

=
α√
2bπ

.

〈H〉 =
�

2b

2m
+

α√
2πb

.
∂〈H〉
∂b

=
�

2

2m
− 1

2
α√
2π

b−3/2 = 0 =⇒ b3/2 =
α√
2π

m

�2
; b =

(
mα√
2π�2

)2/3

.

〈H〉min =
�

2

2m

(
mα√
2π�2

)2/3

+
α√
2π

(√
2π�

2

mα

)1/3

=
α2/3

�
2/3

m1/3(2π)1/3

(
1
2

+ 1
)

=
3
2

(
α2

�
2

2πm

)1/3

.

(b)

〈V 〉 = 2αA2

∫ ∞
0

x4e−2bx2
dx = 2αA2 3

8(2b)2

√
π

2b
=

3α
16b2

√
π

2b

√
2b
π

=
3α

16b2
.

〈H〉 =
�

2b

2m
+

3α
16b2

.
∂〈H〉
∂b

=
�

2

2m
− 3α

8b3
= 0 =⇒ b3 =

3αm
4�2

; b =
(

3αm
4�2

)1/3

.

〈H〉min =
�

2

2m

(
3αm
4�2

)1/3

+
3α
16

(
4�

2

3αm

)2/3

=
α1/3

�
4/3

m2/3
31/34−1/3

(
1
2

+
1
4

)
=

3
4

(
3α�

4

4m2

)1/3

.

Problem 7.2

Normalize: 1 = 2|A|2
∫ ∞

0

1
(x2 + b2)2

dx = 2|A|2 π

4b3
=

π

2b3
|A|2. A =

√
2b3

π
.
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Kinetic Energy: 〈T 〉 = − �
2

2m
|A|2

∫ ∞
−∞

1
(x2 + b2)

d2

dx2

(
1

(x2 + b2)

)
dx.

But
d2

dx2

(
1

(x2 + b2)

)
=

d

dx

( −2x
(x2 + b2)2

)
=

−2
(x2 + b2)2

+ 2x
4x

(x2 + b2)3
=

2(3x2 − b2)
(x2 + b2)3

, so

〈T 〉 = − �
2

2m
2b3

π

∫ ∞
0

(3x2 − b2)
(x2 + b2)4

dx = −4�
2b3

πm

[
3

∫ ∞
0

1
(x2 + b2)3

dx− 4b2
∫ ∞

0

1
(x2 + b2)4

dx

]
= −4�

2b3

πm

[
3

3π
16b5

− 4b2
5π

32b7

]
=

�
2

4mb2
.

Potential Energy: 〈V 〉 =
1
2
mω2|A|2 2

∫ ∞
0

x2

(x2 + b2)2
dx = mω2 2b3

π

π

4b
=

1
2
mω2b2.

〈H〉 =
�

2

4mb2
+

1
2
mω2b2.

∂〈H〉
∂b

= − �
2

2mb3
+ mω2b = 0 =⇒ b4 =

�
2

2m2ω2
=⇒ b2 =

1√
2

�

mω
.

〈H〉min =
�

2

4m

√
2mω

�
+

1
2
mω2 1√

2
�

mω
= �ω

(√
2

4
+

1
2
√

2

)
=
√

2
2

�ω = 0.707 �ω >
1
2

�ω. �

Problem 7.3

ψ(x) =


A(x + a/2), (−a/2 < x < 0),
A(a/2− x), (0 < x < a/2),
0, (otherwise).

1 = |A|22
∫ a/2

0

(a

2
− x

)2

dx = −2|A|2 1
3

(a

2
− x

)3
∣∣∣∣a/2

0

=
2
3
|A|2

(a

3

)3

=
a3

12
|A|2; A =

√
12
a3

(as before).

dψ

dx
=


A, (−a/2 < x < 0),
−A, (0 < x < a/2),
0, (otherwise).

d2ψ

dx2
= Aδ

(
x +

a

2

)
− 2Aδ(x) + Aδ

(
x− a

2

)
.

〈T 〉 = − �
2

2m

∫
ψ

[
Aδ

(
x +

a

2

)
− 2Aδ(x) + Aδ

(
x− a

2

)]
dx =

�
2

2m
2Aψ(0) =

�
2

m
A2 a

2

=
�

2a

2m
12
a3

= 6
�

2

ma2
(as before).

〈V 〉 = −α

∫
|ψ|2δ(x) dx = −α|ψ(0)|2 = −αA2

(a

2

)2

= −3
α

a
. 〈H〉 = 〈T 〉+ 〈V 〉 = 6

�
2

ma2
− 3

α

a
.

∂

∂a
〈H〉 = −12

�
2

ma3
+ 3

α

a2
= 0⇒ a = 4

�
2

mα
.

〈H〉min = 6
�

2

m

(mα

4�2

)2

− 3α
(mα

4�2

)
=

mα2

�2

(
3
8
− 3

4

)
= −3mα2

8�2
> −mα2

2�2
. �
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Problem 7.4

(a) Follow the proof in §7.1: ψ =
∞∑

n=1

cnψn, where ψ1 is the ground state. Since 〈ψ1|ψ〉 = 0, we have:

∞∑
n=1

cn〈ψ1|ψ〉 = c1 = 0; the coefficient of the ground state is zero. So

〈H〉 =
∞∑

n=2

En|cn|2 ≥ Efe

∞∑
n=2

|cn|2 = Efe, since En ≥ Efe for all n except 1.

(b)

1 = |A|2
∫ ∞
−∞

x2e−2bx2
dx = |A|2 2

1
8b

√
π

2b
=⇒ |A|2 = 4b

√
2b
π

.

〈T 〉 = − �
2

2m
|A|2

∫ ∞
−∞

xe−bx2 d2

dx2

(
xe−bx2

)
dx

d2

dx2

(
xe−bx2

)
=

d

dx

(
e−bx2 − 2bx2e−bx2

)
= −2bxe−bx2 − 4bxe−bx2

+ 4b2x3e−bx2

〈T 〉 = − �
2

2m
4b

√
2b
π

2
∫ ∞

0

(
−6bx2 + 4b2x4

)
e−2bx2

dx = −2�
2b

m

√
2b
π

2
[
−6b

1
8b

√
π

2b
+ 4b2

3
32b2

√
π

2b

]

= −4�
2b

m

(
−3

4
+

3
8

)
=

3�
2b

2m
.

〈V 〉 =
1
2
mω2|A|2

∫ ∞
−∞

x2e−2bx2
x2dx =

1
2
mω24b

√
2b
π

2
3

32b2

√
π

2b
=

3mω2

8b
.

〈H〉 =
3�

2b

2m
+

3mω

8b
;

∂〈H〉
∂b

=
3�

2

2m
− 3mω2

8b2
= 0 =⇒ b2 =

m2ω2

4�2
=⇒ b =

mω

2�
.

〈H〉min =
3�

2

2m
mω

2�
+

3mω2

8
2�

mω
= �ω

(
3
4

+
3
4

)
=

3
2

�ω.

This is exact, since the trial wave function is in the form of the true first excited state.

Problem 7.5

(a) Use the unperturbed ground state (ψ0
gs) as the trial wave function. The variational principle says

〈ψ0
gs|H|ψ0

gs〉 ≥ E0
gs. But H = H0 +H ′, so 〈ψ0

gs|H|ψ0
gs〉 = 〈ψ0

gs|H0|ψ0
gs〉+ 〈ψ0

gs|H ′|ψ0
gs〉. But 〈ψ0

gs|H0|ψ0
gs〉 =

E0
gs (the unperturbed ground state energy), and 〈ψ0

gs|H ′|ψ0
gs〉 is precisely the first order correction to the

ground state energy (Eq. 6.9), so E0
gs + E1

gs ≥ Egs. QED

(b) The second order correction (E2
gs) is E2

gs =
∑

m�=gs

|〈ψ0
m|H ′|ψgs〉|2
E0

gs − E0
m

. But the numerator is clearly positive,

and the denominator is always negative (since E0
gs < E0

m for all m), so E2
gs is negative.
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Problem 7.6

He+ is a hydrogenic ion (see Problem 4.16); its ground state energy is (2)2(−13.6 eV), or −54.4 eV. It takes
79.0− 54.4 = 24.6 eV to remove one electron.

Problem 7.7

I’ll do the general case of a nucleus with Z0 protons. Ignoring electron-electron repulsion altogether gives

ψ0 =
Z3

0

πa3
e−Z0(r1+r2)/a, (generalizing Eq. 7.17)

and the energy is 2Z2
0E1. 〈Vee〉 goes like 1/a (Eqs. 7.20 and 7.25), so the generalization of Eq. 7.25 is 〈Vee〉 =

− 5
4Z0E1, and the generalization of Eq. 7.26 is 〈H〉 = (2Z2

0 − 5
4Z0)E1.

If we include shielding, the only change is that (Z − 2) in Eqs. 7.28, 7.29, and 7.32 is replaced by (Z − Z0).
Thus Eq. 7.32 generalizes to

〈H〉 =
[
2Z2 − 4Z(Z − Z0)−

5
4
Z

]
E1 =

[
−2Z2 + 4ZZ0 −

5
4
Z

]
E1.

∂〈H〉
∂Z

=
[
−4Z + 4Z0 −

5
4

]
E1 = 0 =⇒ Z = Z0 −

5
16

.

〈H〉min =

[
−2

(
Z0 −

5
16

)2

+ 4
(
Z0 −

5
16

)
Z0 −

5
4

(
Z0 −

5
16

)]
E1

=
(
−2Z2

0 +
5
4
Z0 −

25
128

+ 4Z2
0 −

5
4
Z0 −

5
4
Z0 +

25
64

)
E1

=
(

2Z2
0 −

5
4
Z0 +

25
128

)
E1 =

(16Z0 − 5)2

128
E1,

generalizing Eq. 7.34. The first term is the naive estimate ignoring electron-electron repulsion altogether; the
second term is 〈Vee〉 in the unscreened state, and the third term is the effect of screening.

Z0 = 1 (H−): Z = 1− 5
16

=
11
16

= 0.688. The effective nuclear charge is less than 1, as expected.

〈H〉min =
112

128
E1 =

121
128

E1 = −12.9 eV.

Z0 = 2 (He): Z = 2− 5
16

=
27
16

= 1.69 (as before); 〈H〉min =
272

128
E1 =

729
128

E1 = −77.5 eV.

Z0 = 3 (Li+): Z = 3− 5
16

=
43
16

= 2.69 (somewhat less than 3); 〈H〉min =
432

128
E1 =

1849
128

E1 = −196 eV.

Problem 7.8

D = a〈ψ0(r1)
∣∣∣∣ 1
r2

∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2)
∣∣∣∣ 1
r1

∣∣∣∣ψ0(r2)〉 = a
1

πa3

∫
e−2r2/a 1

r1
d3r
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=
1

πa3

∫
e−

2
a

√
r2+R2−2rR cos θ 1

r
r2 sin θ dr dθ dφ =

2π
πa3

∫ ∞
0

r

[∫ π

0

e−
2
a

√
r2+R2−2rR cos θ sin θ dθ

]
dr.

[. . . ] =
1
rR

∫ r+R

|r−R|
e−2y/ay dy = − a

2rR

[
e−2(r+R)/a

(
r + R +

a

2

)
− e−2|r−R|/a

(
|r −R|+ a

2

)]

D =
2
a2

(
− a

2R

) [
e−2R/a

∫ ∞
0

e−2r/a
(
r + R +

a

2

)
dr

−e−2R/a

∫ R

0

e2R/a
(
R− r +

a

2

)
dr − e2R/a

∫ ∞
R

e−2r/a
(
r −R +

a

2

)
dr

]

= − 1
aR

{
e−2R/a

[(a

2

)2

+
(
R +

a

2

) (a

2

)]
− e−2R/a

(
R +

a

2

) (a

2
e2r/a

)∣∣∣R
0

+e−2R/a
(a

2

)2

e2r/a

(
2r
a
− 1

)∣∣∣∣R
0

− e2R/a
(
−R +

a

2

) (
−a

2
e−2r/a

)∣∣∣∞
R
− e2R/a

(a

2

)2

e−2r/a

(
−2r

a
− 1

)∣∣∣∣∞
R

}

= − 1
aR

{
e−2R/a

[
a2

4
+

aR

2
+

a2

4
+

aR

2
+

a2

4
+

a2

4

]
+

[
−aR

2
− a2

4
+

a2

4
2R
a
− a2

4
+

aR

2
− a2

4
− a2

4
2R
a
− a2

4

]}

= − 1
aR

[
e−2R/a

(
a2 + aR

)
+

(
−a2

)]
=⇒ D =

a

R
−

(
1 +

a

R

)
e−2R/a (confirms Eq. 7.47).

X = a〈ψ0(r1)
∣∣∣∣ 1
r1

∣∣∣∣ψ0(r2)〉 = a
1

πa3

∫
e−r1/ae−r2/a 1

r1
d3r

=
1

πa2

∫
e−r/ae−

√
r2+R2−2rR cos θ/a 1

r
r2 sin θ dr dθ dφ =

2π
πa2

∫ ∞
0

re−r/a

[∫ π

0

e−
√

r2+R2−2rR cos θ/a sin θ dθ

]
dr.

[. . . ] = − a

rR

[
e−(r+R)/a(r + R + a)− e−|r−R|/a(|r −R|+ a)

]

X =
2
a2

(
− a

R

) [
e−R/a

∫ ∞
0

e−2r/a(r + R + a)dr

−e−R/a

∫ R

0

(R− r + a)dr − eR/a

∫ ∞
R

e−2r/a(r −R + a)dr

]

= − 2
aR

{
e−R/a

[(a

2

)2

+ (R + a)
(a

2

)]
− e−R/a

[
(R + a)R− R2

2

]
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−eR/a(−R + a)
(
−a

2
e−2r/a

)∣∣∣∞
R
− eR/a

(a

2

)2

e−2r/a

(
−2r

a
− 1

)∣∣∣∣∞
R

}

= − 2
aR

[
e−R/a

(
a2

4
+

aR

2
+

a2

2
−R2 − aR +

R2

2
+

aR

2
− a2

2
− a2

4
2R
a
− a2

4

)]

= − 2
aR

e−R/a

(
−aR

2
− R2

2

)
=⇒ X = e−R/a

(
1 +

R

a

)
(confirms Eq. 7.48).

Problem 7.9

There are two changes: (1) the 2 in Eq. 7.38 changes sign . . . which amounts to changing the sign of I in
Eq. 7.43; (2) the last term in Eq. 7.44 changes sign . . . which amounts to reversing the sign of X. Thus Eq. 7.49
becomes

〈H〉 =
[
1 + 2

D −X

1− I

]
E1, and hence Eq. 7.51 becomes

F (x) =
Etot

−E1
=

2a
R
− 1− 2

D −X

1− I
= −1 +

2
x
− 2

1/x− (1 + 1/x) e−2x − (1 + x)e−x

1− (1 + x + x2/3)e−x

= −1 +
2
x

[
1− (1 + x + x2/3)e−x − 1 + (x + 1)e−2x + (x + x2)e−x

1− (1 + x + x2/3)e−x

]

= −1 +
2
x

[
(1 + x)e−2x +

(
2
3x

2 − 1
)
e−x

1− (1 + x + x2/3)e−x

]
.

The graph (with plus sign for comparison) has no minimum, and remains above −1, indicating that the energy
is greater than for the proton and atom dissociated. Hence, no evidence of bonding here.

2 4 6 8

-1.1

-0.9

-0.8

-0.7

-0.6

-0.5

x

F(x)

(−)(+)
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Problem 7.10

According to Mathematica, the minimum occurs at x = 2.493, and at this point F ′′ = 0.1257.

mω2 = V ′′ = −E1

a2
F ′′, so ω =

1
a

√
−(0.1257)E1

m
.

Here m is the reduced mass of the proton: m =
mpmp

mp + mp
=

1
2
mp.

ω =
3× 108 m/s

(0.529× 10−10 m)

√
(0.1257)(13.6 eV)
(938× 106 eV)/2

= 3.42× 1014/s.

1
2

�ω =
1
2
(6.58× 10−16 eV · s)(3.42× 1014 /s) = 0.113 eV (ground state vibrational energy).

Mathematica says that at the minimum F = −1.1297, so the binding energy is (0.1297)(13.6 eV) = 1.76 eV.
Since this is substantially greater than the vibrational energy, it stays bound. The highest vibrational energy is

given by (n + 1
2 )�ω = 1.76 eV, so n =

1.76
0.226

− 1
2

= 7.29. I estimate eight bound vibrational states (including

n = 0).

Problem 7.11

(a)

1 =
∫
|ψ|2 dx = |A|2

∫ a/2

−a/2

cos2
(πx

a

)
dx = |A|2 a

2
⇒ A =

√
2
a
.

〈T 〉 = − �
2

2m

∫
ψ
d2ψ

dx2
dx =

�
2

2m

(π

a

)2
∫

ψ2 dx =
π2

�
2

2ma2
.

〈V 〉 =
1
2
mω2

∫
x2ψ2 dx =

1
2
mω2 2

a

∫ a/2

−a/2

x2 cos2
(πx

a

)
dx =

mω2

a

( a

π

)3
∫ π/2

−π/2

y2 cos2 y dy

=
mω2a2

π3

[
y3

6
+

(
y2

4
− 1

8

)
sin 2y +

y cos 2y
4

] ∣∣∣∣π/2

−π/2

=
mω2a2

4π2

(
π2

6
− 1

)
.

〈H〉 =
π2

�
2

2ma2
+

mω2a2

4π2

(
π2

6
− 1

)
;

∂〈H〉
∂a

= −π2
�

2

ma3
+

mω2a

2π2

(
π2

6
− 1

)
= 0 ⇒

a = π

√
�

mω

(
2

π2/6− 1

)1/4

.

〈H〉min =
π2

�
2

2mπ2

mω

�

√
π2/6− 1

2
+

mω2

4π2

(
π2

6
− 1

)
π2 �

mω

√
2

π2/6− 1

=
1
2

�ω

√
π2

3
− 2 =

1
2

�ω(1.136) >
1
2

�ω. �

[We do not need to worry about the kink at ±a/2. It is true that d2ψ/dx2 has delta functions there, but
since ψ(±a/2) = 0 no “extra” contribution to T comes from these points.]
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CHAPTER 7. THE VARIATIONAL PRINCIPLE 203

(b) Because this trial function is odd, it is orthogonal to the ground state, so by Problem 7.4 〈H〉 will give
an upper bound to the first excited state.

1 =
∫
|ψ|2 dx = |B|2

∫ a

−a

sin2
(πx

a

)
dx = |B|2a ⇒ B =

1√
a
.

〈T 〉 = − �
2

2m

∫
ψ
d2ψ

dx2
dx =

�
2

2m

(π

a

)2
∫

ψ2 dx =
π2

�
2

2ma2
.

〈V 〉 =
1
2
mω2

∫
x2ψ2 dx =

1
2
mω2 1

a

∫ a

−a

x2 sin2
(πx

a

)
dx =

mω2

2a

( a

π

)3
∫ π

−π

y2 sin2 y dy

=
mω2a2

2π3

[
y3

6
−

(
y2

4
− 1

8

)
sin 2y − y cos 2y

4

] ∣∣∣∣π
−π

=
mω2a2

4π2

(
2π2

3
− 1

)
.

〈H〉 =
π2

�
2

2ma2
+

mω2a2

4π2

(
2π2

3
− 1

)
;

∂〈H〉
∂a

= −π2
�

2

ma3
+

mω2a

2π2

(
2π2

3
− 1

)
= 0 ⇒

a = π

√
�

mω

(
2

2π2/3− 1

)1/4

.

〈H〉min =
π2

�
2

2mπ2

mω

�

√
2π2/3− 1

2
+

mω2

4π2

(
2π2

3
− 1

)
π2 �

mω

√
2

2π2/3− 1

=
1
2

�ω

√
4π2

3
− 2 =

1
2

�ω(3.341) >
3
2

�ω. �

Problem 7.12

We will need the following integral repeatedly:∫ ∞
0

xk

(x2 + b2)l
dx =

1
2b2l−k−1

Γ
(

k+1
2

)
Γ

(
2l−k−1

2

)
Γ(l)

.

(a)

1 =
∫ ∞
−∞

|ψ|2 dx = 2|A|2
∫ ∞

0

1
(x2 + b2)2n dx =

|A|2
b4n−1

Γ
(

1
2

)
Γ

(
4n−1

2

)
Γ(2n)

⇒ A =

√
b4n−1Γ(2n)

Γ
(

1
2

)
Γ

(
4n−1

2

) .
〈T 〉 = − �

2

2m

∫ ∞
−∞

ψ
d2ψ

dx2
dx = − �

2

2m
A2

∫ ∞
−∞

1
(x2 + b2)n

d

dx

[
−2nx

(x2 + b2)n+1

]
dx

=
n�

2

m
A2

∫ ∞
−∞

1
(x2 + b2)n

[
1

(x2 + b2)n+1 −
2(n + 1)x2

(x2 + b2)n+2

]
dx

=
2n�

2

m
A2

[∫ ∞
0

1
(x2 + b2)2n+1 dx− 2(n + 1)

∫ ∞
0

x2

(x2 + b2)2n+2 dx

]

=
2n�

2

m

b4n−1Γ(2n)
Γ

(
1
2

)
Γ

(
4n−1

2

) [
1

2b4n−1

Γ
(

1
2

)
Γ

(
4n−1

2

)
Γ(2n + 1)

− 2(n + 1)
2b4n−1

Γ
(

3
2

)
Γ

(
4n+1

2

)
Γ(2n + 2)

]
=

�
2

4mb2
n(4n− 1)
(2n + 1)

.
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〈V 〉 =
1
2
mω2

∫ ∞
−∞

ψ2x2 dx =
1
2
mω22A2

∫ ∞
0

x2

(x2 + b2)2n dx

= mω2 b4n−1Γ(2n)
Γ

(
1
2

)
Γ

(
4n−1

2

) 1
2b4n−3

Γ
(

3
2

)
Γ

(
4n−3

2

)
Γ(2n)

=
mω2b2

2(4n− 3)
.

〈H〉 =
�

2

4mb2
n(4n− 1)
(2n + 1)

+
mω2b2

(4n− 3)
;

∂〈H〉
∂b

= − �
2

2mb3
n(4n− 1)
(2n + 1)

+
mω2b

(4n− 3)
= 0 ⇒

b =

√
�

mω

[
n(4n− 1)(4n− 3)

2(2n + 1)

]1/4

.

〈H〉min =
�

2

4m
n(4n− 1)
(2n + 1)

mω

�

√
2(2n + 1)

n(4n− 1)(4n− 3)
+

mω2

2(4n− 3)
�

mω

√
n(4n− 1)(4n− 3)

2(2n + 1)

=
1
2

�ω

√
2n(4n− 1)

(2n + 1)(4n− 3)
=

1
2

�ω

√
8n2 − 2n

8n2 − 2n− 3
>

1
2

�ω. �

(b)

1 = 2|B|2
∫ ∞

0

x2

(x2 + b2)2n dx =
|B|2
b4n−3

Γ
(

3
2

)
Γ

(
4n−3

2

)
Γ(2n)

⇒ B =

√
b4n−3Γ(2n)

Γ
(

3
2

)
Γ

(
4n−3

2

) .
〈T 〉 = − �

2

2m
B2

∫ ∞
−∞

x

(x2 + b2)n
d

dx

[
1

(x2 + b2)n −
2nx2

(x2 + b2)n+1

]
dx

= −�
2B2

2m

∫ ∞
−∞

x

(x2 + b2)n

[
−2nx

(x2 + b2)n+1 −
4nx

(x2 + b2)n+1 +
4n(n + 1)x3

(x2 + b2)n+2

]
dx

=
4n�

2B2

2m

[
3

∫ ∞
0

x2

(x2 + b2)2n+1 dx− 2(n + 1)
∫ ∞

0

x4

(x2 + b2)2n+2 dx

]

=
2n�

2

m

b4n−3Γ(2n)
Γ

(
3
2

)
Γ

(
4n−3

2

) [
3

2b4n−1

Γ
(

3
2

)
Γ

(
4n−1

2

)
Γ(2n + 1)

− 2(n + 1)
2b4n−1

Γ
(

5
2

)
Γ

(
4n−1

2

)
Γ(2n + 2)

]
=

3�
2

4mb2
n(4n− 3)
(2n + 1)

.

〈V 〉 =
1
2
mω22B2

∫ ∞
0

x4

(x2 + b2)2n dx =
1
2
mω2 b4n−3Γ(2n)

Γ
(

3
2

)
Γ

(
4n−3

2

) 2
2b4n−5

Γ
(

5
2

)
Γ

(
4n−5

2

)
Γ(2n)

=
3
2

mω2b2

(4n− 5)
.

〈H〉 =
3�

2

4mb2
n(4n− 3)
(2n + 1)

+
3
2

mω2b2

(4n− 5)
;

∂〈H〉
∂b

= − 3�
2

2mb3
n(4n− 3)
(2n + 1)

+
3mω2b

(4n− 5)
= 0 ⇒

b =

√
�

mω

[
n(4n− 3)(4n− 5)

2(2n + 1)

]1/4

.

〈H〉min =
3�

2

4m
n(4n− 3)
(2n + 1)

mω

�

√
2(2n + 1)

n(4n− 3)(4n− 5)
+

3
2

mω2

(4n− 5)
�

mω

√
n(4n− 3)(4n− 5)

2(2n + 1)

=
3
2

�ω

√
2n(4n− 3)

(2n + 1)(4n− 5)
=

3
2

�ω

√
8n2 − 6n

8n2 − 6n− 5
>

3
2

�ω. �
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(c) As n → ∞, ψ becomes more and more “gaussian”. In the figures I have plotted the trial wave functions
for n = 2, n = 3, and n = 4, as well as the exact states (heavy line). Even for n = 2 the fit is pretty good,
so it is hard to see the improvement, but the successive curves do move perceptably toward the correct
result.

1 2 3 4
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Analytically, for large n, b ≈
√

�

mω

(
n · 4n · 4n

2 · 2n

)1/4

=

√
2n�

mω
, so

(
x2 + b2

)n
= b2n

(
1 +

x2

b2

)n

≈ b2n

(
1 +

mωx2

2�n

)n

→ b2nemωx2/2�.

Meanwhile, using Stirling’s approximation (Eq. 5.84), in the form Γ(z + 1) ≈ zze−z:

A2 =
b4n−1Γ(2n)

Γ
(

1
2

)
Γ

(
2n− 1

2

) ≈ b4n−1

√
π

(2n− 1)2n−1e−(2n−1)(
2n− 3

2

)2n−3/2
e−(2n−3/2)

≈ b4n−1

√
π

1√
e

(
2n− 1
2n− 3

2

)2n−1 √
2n− 3/2.

But
(

1− 1
2n

1− 3
4n

)
≈

(
1− 1

2n

) (
1 +

3
4n

)
≈ 1 +

3
4n
− 1

2n
= 1 +

1
4n

;

so
(

2n− 1
2n− 3

2

)2n−1

≈
[(

1 +
1
4n

)n]2 1
1 + 1/4n

→
(
e1/4

)2

=
√
e.

=
b4n−1

√
πe

√
e
√

2n =

√
2n
π

b4n−1 ⇒ A ≈
(

2n
π

)1/4

b2n−1/2. So

ψ ≈
(

2n
π

)1/4

b2n−1/2 1
b2n

e−mωx2/2� =
(

2n
π

)1/4 (mω

2n�

)1/4

e−mωx2/2� =
(mω

π�

)1/4

e−mωx2/2�,

which is precisely the ground state of the harmonic oscillator (Eq. 2.59). So it’s no accident that we get
the exact energies, in the limit n→∞.

Problem 7.13

1 = |A|2
∫

e−2br2
r2 sin θ dr dθ dφ = 4π|A|2

∫ ∞
0

r2e−2br2
dr = |A|2

( π

2b

)3/2

⇒ A =
(

2b
π

)3/4

.
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〈V 〉 = − e2

4πε0
|A|24π

∫ ∞
0

e−2br2 1
r
r2dr = − e2

4πε0

(
2b
π

)3/2

4π
1
4b

= − e2

4πε0
2

√
2b
π

.

〈T 〉 = − �
2

2m
|A|2

∫
e−br2

(∇2e−br2
) r2 sin θ dr dθ dφ

But (∇2e−br2
) =

1
r2

d

dr

(
r2 d

dr
e−br2

)
=

1
r2

d

dr

(
−2br3e−br2

)
=
−2b
r2

(
3r2 − 2br4

)
e−br2

.

=
−�

2

2m

(
2b
π

)3/2

(4π)(−2b)
∫ ∞

0

(3r2 − 2br4)e−2br2
dr =

�
2

m
πb4

(
2b
π

)3/2 [
3

1
8b

√
π

2b
− 2b

3
32b2

√
π

2b

]
=

�
2

m
4πb

(
2b
π

) (
3
8b
− 3

16b

)
=

3�
2b

2m
.

〈H〉 =
3�

2b

2m
− e2

4πε0
2

√
2b
π

;
∂〈H〉
∂b

=
3�

2

2m
− e2

4πε0

√
2
π

1√
b

= 0 ⇒
√
b =

e2

4πε0

√
2
π

2m
3�2

.

〈H〉min =
3�

2

2m

(
e2

4πε0

)2 2
π

4m2

9�4
− e2

4πε0
2

√
2
π

(
e2

4πε0

) √
2
π

2m
3�2

=
(

e2

4πε0

)2
m

�2

(
4
3π
− 8

3π

)
= − m

2�2

(
e2

4πε0

)2 8
3π

=
8
3π

E1 = −11.5 eV.

Problem 7.14

Let ψ =
1√
πb3

e−r/b (same as hydrogen, but with a → b adjustable). From Eq. 4.191, we have 〈T 〉 = −E1 =

�
2

2ma2
for hydrogen, so in this case 〈T 〉 =

�
2

2mb2
.

〈V 〉 = − e2

4πε0
4π
πb3

∫ ∞
0

e−2r/b e
−µr

r
r2 dr = − e2

4πε0
4
b3

∫ ∞
0

e−(µ+2/b)rr dr = − e2

4πε0
4
b3

1
(µ + 2/b)2

= − e2

4πε0
1

b(1 + µb
2 )2

.

〈H〉 =
�

2

2mb2
− e2

4πε0
1

b(1 + µb
2 )2

.

∂〈H〉
∂b

= − �
2

mb3
+

e2

4πε0

[
1

b2(1 + µb/2)2
+

µ

b(1 + µb/2)3

]
= − �

2

mb3
+

e2

4πε0
(1 + 3µb/2)
b2(1 + µb/2)3

= 0 ⇒

�
2

m

(
4πε0
e2

)
= b

(1 + 3µb/2)
(1 + µb/2)3

, or b
(1 + 3µb/2)
(1 + µb/2)3

= a.

This determines b, but unfortunately it’s a cubic equation. So we use the fact that µ is small to obtain a suitable
approximate solution. If µ = 0, then b = a (of course), so µa � 1 =⇒ µb � 1 too. We’ll expand in powers of
µb:

a ≈ b

(
1 +

3µb
2

) [
1− 3µb

2
+ 6

(
µb

2

)2
]
≈ b

[
1− 9

4
(µb)2 +

6
4
(µb)2

]
= b

[
1− 3

4
(µb)2

]
.
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Since the 3
4 (µb)2 term is already a second-order correction, we can replace b by a:

b ≈ a[
1− 3

4 (µb)2
] ≈ a

[
1 +

3
4
(µa)2

]
.

〈H〉min =
�

2

2ma2
[
1 + 3

4 (µa)2
]2 − e2

4πε0
1

a
[
1 + 3

4 (µa)2
] [

1 + 1
2 (µa)

]2
≈ �

2

2ma2

[
1− 2

3
4
(µa)2

]
− e2

4πε0
1
a

[
1− 3

4
(µa)2

] [
1− 2

µa

2
+ 3

(µa

2

)2
]

= −E1

[
1− 3

2
(µa)2

]
+ 2E1

[
1− µa +

3
4
(µa)2 − 3

4
(µa)2

]
= E1

[
1− 2(µa) +

3
2
(µa)2

]
.

Problem 7.15

(a)

H =
(

Ea h
h Eb

)
; det(H− λ) = (Ea − λ)(Eb − λ)− h2 = 0 =⇒ λ2 − λ(Ea + Eb) + EaEb − h2 = 0.

λ =
1
2

(
Ea + Eb ±

√
E2

a + 2EaEb + E2
b − 4EaEb + 4h2

)
⇒ E± = 1

2

[
Ea + Eb ±

√
(Ea − Eb)2 + 4h2

]
.

(b) Zeroth order: E0
a = Ea, E0

b = Eb. First order: E1
a = 〈ψa|H ′|ψa〉 = 0, E1

b = 〈ψb|H ′|ψb〉 = 0. Second
order:

E2
a =

|〈ψb|H ′|ψa〉|2
Ea − Eb

= − h2

Eb − Ea
; E2

b =
|〈ψa|H ′|ψb〉|2

Eb − Ea
=

h2

Eb − Ea
;

E− ≈ Ea −
h2

(Eb − Ea)
; E+ ≈ Eb +

h2

(Eb − Ea)
.

(c)

〈H〉 = 〈cosφψa + sinφψb|(H0 + H ′)| cosφψa + sinφψb〉
= cos2 φ 〈ψa|H0|ψa〉+ sin2 φ 〈ψb|H0|ψb〉+ sinφ cosφ 〈ψb|H ′|ψa〉+ sinφ cosφ 〈ψa|H ′|ψb〉
= Ea cos2 φ + Eb sin2 φ + 2h sinφ cosφ.

∂〈H〉
∂φ

= −Ea2 cosφ sinφ + Eb2 sinφ cosφ + 2h(cos2 φ− sin2 φ) = (Eb − Ea) sin 2φ + 2h cos 2φ = 0.

tan 2φ = − 2h
Eb − Ea

= −ε where ε ≡ 2h
Eb − Ea

.
sin 2φ√

1− sin2 2φ
= −ε; sin2 2φ = ε2(1− sin2 2φ);

or sin2 2φ(1 + ε2) = ε2; sin 2φ =
±ε√
1 + ε2

; cos2 2φ = 1− sin2 2φ = 1− ε2

1 + ε2
=

1
1 + ε2

;

cos 2φ =
∓1√
1 + ε2

(sign dictated by tan 2φ =
sin 2φ
cos 2φ

= −ε).
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cos2 φ =
1
2
(1 + cos 2φ) =

1
2

(
1∓ 1√

1 + ε2

)
; sin2 φ =

1
2
(1− cos 2φ) =

1
2

(
1± 1√

1 + ε2

)
.

〈H〉min =
1
2
Ea

(
1∓ 1√

1 + ε2

)
+

1
2
Eb

(
1± 1√

1 + ε2

)
± h

ε√
1 + ε2

=
1
2

[
Ea + Eb ±

(Eb − Ea + 2hε)√
1 + ε2

]

But
(Eb − Ea + 2hε)√

1 + ε2
=

(Eb − Ea) + 2h 2h
(Eb−Ea)√

1 + 4h2

(Eb−Ea)2

=
(Eb − Ea)2 + 4h2√
(Eb − Ea)2 + 4h2

=
√

(Eb − Ea)2 + 4h2, So

〈H〉min =
1
2

[
Ea + Eb ±

√
(Eb − Ea)2 + 4h2

]
we want the minus sign (+ is maximum)

= 1
2

[
Ea + Eb −

√
(Eb − Ea)2 + 4h2

]
.

(d) If h is small, the exact result (a) can be expanded: E± = 1
2

[
(Ea + Eb)± (Eb − Ea)

√
1 + 4h2

(Eb−Ea)2

]
.

=⇒ E± ≈
1
2

{
Ea + Eb ± (Eb − Ea)

[
1 +

2h2

(Eb − Ea)2

]}
=

1
2

[
Ea + Eb ± (Eb − Ea)± 2h2

(Eb − Ea)

]
,

so E+ ≈ Eb +
h2

(Eb − Ea)
, E− ≈ Ea −

h2

(Eb − Ea)
,

confirming the perturbation theory results in (b). The variational principle (c) gets the ground state (E−)
exactly right—not too surprising since the trial wave function Eq. 7.56 is almost the most general state
(there could be a relative phase factor eiθ).

Problem 7.16

For the electron, γ = −e/m, so E± = ±eBz�/2m (Eq. 4.161). For consistency with Problem 7.15, Eb > Ea,

so χb = χ+ =
(

1
0

)
, χa = χ− =

(
0
1

)
, Eb = E+ =

eBz�

2m
, Ea = E− = −eBz�

2m
.

(a)

〈χa|H ′|χa〉 =
eBx

m

�

2
(
0 1

) (
0 1
1 0

) (
0
1

)
=

eBx�

2m
(
0 1

) (
1
0

)
= 0;

〈χb|H ′|χb〉 =
eBx�

2m
(
1 0

) (
0 1
1 0

) (
1
0

)
= 0; 〈χb|H ′|χa〉 =

eBx�

2m
(
1 0

) (
0 1
1 0

) (
0
1

)
=

eBx�

2m
;

〈χa|H ′|χb〉 =
eBx�

2m
(
0 1

) (
0 1
1 0

) (
1
0

)
=

eBx�

2m
(
0 1

) (
0
1

)
=

eBx�

2m
. So h =

eBx�

2m
,

and the conditions of Problem 7.15 are met.
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(b) From Problem 7.15(b),

Egs ≈ Ea −
h2

(Eb − Ea)
= −eBz�

2m
− (eBx�/2m)2

(eBz�/m)
= − e�

2m

(
Bz +

B2
x

2Bz

)
.

(c) From Problem 7.15(c), Egs = 1
2

[
Ea + Eb −

√
(Eb − Ea)2 + 4h2

]
(it’s actually the exact ground state).

Egs = −1
2

√(
eBz�

m

)2

+ 4
(
eBx�

2m

)2

= − e�

2m

√
B2

z + B2
x

(which was obvious from the start, since the square root is simply the magnitude of the total field).

Problem 7.17

(a)

r1 =
1√
2
(u + v); r2 =

1√
2
(u− v); r2

1 + r2
2 =

1
2
(u2 + 2u · v + v2 + u2 − 2u · v + v2) = u2 + v2.

(∇2
1 +∇2

2)f(r1, r2) =
(
∂2f

∂x2
1

+
∂2f

∂y2
1

+
∂2f

∂z2
1

+
∂2f

∂x2
2

+
∂2f

∂y2
2

+
∂2f

∂z2
2

)
.

∂f

∂x1
=

∂f

∂ux

∂ux

∂x1
+

∂f

∂vx

∂vx

∂x1
=

1√
2

(
∂f

∂ux
+

∂f

∂vx

)
;

∂f

∂x2
=

∂f

∂ux

∂ux

∂x2
+

∂f

∂vx

∂vx

∂x2
=

1√
2

(
∂f

∂ux
− ∂f

∂vx

)
.

∂2f

∂x2
1

=
1√
2

∂

∂x1

(
∂f

∂ux
+

∂f

∂vx

)
=

1√
2

(
∂2f

∂u2
x

∂ux

∂x1
+

∂2f

∂ux∂vx

∂vx

∂x1
+

∂2f

∂vx∂ux

∂ux

∂x1
+

∂2f

∂v2
x

∂vx

∂x1

)

=
1
2

(
∂2f

∂u2
x

+ 2
∂2f

∂ux∂vx
+

∂2f

∂v2
x

)
;

∂2f

∂x2
2

=
1√
2

∂

∂x2

(
∂f

∂ux
− ∂f

∂vx

)
=

1√
2

(
∂2f

∂u2
x

∂ux

∂x2
+

∂2f

∂ux∂vx

∂vx

∂x2
− ∂2f

∂vx∂ux

∂ux

∂x2
− ∂2f

∂v2
x

∂vx

∂x2

)

=
1
2

(
∂2f

∂u2
x

− 2
∂2f

∂ux∂vx
+

∂2f

∂v2
x

)
.

So
(
∂2f

∂x2
1

+
∂2f

∂x2
2

)
=

(
∂2f

∂u2
x

+
∂2f

∂v2
x

)
, and likewise for y and z: ∇2

1 +∇2
2 = ∇2

u +∇2
v.

H = − �
2

2m
(∇2

u +∇2
v) +

1
2
mω2(u2 + v2)− λ

4
mω22v2

=
[
− �

2

2m
∇2

u +
1
2
mω2u2

]
+

[
− �

2

2m
∇2

v +
1
2
mω2v2 − 1

2
λmω2v2

]
. QED
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(b) The energy is 3
2�ω (for the u part) and 3

2�ω
√

1− λ (for the v part): Egs = 3
2�ω

(
1 +

√
1− λ

)
.

(c) The ground state for a one-dimensional oscillator is

ψ0(x) =
(mω

π�

)1/4

e−mωx2/2� (Eq. 2.59).

So, for a 3-D oscillator, the ground state is ψ0(r) =
(

mω
π�

)3/4
e−mωr2/2�, and for two particles

ψ(r1, r2) =
(mω

π�

)3/2

e−
mω
2�

(r2
1+r2

2). (This is the analog to Eq. 7.17.)

〈H〉 =
3
2

�ω +
3
2

�ω + 〈Vee〉 = 3�ω + 〈Vee〉 (the analog to Eq. 7.19).

〈Vee〉 = −λ

4
mω2

(mω

π�

)3
∫

e−
mω

�
(r2

1+r2
2) (r1 − r2)2︸ ︷︷ ︸

r2
1−2r1·r2+r2

2

d3r1 d3r2 (the analog to Eq. 7.20).

The r1 · r2 term integrates to zero, by symmetry, and the r2
2 term is the same as the r2

1 term, so

〈Vee〉 = −λ

4
mω2

(mω

π�

)3

2
∫

e−
mω

�
(r2

1+r2
2) r2

1 d3r1 d3r2

= −λ

2
mω2

(mω

π�

)3

(4π)2
∫ ∞

0

e−mωr2
2/� r2

2 dr2

∫ ∞
0

e−mωr2
1/� r4

1 dr1

= −λ
8m4ω5

π�3

[
1
4

�

mω

√
π�

mω

] [
3
8

(
�

mω

)2
√

π�

mω

]
= −3

4
λ�ω.

〈H〉 = 3�ω − 3
4
λ�ω = 3�ω

(
1− λ

4

)
.

The variational principle says this must exceed the exact ground-state energy (b); let’s check it:

3�ω

(
1− λ

4

)
>

3
2

�ω
(
1 +

√
1− λ

)
⇔ 2− λ

2
> 1 +

√
1− λ ⇔ 1− λ

2
>
√

1− λ ⇔ 1− λ+
λ2

4
> 1− λ.

It checks. In fact, expanding the exact answer in powers of λ, Egs ≈ 3
2�ω(1 + 1 − 1

2λ) = 3�ω
(
1− λ

4

)
,

we recover the variational result.

Problem 7.18

1 = =
∫
|ψ|2d3r1 d3r2 = |A|2

[∫
ψ2

1 d3r1

∫
ψ2

2 d3r2 + 2
∫

ψ1ψ2 d3r1

∫
ψ1ψ2 d3r2 +

∫
ψ2

2 d3r1

∫
ψ2

1 d3r2

]
= |A|2(1 + 2S2 + 1),

where

S ≡
∫

ψ1(r)ψ2(r) d3r =

√
(Z1Z2)3

πa3

∫
e−(Z1+Z2)r/a4πr2dr =

4
a3

(y

2

)3
[

2a3

(Z1 + Z2)3

]
=

(y

x

)3

.
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A2 =
1

2
[
1 + (y/x)6

] .

H = − �
2

2m
(∇2

1 +∇2
2)−

e2

4πε0

(
1
r1

+
1
r2

)
+

e2

4πε0
1

|r1 − r2|
,

Hψ = A

{[
− �

2

2m
(∇2

1 +∇2
2)−

e2

4πε0

(
Z1

r1
+

Z2

r2

)]
ψ1(r1)ψ2(r2)

+
[
− �

2

2m
(∇2

1 +∇2
2)−

e2

4πε0

(
Z1

r1
+

Z2

r2

)]
ψ2(r1)ψ1(r2)

}

+A
e2

4πε0

{[
Z1 − 1

r1
+

Z2 − 1
r2

]
ψ1(r1)ψ2(r2) +

[
Z2 − 1

r1
+

Z1 − 1
r2

]
ψ2(r1)ψ1(r2)

}
+ Veeψ,

where Vee ≡
e2

4πε0
1

|r1 − r2|
.

The term in first curly brackets is (Z2
1 + Z2

2 )E1ψ1(r1)ψ2(r2) + (Z2
2 + Z2

1 )ψ2(r1)ψ1(r2), so

Hψ = (Z2
1 + Z2

2 )E1ψ

+ A
e2

4πε0

{[
Z1 − 1

r1
+

Z2 − 1
r2

]
ψ1(r1)ψ2(r2) +

[
Z2 − 1

r1
+

Z1 − 1
r2

]
ψ2(r1)ψ1(r2)

}
+ Veeψ

〈H〉 = (Z2
1 + Z2

2 )E1 + 〈Vee〉+ A2

(
e2

4πε0

)

×
{
〈ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)

∣∣∣∣([
Z1 − 1

r1
+

Z2 − 1
r2

]∣∣∣∣ψ1(r1)ψ2(r2)〉+
[
Z2 − 1

r1
+

Z1 − 1
r2

]∣∣∣∣ψ2(r1)ψ1(r2)〉
)}

.

{}
= (Z1 − 1)〈ψ1(r1)

∣∣∣∣ 1
r1

∣∣∣∣ψ1(r1)〉+ (Z2 − 1)〈ψ2(r2)
∣∣∣∣ 1
r2

∣∣∣∣ψ2(r2)〉

+ (Z2 − 1)〈ψ1(r1)
∣∣∣∣ 1
r1

∣∣∣∣ψ2(r1)〉〈ψ2(r2)|ψ1(r2)〉

+ (Z1 − 1)〈ψ1(r1)|ψ2(r1)〉〈ψ2(r2)
∣∣∣∣ 1
r2

∣∣∣∣ψ1(r2)〉+ (Z1 − 1)〈ψ2(r1)
∣∣∣∣ 1
r1

∣∣∣∣ψ1(r1)〉〈ψ1(r2)|ψ2(r2)〉

+ (Z2 − 1)〈ψ2(r1)|ψ1(r1)〉〈ψ1(r2)
∣∣∣∣ 1
r2

∣∣∣∣ψ2(r2)〉+ (Z2 − 1)〈ψ2(r1)
∣∣∣∣ 1
r1

∣∣∣∣ψ2(r1)〉

+ (Z1 − 1)〈ψ1(r2)
∣∣∣∣ 1
r2

∣∣∣∣ψ1(r2)〉

= 2(Z1 − 1)
〈

1
r

〉
1

+ 2(Z1 − 1)
〈

1
r

〉
2

+ 2(Z1 − 1)〈ψ1|ψ2〉〈ψ1

∣∣∣∣1r
∣∣∣∣ψ2〉+ 2(Z2 − 1)〈ψ1|ψ2〉〈ψ1

∣∣∣∣1r
∣∣∣∣ψ2〉.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


212 CHAPTER 7. THE VARIATIONAL PRINCIPLE

But
〈

1
r

〉
1

= 〈ψ1(r)
∣∣∣∣1r

∣∣∣∣ψ1(r)〉 =
Z1

a
;

〈
1
r

〉
2

=
Z2

a
, so 〈H〉 = (Z2

1 + Z2
2 )E1

+A2

(
e2

4πε0

)
2

[
1
a
(Z1 − 1)Z1 +

1
a
(Z2 − 1)Z2 + (Z1 + Z2 − 2)〈ψ1|ψ2〉〈ψ1

∣∣∣∣1r
∣∣∣∣ψ2〉

]
+ 〈Vee〉.

And 〈ψ1|ψ2〉 = S = (y/x)3 , so

〈ψ1

∣∣∣∣1r
∣∣∣∣ψ2〉 =

√
(Z1Z2)3

πa3
4π

∫
e−(Z1+Z2)r/a r dr =

y3

2a3

[
a

Z1 + Z2

]2

=
y3

2ax2
.

〈H〉 = (x2 − 1
2
y2)E1 + A2

(
e2

4πε0

)
2
a

{[
Z2

1 + Z2
2 − (Z1 + Z2)

]
+ (x− 2)

(y

x

)3 y3

2x2

}
+ 〈Vee〉

= (x2 − 1
2
y2)E1 + 4E1A

2

[
x2 − 1

2
y2 − x +

1
2
(x− 2)

y6

x5

]
+ 〈Vee〉.

〈Vee〉 =
e2

4πε0
〈ψ

∣∣∣∣ 1
|r1 − r2|

∣∣∣∣ψ〉
=

(
e

4πε0

)
A2〈ψ1(r1)ψ2(r2) + ψ2(r1) + ψ1(r2)

∣∣∣∣ 1
|r1 − r2|

∣∣∣∣ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)〉

=
(

e

4πε0

)
A2

[
2〈ψ1(r1)ψ2(r2)

∣∣∣∣ 1
|r1 − r2|

∣∣∣∣ψ1(r1)ψ2(r2)〉+ 2〈ψ1(r1)ψ2(r2)
∣∣∣∣ 1
|r1 − r2|

∣∣∣∣ψ2(r1)ψ1(r2)〉
]

= 2
(

e

4πε0

)
A2(B + C), where

B ≡ 〈ψ1(r1)ψ2(r2)
∣∣∣∣ 1
|r1 − r2|

∣∣∣∣ψ1(r1)ψ2(r2)〉; C ≡ 〈ψ1(r1)ψ2(r2)
∣∣∣∣ 1
|r1 − r2|

∣∣∣∣ψ2(r1)ψ1(r2)〉.

B =
Z3

1Z
3
2

(πa3)2

∫
e−2Z1r1/ae−2Z2r2/a 1

|r1 − r2|
d3r1 d3r2. As on pp 300-301, the r2 integral is

∫
e−2Z2r2/a 1√

r2
1 + r2

2 − 2r1r2 cos θ2

d3r2

=
πa3

Z3
2r1

[
1−

(
1 +

Z2r1

a

)
e−2Z2r1/a

]
(Eq. 7.24, but with a→ 2

Z2
a).

B =
Z3

1Z
3
2

(πa3)2
(πa3)
Z3

2

4π
∫ ∞

0

e−2Z1r1/a 1
r1

[
1−

(
1 +

Z2r1

a

)
e−2Z2r1/a

]
r2
1 dr1

=
4Z3

1

a3

∫ ∞
0

[
r1e
−2Z1r1/a − r1e

−2(Z1+Z2)r1/a − Z2

a
r2
1e
−2(Z1+Z2)r1/a

]
dr1
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=
4Z3

1

a3

[(
a

2Z1

)2

−
(

a

2(Z1 + Z2)

)2

− Z2

a
2

(
a

2(Z1 + Z2)

)3
]

=
Z3

1

a

(
1
Z2

1

− 1
(Z1 + Z2)2

− Z2

(Z1 + Z2)3

)

=
Z1Z2

a(Z1 + Z2)

[
1 +

Z1Z2

(Z1 + Z2)2

]
=

y2

4ax

(
1 +

y2

4x2

)
.

C =
Z3

1Z
3
2

(πa3)2

∫
e−Z1r1/ae−Z2r2/ae−Z2r1/ae−Z1r2/a 1

|r1 − r2|
d3r1 d3r2

=
(Z1Z2)3

(πa3)2

∫
e−(Z1+Z2)(r1+r2)/a 1

|r1 − r2|
d3r1 d3r2.

The integral is the same as in Eq. 7.20, only with a→ 4
Z1+Z2

a. Comparing Eqs. 7.20 and 7.25, we see that the
integral itself was

5
4a

(
πa3

8

)2

=
5

256
π2a5. So C =

(Z1Z2)3

(πa3)2
5π2

256
45a5

(Z1 + Z2)5
=

20
a

(Z1Z2)3

(Z1 + Z2)5
=

5
16a

y6

x5
.

〈Vee〉 = 2
(

e

4πε0

)
A2

[
y2

4ax

(
1 +

y2

4x2

)
+

5
16a

y6

x5

]
= 2A2(−2E1)

y2

4x

(
1 +

y2

4x2
+

5y4

4x4

)
.

〈H〉 = E1

{
x2 − 1

2
y2 − 2

[1 + (y/x)6]

[
x2 − 1

2
y2 − x +

1
2
(x− 2)

y6

x5

]
− 2

[1 + (y/x)6]
y2

4x

(
1 +

y2

4x2
+

5y4

4x4

)}

=
E1

(x6 + y6)

{
(x2 − 1

2
y2)(x6 + y6)− 2x6

[
x2 − 1

2
y2 − x +

1
2
y6

x4
− y6

x5
+

y2

4x
+

y4

16x3
+

5y6

16x5

]}

=
E1

(x6 + y6)

(
x8 + x2y6 − 1

2
x6y2 − 1

2
y8 − 2x8 + x6y2 + 2x7 − x2y6 + 2xy6 − 1

2
x5y2 − 1

8
x3y4 − 5

8
xy6

)

=
E1

(x6 + y6)

(
−x8 + 2x7 +

1
2
x6y2 − 1

2
x5y2 − 1

8
x3y4 +

11
8
xy6 − 1

2
y8

)
.

Mathematica finds the minimum of 〈H〉 at x = 1.32245, y = 1.08505, corresponding to Z1 = 1.0392, Z2 =
0.2832. At this point, 〈H〉min = 1.0266E1 = −13.962 eV, which is less than −13.6 eV—but not by much!

Problem 7.19

The calculation is the same as before, but with me → mµ (reduced), where

mµ(reduced) =
mµmd

mµ + md
=

mµ2mp

mµ + 2mp
=

mµ

1 + mµ/2mp
. From Problem 6.28, mµ = 207me, so

1 +
mµ

2mp
= 1 +

(
207
2

)
(9.11× 10−31)
(1.67× 10−27)

= 1.056; mµ(reduced) =
207me

1.056
= 196me.

This shrinks the whole molecule down by a factor of almost 200, bringing the deuterons much closer together,
as desired. The equilibrium separation for the electron case was 2.493 a (Problem 7.10), so for muons, R =
2.493
196

(0.529× 10−10 m) = 6.73× 10−13 m.
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Problem 7.20

(a)

− �
2

2m

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
= Eψ. Let ψ(x, y) = X(x)Y (y).

Y
d2X

dx2
+ X

d2Y

dy2
= −2mE

�2
XY ;

1
X

d2X

dx2
+

1
Y

d2Y

dy2
= −2mE

�2
.

d2X

dx2
= −k2

xX;
d2Y

dy2
= −k2

yY, with k2
x + k2

y =
2mE

�2
. The general solution to the y equation is

Y (y) = A cos kyy + B sin kyy; the boundary conditions Y (±a) = 0 yield ky =
nπ

2a
with minimum

π

2a
.

[Note that k2
y has to be positive, or you cannot meet the boundary conditions at all.] So

E ≥ �
2

2m

(
k2

x +
π2

4a2

)
. For a traveling wave k2

x has to be positive. Conclusion: Any solution with E <

π2
�

2

8ma2
will be a bound state.

(b)

a

a

x

y

II
I

Integrate over regions I and II (in the figure), and multiply by 8.

III = A2

∫ ∞
x=a

∫ a

y=0

(
1− y

a

)2

e−2αx/adx dy. Let u ≡ x

a
, v ≡ y

a
, dx = a du, dy = a dv.

= A2a2

∫ ∞
1

∫ 1

0

(1− v)2e−2αudu dv = A2a2

[
(1− v)3

3

∣∣∣∣1
0

× e−2αu

2α

∣∣∣∣∞
1

]

=
A2a2

6α
(−1)

(
− e−2α

)
=

A2a2

6α
e−2α.
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II =
1
2
A2

∫ a

x=0

∫ a

y=0

(
1− xy

a2

)2

e−2αdx dy

=
1
2
A2a2

∫ 1

0

∫ 1

0

(1− uv)2e−2αdu dv =
1
2
A2a2e−2α

∫ 1

0

(1− uv)3

−3v

∣∣∣∣1
0

dv

= −1
2
A2a2e−2α 1

3

∫ 1

0

(1− v)3 − 1
v

dv =
1
6
A2a2e−2α

∫ 1

0

(v2 − 3v + 3)dv,

=
1
6
A2a2e−2α

(
v3

3
− 3

v2

2
+ 3v

)∣∣∣∣1
0

=
11
36

A2a2e−2α.

Normalizing: 8
[
A2a2

6α
e−2α +

11
36

A2a2e−2α

]
= 1 ⇒ A2 =

9α
2a2

e2α

(6 + 11α)
.

〈H〉 = − �
2

2m
〈ψ| ∂

2

∂x2
+

∂2

∂y2
|ψ〉 = −8

�
2

2m
(JI + JII). [Ignore roof-lines for the moment.]

JII = A2

∫ ∞
x=a

∫ a

y=0

(
1− y

a

)
e−αx/a

(
∂2

∂x2
+
�
�
�✼

0
∂2

∂y2

)[(
1− y

a

)
e−αx/a

]
dx dy

= A2

∫ ∞
x=a

∫ a

y=0

(
1− y

a

)2(
α

a

)2

e−2αx/adx dy =
(
α

a

)2

III =
(
α

✁a

)✄2A2��a2

6✚α
e−2α =

1
6
A2αe−2α.

JI =
1
2
A2

∫ a

0

∫ a

0

(
1− xy

a2

)
e−α

(
∂2

∂x2
+

∂2

∂y2

)(
1− xy

a2

)
e−αdx dy = 0.

[Note that
∂2

∂x2

(
1− xy

a2

)
=

∂

∂x

(
− y

a2

)
= 0, and likewise for ∂2/∂y2.]

〈H〉so far = −2
3
A2 �

2α

m
e−2α.

Now the roof-lines; label them as follows:

I. Right arm: at y = 0 : KI .
II. Central square: at x = 0 and at y = 0 : KII .
III. Boundaries: at x = ±a and at y = ±a : KIII .

KI = 4
(
− �

2

2m

)
A2

∫ ∞
x=a

∫ a

y=−a

(
1− |y|

a

)
e−αx/a

(
�
��∂
2

∂x2
+

∂2

∂y2

)(
1− |y|

a

)
e−αx/adx dy.

|y| = y

[
θ(y)− θ(−y)

]
,

∂

∂y

(
1− |y|

a

)
= −1

a

[
θ(y)− θ(−y) +✟✟

✟yδ(y) +✟✟
✟yδ(y)

]
,

∂2

∂y2

(
1− |y|

a

)
= −1

a

[
δ(y)− δ(−y)(−1)

]
= −2

a
δ(y).
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KI = −2�
2

m
A2

∫ ∞
x=a

e−2αx/adx︸ ︷︷ ︸
♣

∫ a

y=−a

(
1− |y|

a

)[
− 2

a
δ(y)

]
dy︸ ︷︷ ︸

♠

♣ =
e−2αx/a

(−2α/a)

∣∣∣∣∞
a

= − e−2α

(−2α/a)
=

a

2α
e−2α; ♠ = −2

a
,

=�−
2�

2A2

m
✁a

✁2α
e−2α

(
�−

2

✁a

)
; KI =

2�
2

mα
e−2αA2.

KII = 4A2

(
− �

2

2m

) ∫ a

x=0

∫ a

y=−a

(
1− x|y|

a2

)
e−α

(
�
��∂
2

∂x2
+

∂2

∂y2

)(
1− x|y|

a2

)
e−αdx dy

= −2�
2

m
A2e−2α

∫ a

x=0

∫ a

y=−a

(
1− x|y|

a2

)[
− 2x

a2
δ(y)

]
dx dy

=�−
2�

2A2

m
e−2α

(
�−✁
✁✁2
a2

) ∫ a

0

xdx︸ ︷︷ ︸
��
a2
2

; KII =
2�

2

m
e−2αA2.

KIII = 8
(
− �

2

2m

) ∫ a

y=0

∫ a+ε

x=a−ε

ψ

(
∂2

∂x2
+

∂2

∂y2

)
ψ dx dy.

In this region (x, y both positive) ψ = A


(

1− xy/a2

)
e−α (x < a)(

1− y/a

)
e−αx/a (x > a)

 , or

ψ = A

({
1− y

a

[
θ(x− a) +

x

a
θ(a− x)

]}
e−α[θ(a−x)+ x

a θ(x−a)]
)
.

∂ψ

∂x
= A

(
− y

a

[
✘✘✘

✘δ(x− a) +
1
a
θ(a− x)−

✟✟
✟✟
✟x

a
δ(a− x)

]
e−α[θ(a−x)+ x

a θ(x−a)]

+
{

1− y

a

[
θ(x− a) +

x

a
θ(a− x)

]}
e−α[θ(a−x)+ x

a θ(x−a)]
[
α✘✘✘

✘δ(a− x)− α

a
θ(x− a)−✘✘✘

✘✘✘αx

a
δ(x− a)

])
[Note: f(x) = xδ(x) should be zero—but perhaps we should check that this is still safe when we’re
planning to take it’s derivative: df/dx = δ(x) + x dδ/dx :∫

g
df

dx
dx =

∫
g

[
δ(x) + x

dδ

dx

]
dx = g(0) +

∫
gx

dδ

dx
dx

= g(0) +✘✘✘
✘✘✘✿0

gxδ(x)|x=0 −
∫

d

dx
(gx)δ(x)dx = g(0)−

∫ (
g + x

dg

dx

)
δ(x)dx

= g(0)− g(0)− (xg′)|x=0 = 0.

This confirms that f(x) can be taken to be zero even when differentiated.]

So δ(x− a)− x

a
δ(a− x) =

1
a
(a− x)δ(a− x) = 0. Hence the cancellations above, leaving
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∂ψ

∂x
= A

(
− y

a2
θ(a− x)e−α[θ(a−x)+ x

a θ(x−a)]

− α

a
θ(x− a)

{
1− y

a

[
θ(x− a) +

x

a
θ(a− x)

]}
e−α[θ(a−x)+ x

a θ(x−a)]
)

= Ae−α[θ(a−x)+ x
a θ(x−a)]

(
− y

a2
θ(a− x)− α

a
θ(x− a)

{
1− y

a

[
θ(x− a) +

x

a
θ(a− x)

]})
= −A

a
e−α[θ(a−x)+ x

a θ(x−a)]
[
y

a
θ(a− x) + αθ(x− a)

(
1− y

a

)]
.

∂2ψ

∂x2
= −A

a
e−α[θ(a−x)+ x

a θ(x−a)]
{
− y

a
δ(a− x) + αδ(x− a)

(
1− y

a

)
− α

[
−✘✘✘✘δ(a− x) +

1
a
θ(x− a)︸ ︷︷ ︸

integral 0

+
✟✟

✟✟
✟x

a
δ(x− a)

]}

= −A

a
e−αδ(x− a)

[
α− αy

a
− y

a

]
.

KIII = −4�
2

m

∫ a

y=0

∫ a+ε

x=a−ε

ψ(x, y)
[
−A

a
e−αδ(x− a)

(
α− αy

a
− y

a

)]
dx dy

=
4�

2A

ma
e−α

∫ a

y=0

ψ(a, y)︸ ︷︷ ︸
A(1−y/a)e−α

(
α− αy

a
− y

a

)
dy =

4�
2A2

ma
e−2α

∫ a

0

(
α− 2

αy

a
− y

a
+

αy2

a2
+

y2

a2

)
dy

=
4�

2A2

ma
e−2α

(
αa− ✁2

α

✁a
a✄2

✁2
− 1

a

a2

2
+

α

a2

a3

3
+

1
a2

a3

3

)
=

4�
2A2

m
e−2α

(
✟✟αa−✟✟αa− ✁

a

2
+

α✁a
3

+ ✁
a

3

)
︸ ︷︷ ︸

α
3− 1

6= 1
6 (2α−1)

=
4�

2A2

6m
(2α− 1)e−2α; KIII =

2�
2A2

3m
(2α− 1)e−2α.

〈H〉 = −2
3
A2 �

2α

m
e−2α +

2�
2

mα
e−2αA2 +

2�
2

m
e−2αA2 +

2�
2

3m
A2(2α− 1)e−2α

=
A2e−2α

�
2

m

[
− 2

3
α +

2
α

+ 2 +
2
3
(2α− 1)

]
=

2A2e−2α
�

2

3m

(
− α +

3
α

+ 3 + 2α− 1
)

=
2A2e−2α

�
2

3m

(
α + 2 +

3
α

)
=

2A2e−2α
�

2

3mα

(
α2 + 2α + 3

)
= ✁

2
3
✘✘✘e−2α

�
2

m✚α

(
α2 + 2α + 3

)9

✁2
✚α
a2

✟✟e2α

(6 + 11α)

=
3�

2

ma2

(α2 + 2α + 3)
(6 + 11α)

.

d〈H〉
dα

=
3�

2

ma2

(6 + 11α)(2α + 2)− (α2 + 2α + 3)(11)
(6 + 11α)2

= 0 ⇒ (6 + 11α)(2α + 2) = 11(α2 + 2α + 3).

12α + 12 + 22α2 + 22α = 11α2 + 22α + 33⇒ 11α2 + 12α− 21 = 0.
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218 CHAPTER 7. THE VARIATIONAL PRINCIPLE

α =
−12± 2

√
(12)2 + 4 · 11 · 21

22
=
−6±

√
36 + 231
11

=
−6± 16.34

11
=

10.34
11

[α has to be positive] = 0.940012239.

〈H〉min =
3�

2

ma2

2(α + 1)
11

=
6
11

�
2

ma2
(α + 1) = 1.058

(
�

2

ma2

)
. But Ethreshold =

π2

8
�

2

ma2
= 1.2337

�
2

ma2
,

so E0 is definitely less than Ethreshold.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


CHAPTER 8. THE WKB APPROXIMATION 219

Chapter 8

The WKB Approximation

Problem 8.1

∫ a

0

p(x) dx = nπ�, with n = 1, 2, 3, . . . and p(x) =
√

2m[E − V (x)] (Eq. 8.16).

Here
∫ a

0

p(x) dx =
√

2mE
(a

2

)
+

√
2m(E − V0)

(a

2

)
=
√

2m
(a

2

) (√
E +

√
E − V0

)
= nπ�

⇒ E + E − V0 + 2
√

E(E − V0) =
4

2m

(
nπ�

a

)2

= 4E0
n; 2

√
E(E − V0) = (4E0

n − 2E + V0).

Square again: 4E(E − V0) = 4E2 − 4EV0 = 16E0
n

2
+ 4E2 + V 2

0 − 16EE0
n + 8E0

nV0 − 4EV0

⇒ 16EE0
n = 16E0

n
2

+ 8E0
nV0 + V 2

0 ⇒ En = E0
n +

V0

2
+

V 2
0

16E0
n

.

Perturbation theory gave En = E0
n +

V0

2
; the extra term goes to zero for very small V0 (or, since E0

n ∼ n2), for
large n.

Problem 8.2

(a)

dψ

dx
=

i

�
f ′eif/�;

d2ψ

dx2
=

i

�

(
f ′′eif/� +

i

�
(f ′)2eif/�

)
=

[
i

�
f ′′ − 1

�2
(f ′)2

]
eif/�.

d2ψ

dx2
= −p2

�2
ψ =⇒

[
i

�
f ′′ − 1

�2
(f ′)2

]
eif/� = −p2

�2
eif/� =⇒ i�f ′′ − (f ′)2 + p2 = 0. QED
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220 CHAPTER 8. THE WKB APPROXIMATION

(b) f ′ = f ′0 + �f ′1 + �
2f ′2 + · · · =⇒ (f ′)2 = (f ′0 + �f ′1 + �

2f ′2 + · · · )2 = (f ′0)
2 + 2�f ′0f

′
1 + �

2[2f ′0f
′
2 + (f ′1)

2] + · · ·
f ′′ = f ′′0 + �f ′′1 + �

2f ′′2 + · · · . i�(f ′′0 + �f ′′1 + �
2f ′′2 )− (f ′0)

2 − 2�f ′0f
′
1 − �

2[2f ′0f
′
2 + (f ′1)

2] + p2 + · · · = 0.

�
0 : (f ′0)

2 = p2; �
1 : if ′′0 = 2f ′0f

′
1; �

2 : if ′′1 = 2f ′0f
′
2 + (f ′1)

2; . . .

(c)
df0

dx
= ±p =⇒ f0 = ±

∫
p(x)dx + constant ;

df1

dx
=

i

2
f ′′0
f ′0

=
i

2

(±p′

±p

)
=

i

2
d

dx
ln p =⇒ f1 =

i

2
ln p + const.

ψ = exp
(
if

�

)
= exp

[
i

�

(
±

∫
p(x) dx + �

i

2
ln p + K

)]
= exp

(
± i

�

∫
p dx

)
p−1/2eiK/�

=
C√
p

exp
(
± i

�

∫
p dx

)
. QED

Problem 8.3

γ =
1
�

∫
|p(x)| dx =

1
�

∫ 2a

0

√
2m(V0 − E) dx =

2a
�

√
2m(V0 − E). T ≈ e−4a

√
2m(V0−E)/�.

From Problem 2.33, the exact answer is

T =
1

1 + V 2
0

4E(V0−E) sinh2 γ
.

Now, the WKB approximation assumes the tunneling probability is small (p. 322)—which is to say that γ is
large. In this case, sinh γ = 1

2 (eγ − e−γ) ≈ 1
2e

γ , and sinh2 γ ≈ 1
4e

2γ , and the exact result reduces to

T ≈ 1

1 + V 2
0

16E(V0−E)e
2γ
≈

{
16E(V0 − E)

V 2
0

}
e−2γ .

The coefficient in { } is of order 1; the dominant dependence on E is in the exponential factor. In this sense
T ≈ e−2γ (the WKB result).

Problem 8.4

I take the masses from Thornton and Rex, Modern Physics, Appendix 8. They are all atomic masses, but the
electron masses subtract out in the calculation of E. All masses are in atomic units (u): 1 u = 931 MeV/c2.
The mass of He4 is 4.002602 u, and that of the α-particle is 3727 MeV/c2.

U238 : Z = 92, A = 238, m = 238.050784 u→ Th234 : m = 234.043593 u.

r1 = (1.07× 10−15 m)(238)1/3 = 6.63× 10−15 m.

E = (238.050784− 234.043593− 4.002602)(931) MeV = 4.27 MeV.

V =

√
2E
m

=

√
(2)(4.27)

3727
× 3× 108 m/s = 1.44× 107 m/s.
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CHAPTER 8. THE WKB APPROXIMATION 221

γ = 1.980
90√
4.27

− 1.485
√

90(6.63) = 86.19− 36.28 = 49.9.

τ =
(2)(6.63× 10−15)

1.44× 107
e98.8 s = 7.46× 1021 s =

7.46× 1021

3.15× 107
yr = 2.4× 1014 yrs.

Po212 : Z = 84, A = 212, m = 211.988842 u→ Pb208 : m = 207.976627 u.

r1 = (1.07× 10−15 m)(212)1/3 = 6.38× 10−15 m.

E = (211.988842− 207.976627− 4.002602)(931) MeV = 8.95 MeV.

V =

√
2E
m

=

√
(2)(8.95)

3727
× 3× 108 m/s = 2.08× 107 m/s.

γ = 1.980
82√
8.95

− 1.485
√

82(6.38) = 54.37− 33.97 = 20.4.

τ =
(2)(6.38× 10−15)

2.08× 107
e40.8 s = 3.2× 10−4 s.

These results are way off—but note the extraordinary sensitivity to nuclear masses: a tiny change in E produces
enormous changes in τ .

Much more impressive results are obtained when you plot the logarithm of lifetimes against 1/
√
E, as in

Figure 8.6. Thanks to David Rubin for pointing this out. Some experimental values are listed below (all energies
in MeV):

Uranium (Z = 92):

A E τ
238 4.198 4.468× 109 yr
236 4.494 2.342× 107 yr
234 4.775 2.455× 105 yr
232 5.320 68.9 yr
230 5.888 20.8 day
228 6.680 9.1 min
226 7.570 0.35 s

Protactinium (Z = 91):

A E τ
224 7.488 0.79 s
222 8.540 2.9 ms
220 9.650 0.78 µs
218 9.614 0.12 ms

Thorium (Z = 90):

A E τ
232 4.012 1.405× 1010 yr
230 4.687 7.538× 104 yr
228 5.423 1.912 yr
226 6.337 30.57 min

Radium (Z = 88):

A E τ
226 4.784 1600 yr
224 5.685 3.66 day
222 6.559 38 s
220 7.455 18 ms
218 8.389 25.6µs
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222 CHAPTER 8. THE WKB APPROXIMATION

Problem 8.5

(a) V (x) = mgx.

(b)

− �
2

2m
d2ψ

dx2
+ mgxψ = Eψ =⇒ d2ψ

dx2
=

2m2g

�2

(
x− E

mg

)
. Let y ≡ x− E

mg
, and α ≡

(
2m2g

�2

)1/3

.

Then
d2ψ

dy2
= α3yψ. Let z ≡ αy = α(x − E

mg
), so

d2ψ

dz2
= zψ. This is the Airy equation (Eq. 8.36), and

the general solution is ψ = aAi(z) + bBi(z). However, Bi(z) blows up for large z, so b = 0 (to make ψ

normalizable). Hence ψ(x) = aAi
[
α(x− E

mg )
]
.

(c) Since V (x) = ∞ for x < 0, we require ψ(0) = 0; hence Ai [α(−E/mg)] = 0. Now, the zeros of Ai are
an (n = 1, 2, 3, . . . ). Abramowitz and Stegun list a1 = −2.338, a2 = −4.088, a3 = −5.521, a4 = −6.787,

etc. Here −αEn

mg
= an, or En = −mg

α
an = −mg

(
�

2

2m2g

)1/3

an, or En = −( 1
2mg2

�
2)1/3an. In this case

1
2mg2

�
2 = 1

2 (0.1 kg)(9.8 m/s2)2(1.055× 10−34J·s)2 = 5.34× 10−68 J3; ( 1
2mg2

�
2)1/3 = 3.77× 10−23 J.

E1 = 8.81× 10−23 J, E2 = 1.54× 10−22 J, E3 = 2.08× 10−22 J, E4 = 2.56× 10−22 J.

(d)

2〈T 〉 = 〈x dV

dX
〉 (Eq. 3.97); here

dV

dx
= mg, so 〈xdV

dx
〉 = 〈mgx〉 = 〈V 〉, so 〈T 〉 =

1
2
〈V 〉.

But 〈T 〉+ 〈V 〉 = 〈H〉 = En, so
3
2
〈V 〉 = En, or 〈V 〉 =

2
3
En. But 〈V 〉 = mg〈x〉, so 〈x〉 =

2En

3mg
.

For the electron,
(

1
2
mg2

�
2

)1/3

=
[
1
2
(9.11× 10−31)(9.8)2(1.055× 10−34)2

]1/3

= 7.87× 10−33 J.

E1 = 1.84× 10−32 J = 1.15× 10−13 eV. 〈x〉 =
2(1.84× 10−32)

3(9.11× 10−31)(9.8)
= 1.37× 10−3 = 1.37 mm.

Problem 8.6

(a)

Eq. 8.47 =⇒
∫ x2

0

p(x) dx = (n− 1
4
)π�, where p(x) =

√
2m(E −mgx) and E = mgx2 =⇒ x2 = E/mg.

∫ x2

0

p(x) dx =
√

2m
∫ x2

0

√
E −mgxdx =

√
2m

[
− 2

3mg
(E −mgx)3/2

]∣∣∣∣x2

0

= −2
3

√
2
m

1
g

[
(E −mgx2)3/2 − E3/2

]
=

2
3

√
2
m

1
g
E3/2.
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CHAPTER 8. THE WKB APPROXIMATION 223

E

V(x)

x x

mgx

2

1
3
√
mg

(2E)3/2 = (n− 1
4
)π�, or En =

[
9
8π

2mg2
�

2(n− 1
4 )2

]1/3.

(b) (
9
8
π2mg2

�
2

)1/3

=
[
9
8
π2(0.1)(9.8)2(1.055× 10−34)2

]1/3

= 1.0588× 10−22 J.

E1 = (1.0588× 10−22)
(

3
4

)2/3

= 8.74× 10−23 J,

E2 = (1.0588× 10−22)
(

7
4

)2/3

= 1.54× 10−22 J,

E3 = (1.0588× 10−22)
(

11
4

)2/3

= 2.08× 10−22 J,

E4 = (1.0588× 10−22)
(

15
4

)2/3

= 2.56× 10−22 J.

These are in very close agreement with the exact results (Problem 8.5(c)). In fact, they agree precisely
(to 3 significant digits), except for E1 (for which the exact result was 8.81× 10−23 J).

(c) From Problem 8.5(d),

〈x〉 =
2En

3mg
, so 1 =

2
3

(1.0588× 10−22)
(0.1)(9.8)

(
n− 1

4

)2/3

, or
(
n− 1

4

)2/3

= 1.388× 1022.

n =
1
4

+ (1.388× 1022)3/2 = 1.64× 1033.

Problem 8.7

∫ x2

x1

p(x) dx =
(
n− 1

2

)
π�; p(x) =

√
2m

(
E − 1

2
mω2x2

)
; x2 = −x1 =

1
ω

√
2E
m

.

(
n− 1

2

)
π� = mω

∫ x2

−x2

√
2E
mω2

− x2 dx = 2mω

∫ x2

0

√
x2

2 − x2 dx = mω

[
x
√

x2
2 − x2 + x2

2 sin−1(x/x2)
]x2

0
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224 CHAPTER 8. THE WKB APPROXIMATION

= mωx2
2 sin−1(1) =

π

2
mωx2

2 =
π

2
mω

2E
mω2

=
πE

ω
. En =

(
n− 1

2

)
�ω (n = 1, 2, 3, . . . )

Since the WKB numbering starts with n = 1, whereas for oscillator states we traditionally start with n = 0,
letting n → n + 1 converts this to the usual formula En = (n + 1

2 )�ω. In this case the WKB approximation
yields the exact results.

Problem 8.8

(a)

1
2
mω2x2

2 = En =
(
n +

1
2

)
�ω (counting n = 0, 1, 2, . . . ); x2 =

√
(2n + 1)�

mω
.

(b)

Vlin(x) =
1
2
mω2x2

2 + (mω2x2)(x− x2) =⇒ Vlin(x2 + d) =
1
2
mω2x2

2 + mω2x2d.

V (x2 + d)− Vlin(x2 + d)
V (x2)

=
1
2mω2(x2 + d)2 − 1

2mω2x2
2 −mω2x2d

1
2mω2x2

2

=
x2

2 + 2x2d + d2 − x2
2 − 2x2d

x2
2

=
(

d

x2

)2

= 0.01. d = 0.1x2.

(c)

α =
[
2m
�2

mω2x2

]1/3

(Eq. 8.34), so 0.1x2

[
2m2ω2

�2
x2

]1/3

≥ 5 =⇒
[
2m2ω2

�2
x4

2

]1/3

≥ 50.

2m2ω2

�2

(2n + 1)2�
2

m2ω2
≥ (50)3; or (2n + 1)2 ≥ (50)3

2
= 62500; 2n + 1 ≥ 250; n ≥ 249

2
= 124.5.

nmin = 125. However, as we saw in Problems 8.6 and 8.7, WKB may be valid at much smaller n.

Problem 8.9

Shift origin to the turning point.

ψWKB =


1√
|p(x)|

De−
1
�

∫ 0
x
|p(x′)| dx′ (x < 0)

1√
|p(x)|

[
Be

i
�

∫ x
0 p(x′) dx′ + Ce−

i
�

∫ x
0 p(x′) dx′

]
(x > 0)
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CHAPTER 8. THE WKB APPROXIMATION 225

x
0

Nonclassical Classical

overlap 2overlap 1

WKB

P

ψ

ψ

WKB
ψ

patching region

E

Linearized potential in the patching region:

V (x) ≈ E+V ′(0)x. Note : V ′(0) is negative.
d2ψp

dx2
=

2mV ′(0)
�2

xψp = −α3xψp, whereα ≡
(

2m|V ′(0)|
�2

)1/3

.

ψp(x) = aAi(−αx) + bBi(−αx). (Note change of sign, as compared with Eq. 8.37).

p(x) =
√

2m[E − E − V ′(0)x] =
√
−2mV ′(0)x =

√
2m|V ′(0)|x =

√
α3�2x = �α3/2

√
x.

Overlap region 1 (x < 0):

∫ 0

x

|p(x′)| dx′ = �α3/2

∫ 0

x

√
−x′ dx′ = �α3/2

(
−2

3
(−x′)3/2

)∣∣∣∣0
x

=
2
3

�α3/2(−x)3/2 =
2
3

�(−αx)3/2.

ψWKB ≈
1

�1/2α3/2(−x)1/4
De−

2
3 (−αx)3/2 . For large positive argument (−αx� 1) :

ψp ≈ a
1

2
√
π(−αx)1/4

e−
2
3 (−αx)3/2 + b

1√
π(−αx)1/4

e
2
3 (−αx)3/2 . Comparing⇒ a = 2D

√
π

α�
; b = 0.

Overlap region 2 (x > 0):∫ x

0

|p(x′)| dx′ = �α3/2

∫ x

0

√
x′ dx′ = �α3/2

[
2
3
(x′)3/2

]∣∣∣∣x
0

=
2
3

�(αx)3/2.

ψWKB ≈
1

�1/2α3/4x1/4

[
Bei 2

3 (αx)3/2 + Ce−i 2
3 (αx)3/2

]
. For large negative argument (−αx� −1) :

ψp(x) ≈ a
1√

π(αx)1/4
sin

[
2
3
(αx)3/2 +

π

4

]
=

a√
π(αx)1/4

1
2i

[
eiπ/4ei 2

3 (αx)3/2 − e−iπ/4e−i 2
3 (αx)3/2

]
(remember : b = 0).

Comparing the two: B =
a

2i

√
α�

π
eiπ/4, C = − a

2i

√
α�

π
e−iπ/4.
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226 CHAPTER 8. THE WKB APPROXIMATION

Inserting the expression for a from overlap region 1 : B = −ieiπ/4D; C = ie−iπ/4D. For x > 0, then,

ψWKB =
−iD√
p(x)

[
e
i
�

∫ x
0 p(x′) dx′+iπ4 − e−

i
�

∫ x
0 p(x′) dx′−iπ4

]
=

2D√
p(x)

sin
[

1
�

∫ x

0

p(x′) dx′ +
π

4

]
.

Finally, switching the origin back to x1:

ψWKB(x) =


D√
|p(x)|

e−
1
�

∫ x1
x
|p(x′)| dx′ , (x < x1) ;

2D√
p(x)

sin
[

1
�

∫ x

x1

p(x′)dx′ +
π

4

]
, (x > x1).

 QED

Problem 8.10

At x1, we have an upward-sloping turning point. Follow the method in the book. Shifting origin to x1:

ψWKB(x) =


1√
p(x)

[
Ae

i
�

∫ 0
x

p(x′) dx′ + B−
i
�

∫ 0
x

p(x′) dx′
]

(x < 0)

1√
p(x)

[
Ce

1
�

∫ x
0 |p(x′)| dx′ + D−

1
�

∫ x
0 |p(x′)| dx′

]
(x > 0)

In overlap region 2, Eq. 8.39 becomes ψWKB ≈
1

�1/2α3/4x1/4

[
Ce

2
3 (αx)3/2 + De−

2
3 (αx)3/2

]
,

whereas Eq. 8.40 is unchanged. Comparing them =⇒ a = 2D
√

π

α�
, b = C

√
π

α�
.

In overlap region 1, Eq. 8.43 becomes ψWKB ≈
1

�1/2α3/4(−x)1/4

[
Aei 2

3 (−αx)3/2 + Be−i 2
3 (−αx)3/2

]
,

and Eq. 8.44 (with b �= 0) generalizes to

ψp(x) ≈ a√
π(−αx)1/4

sin
[
2
3
(−αx)3/2 +

π

4

]
+

b√
π(−αx)1/4

cos
[
2
3
(−αx)3/2 +

π

4

]

=
1

2
√
π(−αx)1/4)

[
(−ia + b)ei 2

3 (−αx)3/2eiπ/4 + (ia + b)e−i 2
3 (−αx)3/2e−iπ/4

]
. Comparing them =⇒

A =

√
�α

π

(−ia + b

2

)
eiπ/4; B =

√
�α

π

(
ia + b

2

)
e−iπ/4. Putting in the expressions above for a and b :

A =
(
C

2
− iD

)
eiπ/4; B =

(
C

2
+ iD

)
e−iπ/4.
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CHAPTER 8. THE WKB APPROXIMATION 227

These are the connection formulas relating A,B,C, and D, at x1.
At x2, we have a downward-sloping turning point, and follow the method of Problem 8.9. First rewrite the

middle expression in Eq. 8.52:

ψWKB =
1√
|p(x)|

[
Ce

1
�

∫ x2
x1
|p(x′)| dx′+ 1

�

∫ x
x2
|p(x′)| dx′ + De

− 1
�

∫ x2
x1
|p(x′)| dx′− 1

�

∫ x
x2
|p(x′)| dx′

]
.

Let γ ≡
∫ x2

x1
|p(x)| dx, as before (Eq. 8.22), and let C ′ ≡ De−γ , D′ ≡ Ceγ . Then (shifting the origin to x2):

ψWKB =


1√
|p(x)|

[
C ′e

1
�

∫ 0
x
|p(x′)| dx′ + D′e−

1
�

∫ 0
x
|p(x′)| dx′

]
, (x < 0);

1√
p(x)

Fe
i
�

∫ x
0 p(x′) dx′ , (x > 0).

In the patching region ψp(x) = aAi(−αx) + bBi(−αx), where α ≡
(

2m|V ′(0)|
�2

)1/3

; p(x) = �α3/2
√
x.

In overlap region 1 (x < 0):
∫ 0

x

|p(x′)| dx′ = 2
3

�(−αx)3/2, so

ψWKB ≈
1

�1/2α3/4(−x)1/4

[
C ′e

2
3 (−αx)3/2 + D′e−

2
3 (−αx)3/2

]
ψp ≈

a

2
√
π(−αx)1/4

e−
2
3 (−αx)3/2 +

b√
π(−αx)1/4

e
2
3 (−αx)3/2

 Comparing =⇒


a = 2

√
π

�α
D′

b =
√

π

�α
C ′

In overlap region 2 (x > 0):
∫ x

0

p(x′) dx′ =
2
3

�(αx)3/2 =⇒ ψWKB ≈
1

�1/2α3/4x1/4
Fei 2

3 (αx)3/2 .

ψp ≈
a√

π(αx)1/4
sin

[
2
3
(αx)3/2 +

π

4

]
+

b√
π(αx)1/4

cos
[
2
3
(αx)3/2 +

π

4

]

=
1

2
√
π(αx)1/4

[
(−ia + b)eiπ4 ei 2

3 (αx)3/2 + (ia + b)e−iπ4 e−i 2
3 (αx)3/2

]
. Comparing =⇒ (ia + b) = 0;

F =

√
�α

π

(−ia + b

2

)
eiπ/4 = b

√
�α

π
eiπ/4. b =

√
π

�α
e−iπ/4F ; a = i

√
π

�α
e−iπ/4F.

C ′ =

√
�α

π
b = e−iπ/4F, D′ =

1
2

√
�α

π
a =

i

2
e−iπ/4F. D = eγe−iπ/4F ; C =

i

2
e−γe−iπ/4F.

These are the connection formulas at x2. Putting them into the equation for A:

A =
(
C

2
− iD

)
eiπ/4 =

(
i

4
e−γe−iπ/4F − ieγe−iπ/4F

)
eiπ/4 = i

(
e−γ

4
− eγ

)
F.

T =
∣∣∣∣FA

∣∣∣∣2 =
1

(eγ − e−γ

4 )2
=

e−2γ[
1− (e−γ/2)2

]2 .

If γ � 1, the denominator is essentially 1, and we recover T = e−2γ (Eq. 8.22).
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228 CHAPTER 8. THE WKB APPROXIMATION

Problem 8.11

Equation 8.51 ⇒
(
n− 1

2

)
π� = 2

∫ x2

0

√
2m(E − αxν) dx = 2

√
2mE

∫ x2

0

√
1− α

E
xν dx; E = αxν

2 . Let

z ≡ α

E
xν , so x =

(
zE

α

)1/ν

; dx =
(
E

α

)1/ν 1
ν
z

1
ν−1 dz. Then

(
n− 1

2

)
π� = 2

√
2mE

(
E

α

)1/ν 1
ν

∫ 1

0

z
1
ν−1

√
1− z dz = 2

√
2mE

(
E

α

)1/ν 1
ν

Γ(1/ν)Γ(3/2)
Γ( 1

ν + 3
2 )

= 2
√

2mE

(
E

α

)1/ν Γ( 1
ν + 1) 1

2

√
π

Γ( 1
ν + 3

2 )
=
√

2πmE

(
E

α

)1/ν Γ( 1
ν + 1)

Γ( 1
ν + 3

2 )
.

E
1
ν+ 1

2 =
(n− 1

2 )π�√
2πm

α1/ν Γ( 1
ν + 3

2 )
Γ( 1

ν + 1)
; En =

[(
n− 1

2

)
�

√
π

2mα

Γ( 1
ν + 3

2 )
Γ( 1

ν + 1)

]( 2ν
ν+2 )

α.

For ν = 2: En =
[(

n− 1
2

)
�

√
π

2mα

Γ(2)
Γ(3/2)

]
α = (n− 1

2
)�

√
2α
m

.

For a harmonic oscillator, with α = 1
2mω2, En =

(
n− 1

2

)
�ω (n = 1, 2, 3, . . . ). �

Problem 8.12

V (x) = −�
2a2

m
sech2(ax). Eq. 8.51 =⇒

(
n− 1

2

)
π� = 2

∫ x2

0

√
2m

[
E +

�2a2

m
sech2(ax)

]
dx

= 2
√

2�a

∫ x2

0

√
sech2(ax) +

mE

�2a2
dx.

E = −�
2a2

m
sech2(ax2) defines x2. Let b ≡ − mE

�2a2
, z ≡ sech2(ax), so that x =

1
a
sech−1√z, and hence

dx =
1
a

( −1√
z
√

1− z

)
1

2
√
z
dz = − 1

2a
1

z
√

1− z
dz. Then

(
n− 1

2

)
π = 2

√
2 a

(
− 1

2a

) ∫ z2

z1

√
z − b

z
√

1− z
dz.

Limits :

{
x = 0 =⇒ z = sech2(0) = 1

x = x2 =⇒ z = sech2(ax2) = − mE

�2a2
= b

}
.

(
n− 1

2

)
π =

√
2

∫ 1

b

1
z

√
z − b

1− z
dz.

1
z

√
z − b

1− z
=

1
z

(z − b)√
(1− z)(z − b)

=
1√

(1− z)(z − b)
− b

z
√

(1− z)(z − b)
.
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CHAPTER 8. THE WKB APPROXIMATION 229

(
n− 1

2

)
π =

√
2

[∫ 1

b

1√
(1− z)(z − b)

dz − b

∫ 1

b

1
z
√
−b + (1 + b)z − z2

dz

]

=
√

2

{
−2 tan−1

√
1− z

z − b
−
√
b sin−1

[
(1 + b)z − 2b

z(1− b)

]}∣∣∣∣∣
1

b

=
√

2
[
−2 tan−1(0) + 2 tan−1(∞)−

√
b sin−1(1) +

√
b sin−1(−1)

]
=
√

2
(
0 + 2

π

2
−
√
b
π

2
−
√
b
π

2

)
=
√

2π(1−
√
b);

(n− 1
2 )√

2
= 1−

√
b;

√
b = 1− 1√

2

(
n− 1

2

)
.

Since the left side is positive, the right side must also be: (n− 1
2 ) <

√
2, n < 1

2 +
√

2 = 0.5 + 1.414 = 1.914.
So the only possible n is 1; there is only one bound state (which is correct—see Problem 2.51).

For n = 1,
√
b = 1− 1

2
√

2
; b = 1− 1√

2
+

1
8

=
9
8
− 1√

2
; E1 = −�

2a2

m

(
9
8
− 1√

2

)
= −0.418

�
2a2

m
.

The exact answer (Problem 2.51(c)) is −0.5
�

2a2

m
. Not bad.

Problem 8.13

(
n− 1

4

)
π� =

∫ r0

0

√
2m [E − V0 ln(r/a)] dr; E = V0 ln(r0/a) defines r0.

=
√

2m
∫ r0

0

√
V0 ln(r0/a)− V0 ln(r/a) dr =

√
2mV0

∫ r0

0

√
ln(r0/r) dr.

Let x ≡ ln(r0/r), so ex = r0/r, or r = r0e
−x =⇒ dr = −r0e

−xdx.

(
n− 1

4

)
π� =

√
2mV0(−r0)

∫ x2

x1

√
xe−e dx. Limits :

{
r = 0 =⇒ x1 =∞
r = r0 =⇒ x2 = 0

}
.

(
n− 1

4

)
π� =

√
2mV0 r0

∫ ∞
0

√
xe−x dx =

√
2mV0 r0Γ(3/2) =

√
2mV0 r0

√
π

2
.

r0 =
√

2π
mV0

�

(
n− 1

4

)
⇒ En = V0 ln

[
�

a

√
2π
mV0

(
n− 1

4

)]
= V0 ln

(
n− 1

4

)
+ V0 ln

[
�

a

√
2π
mV0

]
.

En+1 − En = V0 ln
(
n +

3
4

)
− V0 ln

(
n− 1

4

)
= V0 ln

(
n + 3/4
n− 1/4

)
, which is indeed independent of m (and a).
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Problem 8.14

(
n− 1

2

)
π� =

∫ r2

r1

√
2m

(
E +

e2

4πε0
1
r
− �2

2m
l(l + 1)

r2

)
dr =

√
−2mE

∫ r2

r1

√
−1 +

A

r
− B

r2
dr,

where A ≡ − e2

4πε0
1
E

and B ≡ − �
2

2m
l(l + 1)

E
are positive constants, since E is negative.

(
n− 1

2

)
π� =

√
−2mE

∫ r2

r1

√
−r2 + Ar −B

r
dr.

Let r1 and r2 be the roots of the polynomial in the numerator: − r2 + Ar −B = (r − r1)(r2 − r).

(
n− 1

2

)
π� =

√
−2mE

∫ r2

r1

√
(r − r1)(r2 − r)

r
dr =

√
−2mE

π

2
(
√
r2 −

√
r1)

2
.

2
(
n− 1

2

)
� =

√
−2mE (r2 + r1 − 2

√
r1r2) . But − r2 + Ar −B = −r2 + (r1 + r2)r − r1r2

=⇒ r1 + r2 = A; r1r2 = B. Therefore

2
(
n− 1

2

)
� =

√
−2mE

(
A− 2

√
B

)
=
√
−2mE

(
− e2

4πε0
1
E
− 2

√
− �2

2m
l(l + 1)

E

)

=
e2

4πε0

√
−2m

E
− 2�

√
l(l + 1).

e2

4πε0

√
−2m

E
= 2�

[
n− 1

2
+

√
l(l + 1)

]
; − E

2m
=

(e2/4πε0)2

4�2
[
n− 1

2 +
√

l(l + 1)
]2 .

E =
−(m/2�

2)(e2/4πε0)2[
n− 1

2 +
√

l(l + 1)
]2 =

−13.6 eV(
n− 1

2 +
√

l(l + 1)
)2 .

Problem 8.15

(a) (i) ψWKB(x) =
D√
|p(x)|

e
− 1

�

∫ x
x2
|p(x′)| dx′ (x > x2);

(ii) ψWKB(x) =
1√
p(x)

[
Be

i
�

∫ x2
x

p(x′) dx′ + Ce−
i
�

∫ x2
x

p(x′) dx′
]

(x1 < x < x2);
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(iii) ψWKB(x) =
1√
|p(x)|

[
Fe

1
�

∫ x1
x
|p(x′)| dx′ + Ge−

1
�

∫ x1
x
|p(x′)| dx′

]
(0 < x < x1).

Equation 8.46 =⇒ (ii) ψWKB =
2D√
p(x)

sin
[

1
�

∫ x2

x

p(x′)dx′ +
π

4

]
(x1 < x < x2).

To effect the join at x1, first rewrite (ii):

(ii) ψWKB =
2D√
p(x)

sin
[

1
�

∫ x2

x1

p(x′) dx′ − 1
�

∫ x

x1

p(x′) dx′ +
π

4

]
= − 2D√

p(x)
sin

[
1
�

∫ x

x1

p(x′) dx′ − θ − π

4

]
,

where θ is defined in Eq. 8.58. Now shift the origin to x1:

ψWKB =


1√
|p(x)|

[
Fe

1
�

∫ 0
x
|p(x′)| dx′ + Ge−

1
�

∫ 0
x
|p(x′)| dx′

]
(x < 0)

− 2D√
p(x)

sin
[

1
�

∫ x

0

p(x′) dx′ − θ − π

4

]
(x > 0)

 .

Following Problem 8.9: ψp(x) = aAi(−αx) + bBi(−αx), with α ≡
(

2m|V ′(0)|
�2

)1/3

; p(x) = �α3/2
√
x.

Overlap region 1 (x < 0):
∫ 0

x

|p(x′)| dx′ = 2
3

�(−αx)3/2.

ψWKB ≈
1

�1/2α3/4(−x)1/4

[
Fe

2
3 (−αx)3/2 + Ge−

2
3 (−αx)3/2

]
ψp ≈ a

2
√
π(−αx)1/4

e−
2
3 (−αx)3/2 +

b√
π(−αx)1/4

e
2
3 (−αx)3/2

 =⇒ a = 2G
√

π

�α
; b = F

√
π

�α
.

Overlap region 2 (x > 0):
∫ x

0

p(x′) dx′ =
2
3

�(αx)3/2.

=⇒ ψWKB ≈ −
2D

�1/2α3/4x1/4
sin

[
2
3
(αx)3/2 − θ − π

4

]
,

ψp ≈
a√

π(αx)1/4
sin

[
2
3
(αx)3/2 +

π

4

]
+

b√
π(αx)1/4

cos
[
2
3
(αx)3/2 +

π

4

]
.

Equating the two expressions:
−2D

�1/2α3/4

1
2i

[
ei 2

3 (αx)3/2e−iθe−iπ/4 − e−i 2
3 (αx)3/2eiθeiπ/4

]

=
1√

πα1/4

{
a

2i

[
ei 2

3 (αx)3/2eiπ/4 − e−i 2
3 (αx)3/2e−iπ/4

]
+

b

2

[
ei 2

3 (αx)3/2eiπ/4 + e−i 2
3 (αx)3/2e−iπ/4

]}

=⇒


−2D

√
π

α�
e−iθe−iπ/4 = (a + ib)eiπ/4, or (a + ib) = 2D

√
π

α�
ie−iθ

2D
√

π

α�
eiθeiπ/4 = (−a + ib)e−iπ/4, or (a− ib) = −2D

√
π

α�
ieiθ


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232 CHAPTER 8. THE WKB APPROXIMATION

=⇒


2a = 2D

√
π

α�
i(e−iθ − eiθ)⇒ a = 2D

√
π

α�
sin θ,

2ib = 2D
√

π

α�
i(e−iθ + eiθ)⇒ b = 2D

√
π

α�
cos θ.


Combining these with the results from overlap region 1 =⇒

2G
√

π

α�
= 2D

√
π

α�
sin θ, or G = D sin θ; F

√
π

α�
= 2D

√
π

α�
cos θ, or F = 2D cos θ.

Putting these into (iii) : ψWKB(x) =
D√
|p(x)|

[
2 cos θe

1
�

∫ x1
x
|p(x′)| dx′ + sin θe−

1
�

∫ x1
x
|p(x′)| dx′

]
(0 < x < x1).

(b)

Odd(−) case: (iii) =⇒ ψ(0) = 0⇒ 2 cos θe
1
�

∫ x1
0 |p(x′)| dx′ + sin θe−

1
�

∫ x1
0 |p(x′)| dx′ = 0.

1
�

∫ x1

0

|p(x′)| dx′ = 1
2
φ, with φ defined by Eq. 8.60. So sin θe−φ/2 = −2 cos θeφ/2, or tan θ = −2eφ.

Even(+) case: (iii) =⇒ ψ′(0) = 0⇒ −1
2

D

(|p(x)|)3/2

d|p(x)|
dx

∣∣∣∣
0

[
2 cos θeφ/2 + sin θe−φ/2

]

+
D√
|p(x)|

[
2 cos θe

1
�

∫ x1
0 |p(x′)| dx′

(
−1

�
|p(0)|

)
+ sin θe−

1
�

∫ x1
0 |p(x′)| dx′

(
1
�
|p(0)|

)]
= 0.

Now
d|p(x)|

dx
=

d

dx

√
2m[V (x)− E] =

√
2m

1
2

1√
V − E

dV

dx
, and

dV

dx

∣∣∣∣
0

= 0, so
d|p(x)|

dx

∣∣∣∣
0

= 0.

2 cos θeφ/2 = sin θe−φ/2, or tan θ = 2eφ. Combining the two results: tan θ = ±2eφ. QED

(c)

tan θ = tan
[(

n +
1
2

)
π + ε

]
=

sin
[(

n + 1
2

)
π + ε

]
cos

[(
n + 1

2

)
π + ε

] =
(−1)n cos ε

(−1)n+1 sin ε
= −cos ε

sin ε
≈ −1

ε
.

So − 1
ε
≈ ±2eφ, or ε ≈ ∓1

2
e−φ, or θ −

(
n +

1
2

)
π ≈ ∓1

2
e−φ, so θ ≈

(
n +

1
2

)
π ∓ 1

2
e−φ. QED

[Note: Since θ (Eq. 8.58) is positive, n must be a non-negative integer: n = 0, 1, 2, . . . . This is like
harmonic oscillator (conventional) numbering, since it starts with n = 0.]
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CHAPTER 8. THE WKB APPROXIMATION 233

a-a x x x

V(x)

1 2

(d)

θ =
1
�

∫ x2

x1

√
2m

[
E − 1

2
mω2(x− a)2

]
dx. Let z = x− a (shifts the origin to a).

=
2
�

∫ z2

0

√
2m

[
E − 1

2
mω2z2

]
dz, where E =

1
2
mω2z2

2 .

=
2
�
mω

∫ z2

0

√
z2
2 − z2 dz =

mω

�

[
z
√

z2
2 − z2 + z2

2 sin−1(z/z2)
]∣∣∣∣z2

0

=
mω

�
z2
2 sin−1(1) =

π

2
mω

�
z2
2 ,

=
π

2
mω

�

2E
mω2

=
πE

�ω
.

Putting this into Eq. 8.61 yields
πE

�ω
≈

(
n +

1
2

)
π ∓ 1

2
e−φ, or E±n ≈

(
n +

1
2

)
�ω ∓ �ω

2π
e−φ. QED

(e)

Ψ(x, t) =
1√
2

(
ψ+

n e−iE+
n t/� + ψ−n e−iE−n t/�

)
=⇒

|Ψ(x, t)|2 =
1
2

[
|ψ+

n |2 + |ψ−n |2 + ψ+
n ψ−n

(
ei(E−n −E+

n )t/� + e−i(E−n −E+
n )t/�

)]
.

(Note that the wave functions (i), (ii), (iii) are real). But
E−n − E+

n

�
≈ 1

�
2

�ω

2π
e−φ =

ω

π
e−φ, so

|Ψ(x, t)|2 =
1
2

[
ψ+

n (x)2 + ψ−n (x)2
]
+ ψ+

n (x)ψ−n (x) cos
(ω

π
e−φt

)
.

It oscillates back and forth, with period τ =
2π

(ω/π) e−φ
=

2π2

ω
eφ. QED

(f)

φ = 2
1
�

∫ x1

0

√
2m

[
1
2
mω2(x− a)2 − E

]
dx =

2
�

√
2mE

∫ x1

0

√
mω2

2E
(x− a)2 − 1 dx.
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234 CHAPTER 8. THE WKB APPROXIMATION

Let z ≡
√

m

2E
ω(a− x), so dx = −

√
2E
m

1
ω
dz. Limits:

 x = 0 =⇒ z =
√

m

2E
ωa ≡ z0

x = x1 =⇒ radicand = 0 =⇒ z = 1

 .

φ =
2
�

√
2mE

√
2E
m

1
ω

∫ z0

1

√
z2 − 1 dz =

4E
�ω

∫ z0

1

√
z2 − 1 dz =

4E
�ω

1
2

[
z
√

z2 − 1− ln(z +
√

z2 − 1)
]∣∣∣z0

1

=
2E
�ω

[
z0

√
z2
0 − 1− ln

(
z0 +

√
z2
0 − 1

)]
,

where z0 = aω

√
m

2E
. V (0) = 1

2mω2a2, so V (0)� E ⇒ m

2
ω2a2 � E ⇒ aω

√
m

2E
� 1, or z0 � 1.

In that case

φ ≈ 2E
�ω

[
z2
0 − ln(2z0)

]
≈ 2E

�ω
z2
0 =

2E
�ω

a2ω2 m

2E
=

mωa2

�
.

This, together with Eq. 8.64, gives us the period of oscillation in a double well.

Problem 8.16

(a) En ≈
n2π2

�
2

2m(2a)2
. With n = 1, E1 =

π2
�

2

8ma2
.

(b)

V(x)

x

V0

E1

a-a

V(x)

x

E1

a-a x0

E tunneling

(c)

γ =
1
�

∫ x0

a

|p(x)| dx. αx0 = V0 − E1 ⇒ x0 =
V0 − E1

α
.

p(x) =
√

2m [E − V (x)]; V (x) = −αx, E = E1 − V0.

=
√

2m(E1 − V0 + αx) =
√

2mα
√
x− x0; |p(x)| =

√
2mα

√
x0 − x.

γ =
1
�

√
2mα

∫ x0

a

√
x0 − x dx =

√
2mα

�

[
−2

3
(x0 − x)3/2

] ∣∣∣∣x0

a

=
2
3

√
2mα

�
(x0 − a)3/2.
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CHAPTER 8. THE WKB APPROXIMATION 235

Now x0 − a = (V0 − E1 − aα)/α, and αa� �
2/ma2 ≈ E1 � V0, so we can drop E1 and αa. Then

γ ≈ 2
3

√
2mα

�

(
V0

α

)3/2

=

√
8mV 3

0

3α�
.

Equation 8.28 ⇒ τ =
4a
v

e2γ , where
1
2
mv2 ≈ π2

�
2

8ma2
⇒ v2 =

π2
�

2

4m2a2
, or v =

π�

2ma
. So

τ =
4a
π�

2mae2γ =
8ma2

π�
e2γ .

(d)

τ =
(8)

(
9.1× 10−31

) (
10−10

)2

π (1.05× 10−34)
e2γ =

(
2× 10−19

)
e2γ ;

γ =

√
(8) (9.1× 10−31) (20× 1.6× 10−19)3

(3) (1.6× 10−19) (7× 106) (1.05× 10−34)
= 4.4× 104; e2γ = e8.8×104

=
(
10log e

)8.8×104

= 1038,000.

τ =
(
2× 10−19

)
× 1038,000 s = 1038,000 yr.

Seconds, years . . . it hardly matters; nor is the factor out front significant. This is a huge number—the
age of the universe is about 1010 years. In any event, this is clearly not something to worry about.

Problem 8.17

Equation 8.22 ⇒ the tunneling probability: T = e−2γ , where

γ =
1
�

∫ x0

0

√
2m(V − E) dx. Here V (x) = mgx, E = 0, x0 =

√
R2 + (h/2)2 − h/2 (half the diagonal).

=
√

2m
�

√
mg

∫ x0

0

x1/2 dx =
m

�

√
2g

2
3
x3/2

∣∣∣∣x0

0

=
2m
3�

√
2g x

3/2
0 .

I estimate: h = 10 cm, R = 3 cm, m = 300 gm; let g = 9.8 m/s2. Then x0 =
√

9 + 25− 5 = 0.83 cm, and

γ =
(2)(0.3)

(3)(1.05× 10−34)

√
(2)(9.8) (0.0083)3/2 = 6.4× 1030.

Frequency of “attempts”: say f = v/2R. We want the product of the number of attempts (ft) and the
probability of toppling at each attempt (T ), to be 1:

t
v

2R
e−2γ = 1 ⇒ t =

2R
v

e2γ .

Estimating the thermal velocity: 1
2mv2 = 1

2kBT (I’m done with the tunneling probability; from now on T

is the temperature, 300 K) ⇒ v =
√

kBT/m.

t = 2R
√

m

kBT
e2γ = 2(0.03)

√
0.3

(1.4× 10−23)(300)
e12.8×1030

= 5× 108
(
10log e

)13×1030

= (5× 108)× 105.6×1030
s

= 16× 105.6×1030
yr.

Don’t hold your breath.
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Chapter 9

Time-Dependent Perturbation Theory

Problem 9.1

ψnlm = RnlY
m
l . From Tables 4.3 and 4.7:

ψ100 =
1√
πa3

e−r/a; ψ200 =
1√

8πa3

(
1− r

2a

)
e−r/2a;

ψ210 =
1√

32πa3

r

a
e−r/2a cos θ; ψ21±1 = ∓ 1√

64πa3

r

a
er/2a sin θ e±iφ.

But r cos θ = z and r sin θe±iφ = r sin θ(cosφ ± i sinφ) = r sin θ cosφ ± ir sin θ sinφ = x ± iy. So |ψ|2 is an
even function of z in all cases, and hence

∫
z|ψ|2dx dy dz = 0, so H ′ii = 0. Moreover, ψ100 is even in z, and

so are ψ200, ψ211, and ψ21−1, so H ′ij = 0 for all except

H ′100,210 = −eE
1√
πa3

1√
32πa3

1
a

∫
e−r/ae−r/2az2 d3r = − eE

4
√

2πa4

∫
e−3r/2ar2 cos2 θ r2 sin θ dr dθ dφ

= − eE

4
√

2πa4

∫ ∞
0

r4e−3r/2adr

∫ π

0

cos2 θ sin θ dθ

∫ 2π

0

dφ = − eE

4
√

2πa4
4!

(
2a
3

)5 2
3
2π = −

(
28

35
√

2

)
eEa,

or −0.7449 eEa.

Problem 9.2

ċa = − i

�
H ′abe

−iω0tcb; ċb = − i

�
H ′bae

iω0tca. Differentiating with respect to t :

c̈b = − i

�
H ′ba

[
iω0e

iω0tca + eiω0tċa

]
= iω0

[
− i

�
H ′bae

iω0tca

]
− i

�
H ′bae

iωot

[
− i

�
H ′abe

−iω0tcb

]
, or
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CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY 237

c̈b = iω0ċb −
1
�2
|H ′ab|2cb. Let α2 ≡ 1

�2
|H ′ab|2. Then c̈b − iω0ċb + α2cb = 0.

This is a linear differential equation with constant coefficients, so it can be solved by a function of the form
cb = eλt:

λ2 − iω0λ + α2 = 0 =⇒ λ =
1
2

[
iω0 ±

√
−ω2

0 − 4α2

]
=

i

2
(ω0 ± ω) , where ω ≡

√
ω2

0 + 4α2.

The general solution is therefore

cb(t) = Aei(ω0+ω)/2 + Bei(ω0−ω)/2 = eiω0t/2
(
Aeiωt/2 + Be−iωt/2

)
, or

cb(t) = eiω0t/2 [C cos (ωt/2) + D sin (ωt/2)] . But cb(0) = 0, so C = 0, and hence

cb(t) = Deiω0t/2 sin (ωt/2) . Then

ċb = D

[
iω0

2
eiω0t/2 sin (ωt/2) +

ω

2
eiω0t/2 cos (ωt/2)

]
=

ω

2
Deiω0t/2

[
cos (ωt/2) + i

ω0

ω
sin (ωt/2)

]
= − i

�
H ′bae

iω0tca.

ca =
i�

H ′ba

ω

2
e−iω0t/2D

[
cos (ωt/2) + i

ω0

ω
sin (ωt/2)

]
. But ca(0) = 1, so

i�

H ′ba

ω

2
D = 1. Conclusion:

ca(t) = e−iω0t/2
[
cos (ωt/2) + i

ω0

ω
sin (ωt/2)

]
,

cb(t) =
2H ′ba
i�ω

eiω0t/2 sin (ωt/2) ,
where ω ≡

√
ω2

0 + 4 |H
′
ab|2
�2 .

|ca|2 + |cb|2 = cos2 (ωt/2) +
ω2

0

ω2
sin2 (ωt/2) +

4|H ′ab|2
�2ω2

sin2 (ωt/2)

= cos2 (ωt/2) +
1
ω2

(
ω2

0 + 4
|H ′ab|2

�2

)
sin2 (ωt/2) = cos2 (ωt/2) + sin2 (ωt/2) = 1. �

Problem 9.3

This is a tricky problem, and I thank Prof. Onuttom Narayan for showing me the correct solution. The safest
approach is to represent the delta function as a sequence of rectangles:

δε(t) =
{

(1/2ε), −ε < t < ε,
0, otherwise.

}
Then Eq. 9.13 ⇒ 

t < −ε : ca(t) = 1, cb(t) = 0,

t > ε : ca(t) = a, cb(t) = b,

−ε < t < ε :


ċa = − iα

2ε�
e−iω0tcb,

ċb = − iα∗

2ε�
eiω0tca.
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238 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

In the interval −ε < t < ε,

d2cb

dt2
= − iα∗

2ε�

[
iω0e

iω0tca + eiω0t

(−iα

2ε�
e−iω0tcb

)]
= − iα∗

2ε�

[
iω0

i2ε�
α∗

dcb

dt
− iα

2ε�
cb

]
= iω0

dcb

dt
− |α|2

(2ε�)2
cb.

Thus cb satisfies a homogeneous linear differential equation with constant coefficients:

d2cb

dt2
− iω0

dcb

dt
+

|α|2
(2ε�)2

cb = 0.

Try a solution of the form cb(t) = eλt:

λ2 − iω0λ +
|α|2

(2ε�)2
= 0⇒ λ =

iω0 ±
√
−ω2

0 − |α|2/(ε�)2

2
,

or

λ =
iω0

2
± iω

2
, where ω ≡

√
ω2

0 + |α|2/(ε�)2.

The general solution is

cb(t) = eiω0t/2
(
Aeiωt/2 + Be−iωt/2

)
.

But
cb(−ε) = 0⇒ Ae−iωε/2 + Beiωε/2 = 0⇒ B = −Ae−iωε,

so
cb(t) = Aeiω0t/2

(
eiωt/2 − e−iω(ε+t/2)

)
.

Meanwhile

ca(t) =
2iε�
α∗

e−iω0tċb =
2iε�
α∗

e−iω0t/2A

[
iω0

2

(
eiωt/2 − e−iω(ε+t/2)

)
+

iω

2

(
eiωt/2 + e−iω(ε+t/2)

)]
= − ε�

α∗
e−iω0t/2A

[
(ω + ω0)eiωt/2 + (ω − ω0)e−iω(ε+t/2)

]
.

But ca(−ε) = 1 = − ε�

α∗
ei(ω0−ω)ε/2A [(ω + ω0) + (ω − ω0)] = −2ε�ω

α∗
ei(ω0−ω)ε/2A, so A = − α∗

2ε�ω
ei(ω−ω0)ε/2.

ca(t) =
1
2ω

e−iω0(t+ε)/2
[
(ω + ω0)eiω(t+ε)/2 + (ω − ω0)e−iω(t+ε)/2

]
= e−iω0(t+ε)/2

{
cos

[
ω(t + ε)

2

]
+ i

ω0

ω
sin

[
ω(t + ε)

2

]}
;

cb(t) = − iα∗

2ε�ω
eiω0(t−ε)/2

[
eiω(t+ε)/2 − e−iω(t+ε)/2

]
= − iα∗

ε�ω
eiω0(t−ε)/2 sin

[
ω(t + ε)

2

]
.

Thus

a = ca(ε) = e−iω0ε
[
cos(ωε) + i

ω0

ω
sin(ωε)

]
, b = cb(ε) = − iα∗

ε�ω
sin(ωε).

This is for the rectangular pulse; it remains to take the limit ε→ 0: ω → |α|/ε�, so

a→ cos
( |α|

�

)
+ i

ω0ε�

|α| sin
( |α|

�

)
→ cos

( |α|
�

)
, b→ − iα∗

|α| sin
( |α|

�

)
,
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and we conclude that for the delta function

ca(t) =
{

1, t < 0,
cos(|α|/�), t > 0;

cb(t) =


0, t < 0,

−i

√
α∗

α
sin(|α|/�), t > 0.

Obviously, |ca(t)|2 + |cb(t)|2 = 1 in both time periods. Finally,

Pa→b = |b|2 = sin2(|α|/�).

Problem 9.4

(a)

Eq. 9.10 =⇒ ċa = − i

�

[
caH

′
aa + cbH

′
abe
−iω0t

]
Eq. 9.11 =⇒ ċb = − i

�

[
cbH

′
bb + caH

′
bae

iω0t
]

 (these are exact, and replace Eq. 9.13).

Initial conditions: ca(0) = 1, cb(0) = 0.

Zeroth order: ca(t) = 1, cb(t) = 0.

First order:


ċa = − i

�
H ′aa =⇒

ċb = − i

�
H ′bae

iω0t =⇒

ca(t) = 1− i

�

∫ t

0

H ′aa(t′) dt′

cb(t) = − i

�

∫ t

0

H ′ba(t′)eiω0t′dt′

|ca|2 =
[
1− i

�

∫ t

0

H ′aa(t′) dt′
] [

1 +
i

�

∫ t

0

H ′aa(t′) dt′
]

= 1 +
[

1
�

∫ t

0

H ′aa(t′) dt′
]2

= 1 (to first order in H ′).

|cb|2 =
[
− i

�

∫ t

0

H ′ba(t′)eiω0t′ dt′
] [

i

�

∫ t

0

H ′ab(t
′)e−iω0t′ dt′

]
= 0 (to first order in H ′).

So |ca|2 + |cb|2 = 1 (to first order).

(b)

ḋa = e
i
�

∫ t
0 H′aa(t

′) dt′
(

i

�
H ′aa

)
ca + e

i
�

∫ t
0 H′aa(t

′) dt′ ċa. But ċa = − i

�

[
caH

′
aa + cbH

′
abe
−iω0t

]
Two terms cancel, leaving

ḋa = − i

�
e
i
�

∫ t
0 H′aa(t

′) dt′cbH
′
abe
−iω0t. But cb = e−

i
�

∫ t
0 H′bb(t

′) dt′db.

= − i

�
e
i
�

∫ t
0 [H′aa(t′)−H′bb(t

′)]dt′H ′abe
−iω0tdb, or ḋa = − i

�
eiφH ′abe

−iω0tdb.
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Similarly,

ḋb = e
i
�

∫ t
0 H′bb(t

′) dt′
(

i

�
H ′bb

)
cb + e

i
�

∫ t
0 H′bb(t

′) dt′ ċb. But ċb = − i

�

[
cbH

′
bb + caH

′
bae

iω0t
]
.

= − i

�
e
i
�

∫ t
0 H′bb(t

′) dt′caH
′
bae

iω0t. But ca = e−
i
�

∫ t
0 H′aa(t

′) dt′da.

= − i

�
e
i
�

∫ t
0 [H′bb(t′)−H′aa(t

′)]dt′H ′bae
iω0tda = − i

�
e−iφH ′bae

iω0tda. QED

(c)

Initial conditions: ca(0) = 1 =⇒ da(0) = 1; cb(0) = 0 =⇒ db(0) = 0.

Zeroth order: da(t) = 1, db(t) = 0.

First order: ḋa = 0 =⇒ da(t) = 1 =⇒ ca(t) = e−
i
�

∫ t
0 H′aa(t

′) dt′ .

ḋb = − i

�
e−iφH ′bae

iω0t =⇒ db = − i

�

∫ t

0

e−iφ(t′)H ′ba(t′)eiω0t′dt′ =⇒

cb(t) = − i

�
e−

i
�

∫ t
0 H′bb(t

′)dt′
∫ t

0

e−iφ(t′)H ′ba(t′)eiω0t′dt′.

These don’t look much like the results in (a), but remember, we’re only working to first order in H ′,
so ca(t) ≈ 1 − i

�

∫ t

0
H ′aa(t′) dt′ (to this order), while for cb, the factor Hba in the integral means it is

already first order and hence both the exponential factor in front and e−iφ should be replaced by 1. Then
cb(t) ≈ − i

�

∫ t

0
H ′ba(t′)eiω0t′dt′, and we recover the results in (a).

Problem 9.5

Zeroth order: c(0)a (t) = a, c
(0)
b (t) = b.

First order:


ċa = − i

�
H ′abe

−iω0tb =⇒ c(1)a (t) = a− ib

�

∫ t

0

H ′ab(t
′)e−iω0t′dt′.

ċb = − i

�
H ′bae

iω0ta =⇒ c
(1)
b (t) = b− ia

�

∫ t

0

H ′ba(t′)eiω0t′dt′.

Second order: ċa = − i

�
H ′abe

−iω0t

[
b− ia

�

∫ t

0

H ′ba(t′)eiω0t′dt′
]

=⇒

c(2)a (t) = a− ib

�

∫ t

0

H ′ab(t
′)e−iω0t′dt′ − a

�2

∫ t

0

H ′ab(t
′)e−iω0t′

[∫ t′

0

H ′ba(t′′)eiω0t′′dt′′
]
dt′.

To get cb, just switch a↔ b (which entails also changing the sign of ω0):

c
(2)
b (t) = b− ia

�

∫ t

0

H ′ba(t′)eiω0t′dt′ − b

�2

∫ t

0

H ′ba(t′)eiω0t′

[∫ t′

0

H ′ab(t
′′)e−iω0t′′dt′′

]
dt′.
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Problem 9.6

For H ′ independent of t, Eq. 9.17 =⇒ c
(2)
b (t) = c

(1)
b (t) = − i

�
H ′ba

∫ t

0

eiω0t′dt′ =⇒

c
(2)
b (t) = − i

�
H ′ba

eiω0t′

iω0

∣∣∣∣∣
t

0

= −H ′ba
�ω0

(
eiω0t − 1

)
. Meanwhile Eq. 9.18 =⇒

c(2)a (t) = 1− 1
�2
|H ′ab|2

∫ t

0

e−iω0t′

[∫ t′

0

eiω0t′′dt′′
]
dt′ = 1− 1

�2
|H ′ab|2

1
iω0

∫ t

0

(
1− e−iω0t′

)
dt′

= 1 +
i

ω0�2
|H ′ab|2

(
t′ +

e−iω0t′

iω0

)∣∣∣∣∣
t

0

= 1 +
i

ω0�2
|H ′ab|2

[
t +

1
iω0

(
e−iω0t − 1

)]
.

For comparison with the exact answers (Problem 9.2), note first that cb(t) is already first order (because of
the H ′ba in front), whereas ω differs from ω0 only in second order, so it suffices to replace ω → ω0 in the exact
formula to get the second-order result:

cb(t) ≈
2H ′ba
i�ω0

eiω0t/2 sin (ω0t/2) =
2H ′ba
i�ω0

eiω0t/2 1
2i

(
eiω0t/2 − e−iω0t/2

)
= −H ′ba

�ω0

(
eiω0t − 1

)
,

in agreement with the result above. Checking ca is more difficult. Note that

ω = ω0

√
1 +

4|H ′ab|2
ω2

0�2
≈ ω0

(
1 + 2

|H ′ab|2
ω2

0�2

)
= ω0 + 2

|H ′ab|2
ω0�2

;
ω0

ω
≈ 1− 2

|H ′ab|2
ω2

0�2
.

Taylor expansion:
cos(x + ε) = cosx− ε sinx =⇒ cos (ωt/2) = cos

(
ω0t

2
+
|H ′ab|2t
ω0�2

)
≈ cos (ω0t/2)− |H

′
ab|2t

ω0�2
sin (ω0t/2)

sin(x + ε) = sinx + ε cosx =⇒ sin (ωt/2) = sin
(
ω0t

2
+
|H ′ab|2t
ω0�2

)
≈ sin (ω0t/2) +

|H ′ab|2t
ω0�2

cos (ω0t/2)

ca(t) ≈ e−iω0t/2

{
cos

(
ω0t

2

)
− |H

′
ab|2t

ω0�2
sin

(
ω0t

2

)
+ i

(
1− 2

|H ′ab|2
ω2

0�2

) [
sin

(
ω0t

2

)
+
|H ′ab|2t
ω0�2

cos
(
ω0t

2

)]}
= e−iω0t/2

{[
cos

(
ω0t

2

)
+ i sin

(
ω0t

2

)]
− |H

′
ab|2

ω0�2

[
t

(
sin

(
ω0t

2

)
− i cos

(
ω0t

2

))
+

2i
ω0

sin
(
ω0t

2

)]}
= e−iω0t/2

{
eiω0t/2 − |H

′
ab|2

ω0�2

[
−iteiω0t/2 +

2i
ω

1
2i

(
eiω0t/2 − e−iω0t/2

)]}
= 1− |H

′
ab|2

ω0�2

[
−it +

1
ω0

(
1− e−iω0t

)]
= 1 +

i

ω0�2
|H ′ab|2

[
t +

1
iω0

(
e−iω0t − 1

)]
, as above. �

Problem 9.7

(a)

ċa = − i

2�
Vabe

iωte−iω0tcb; ċb = − i

2�
Vbae

−iωteiω0tca.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


242 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

Differentiate the latter, and substitute in the former:

c̈b = −i
Vba

2�

[
i(ω0 − ω)ei(ω0−ω)tca + ei(ω0−ω)tċa

]
= i(ω0 − ω)

[
−i

Vba

2�
ei(ω0−ω)tca

]
− i

Vba

2�
ei(ω0−ω)t

[
−i

Vab

2�
e−i(ω0−ω)tcb

]
= i(ω0 − ω)ċb −

|Vab|2
(2�)2

cb.

d2cb

dt2
+ i(ω − ω0)

dcb

dt
+
|Vab|2
4�2

cb = 0. Solution is of the form cb = eλt : λ2 + i(ω − ω0)λ +
|Vab|2
4�2

= 0.

λ =
1
2

[
−i(ω − ω0)±

√
−(ω − ω0)2 −

|Vab|2
�2

]
= i

[
− (ω − ω0)

2
± ωr

]
, with ωr defined in Eq. 9.30.

General solution: cb(t) = Ae
i
[
− (ω−ω0)

2 +ωr
]
t + Be

i
[
− (ω−ω0)

2 +ωr
]
t = e−i(ω−ω0)t/2

[
Aeiωrt + Be−iωrt

]
,

or, more conveniently: cb(t) = e−i(ω−ω0)t/2 [C cos(ωrt) + D sin(ωrt)] . But cb(0) = 0, so C = 0 :

cb(t) = Dei(ω0−ω)t/2 sin(ωrt). ċb = D

[
i

(
ω0 − ω

2

)
ei(ω0−ω)t/2 sin(ωrt) + ωre

i(ω0−ω)t/2 cos(ωrt)
]

;

ca(t) = i
2�

Vba
ei(ω−ω0)tċb = i

2�

Vba
ei(ω−ω0)t/2D

[
i

(
ω0 − ω

2

)
sin(ωrt) + ωr cos(ωrt)

]
. But ca(0) = 1 :

1 = i
2�

Vba
Dωr, or D =

−iVba

2�ωr
.

cb(t) = − i

2�ωr
Vbae

i(ω0−ω)t/2 sin(ωrt), ca(t) = ei(ω−ω0)t/2

[
cos(ωrt) + i

(
ω0 − ω

2ωr

)
sin(ωrt)

]
.

(b)

Pa→b(t) = |cb(t)|2 =
( |Vab|

2�ωr

)2

sin2(ωrt). The largest this gets (when sin2 = 1) is
|Vab|2/�

2

4ω2
r

,

and the denominator, 4ω2
r = (ω − ω0)2 + |Vab|2/�

2, exceeds the numerator, so P ≤ 1 (and 1 only if ω = ω0).

|ca|2 + |cb|2 = cos2(ωrt) +
(
ω0 − ω

2ωr

)2

sin2(ωrt) +
( |Vab|

2�ωr

)2

sin2(ωrt)

= cos2(ωrt) +
(ω − ω0)2 + (|Vab|/�)2

4ω2
r

sin2(ωrt) = cos2(ωrt) + sin2(ωrt) = 1. �

(c) If |Vab|2 � �
2(ω − ω0)2, then ωr ≈ 1

2
|ω − ω0|, and Pa→b ≈

|Vab|2
�2

sin2
(

ω−ω0
2 t

)
(ω − ω0)2

, confirming

Eq. 9.28.

(d) ωrt = π =⇒ t = π/ωr.
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Problem 9.8

Spontaneous emission rate (Eq. 9.56): A =
ω3|℘|2
3πε0�c3

. Thermally stimulated emission rate (Eq. 9.47):

R =
π

3ε0�2
|℘|2ρ(ω), with ρ(ω) =

�

π2c3
ω3

(e�ω/kBT − 1)
(Eq. 9.52).

So the ratio is

A

R
=

ω3|℘|2
3πε0�c3

· 3ε0�
2

π|℘|2 ·
π2c3

(
e�ω/kBT − 1

)
�ω3

= e�ω/kBT − 1.

The ratio is a monotonically increasing function of ω, and is 1 when

e�ω/kbt = 2, or
�ω

kBT
= ln 2, ω =

kBT

�
ln 2, or ν =

ω

2π
=

kBT

h
ln 2. For T = 300 K,

ν =
(1.38× 10−23 J/K)(300 K)

(6.63× 10−34 J · s) ln 2 = 4.35× 1012 Hz.

For higher frequencies, (including light, at 1014 Hz), spontaneous emission dominates.

Problem 9.9

(a) Simply remove the factor
(
e�ω/kBT − 1

)
in the denominator of Eq. 5.113: ρ0(ω) =

�ω3

π2c3
.

(b) Plug this into Eq. 9.47:

Rb→a =
π

3ε0�2
|℘|2 �ω3

π2c3
=

ω3|℘|2
3πε0�c3

,

reproducing Eq. 9.56.

Problem 9.10

N(t) = e−t/τN(0) (Eqs. 9.58 and 9.59). After one half-life, N(t) = 1
2N(0), so 1

2 = e−t/τ , or 2 = et/τ ,
so t/τ = ln 2, or t1/2 = τ ln 2.

Problem 9.11

In Problem 9.1 we calculated the matrix elements of z; all of them are zero except 〈1 0 0|z|2 1 0〉 =
28

35
√

2
a. As

for x and y, we noted that |1 0 0〉, |2 0 0〉, and |2 1 0〉 are even (in x, y), whereas |2 1 ± 1〉 is odd. So the only
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non-zero matrix elements are 〈1 0 0|x|2 1± 1〉 and 〈1 0 0|y|2 1± 1〉. Using the wave functions in Problem 9.1:

〈1 0 0|x|2 1± 1〉 =
1√
πa3

( ∓1
8
√
πa3

)
1
a

∫
e−r/are−r/2a sin θ e±iφ(r sin θ cosφ)r2 sin θ dr dθ dφ

= ∓ 1
8πa4

∫ ∞
0

r4e−3r/2adr

∫ π

0

sin3 θ dθ

∫ 2π

0

(cosφ± i sinφ) cosφdφ

=
∓1

8πa4

[
4!

(
2a
3

)5
] (

4
3

)
(π) = ∓27

35
a.

〈1 0 0|y|2 1± 1〉 =
∓1

8πa4

[
4!

[
2a
3

)5
] (

4
3

) ∫ 2π

0

(cosφ± i sinφ) sinφdφ

=
∓1

8πa4

[
4!

(
2a
3

)5
] (

4
3

)
(±iπ) = −i

27

35
a.

〈1 0 0|r|2 0 0〉 = 0; 〈1 0 0|r|2 1 0〉 =
27
√

2
35

a k̂; 〈1 0 0|r|2 1± 1〉 =
27

35
a

(
∓î− i ĵ

)
, and hence

℘2 = 0 (for |2 0 0〉 → |1 0 0〉), and |℘|2 = (qa)2
215

310
(for |2 1 0〉 → 1 0 0〉 and |2 1± 1〉 → |1 0 0〉).

Meanwhile, ω =
E2 − E1

�
=

1
�

(
E1

4
− E1

)
= −3E1

4�
, so for the three l = 1 states:

A = −33E3
1

26�3

(ea)2215

310

1
3πε0�c3

= − 29

38π

E3
1e

2a2

ε0�4c3
=

210

38

(
E1

mc2

)2
c

a

=
210

38

(
13.6

0.511× 106

)2 (3.00× 108 m/s)
(0.529× 10−10 m)

= 6.27× 108/s; τ =
1
A

= 1.60× 10−9 s

for the three l = 1 states (all have the same lifetime); τ =∞ for the l = 0 state.

Problem 9.12

[L2, z] = [L2
x, z] + [L2

y, z] + [L2
z, z] = Lx[Lx, z] + [Lx, z]Lx + Ly[Ly, z] + [Ly, z]Ly + Lz[Lz, z] + [Lz, z]Lz

But


[Lx, z] = [ypz − zpy, z] = [ypz, z]− [zpy, z] = y[pz, z] = −i�y,
[Ly, z] = [zpx − xpz, z] = [zpx, z]− [xpz, z] = −x[pz, z] = i�x,
[Lz, z] = [xpy − ypx, z] = [xpy, z]− [ypx, z] = 0.

So: [L2, z] = Lx(−i�y) + (−i�y)Lx + Ly(i�x) + (i�x)Ly = i�(−Lxy − yLx + Lyx + xLy).

But
{

Lxy = Lxy − yLx + yLx = [Lx, y] + yLx = i�z + yLx,
Lyx = Lyx− xLy + xLy = [Ly, x] + xLy = −i�z + xLy.
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So: [L2, z] = i�(2xLy − i�z − 2yLx − i�z) =⇒ [L2, z] = 2i�(xLy − yLx − i�z).

[
L2, [L2, z]

]
= 2i�

{
[L2, xLy]− [L2, yLx]− i�[L2, z]

}
= 2i�

{
[L2, x]Ly + x[L2, Ly]− [L2, y]Lx − y[L2, Lx]− i�(L2z − zL2)

}
.

But [L2, Ly] = [L2, Lx] = 0 (Eq. 4.102), so[
L2, [L2, z]

]
= 2i�

{
(yLz − zLy − i�x)Ly − 2i� (zLx − xLz − i�y)Lx − i�

(
L2z − zL2

)}
, or

[
L2, [L2, z]

]
= −2�

2

(
2yLzLy −2zL2

y − 2zL2
x︸ ︷︷ ︸

−2z(L2
x+L2

y+L2
z)+2zL2

z

−2i�xLy + 2xLzLx + 2i�yLx − L2z + zL2

)

= −2�
2
(
2yLzLy − 2i�xLy + 2xLzLx + 2i�yLx + 2zL2

z − 2zL2 − L2z + zL2
)

= −2�
2
(
zL2 + L2z

)
− 4�

2

[
(yLz − i�x)︸ ︷︷ ︸

Lzy

Ly + (xLz + i�y)︸ ︷︷ ︸
Lzx

Lx + zLzLz

]
= 2�

2
(
zL2 + L2z

)
− 4�

2 (LzyLy + LzxLx + LzzLz)︸ ︷︷ ︸
Lz(r·L)=0

= 2�
2(zL2 + L2z). QED

Problem 9.13

|n 0 0〉 = Rn0(r)Y 0
0 (θ, φ) =

1√
4π

Rn0(r), so 〈n′ 0 0|r|n 0 0〉 =
1
4π

∫
Rn′0(r)Rn0(r)(x î + y ĵ + z k̂) dx dy dz.

But the integrand is odd in x, y, or z, so the integral is zero.

Problem 9.14

(a)

|3 0 0〉 →


|2 1 0〉
|2 1 1〉
|2 1−1〉

→ |1 0 0〉. (|3 0 0〉 → |2 0 0〉 and |3 0 0〉 → |1 0 0〉 violate ∆l = ±1 rule.)

(b)

From Eq. 9.72: 〈2 1 0|r|3 0 0〉 = 〈2 1 0|z|3 0 0〉 k̂.

From Eq. 9.69: 〈2 1± 1|r|3 0 0〉 = 〈2 1± 1|x|3 0 0〉 î + 〈2 1± 1|y|3 0 0〉 ĵ.

From Eq. 9.70: ± 〈2 1± 1|x|3 0 0〉 = i〈2 1± 1|y|3 0 0〉.

Thus |〈2 1 0|r|3 0 0〉|2 = |〈2 1 0|z|3 0 0〉|2 and |〈2 1± 1|r|3 0 0〉|2 = 2|〈2 1± 1|x|3 0 0〉|2,

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


246 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

so there are really just two matrix elements to calculate.

ψ21m = R21Y
m
1 , ψ300 = R30Y

0
0 . From Table 4.3:∫

Y 0
1 Y 0

0 cos θ sin θ dθ dφ =

√
3
4π

√
1
4π

∫ π

0

cos2 θ sin θ dθ

∫ 2π

0

dφ =
√

3
4π

(
−cos3 θ

3

) ∣∣∣∣π
0

(2π) =
√

3
2

(
2
3

)
=

1√
3
.

∫ (
Y ±1

1

)∗
Y 0

0 sin2 θ cosφdθ dφ = ∓
√

3
8π

√
1
4π

∫ π

0

sin3 θ dθ

∫ 2π

0

cosφe∓iφ dφ

= ∓ 1
4π

√
3
2

(
4
3

) [∫ 2π

0

cos2 φdφ∓ i

∫ 2π

0

cosφ sinφdφ

]
= ∓ 1

π
√

6
(π ∓ 0) = ∓ 1√

6
.

From Table 4.7:

K ≡
∫ ∞

0

R21R30 r3 dr =
1√

24a3/2

2√
27a3/2

∫ ∞
0

r

a
e−r/2a

[
1− 2

3
r

a
+

2
27

( r

a

)2
]
e−r/3ar3 dr

=
1

9
√

2a3
a4

∫ ∞
0

(
1− 2

3
u +

2
27

u2

)
u4e−5u/6 du =

a

9
√

2

[
4!

(
6
5

)5

− 2
3
5!

(
6
5

)6

+
2
27

6!
(

6
5

)7
]

=
a

9
√

2
4! 65

56

(
5− 2

3
6 · 5 +

2
27

63

)
=

a

9
√

2
4! 65

56
=

2734

56

√
2 a.

So:

〈2 1± 1|x|3 0 0〉 =
∫

R21(Y ±1
1 )∗(r sin θ cosφ)R30Y

0
0 r2 sin θ dr dθ dφ = K

(
∓ 1√

6

)
.

〈2 1 0|z|3 0 0〉 =
∫

R21Y
0
1 (r cos θ)R30Y

0
0 r2 sin θ dr dθ dφ = K

(
1√
3

)
.

|〈2 1 0|r|3 0 0〉|2 = |〈2 1 0|z|3 0 0〉|2 = K2/3;

|〈2 1± 1|r|3 0 0 〉|2 = 2|〈2 1± 1|x|3 0 0 〉|2 = K2/3.

Evidently the three transition rates are equal, and hence 1/3 go by each route.

(c) For each mode, A =
ω3e2|〈r〉|2
3πε0�c3

; here ω =
E3 − E2

�
=

1
�

(
E1

9
− E1

4

)
= − 5

36
E1

�
, so the total

decay rate is

R = 3
(
− 5

36
E1

�

)3
e2

3πε0�c3
1
3

(
2734

56

√
2a

)2

= 6
(

2
5

)9 (
E1

mc2

)2 ( c

a

)
= 6

(
2
5

)9 (
13.6

0.511× 106

)2 (
3× 108

0.529× 10−10

)
/s = 6.32× 106/s. τ =

1
R

= 1.58× 10−7 s.
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Problem 9.15

(a)

Ψ(t) =
∑

cn(t)e−iEnt/�ψn. HΨ = i�
∂Ψ
∂t

; H = H0 + H ′(t); H0ψn = Enψn. So

∑
cne
−iEnt/�Enψn +

∑
cne
−iEnt/�H ′ψn = i�

∑
ċne
−iEnt/�ψn + i�

(
− i

�

) ∑
cnEne

−iEnt/�ψn.

The first and last terms cancel, so∑
cne
−iEnt/�H ′ψn = i�

∑
ċne
−iEnt/�ψn. Take the inner product with ψm:

∑
cne
−iEnt/�〈ψm|H ′|ψn〉 = i�

∑
ċne
−iEnt/�〈ψm|ψn〉.

Assume orthonormality of the unperturbed states, 〈ψm|ψn〉 = δmn, and define H ′mn ≡ 〈ψm|H ′|ψn〉.

∑
cne
−iEnt/�H ′mn = i� ċme−iEmt/�, or ċm = − i

�

∑
n

cnH
′
mne

i(Em−En)t/�.

(b) Zeroth order: cN (t) = 1, cm(t) = 0 for m �= N . Then in first order:

ċN = − i

�
H ′NN , or cN (t) = 1− i

�

∫ t

0

H ′NN (t′) dt′, whereas for m �= N :

ċm = − i

�
H ′mNei(Em−EN )t/�, or cm(t) = − i

�

∫ t

0

H ′mN (t′)ei(Em−EN )t′/� dt′.

(c)

cM (t) = − i

�
H ′MN

∫ t

0

ei(EM−EN )t′/� dt′ = − i

�
H ′MN

[
ei(EM−EN )t′/�

i(EM − EN )/�

]∣∣∣∣∣
t

0

= −H ′MN

[
ei(EM−EN )t/� − 1

EM − EN

]
= − H ′MN

(EM − EN )
ei(EM−EN )t/2� 2i sin

(
EM − EN

2�
t

)
.

PN→M = |cM |2 =
4|H ′MN |2

(EM − EN )2
sin2

(
EM − EN

2�
t

)
.

(d)

cM (t) = − i

�
VMN

1
2

∫ t

0

(
eiωt′ + e−iωt′

)
ei(EM−EN )t′/� dt′

= − iVMN

2�

[
ei(�ω+EM−EN )t′/�

i(�ω + EM − EN )/�
+

ei(−�ω+EM−EN )t′/�

i(−�ω + EM − EN )/�

]∣∣∣∣∣
t

0

.
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248 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

If EM > EN , the second term dominates, and transitions occur only for ω ≈ (EM − EN )/�:

cM (t) ≈ − iVMN

2�

1
(i/�)(EM − EN − �ω)

ei(EM−EN−�ω)t/2� 2i sin
(
EM − EN − �ω

2�
t

)
, so

PN→M = |cM |2 =
|VMN |2

(EM − EN − �ω)2
sin2

(
EM − EN − �ω

2�
t

)
.

If EM < EN the first term dominates, and transitions occur only for ω ≈ (EN − EM )/�:

cM (t) ≈ − iVMN

2�

1
(i/�)(EM − EN + �ω)

ei(EM−EN+�ω)t/2� 2i sin
(
EM − EN + �ω

2�
t

)
, and hence

PN→M =
|VMN |2

(EM − EN + �ω)2
sin2

(
EM − EN + �ω

2�
t

)
.

Combining the two results, we conclude that transitions occur to states with energy EM ≈ EN ± �ω, and

PN→M =
|VMN |2

(EM − EN ± �ω)2
sin2

(
EM − EN ± �ω

2�
t

)
.

(e) For light, Vba = −℘E0 (Eq. 9.34). The rest is as before (Section 9.2.3), leading to Eq. 9.47:

RN→M =
π

3ε0�2
|℘|2ρ(ω), with ω = ±(EM − EN )/� (+ sign ⇒ absorption, − sign ⇒ stimulated emission).

Problem 9.16

For example (c):

cN (t) = 1− i

�
H ′NN t; cm(t) = −2i

H ′mN

(Em − EN )
ei(Em−EN )t/2� sin

(
Em − EN

2�
t

)
(m �= N).

|cN |2 = 1 +
1
�2
|H ′NN |2t2, |cm|2 = 4

|H ′mN |2
(Em − EN )2

sin2

(
Em − EN

2�
t

)
, so

∑
m

|cm|2 = 1 +
t2

�2
|H ′NN |2 + 4

∑
m�=N

|H ′mN |2
(Em − EN )2

sin2

(
Em − EN

2�
t

)
.

This is plainly greater than 1! But remember: The c’s are accurate only to first order in H ′; to this order the
|H ′|2 terms do not belong. Only if terms of first order appeared in the sum would there be a genuine problem
with normalization.

For example (d):

cN = 1− i

�
VNN

∫ t

0

cos(ωt′) dt′ = 1− i

�
VNN

sin(ωt′)
ω

∣∣∣∣t
0

=⇒ cN (t) = 1− i

�ω
VNN sin(ωt).
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cm(t) = −VmN

2

[
ei(Em−EN+�ω)t/� − 1

(Em − EN + �ω)
+

ei(Em−EN−�ω)t/� − 1
(Em − EN − �ω)

]
(m �= N). So

|cN |2 = 1 +
|VNN |2
(�ω)2

sin2(ωt); and in the rotating wave approximation

|cm|2 =
|VmN |2

(Em − EN ± �ω)2
sin2

(
Em − EN ± �ω

2�
t

)
(m �= N).

Again, ostensibly
∑
|cm|2 > 1, but the “extra” terms are of second order in H ′, and hence do not belong (to

first order).

You would do better to use 1−
∑

m�=N |cm|2. Schematically: cm = a1H + a2H
2 + · · · , so |cm|2 =

a2
1H

2 + 2a1a2H
3 + · · · , whereas cN = 1 + b1H + b2H

2 + · · · , so |cN |2 = 1 + 2b1H + (2b2 + b21)H
2 + · · · .

Thus knowing cm to first order (i.e., knowing a1) gets you |cm|2 to second order, but knowing cN to first order
(i.e., b1) does not get you |cN |2 to second order (you’d also need b2). It is precisely this b2 term that would
cancel the “extra” (second-order) terms in the calculations of

∑
|cm|2 above.

Problem 9.17

(a)

Equation 9.82 ⇒ ċm = − i

�

∑
n

cnH
′
mne

i(Em−En)t/�. Here H ′mn = 〈ψm|V0(t)|ψn〉 = δmnV0(t).

ċm = − i

�
cmV0(t);

dcm

cm
= − i

�
V0(t) dt⇒ ln cm = − i

�

∫
V0(t′) dt′ + constant.

cm(t) = cm(0)e−
i
�

∫ t
0 V0(t

′) dt′ . Let Φ(t) ≡ −1
�

∫ t

0

V0(t′) dt′; cm(t) = eiΦcm(0). Hence

|cm(t)|2 = |cm(0)|2, and there are no transitions. Φ(T ) = −1
�

∫ T

0

V0(t) dt.

(b)

Eq. 9.84 ⇒ cN (t) ≈ 1− i

�

∫ t

0

V0(t′) dt = 1 + iΦ.

Eq. 9.85 ⇒ cm(t) = − i

�

∫ t

0

δmNV0(t′)ei(Em−EN )t′/� dt′ = 0 (m �= N).


cN (t) = 1 + iΦ(t),
cm(t) = 0 (m �= N).

The exact answer is cN (t) = eiΦ(t), cm(t) = 0, and they are consistent, since eiΦ ≈ 1 + iΦ, to first order.
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Problem 9.18

Use result of Problem 9.15(c). Here En =
n2π2

�
2

2ma2
, so E2 − E1 =

3π2
�

2

2ma2
.

H ′12 =
2
a

∫ a/2

0

sin
(π

a
x
)
V0 sin

(
2π
a

x

)
dx

=
2V0

a

[
sin

(
π
ax

)
2(π/a)

− sin
(

3π
a x

)
2(3π/a)

]∣∣∣∣∣
a/2

0

=
V0

π

[
sin

(π

2

)
− 1

3
sin

(
3π
2

)]
=

4V0

3π
.

Eq. 9.86 =⇒ P1→2 = 4
(

4V0

3π

) (
2ma2

3π2�2

)2

sin2

(
3π2

�

4ma2
t

)
=

[
16ma2V0

9π3�2
sin

(
3π2

�T

4ma2

)]2

.

[Actually, in this case H ′11 and H ′22 are nonzero:

H ′11 = 〈ψ1|H ′|ψ1〉 =
2
a
V0

∫ a/2

0

sin2
(π

a
x
)

dx =
V0

2
, H ′22 = 〈ψ2|H ′|ψ2〉 =

2
a
V0

∫ a/2

0

sin2

(
2π
a

x

)
dx =

V0

2
.

However, this does not affect the answer, for according to Problem 9.4, c1(t) picks up an innocuous phase factor,
while c2(t) is not affected at all, in first order (formally, this is because H ′bb is multiplied by cb, in Eq. 9.11, and
in zeroth order cb(t) = 0).]

Problem 9.19

Spontaneous absorption would involve taking energy (a photon) from the ground state of the electromagnetic
field. But you can’t do that, because the gound state already has the lowest allowed energy.

Problem 9.20

(a)

H = −γB · S = −γ (BxSx + BySy + BzSz) ;

H = −γ
�

2
(Bxσx + Byσy + Bzσz) = −γ�

2

[
Bx

(
0 1
1 0

)
+ By

(
0 −i
i 0

)
+ Bz

(
1 0
0 −1

)]
= −γ�

2

(
Bz Bx − iBy

Bx + iBy −Bz

)
= −γ�

2

(
B0 Brf(cosωt + i sinωt)

Brf(cosωt− i sinωt) −B0

)
= −γ�

2

(
B0 Brfe

iωt

Brfe
−iωt −B0

)
.

(b) i�χ̇ = Hχ⇒

i�

(
ȧ

ḃ

)
= −γ�

2

(
B0 Brfe

iωt

Brfe
−iωt −B0

) (
a
b

)
= −γ�

2

(
B0a Brfe

iωtb
Brfe

−iωta −B0b

)
⇒

ȧ = i
γ

2
(
B0a + Brfe

iωtb
)

=
i

2
(
Ωeiωtb + ω0a

)
,

ḃ = −i
γ

2
(
B0b−Brfe

−iωta
)

=
i

2
(
Ωe−iωta− ω0b

)
.
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(c) You can decouple the equations by differentiating with respect to t, but it is simpler just to check the quoted
results. First of all, they clearly satisfy the initial conditions: a(0) = a0 and b(0) = b0. Differentiating a:

ȧ =
iω

2
a +

{
−a0

ω′

2
sin(ω′t/2) +

i

ω′
[a0(ω0 − ω) + b0Ω]

ω′

2
cos(ω′t/2)

}
eiωt/2

=
i

2
eiωt/2

{
ωa0 cos(ω′t/2) + i

ω

ω′
[a0(ω0 − ω) + b0Ω] sin(ω′t/2)

+ iω′a0 sin(ω′t/2) + [a0(ω0 − ω) + b0Ω] cos(ω′t/2)
}

Equation 9.90 says this should be equal to

i

2
(
Ωeiωtb + ω0a

)
=

i

2
eiωt/2

{
Ωb0 cos(ω′t/2) + i

Ω
ω′

[b0(ω − ω0) + a0Ω] sin(ω′t/2)

+ ω0a0 cos(ω′t/2) + i
ω0

ω′
[a0(ω0 − ω) + b0Ω] sin(ω′t/2)

}
.

By inspection the cos(ω′t/2) terms in the two expressions are equal; it remains to check that

i
ω

ω′
[a0(ω0 − ω) + b0Ω] + iω′a0 = i

Ω
ω′

[b0(ω − ω0) + a0Ω] + i
ω0

ω′
[a0(ω0 − ω) + b0Ω] ,

which is to say

a0ω(ω0 − ω) + b0ωΩ + a0(ω′)2 = b0Ω(ω − ω0) + a0Ω2 + a0ω0(ω0 − ω) + b0ω0Ω,

or
a0

[
ωω0 − ω2 + (ω′)2 − Ω2 − ω2

0 + ω0ω
]

= b0 [Ωω − ω0Ω + ω0Ω− ωΩ] = 0.

Substituting Eq. 9.91 for ω′, the coefficient of a0 on the left becomes

2ωω0 − ω2 + (ω − ω0)2 + Ω2 − Ω2 − ω2
0 = 0. �

The check of b(t) is identical, with a↔ b, ω0 → −ω0, and ω → −ω.

(d)

b(t) = i
Ω
ω′

sin(ω′t/2)e−iωt/2; P (t) = |b(t)|2 =
(

Ω
ω′

)2

sin2(ω′t/2).

(e)

P(ω)

ω

1

1/2

ω0

∆ω

The maximum (Pmax = 1) occurs (obviously) at ω = ω0.

P = 1
2 ⇒ (ω − ω0)2 = Ω2 ⇒ ω = ω0 ± Ω, so ∆ω = ω+ − ω− = 2Ω.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


252 CHAPTER 9. TIME-DEPENDENT PERTURBATION THEORY

(f) B0 = 10, 000 gauss = 1 T; Brf = 0.01 gauss = 1 × 10−6 T. ω0 = γB0. Comparing Eqs. 4.156 and
6.85, γ =

gpe

2mp
, where gp = 5.59. So

νres =
ω0

2π
=

gpe

4πmp
B0 =

(5.59)(1.6× 10−19)
4π(1.67× 10−27)

(1) = 4.26× 107 Hz.

∆ν =
∆ω

2π
=

Ω
π

=
γ

2π
2Brf = νres

2Brf

B0
= (4.26× 107)(2× 10−6) = 85.2 Hz.

Problem 9.21

(a)

H ′ = −qE · r = −q(E0 · r)(k · r) sin(ωt). Write E0 = E0n̂, k =
ω

c
k̂. Then

H ′ = −q
E0ω

c
(n̂ · r)(k̂ · r) sin(ωt). H ′ba = −qE0ω

c
〈b|(n̂ · r)(k̂ · r)|a〉 sin(ωt).

This is the analog to Eq. 9.33: H ′ba = −qE0〈b|n̂ · r|a〉 cosωt. The rest of the analysis is identical to the
dipole case (except that it is sin(ωt) instead of cos(ωt), but this amounts to resetting the clock, and clearly
has no effect on the transition rate). We can skip therefore to Eq. 9.56, except for the factor of 1/3, which
came from the averaging in Eq. 9.46:

A =
ω3

πε0�c3
q2ω2

c2
|〈b|(n̂ · r)(k̂ · r)|a〉|2 =

q2ω5

πε0�c5
|〈b|(n̂ · r)(k̂ · r)|a〉|2.

(b) Let the oscillator lie along the x direction, so (n̂ · r) = n̂xx and k̂ · r = k̂xx. For a transition from n to n′,
we have

A =
q2ω5

πε0�c5

(
k̂xn̂x

)2

|〈n′|x2|n〉|2. From Example 2.5, 〈n′|x2|n〉 =
�

2mω̄
〈n′|(a2

++a+a−+a−a++a2
−)|n〉,

where ω̄ is the frequency of the oscillator, not to be confused with ω, the frequency of the electromagnetic
wave. Now, for spontaneous emission the final state must be lower in energy, so n′ < n, and hence the
only surviving term is a2

−. Using Eq. 2.66:

〈n′|x2|n〉 =
�

2mω̄
〈n′|

√
n(n− 1)|n− 2〉 =

�

2mω̄

√
n(n− 1) δn′,n−2.

Evidently transitions only go from |n〉 to |n− 2〉, and hence

ω =
En − En−2

�
=

1
�

[
(n + 1

2 )�ω̄ − (n− 2 + 1
2 )�ω̄

]
= 2ω̄.

〈n′|x2|n〉 =
�

mω

√
n(n− 1) δn′,n−2; Rn→n−2 =

q2ω5

πε0�c5
(k̂xn̂x)2

�
2

m2ω2
n(n− 1).

It remains to calculate the average of (k̂xn̂x)2. It’s easiest to reorient the oscillator along a direction r̂,
making angle θ with the z axis, and let the radiation be incident from the z direction (so k̂x → k̂r = cos θ).
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Averaging over the two polarizations (̂i and ĵ): 〈n̂2
r〉 = 1

2

(
î2r + ĵ2

r

)
= 1

2

(
sin2 θ cos2 φ + sin2 θ sin2 φ

)
=

1
2 sin2 θ. Now average overall directions:

〈k̂2
r n̂

2
r〉 =

1
4π

∫
1
2

sin2 θ cos2 θ sin θ dθ dφ =
1
8π

2π
∫ π

0

(1− cos2 θ) cos2 θ sin θ dθ

=
1
4

[
−cos3 θ

3
+

cos5 θ

5

] ∣∣∣∣π
0

=
1
4

(
2
3
− 2

5

)
=

1
15

.

R =
1
15

q2
�ω3

πε0m2c5
n(n− 1). Comparing Eq. 9.63:

R(forbidden)
R(allowed)

=
2
5
(n− 1)

�ω

mc2
.

For a nonrelativistic system, �ω � mc2; hence the term “forbidden”.

(c) If both the initial state and the final state have l = 0, the wave function is independent of angle (Y 0
0 =

1/
√

4π), and the angular part of the integral is:

〈a|(n̂ · r)(k̂ · r)|b〉 = · · ·
∫

(n̂ · r)(k̂ · r) sin θ dθ dφ = · · · 4π
3

(n̂ · k̂) (Eq. 6.95).

But n̂ · k̂ = 0, since electromagnetic waves are transverse. So R = 0 in this case, both for allowed and
for forbidden transitions.

Problem 9.22

[This is done in Fermi’s Notes on Quantum Mechanics (Chicago, 1995), Section 24, but I am looking for a more
accessible treatment.]
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Chapter 10

The Adiabatic Approximation

Problem 10.1

(a)

Let (mvx2 − 2Ei
nat)/2�w = φ(x, t). Φn =

√
2
w

sin
(nπ

w
x
)
eiφ, so

∂Φn

∂t
=
√

2
(
−1

2
1

w3/2
v

)
sin

(nπ

w
x
)
eiφ +

√
2
w

[
−nπx

w2
v cos

(nπ

w
x
)]

eiφ +

√
2
w

sin
(nπ

w
x
) (

i
∂φ

∂t

)
eiφ

=
[
− v

2w
− nπxv

w2
cot

(nπ

w
x
)

+ i
∂φ

∂t

]
Φn.

∂φ

∂t
=

1
2�

[
−2Ei

na

w
− v

w2

(
mvx2 − 2Ei

nat
)]

= −Ei
na

�w
− v

w
φ.

i�
∂Φn

∂t
= −i�

[
v

2w
+

nπxv

w2
cot

(nπ

w
x
)

+ i
Ei

na

�w
+ i

v

w
φ

]
Φn.

HΦn = − �
2

2m
∂2Φn

∂x2
.

∂Φn

∂x
=

√
2
w

[nπ
w

cos
(nπ

w
x
)]

eiφ +

√
2
w

sin
(nπ

w
x
)
eiφ

(
i
∂φ

∂x

)
.

∂φ

∂x
=

mvx

�w
.

∂Φn

∂x
=

[nπ
w

cot
(nπ

w
x
)

+ i
mvx

�w

]
Φn.

∂2Φn

∂x2
=

[
−

(nπ

w

)2

csc2
(nπ

w
x
)

+
imb

�w

]
Φn +

[nπ
w

cot
(nπ

w
x
)

+ i
mvx

�w

]2

Φn.

So the Schrödinger equation (i�∂Φn/∂t = HΦn) is satisfied ⇔

−i�

[
v

2w
+

nπxv

w2
cot

(nπ

w
x
)

+ i
Ei

na

�w
+ i

v

w
φ

]

= − �
2

2m

{
−

(nπ

w

)2

csc2
(nπ

w
x
)

+
imv

�w
+

[nπ
w

cot
(nπ

w
x
)

+ i
mvx

�w

]2
}
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Cotangent terms: − i�
(nπxv

w2

)
?= − �

2

2m

(
2
nπ

w
i
mvx

�w

)
= −i�

nπvx

w2
. �

Remaining trig terms on right:

−
(nπ

w

)2

csc2
(nπ

w
x
)

+
(nπ

w

)2

cot2
(nπ

w
x
)

= −
(nπ

w

)2
[
1− cos2 (nπx/w)

sin2 (nπx/w)

]
= −

(nπ

w

)2

.

This leaves:

i

[
v

2w
+ i

Ei
na

�w
+ i

v

w

(
mvx2 − 2Ei

nat

2�w

)]
?=

�

2m

[
−

(nπ

w

)2

+
imv

�w
− m2v2x2

�2w2

]

✁
✁✁iv
2
− Ei

na

�
−
✚
✚
✚✚mv2x2

2�w
+

vEi
nat

�w

?= −�n2π2

2mw
+
✁
✁✁iv
2
−
✚
✚
✚✚mv2x2

2�w

−Ei
na

�w
(w − vt) = −Ei

na
2

�w

?= −�n2π2

2mw
⇔ −n2π2

�
2

2ma2

a2

�w
= −�n2π2

2mw
= r.h.s. �

So Φn does satisfy the Schrödinger equation, and since Φn(x, t) = (· · · ) sin (nπx/w), it fits the boundary
conditions: Φn(0, t) = Φn(w, t) = 0.

(b)

Equation 10.4 =⇒ Ψ(x, 0) =
∑

cnΦn(x, 0) =
∑

cn

√
2
a

sin
(nπ

a
x
)
eimvx2/2�a.

Multiply by

√
2
a

sin
(
n′π

a
x

)
e−imvx2/2�a and integrate:

√
2
a

∫ a

0

Ψ(x, 0) sin
(
n′π

a
x

)
e−imvx2/2�adx =

∑
cn

[
2
a

∫ π

0

sin
(nπ

a
x
)

sin
(
n′π

a
x

)
dx︸ ︷︷ ︸

δnn′

]
= c′n.

So, in general: cn =

√
2
a

∫ a

0

e−imvx2/2�a sin
(nπ

a
x
)

Ψ(x, 0)dx. In this particular case,

cn =
2
a

∫ a

0

e−imvx2/2�a sin
(nπ

a

)
sin

(π

a
x
)
dx. Let

π

a
x ≡ z; dx =

a

π
dz;

mvx2

2�a
=

mvz2

2�a

a2

π2
=

mva

2π2�
z2.

cn =
2
π

∫ π

0

e−iαz2
sin(nz) sin(z) dz. QED
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(c)

w(Te) = 2a⇒ a + vTe = 2a⇒ vTe = a⇒ Tea/v; e−iE1t/� ⇒ ω =
E1

�
⇒ Ti =

2π
ω

= 2π
�

E1
, or

Ti =
2π�

π2�2
2ma2 =

4
π

ma2

�
. Ti =

4ma2

π�
. Adiabatic ⇒ Te � Ti ⇒

a

v
� 4ma2

π�
⇒ 4

π

mav

�
� 1, or

8π
( mav

2π2�

)
= 8πα� 1, so α� 1. Then cn =

2
π

∫ π

0

sin(nz) sin(z)dz = δn1. Therefore

Ψ(x, t) =

√
2
w

sin
(πx

w

)
ei(mvx2−2Ei1at)/2�w,

which (apart from a phase factor) is the ground state of the instantaneous well, of width w, as required
by the adiabatic theorem. (Actually, the first term in the exponent, which is at most mva2

2�a = mva
2�

� 1
and could be dropped, in the adiabatic regime.)

(d)

θ(t) = −1
�

(
π2

�
2

2m

) ∫ t

0

1
(a + vt′)2

dt′ = −π2
�

2m

[
−1

v

(
1

a + vt′

)]∣∣∣∣t
0

= − π2
�

2mv

(
1
a
− 1

w

)
= − π2

�

2mv

(
vt

aw

)
= − π2

�t

2maw
.

So (dropping the
mvx2

2�w
term, as explained in (c)) Ψ(x, t) =

√
2
w

sin
(πx

w

)
e−iEi1at/�w can be written

(since −Ei
1at

�w
= − π2

�
2

2ma2

at

�w
= − π2

�t

2maw
= θ): Ψ(x, t) =

√
2
w

sin
(πx

w

)
eiθ.

This is exactly what one would naively expect: For a fixed well (of width a) we’d have Ψ(x, t) =
Ψ1(x)e−iE1t/�; for the (adiabatically) expanding well, simply replace a by the (time-dependent) width
w, and integrate to get the accumulated phase factor, noting that E1 is now a function of t.

Problem 10.2

To show: i�
∂χ

∂t
= Hχ, where χ is given by Eq. 10.31 and H is given by Eq. 10.25.

∂χ

∂t
=

λ
2

[
− sin

(
λt
2

)
− i (ω1−ω)

λ cos
(

λt
2

)]
cos

(
α
2

)
e−iωt/2 − iω

2

[
cos

(
λt
2

)
− i(ω1−ω)

λ sin
(

λt
2

)]
cos

(
α
2

)
e−iωt/2

λ
2

[
− sin

(
λt
2

)
− i (ω1+ω)

λ cos
(

λt
2

)]
sin

(
α
2

)
eiωt/2 + iω

2

[
cos

(
λt
2

)
− i(ω1+ω)

λ sin
(

λt
2

)]
sin

(
α
2

)
eiωt/2


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Hχ =

�ω1

2


cosα

[
cos(λt

2 )− i (ω1−ω)
λ sin(λt

2 )
]
cos α

2 e
−iωt/2 + e−iωt sinα

[
cos(λt

2 )− i(ω1+ω)
λ sin(λt

2 )
]
sin α

2 e
iωt/2

eiωt cosα
[
cos(λt

2 )− i (ω1−ω)
λ sin(λt

2 )
]
cos α

2 e
−iωt/2 − cosα

[
cos(λt

2 )− i(ω1+ω)
λ sin(λt

2 )
]
sin α

2 e
iωt/2


(1) Upper elements:

i✁�
{
λ

✁2

[
− sin

(
λt

2

)
− i

(ω1 − ω)
λ

cos
(
λt

2

)]
✚
✚✚cos
α

2
− iω

✁2

[
cos

(
λt

2

)
− i(ω1 − ω)

λ
sin

(
λt

2

)]
✚
✚✚cos
α

2

}
?= ✁

�ω1

✁2

{ [
cos

(
λt

2

)
− i

(ω1 − ω)
λ

sin
(
λt

2

)]
cosα

✚
✚✚cos
α

2
+

[
cos

(
λt

2

)
− i

(ω1 + ω)
λ

sin
(
λt

2

)]
sinα︸︷︷︸

�
sin

α

2

}
,

where � = 2 sin
α

2✚
✚✚cos
α

2

The sine terms:

sin
(
λt

2

) [
−iλ− iω(ω1 − ω)

λ
+

ω1(ω1 − ω)
λ

cosα +
iω1(ω1 + ω)

λ
2 sin2 α

2

]
?= 0.

i

λ
sin

(
λt

2

) [
✟✟✟−ω2 − ω2

1 + 2ωω1 cosα− ωω1 +✚✚ω2 + (ω2
1 − ωω1) cosα + (ω2

1 + ωω1)(1− cosα)
]

= − i

λ
sin

(
λt

2

) [
✟✟✟−ω2

1 + 2ωω1 cosα−✘✘ωω1 +✘✘✘
✘

ω2
1 cosα− ωω1 cosα +��ω

2
1 +✘✘ωω1 −✘✘✘✘ω2

1 cosα− ωω1 cosα
]

= 0. �

The cosine terms:

cos
(
λt

2

) [
(ω1 −✚ω) +✚ω − ω1 cosα− ω1 2 sin2 α

2

]
= −ω1 cos

(
λt

2

)
[−1 + cosα + (1− cosα)] = 0. �

(2) Lower elements:

i✁�
{
λ

✁2

[
− sin

(
λt

2

)
− i

(ω1 + ω)
λ

cos
(
λt

2

)]
✟✟

✟✟sin
(α

2

)
+

iω

✁2

[
cos

(
λt

2

)
− i(ω1 + ω)

λ
sin

(
λt

2

)]
✟✟

✟✟sin
(α

2

)}
?= ✁

�ω1

✁2

{[
cos

(
λt

2

)
− i

(ω1 − ω)
λ

sin
(
λt

2

)]
2
✚
✚✚sin
α

2
cos2

α

2
−

[
cos

(
λt

2

)
− i(ω1 + ω)

λ
sin

(
λt

2

)]
cosα

✚
✚✚sin
α

2

}
.

The sine terms:

sin
(
λt

2

) [
−iλ +

iω(ω1 + ω)
λ

+
iω1(ω1 − ω)

λ
2 cos2

(α

2

)
− iω1(ω1 + ω)

λ
cosα

]
?= 0.

i

λ
sin

(
λt

2

) [
−✚✚ω2 − ω2

1 + 2ωω1 cosα + ωω1 +✚✚ω2 + (ω2
1 − ωω1)(1 + cosα)− (ω2

1 + ωω1) cosα
]

=
i

λ
sin

(
λt

2

) [
−��ω

2
1 + 2ωω1 cosα +✘✘ωω1 +��ω

2
1 −✘✘ωω1 +✘✘✘

✘
ω2

1 cosα− ωω1 cosα−✘✘✘✘ω2
1 cosα− ωω1 cosα

]
= 0. �

The cosine terms:

cos
(
λt

2

) [
(ω1 +✚ω)−✚ω − ω1 2 cos2

α

2
+ ω1 cosα

]
= cos

(
λt

2

)
[ω1 − ω1(1 + cosα) + ω1 cosα] = 0. �
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As for Eq. 10.33:[
cos

(
λt

2

)
− i

(ω1 − ω cosα)
λ

sin
(
λt

2

)]
e−iωt/2

(
cos α

2
eiωt sin α

2

)
+ i

[
ω

λ
sinα sin

(
λt

2

)]
e−iωt/2

(
sin α

2
−eiωt cos α

2

)

=
(
α
β

)
, with

α =
{ [

cos
(
λt

2

)
− iω1

λ
sin

(
λt

2

)]
cos

α

2
+

iω

λ

[
cosα cos

α

2
+ sinα sin

α

2︸ ︷︷ ︸
cos(α−α2 )=cos α2

]
sin

(
λt

2

) }
e−iωt/2

=
[
cos

(
λt

2

)
− i(ω1 − ω)

λ
sin

(
λt

2

)]
cos

α

2
e−iωt/2 (confirming the top entry).

β =
{ [

cos
(
λt

2

)
− iω1

λ
sin

(
λt

2

)]
sin

α

2
+

iω

λ

[
cosα sin

α

2
− sinα cos

α

2︸ ︷︷ ︸
sin(α2−α)=− sin α

2

]
sin

(
λt

2

) }
eiωt/2

=
[
cos

(
λt

2

)
− i(ω1 + ω)

λ
sin

(
λt

2

)]
sin

α

2
eiωt/2 (confirming the bottom entry).

|c+|2 + |c−|2 = cos2
(
λt

2

)
+

(ω1 − ω cosα)2

λ2
sin2

(
λt

2

)
+

ω2

λ2
sin2 α sin2

(
λt

2

)
= cos2

(
λt

2

)
+

1
λ2

(
ω2

1 − 2ωω1 cosα + ω2 cos2 α + ω2 sin2 α︸ ︷︷ ︸
ω2+ω2

1−2ωω1 cos α=λ2

)
sin2

(
λt

2

)

= cos2
(
λt

2

)
+ sin2

(
λt

2

)
= 1. �

Problem 10.3

(a)

ψn(x) =

√
2
w

sin
(nπ

w
x
)
. In this case R = w.

∂ψn

∂R
=
√

2
(
−1

2
1

w3/2

)
sin

(nπ

w
x
)

+

√
2
w

(
−nπ

w2
x
)

cos
(nπ

w
x
)

;
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〈
ψn

∣∣∣∣∂ψn

∂R

〉
=

∫ w

0

ψn
∂ψn

∂R
dx

= − 1
w2

∫ w

0

sin2
(nπ

w
x
)
dx− 2nπ

w3

∫ w

0

x sin
(nπ

w
x
)

cos
(nπ

w
x
)

︸ ︷︷ ︸
1
2 sin( 2nπ

w x)

dx

= − 1
w2

(w

2

)
− nπ

w3

∫ w

0

x sin
(

2nπ
w

x

)
dx

= − 1
2w

− nπ

w3

[( w

2nπ

)2

sin
(

2nπ
w

x

)
− wx

2nπ
cos

(
2nπ
w

x

)]∣∣∣∣w
0

= − 1
2w

− nπ

w3

[
− w2

2nπ
cos(2nπ)

]
= − 1

2w
+

1
2w

= 0.

So Eq. 10.42 =⇒ γn(t) = 0. (If the eigenfunctions are real, the geometric phase vanishes.)

(b)

Equation 10.39 =⇒ θn(t) =
1
�

∫ t

0

n2π2
�

2

2mw2
dt′ = −n2π2

�

2m

∫
1
w2

dt′

dw
dw;

θn = −n2π2
�

2mv

∫ w2

w1

1
w2

dw =
n2π2

�

2mv

(
1
w

)∣∣∣∣w2

w1

=
n2π2

�

2mv

(
1
w2
− 1

w1

)
.

(c) Zero.

Problem 10.4

ψ =
√
mα

�
e−mα|x|/�

2
. Here R = α, so

∂ψ

∂R
=
√
m

�

(
1
2

1√
α

)
e−mα|x|/�

2
+
√
mα

�

(
−m|x|

�2

)
e−mα|x|/�

2
.

ψ
∂ψ

∂R
=
√
mα

�

[
1
2�

√
m

α
− m

√
mα

�3
|x|

]
e−2mα|x|/�

2
=

(
m

2�2
− m2α

�4
|x|

)
e−2mα|x|/�

2
.

〈
ψ

∣∣∣∣ ∂ψ∂R
〉

= 2
[

m

2�2

∫ ∞
0

e−2mαx/�
2
dx− m2α

�4

∫ ∞
0

xe−2mαx/�
2
dx

]
=

m

�2

(
�

2

2mα

)
− 2m2α

�4

(
�

2

2mα

)2

=
1
2α
− 1

2α
= 0. So Eq. 10.42 =⇒ γ(t) = 0.

E = −mα2

2�2
, so θ(t) = −1

�

∫ T

0

(
−mα2

2�2

)
dt′ =

m

2�3

∫ α2

α1

α2 dt
′

dα
dα =

m

2�3c

∫ α2

α1

α2dα =
m

6�2c

(
α3

2 − α3
1

)
.
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Problem 10.5

According to Eq. 10.44 the geometric phase is

γn(t) = i

∫ Rf

Ri

〈ψn|∇Rψn〉 · dR.

Now 〈ψn|ψn〉 = 1, so

∇R〈ψn|ψn〉 = 〈∇Rψn|ψn〉+ 〈ψn|∇Rψn〉 = 〈ψn|∇Rψn〉∗ + 〈ψn|∇Rψn〉 = 0,

and hence 〈ψn|∇Rψn〉 is pure imaginary. If ψn is real, then, 〈ψn|∇Rψn〉 must in fact be zero.
Suppose we introduce a phase factor to make the (originally real) wave function complex:

ψ′n = eiφn(R)ψn, where ψn is real. Then ∇Rψ′n = eiφn∇Rψn + i(∇Rφn)eiφnψn. So

〈ψ′n|∇Rψ′n〉 = e−iφneiφn〈ψn|∇Rψn〉+ ie−iφn(∇Rφn)eiφn〈ψn|ψn〉. But 〈ψn|ψn〉 = 1, and

〈ψn|∇Rψn〉 = 0 (as we just found), so 〈ψ′n|∇Rψ′n〉 = i∇Rφn, and Eq. 10.44 =⇒

γ′n(t) = i

∫ Rf

Ri

i∇R(φn) · dR = − [φn(Rf )− φn(Ri)] , so Eq. 10.38 gives:

Ψ′n(x, t) = ψ′n(x, t)e−
i
�

∫ t
0 En(t′)dt′e−i[φn(Rf )−φn(Ri)].

The wave function picks up a (trivial) phase factor, whose only function is precisely to kill the phase factor we
put in “by hand”:

Ψ′n(x, t) =
[
ψn(x, t)e−

i
�

∫ t
0 En(t′)dt′

]
eiφn(Ri) = Ψn(x, t)eiφn(Ri).

In particular, for a closed loop φn(Rf ) = φn(Ri), so γ′n(T ) = 0.

Problem 10.6

H =
e

m
B · S. Here B = B0

[
sin θ cosφ î + sin θ sinφ ĵ + cos θ k̂

]
; take spin matrices from Problem 4.31.

H =
eB0

m

�√
2

sin θ cosφ

0 1 0
1 0 1
0 1 0

 + sin θ sinφ

0 −i 0
i 0 −i
0 i 0

 + cos θ

√2 0 0
0 0 0
0 0 −

√
2


=

eB0�√
2m

√2 cos θ e−iφ sin θ 0
eiφ sin θ 0 e−iφ sin θ

0 eiφ sin θ −
√

2 cos θ

 .

We need the “spin up” eigenvector: Hχ+ =
eB0

m
�χ+.

√2 cos θ e−iφ sin θ 0
eiφ sin θ 0 e−iφ sin θ

0 eiφ sin θ −
√

2 cos θ

 a
b
c

 =
√

2

a
b
c

 =⇒


(i)

√
2 cos θa + e−iφ sin θb =

√
2a.

(ii) eiφ sin θa + e−iφ sin θc =
√

2b.
(iii) eiφ sin θb−

√
2 cos θc =

√
2c.
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(i)⇒ b =
√

2eiφ

(
1− cos θ

sin θ

)
a =

√
2eiφ tan (θ/2) a; (iii)⇒ b =

√
2e−iφ

(
1 + cos θ

sin θ

)
c =

√
2e−iφ cot (θ/2) c.

Thus c = e2iφ tan2 (θ/2) a; (ii) is redundant. Normalize: |a|2 + 2 tan2(θ/2)|a|2 + tan4(θ/2)|a|2 = 1⇒

|a|2
[
1 + tan2(θ/2)

]2
= |a|2

[
1

cos(θ/2)

]4

= 1⇒ |a|2 = cos4 (θ/2) .

Pick a = e−iφ cos2(θ/2); then b =
√

2 sin(θ/2) cos(θ/2) and c = eiφ sin2(θ/2), and

χ+ =

 e−iφ cos2 (θ/2)√
2 sin (θ/2) cos (θ/2)

eiφ sin2 (θ/2)

 . This is the spin-1 analog to Eq. 10.57.

∇χ+ =
∂χ+

∂r
r̂ +

1
r

∂χ+

∂θ
θ̂ +

1
r sin θ

∂χ+

∂φ
φ̂

=
1
r

 −e−iφ cos (θ/2) sin (θ/2)√
2

[
cos2 (θ/2)− sin2 (θ/2)

]
/2

eiφ sin (θ/2) cos (θ/2)

 θ̂ +
1

r sin θ

−ie−iφ cos2 (θ/2)
0

ieiφ sin2 (θ/2)

 φ̂.

〈χ+|∇χ+〉 =
1
r

{
− cos2 (θ/2) [cos (θ/2) sin (θ/2)] + sin (θ/2) cos (θ/2)

[
cos2 (θ/2)− sin2 (θ/2)

]
+ sin2 (θ/2) [sin (θ/2) cos (θ/2)]

}
θ̂

+
1

r sin θ

{
cos2 (θ/2)

[
−i cos2 (θ/2)

]
+ sin2 (θ/2)

[
i sin2 (θ/2)

]}
φ̂

=
i

r sin θ

[
sin4 (θ/2)− cos4 (θ/2)

]
φ̂

=
i

r sin θ

[
sin2 (θ/2) + cos2 (θ/2)

] [
sin2 (θ/2)− cos2 (θ/2)

]
φ̂

=
i

r sin θ
(1)(− cos θ) φ̂ = − i

r
cot θ φ̂.

∇× 〈χ+|∇χ+〉 =
1

r sin θ

∂

∂θ

[
sin θ

(
− i

r
cot θ

)]
r̂ =

−i

r2 sin θ

∂

∂θ
(cos θ) r̂ =

i sin θ

r2 sin θ
r̂ =

i

r2
r̂.

Equation 10.51 =⇒ γ+(T ) = i

∫
i

r2
r2dΩ = −Ω.

Problem 10.7

(a) Giving H a test function f to act upon:

Hf =
1

2m

(
�

i
∇− qA

)
·
(

�

i
∇f − qAf

)
+ qϕf

=
1

2m

[
− �

2∇ · (∇f)− q�

i
∇ · (Af)︸ ︷︷ ︸

(∇·A)f+A·(∇f)

−q�

i
A · (∇f) + q2A ·Af

]
+ qϕf.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


262 CHAPTER 10. THE ADIABATIC APPROXIMATION

But ∇ ·A = 0 and ϕ = 0 (see comments after Eq. 10.66), so

Hf =
1

2m
[
−�

2∇2f + 2iq�A · ∇f + q2A2f
]
, or H =

1
2m

[
−�

2∇2 + q2A2 + 2iq�A · ∇
]
. QED

(b) Apply
(

�

i∇− qA
)
· to both sides of Eq. 10.78:(

�

i
∇− qA

)2

Ψ =
(

�

i
∇− qA

)
·
(

�

i
eig∇Ψ′

)
= −�

2∇ · (eig∇Ψ′)− q�

i
eigA · ∇Ψ′.

But ∇ · (eig∇Ψ′) = ieig(∇g) · (∇Ψ′) + eig∇ · (∇Ψ′) and ∇g =
q

�
A, so the right side is

−i�2 q

�
eigA · ∇Ψ′ − �

2eig∇2Ψ′ + iq�eigA · ∇Ψ′ = −�
2eig∇2Ψ′. QED

Problem 10.8

(a) Schrödinger equation:

− �
2

2m
d2ψ

dx2
= Eψ, or

d2ψ

dx2
= −k2ψ (k ≡

√
2mE/�)

{
0 < x < 1

2a + ε,
1
2a + ε < x < a.

Boundary conditions: ψ(0) = ψ( 1
2a + ε) = ψ(a) = 0.

Solution:

(1) 0 < x < 1
2a + ε : ψ(x) = A sin kx + B cos kx. But ψ(0) = 0⇒ B = 0, and

ψ( 1
2a + ε) = 0⇒

{
k( 1

2a + ε) = nπ (n = 1, 2, 3, . . . )⇒ En = n2π2
�

2/2m(a/2 + ε)2,
or else A = 0.

(2) 1
2a + ε < x < a : ψ(x) = F sin k(a− x) + G cos k(a− x). But ψ(a) = 0⇒ G = 0, and

ψ( 1
2a + ε) = 0⇒

{
k( 1

2a− ε) = n′π (n′ = 1, 2, 3, . . . )⇒ En′ = (n′)2π2
�

2/2m(a/2− ε)2,
or else F = 0.

The ground state energy is


either E1 =

π2
�

2

2m( 1
2a + ε)2

(n = 1), with F = 0,

or else E1′ =
π2

�
2

2m( 1
2a− ε)2

(n′ = 1), with A = 0.

Both are allowed energies, but E1 is (slightly) lower (assuming ε is positive), so the ground state is

ψ(x) =


√

2
1
2 a+ε

sin
(

πx
1
2 a+ε

)
, 0 ≤ x ≤ 1

2a + ε;

0, 1
2a + ε ≤ x ≤ a.
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x

ψ(x)

aa_
2

_
2
a +ε

(b)

− �
2

2m
d2ψ

dx2
+f(t)δ(x− 1

2a−ε)ψ = Eψ ⇒ ψ(x) =
{

A sin kx, 0 ≤ x < 1
2a + ε,

F sin k(a− x), 1
2a + ε < x ≤ a,

}
where k ≡

√
2mE

�
.

Continuity in ψ at x = 1
2a + ε :

A sin k
(

1
2a + ε

)
= F sin k

(
a− 1

2a− ε
)

= F sin k
(

1
2a− ε

)
⇒ F = A

sin k
(

1
2a + ε

)
sin k

(
1
2a− ε

) .
Discontinuity in ψ′ at x = 1

2a + ε (Eq. 2.125):

−Fk cos k(a−x)−Ak cos kx =
2mf

�2
A sin kx ⇒ F cos k

(
1
2a− ε

)
+A cos k

(
1
2a + ε

)
= −

(
2mf

�2k

)
A sin k

(
1
2a + ε

)
.

A
sin k

(
1
2a + ε

)
sin k

(
1
2a− ε

) cos k
(

1
2a− ε

)
+ A cos k

(
1
2a + ε

)
= −

(
2T
z

)
A sin k

(
1
2a + ε

)
.

sin k
(

1
2a + ε

)
cos k

(
1
2a− ε

)
+ cos k

(
1
2a + ε

)
sin k

(
1
2a− ε

)
= −

(
2T
z

)
sin k

(
1
2a + ε

)
sin k

(
1
2a− ε

)
.

sin k
(

1
2a + ε + 1

2a− ε
)

= −
(

2T
z

)
1
2

[
cos k

(
1
2a + ε− 1

2a + ε
)
− cos k

(
1
2a + ε + 1

2a− ε
)]

.

sin ka = −T

z
(cos 2kε− cos ka) ⇒ z sin z = T [cos z − cos(zδ)].

(c)

sin z =
T

z
(cos z − 1) ⇒ z

T
=

cos z − 1
sin z

= − tan(z/2) ⇒ tan(z/2) = − z

T
.

Plot tan(z/2) and −z/T on the same graph, and look for intersections:

tan(z/2)

π z
2π 3π

-z/T
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As t : 0 → ∞, T : 0 → ∞, and the straight line rotates counterclockwise from 6 o’clock to 3 o’clock,

so the smallest z goes from π to 2π, and the ground state energy goes from ka = π ⇒ E(0) =
�

2π2

2ma2

(appropriate to a well of width a) to ka = 2π ⇒ E(∞) =
�

2π2

2m(a/2)2
(appropriate for a well of width a/2.

(d) Mathematica yields the following table:
T 0 1 5 20 100 1000
z 3.14159 3.67303 4.76031 5.72036 6.13523 6.21452

(e) Pr =
Ir

Ir + Il
=

1
1 + (Il/Ir)

, where

Il =
∫ a/2+ε

0

A2 sin2 kx dx = A2

[
1
2
x− 1

4k
sin(2kx)

] ∣∣∣∣a/2+ε

0

= A2

{
1
2

(a

2
+ ε

)
− 1

4k
sin

[
2k

(a

2
+ ε

)]}
=

a

4
A2

[
1 +

2ε
a
− 1

ka
sin

(
ka +

2ε
a
ka

)]
=

a

4
A2

[
1 + δ − 1

z
sin(z + zδ)

]
.

Ir =
∫ a

a/2+ε

F 2 sin2 k(a− x) dx. Let u ≡ a− x, du = −dx.

= −F 2

∫ 0

a/2−ε

sin2 ku du = F 2

∫ a/2−ε

0

sin2 ku du =
a

4
F 2

[
1− δ − 1

z
sin(z − zδ)

]
.

Il

Ir
=

A2 [1 + δ − (1/z) sin(z + zδ)]
F 2 [1− δ − (1/z) sin(z − zδ)]

. But (from (b))
A2

F 2
=

sin2 k(a/2− ε)
sin2 k(a/2 + ε)

=
sin2[z(1− δ)/2]
sin2[z(1 + δ)/2]

.

=
I+
I−

, where I± ≡
[
1± δ − 1

z
sin z(1± δ)

]
sin2[z(1∓ δ)/2]. Pr =

1
1 + (I+/I−)

.

Using δ = 0.01 and the z’s from (d), Mathematica gives

T 0 1 5 20 100 1000
Pr 0.490001 0.486822 0.471116 0.401313 0.146529 0.00248443

As t : 0→∞ (so T : 0→∞), the probability of being in the right half drops from almost 1/2 to zero—the
particle gets sucked out of the slightly smaller side, as it heads for the ground state in (a).

(f)

T=0 T=1 T=5

T=20 T=100 T=1000
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Problem 10.9

(a) Check the answer given: xc = ω
∫ t

0
f(t′) sin [ω(t− t′)] dt′ =⇒ xc(0) = 0. �

ẋc = ωf(t) sin [ω(t− t)] + ω2

∫ t

0

f(t′) cos [ω(t− t′)] dt′ = ω2

∫ t

0

f(t′) cos [ω(t− t′)] dt′ ⇒ ẋc(0) = 0. �

ẍc = ω2f(t) cos [ω(t− t)]− ω3

∫ t

0

f(t′) sin [ω(t− t′)] dt′ = ω2f(t)− ω2xc.

Now the classical equation of motion is m(d2x/dt2) = −mω2x + mω2f . For the proposed solution,
m(d2xc/dt

2) = mω2f−mω2xc, so it does satisfy the equation of motion, with the appropriate boundary
conditions.

(b) Let z ≡ x− xc (so ψn(x− xc) = ψn(z), and z depends on t as well as x).

∂Ψ
∂t

=
dψn

dz
(−ẋc)ei{} + ψne

i{} i

�

[
− (n +

1
2
)�ω + mẍc(x−

xc

2
)− m

2
ẋ2

c +
mω2

2
fxc

]

[ ] = −(n +
1
2
)�ω +

mω2

2

[
2x(f − xc) + x2

c −
ẋ2

c

ω2

]
.

∂Ψ
∂t

= −ẋc
dψn

dz
ei{} + iΨ

{
−(n +

1
2
)�ω +

mω2

2�

[
2x(f − xc) + x2

c −
ẋ2

c

ω2

]}
.

∂Ψ
∂x

=
dψn

dz
ei{} + ψne

i{} i

�
(mẋc);

∂2Ψ
∂x2

=
d2ψn

dz2
ei{} + 2

dψn

dz
ei{} i

�
(mẋc)−

(
mẋc

�

)2

ψne
i{}.

HΨ = − �
2

2m
∂2Ψ
∂x2

+
1
2
mω2x2Ψ−mω2fxΨ

= − �
2

2m
d2ψn

dz2
ei{} − �

2

2m
2
dψn

dz
ei{} imẋc

�
+

�
2

2m

(
mẋc

�

)2

Ψ +
1
2
mω2x2Ψ−mω2fxΨ.

But − �
2

2m
d2ψn

dz2
+

1
2
mω2z2ψn = (n +

1
2
)�ωψn, so

HΨ =
✟✟

✟✟
✟

(n +
1
2
)�ωΨ− 1

2
mω2z2Ψ−

✟✟
✟✟✟i�ẋc
dΨn

dz
ei{} +

m

2
ẋ2

cΨ +
1
2
mω2x2Ψ−mω2fxΨ

?= i�
∂Ψ
∂t

=
✟✟

✟✟
✟

−i�ẋc
dψn

dz
ei{} − �Ψ

[
✟✟

✟✟
✟

−(n +
1
2
)ω +

mω2

2�
(2xf − 2xxc + x2

c −
1
ω2

ẋ2
c)

]

−1
2
mω2z2 +

�
��

m

2
ẋ2

c +
1
2
mω2x2 −✘✘✘✘mω2fx

?= −mω2

2

(
✟✟2xf − 2xxc + x2

c −
�
��

1
ω2

ẋ2
c

)

z2 − x2 ?= −2xxc + x2
c ; z2 ?= (x2 − 2xxc + x2

c) = (x− xc)2. �
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(c)

Eq. 10.90 ⇒ H = − �
2

2m
∂2

∂x2
+

1
2
mω2

(
x2 − 2xf + f2

)
− 1

2
mω2f2. Shift origin: u ≡ x− f.

H =
[
− �

2

2m
∂2

∂u2
+

1
2
mω2u2

]
−

[
1
2
mω2f2

]
.

The first term is a simple harmonic oscillator in the variable u; the second is a constant (with respect
to position). So the eigenfunctions are ψn(u), and the eigenvalues are harmonic oscillator ones, (n +
1
2 )�ω, less the constant: En = (n + 1

2 )�ω − 1
2mω2f2.

(d) Note that sin [ω(t− t′)] =
1
ω

d

dt′
cos [ω(t− t′)], so xc(t) =

∫ t

0

f(t′)
d

dt′
cos [ω(t− t′)] dt′, or

xc(t) = f(t′) cos [ω(t− t′)]
∣∣∣t
0
−

∫ t

0

(
df

dt′

)
cos [ω(t− t′)] dt′ = f(t)−

∫ t

0

(
df

dt′

)
cos [ω(t− t′)] dt′

(since f(0) = 0). Now, for an adiabatic process we want df/dt very small; specifically:
df

dt′
� ωf(t)

(0 < t′ ≤ t). Then the integral is negligible compared to f(t), and we have xc(t) ≈ f(t). (Physically,
this says that if you pull on the spring very gently, no fancy oscillations will occur; the mass just moves
along as though attached to a string of fixed length.)

(e) Put xc ≈ f into Eq. 10.92, using Eq. 10.93:

Ψ(x, t) = ψn(x, t)e
i
�

[
−(n+ 1

2 )�ωt+mḟ(x−f/2)+mω2
2

∫ t
0 f2(t′)dt′

]
.

The dynamic phase (Eq. 10.39) is

θn(t) = −1
�

∫ t

0

En(t′) dt′ = −(n +
1
2
)�ωt +

mω2

2�

∫ t

0

f2(t′) dt′, so Ψ(x, t) = ψn(x, t)eiθn(t)eiγn(t),

confirming Eq. 10.94, with the geometric phase given (ostensibly) by γn(t) = m
�
ḟ(x − f/2). But the

eigenfunctions here are real, and hence(Problem 10.5) the geometric phase should be zero. The point is that
(in the adiabatic approximation) ḟ is extremely small (see above), and hence in this limit m

�
ḟ(x−f/2) ≈ 0

(at least, in the only region of x where ψn(x, t) is nonzero).

Problem 10.10

(a)

ċm = −
∑

j

δjne
iγn〈ψm|ψ̇j〉ei(θj−θm) = −〈ψm|

∂ψn

∂t
〉eiγnei(θn−θm) ⇒

cm(t) = cm(0)−
∫ t

0

〈ψm|
∂ψn

∂t′
〉eiγnei(θn−θm)dt′.
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CHAPTER 10. THE ADIABATIC APPROXIMATION 267

(b) From Problem 10.9:

ψn(x, t) = ψn(x− f) = ψn(u), where u ≡ x− f,

and ψn(u) is the nth state of the ordinary harmonic oscillator;
∂ψn

∂t
=

∂ψn

∂u

∂u

∂t
= −ḟ

∂ψn

∂u
.

But p̂ =
�

i

∂

∂u
, so 〈ψm|

∂ψn

∂t
〉 = − i

�
ḟ〈m|p|n〉, where (from Problem 3.33):

〈m|p|n〉 = i

√
m�ω

2
(√

mδn,m−1 −
√
nδm,n−1

)
. Thus:

〈ψm|
∂ψn

∂t
〉 = ḟ

√
mω

2�

(√
mδn,m−1 −

√
nδm,n−1

)
.

Evidently transitions occur only to the immediately adjacent states, n± 1, and

(1) m = n + 1 :

cn+1 = −
∫ t

0

(
ḟ

√
mω

2�

√
n + 1

)
eiγnei(θn−θn+1)dt′.

But γn = 0, because the eigenfunctions are real (Problem 10.5), and (Eq. 10.39)

θn = −1
�
(n +

1
2
)�ωt =⇒ θn − θn+1 =

[
−(n +

1
2
) + (n + 1 +

1
2
)
]
ωt = ωt.

So cn+1 = −
√

mω

2�

√
n + 1

∫ t

0

ḟ eiωt′dt′.

(2) m = n− 1:

cn−1 = −
∫ t

0

(
−ḟ

√
mω

2�

√
n

)
eiγnei(θn−θn−1)dt′;

θn − θn−1 =
[
−(n +

1
2
) + (n− 1 +

1
2
)
]
ωt = −ωt. cn−1 =

√
mω

2�

√
n

∫ t

0

ḟ e−iωt′dt′.
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Chapter 11

Scattering

Problem 11.1

(a)

q

q

b r

1

2

φ

θ

Conservation of energy: E =
1
2
m(ṙ + r2φ̇2) + V (r), where V (r) =

q1q2

4πε
1
r
.

Conservation of angular momentum: J = mr2φ̇. So φ̇ =
J

mr2
.

ṙ2 +
J2

m2r2
=

2
m

(E − V ). We want r as a function of φ (not t). Also, let u ≡ 1/r. Then

ṙ =
dr

dt
=

dr

du

du

dφ

dφ

dt
=

(
− 1

u2

)
du

dφ

J

m
u2 = − J

m

du

dφ
. Then:

(
− J

m

du

dφ

)2

+
J2

m2
u2 =

2
m

(E − V ), or

(
du

dφ

)2

=
2m
J2

(E − V )− u2;
du

dφ
=

√
2m
J2

(E − V )− u2; dφ =
du√

2m
J2 (E − V )− u2

=
du√
I(u)

, where
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I(u) ≡ 2m
J2

(E − V )− u2. Now, the particle q1 starts out at r =∞ (u = 0), φ = 0, and the point

of closest approach is rmin (umax),Φ : Φ =
∫ umax

0

du√
I
. It now swings through an equal angle Φ

on the way out, so Φ + Φ + θ = π, or θ = π − 2Φ. θ = π − 2
∫ umax

0

du√
I(u)

.

So far this is general ; now we put in the specific potential:

I(u) =
2mE

J2
− 2m

J2

q1q2

4πε0
u− u2 = (u2 − u)(u− u1), where u1 and u2 are the two roots.

(Since du/dφ =
√

I(u), umax is one of the roots; setting u2 > u1, umax = u2.)

θ = π − 2
∫ u2

0

du√
(u2 − u)(u− u1)

= π + 2 sin−1

(−2u + u1 + u2

u2 − u1

)∣∣∣∣u2

0

= π + 2
[
sin−1(−1)− sin−1

(
u1 + u2

u2 − u1

)]
= π + 2

[
−π

2
− sin−1

(
u1 + u2

u2 − u1

)]
= −2 sin−1

(
u1 + u2

u2 − u1

)
.

Now J = mvb, E = 1
2mv2, where v is the incoming velocity, so J2 = m2b2(2E/m) = 2mb2E, and hence

2m/J2 = 1/b2E. So

I(u) =
1
b2
− 1

b2

(
1
E

q1q2

4πε0

)
u− u2. Let A ≡ q1q2

4πε0E
, so − I(u) = u2 +

A

b2
u− 1

b2
.

To get the roots: u2 +
A

b2
u− 1

b2
= 0 =⇒ u =

1
2

[
−A

b2
±

√
A2

b4
+

4
b2

]
=

A

2b2

−1±

√
1 +

(
2b
A

)2
 .

Thus u2 =
A

2b2

−1 +

√
1 +

(
2b
A

)2
 , u1 =

A

2b2

−1−

√
1 +

(
2b
A

)2
 ;

u1 + u2

u2 − u1
=

−1√
1 + (2b/A)2

.

θ = 2 sin−1

 1√
1 + (2b/A)2

 , or
1√

1 + (2b/A)2
= sin

(
θ

2

)
; 1 +

(
2b
A

)2

=
1

sin2(θ/2)
;

(
2b
A

)2

=
1− sin2(θ/2)

sin2(θ/2)
=

cos2(θ/2)
sin2(θ/2)

;
2b
A

= cot(θ/2), or b =
q1q2

8πε0E
cot(θ/2).
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(b)

D(θ) =
b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ . Here

db

dθ
=

q1q2

8πε0E

(
− 1

2 sin2(θ/2)

)
.

=
1

2 sin(θ/2) cos(θ/2)
q1q2

8πε0E
cos(θ/2)
sin(θ/2)

q1q2

8πε0E
1

2 sin2(θ/2)
=

[
q1q2

16πε0E sin2(θ/2)

]2

.

(c)

σ =
∫

D(θ) sin θ dθ dφ = 2π
(

q1q2

8πε0E

)2 ∫ π

0

sin θ

sin4(θ/2)
dθ.

This integral does not converge, for near θ = 0 (and again near π) we have sin θ ≈ θ, sin(θ/2) ≈ θ/2, so
the integral goes like 16

∫ ε

0
θ−3 dθ = − 8θ−2

∣∣ε
0
→∞.

Problem 11.2

x

r

θ

Two dimensions: ψ(r, θ) ≈ A

[
eikx + f(θ)

eikr

√
r

]
.

One dimension: ψ(x) ≈ A
[
eikx + f(x/|x|)e−ikx

]
.

Problem 11.3

Multiply Eq. 11.32 by Pl′(cos θ) sin θ dθ and integrate from 0 to π, exploiting the orthogonality of the Leg-
endre polynomials (Eq. 4.34)—which, with the change of variables x ≡ cos θ, says∫ π

0

Pl(cos θ)Pl′(cos θ) sin θ dθ =
(

2
2l + 1

)
δll′ .

The delta function collapses the sum, and we get

2il
′
[
jl′(ka) + ikal′h

(1)
l′ (ka)

]
= 0,

and hence (dropping the primes)

al = − jl(ka)

ikh
(1)
l (ka)

. QED
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Problem 11.4

Keeping only the l = 0 terms, Eq. 11.29 says that in the exterior region:

ψ ≈ A
[
j0(kr) + ika0h

(1)
0 (kr)

]
P0(cos θ) = A

[
sin(kr)

kr
+ ika0

(
−i

eikr

kr

)]
= A

[
sin(kr)

kr
+ a0

eikr

r

]
(r > a).

In the internal region Eq. 11.18 (with nl eliminated because it blows up at the origin) yields

ψ(r) ≈ bj0(kr) = b
sin(kr)

kr
(r < a).

The boundary conditions hold independently for each l, as you can check by keeping the summation over l and
exploiting the orthogonality of the Legendre polynomials:

(1) ψ continuous at r = a: A

[
sinka

ka
+ a0

eika

a

]
= b

sin ka

ka
.

(2) ψ′ discontinuous at r = a: Integrating the radial equation across the delta function gives

− �
2

2m

∫
d2u

dr2
dr +

∫ [
αδ(r − a) +

�
2

2m
l(l + 1)

r2

]
u dr ⇒ − �

2

2m
∆u′ + αu(a) = 0, or ∆u′ =

2mα

�2
u(a).

Now u = rR, so u′ = R+rR′; ∆u′ = ∆R+a∆R′ = a∆R′ =
2mα

�2
aR(a), or ∆ψ′ =

2mα

�2
ψ(a) =

β

a
ψ(a).

A

ka

[
k cos(ka) + a0ik

2eika
]
− A

ka2✭✭✭✭
✭✭✭✭

✭[
sin(ka) + a0ke

ika
]
− b

ka
k cos(ka) +

✟✟
✟✟
✟b

ka2
sin ka =

β

a
b
sin(ka)

ka
.

The indicated terms cancel (by (1)), leaving A
[
cos(ka) + ia0ke

ika
]

= b

[
cos(ka) +

β

ka
sin(ka)

]
.

Using (1) to eliminate b: A
[
cos(ka) + ia0ke

ika
]

=
[
cot(ka) +

β

ka

] [
sin(ka) + a0ke

ika
]
A.

✘✘✘
✘cos(ka) + ia0ke

ika =✘✘✘✘cos(ka) +
β

ka
sin(ka) + a0k cot(ka)eika + β

a0

a
eika.

ia0ke
ika

[
1 + i cot(ka) + i

β

ka

]
=

β

ka
sin(ka). But ka� 1, so sin(ka) ≈ ka, and cot(ka) =

cos(ka)
sin(ka)

≈ 1
ka

.

ia0k(1 + ika)
[
1 +

i

ka
(1 + β)

]
= β; ia0k

[
1 +

i

ka
(1 + β) + ika− 1− β

]
≈ ia0k

[
i

ka
(1 + β)

]
= β.

a0 = − aβ

1 + β
. Equation 11.25 ⇒ f(θ) ≈ a0 = − aβ

1 + β
. Equation 11.14 ⇒ D = |f |2 =

(
aβ

1 + β

)2

.

Equation 11.27 ⇒ σ = 4πD = 4π
(

aβ

1 + β

)2

.
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Problem 11.5

(a) In the region to the left
ψ(x) = Aeikx + B−ikx (x ≤ −a).

In the region −a < x < 0, the Schrödinger equation gives

− h2

2m
d2ψ

dx2
− V0ψ = Eψ ⇒ d2ψ

dx2
= −k′ψ

where k′ =
√

2m(E + V0)/�. The general solution is

ψ = C sin(k′x) + D cos(k′x)

But ψ(0) = 0 implies D = 0, so

ψ(x) = C sin(k′x) (−a ≤ x ≤ 0).

The continuity of ψ(x) and ψ′(x) at x = −a says

Ae−ika + Beika = −C sin(k′a), ikAe−ika − ikBika = k′C cos(k′a).

Divide and solve for B:
ikAe−ika − ikBeika

Ae−ika + Beika
= −k′ cot(k′a),

ikAe−ika − ikBeika = −Ae−ikak′ cot(k′a)−Beikak′ cot(k′a),

Beika [−ik + k′ cot(k′a)] = Ae−ika [−ik − k′ cot(k′a)] .

B = Ae−2ika

[
k − ik′ cot(k′a)
k + ik′ cot(k′a)

]
.

(b)

|B|2 = |A|2
[
k − ik′ cot(k′a)
k + ik′ cot(k′a)

]
·
[
k + ik′ cot(k′a)
k − ik′ cot(k′a)

]
= |A|2. �

(c) From part (a) the wave function for x < −a is

ψ(x) = Aeikx + Ae−2ika

[
k − ik′ cot(k′a)
k + ik′ cot(k′a)

]
e−ikx.

But by definition of the phase shift (Eq. 11.40)

ψ(x) = A
[
eikx − ei(2δ−kx)

]
.

so

e−2ika

[
k − ik′ cot(k′a)
k + ik′ cot(k′a)

]
= −e2iδ.

This is exact. For a very deep well, E � V0, k =
√

2mE/� �
√

2m(E + V0)/� = k′, so

e−2ika

[−ik′ cot(k′a)
ik′ cot(k′a)

]
= −e2iδ; e−2ika = e2iδ; δ = −ka.
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Problem 11.6

From Eq. 11.46, al =
1
k
eiδl sin δl, and Eq. 11.33, al = i

jl(ka)

kh
(1)
l (ka)

, it follows that eiδl sin δl = i
jl(ka)

h
(1)
l (ka)

.

But (Eq. 11.19) h
(1)
l (x) = jl(x) + inl(x), so

eiδl sin δl = i
jl(ka)

jl(x) + inl(x)
= i

1
1 + i(n/j)

= i
1− i(n/j)
1 + (n/j)2

=
(n/j) + i

1 + (n/j)2
,

(writing (n/j) as shorthand for nl(ka)/jl(ka)). Equating the real and imaginary parts:

cos δl sin δl =
(n/j)

1 + (n/j)2
; sin2 δl =

1
1 + (n/j)2

.

Dividing the second by the first, I conclude that

tan δl =
1

(n/j)
, or δl = tan−1

[
jl(ka)
nl(ka)

]
.

Problem 11.7

r > a : u(r) = A sin(kr + δ);

r < a : u(r) = B sin kr + D cos kr = B sin kr, because u(0) = 0 =⇒ D = 0.

Continuity at r = a =⇒ B sin(ka) = A sin(ka + δ) =⇒ B = A
sin(ka + δ)

sin(ka)
. So u(r) = A

sin(ka + δ)
sin(ka)

sin kr.

From Problem 11.4,

∆
(
du

dr

)∣∣∣∣
r=a

=
β

a
u(a)⇒ Ak cos(ka + δ)−A

sin(ka + δ)
sin(ka)

k cos(ka) =
β

a
A sin(ka + δ).

cos(ka + δ)− sin(ka + δ)
sin(ka)

cos(ka) =
β

ka
sin(ka + δ),

sin(ka) cos(ka + δ)− sin(ka + δ) cos(ka) =
β

ka
sin(ka + δ) sin(ka),

sin(ka− ka− δ) =
β

ka
sin(ka) [sin(ka) cos δ + cos(ka) sin δ] ,

− sin δ = β
sin2(ka)

ka
[cos δ + cot(ka) sin δ] ; −1 = β

sin2(ka)
ka

[cot δ + cot(ka)] .

cot δ = − cot(ka)− ka

β sin2(ka)
; cot δ = −

[
cot(ka) +

ka

β sin2(ka)

]
.
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Problem 11.8

G = −eikr

4πr
=⇒ ∇G = − 1

4π

(
1
r
∇eikr + eikr∇1

r

)
=⇒

∇2G = ∇ · (∇G) = − 1
4π

[
2

(
∇1

r

)
· (∇eikr) +

1
r
∇2(eikr) + eikr∇2

(
1
r

)]
.

But ∇1
r

= − 1
r2

r̂; ∇(eikr) = ikeikr r̂; ∇2eikr = ik∇ · (eikr r̂) = ik
1
r2

d

dr
(r2eikr)

(see reference in footnote 12) =⇒ ∇2eikr =
ik

r2
(2reikr + ikr2eikr) = ikeikr

(
2
r

+ ik

)
;

∇2

(
1
r

)
= −4πδ3(r). So ∇2G = − 1

4π

[
2

(
− 1

r2
r̂

)
·
(
ikeikr r̂

)
+

1
r
ikeikr

(
2
r

+ ik

)
− 4πeikrδ3(r)

]
.

But eikrδ3(r) = δ3(r), so

∇2G = δ3(r)− 1
4π

eikr

[
−2ik

r2
+

2ik
r2
− k2

r

]
= δ3(r) + k2 e

ikr

4πr
= δ3(r)− k2G.

Therefore (∇2 + k2)G = δ3(r). QED

Problem 11.9

ψ =
1√
πa3

e−r/a; V = − e2

4πε0r
= − �

2

ma

1
r

(Eq. 4.72); k = i

√
−2mE

�
=

i

a
.

In this case there is no “incoming” wave, and ψ0(r) = 0. Our problem is to show that

− m

2π�2

∫
eik|r−r0|

|r− r0|
V (r0)ψ(r0) d3r0 = ψ(r).

We proceed to evaluate the left side (call it I):

I =
(
− m

2π�2

) (
− �

2

ma

)
1√
πa3

∫
e−|r−r0|/a

|r− r0|
1
r0

e−r0/a d3r0

=
1

2πa
1√
πa3

∫
e−
√

r2+r2
0−2rr0 cos θ/ae−r0/a√

r2 + r2
0 − 2rr0 cos θ r0

r2
0 sin θ dr0 dθ dφ.

(I have set the z0 axis along the—fixed—direction r, for convenience.) Doing the φ integral (2π):

I =
1

a
√
πa3

∫ ∞
0

r0e
−r0/a

[∫ π

0

e−
√

r2+r2
0−2rr0 cos θ/a√

r2 + r2
0 − 2rr0 cos θ

sin θ dθ

]
dr0. The θ integral is

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


CHAPTER 11. SCATTERING 275

∫ π

0

e−
√

r2+r2
0−2rr0 cos θ/a√

r2 + r2
0 − 2rr0 cos θ

sin θ dθ = − a

rr0
e−
√

r2+r2
0−2rr0 cos θ/a

∣∣∣π
0

= − a

rr0

[
e−(r+r0)/a − e−|r−r0|/a

]
.

I = − 1
r
√
πa3

∫ ∞
0

e−r0/a
[
e−(r0+r)/a − e−|r0−r|/a

]
dr0

= − 1
r
√
πa3

[
e−r/a

∫ ∞
0

e−2r0/a dr0 − e−r/a

∫ r

0

dr − er/a

∫ ∞
r

e−2r0/a dr0

]
= − 1

r
√
πa3

[
e−r/a

(a

2

)
− e−r/a(r)− er/a

(
−a

2
e−2r0/a

)∣∣∣∞
r

]
= − 1

r
√
πa3

[a
2
e−r/a − re−r/a − a

2
er/ae−2r/a

]
=

1√
πa3

e−r/a = ψ(r). QED

Problem 11.10

For the potential in Eq. 11.81, Eq. 11.88 =⇒

f(θ) = − 2m
�2κ

V0

∫ a

0

r sin(κr) dr = −2mV0

�2κ

[
1
κ2

sin(κr)− r

κ
cos(κr)

]∣∣∣∣a
0

= −2mV0

�2κ3
[sin(κa)− κa cos(κa)] ,

where (Eq. 11.89) κ = 2k sin(θ/2). For low-energy scattering (ka� 1):

sin(κa) ≈ κa− 1
3!

(κa)3; cos(κa) = 1− 1
2
(κa)2; so

f(θ) ≈ −2mV0

�2κ3

[
κa− 1

6
(κa)3 − κa +

1
2
(κa)3

]
= −2

3
mV0a

3

�2
, in agreement with Eq. 11.82.

Problem 11.11

sin(κr) =
1
2i

(
eiκr − e−iκr

)
, so

∫ ∞
0

e−µr sin(κr) dr =
1
2i

∫ ∞
0

[
e−(µ−iκ)r − e−(µ+iκ)r

]
dr

=
1
2i

[
e−(µ−iκ)r

−(µ− iκ)
− e−(µ+iκ)r

−(µ + iκ)

]∣∣∣∣∞
0

=
1
2i

[
1

µ− iκ
− 1

µ + iκ

]
=

1
2i

(
µ + iκ− µ + iκ

µ2 + κ2

)
=

κ

µ2 + κ2
.

So f(θ) = −2mβ

�2κ

κ

µ2 + κ2
= − 2mβ

�2(µ2 + κ2)
. QED
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Problem 11.12

Equation 11.91 =⇒ D(θ) = |f(θ)|2 =
(

2mβ

�2

)2 1
(µ2 + κ2)2

, where Eq. 11.89⇒ κ = 2k sin(θ/2).

σ =
∫

D(θ) sin θ dθ dφ = 2π
(

2mβ

�2

)2 1
µ4

∫ π

0

1[
1 + (2k/µ)2 sin2(θ/2)

]2 2 sin(θ/2) cos(θ/2) dθ.

Let
2k
µ

sin(θ/2) ≡ x, so 2 sin(θ/2) =
µ

k
x, and cos(θ/2) dθ =

µ

k
dx. Then

σ = 2π
(

2mβ

�2

)2 1
µ4

(µ

k

)2
∫ x1

x0

x

(1 + x2)2
dx. The limits are

{
θ = 0 =⇒ x = x0 = 0,
θ = π =⇒ x = x1 = 2k/µ.

}
So

σ = 2π
(

2mβ

�2

)2 1
(µk)2

[
−1

2
1

(1 + x2)

]∣∣∣∣2k/µ

0

= π

(
2mβ

�2

)2 1
(µk)2

[
1− 1

1 + (2k/µ)2

]
= π

(
2mβ

�2

)2 1
(µk)2

[
4(k/µ)2

1 + 4k2/µ2

]
= π

(
4mβ

�2

)2 1
µ2

1
µ2 + 4k2

. But k2 =
2mE

�2
, so

σ = π

(
4mβ

µ�

)2 1
(µk)2 + 8mE

.

Problem 11.13

(a)

V (r) = αδ(r − a). Eq. 11.80 =⇒ f = − m

2π�2

∫
V (r) d3r = − m

2π�2
α4π

∫ ∞
0

δ(r − a)r2dr.

f = −2mα

�2
a2; D = |f |2 =

(
2mα

�2
a2

)2

; σ = 4πD = π

(
4mα

�2
a2

)2

.

(b)

Eq. 11.88 =⇒ f = − 2m
�2κ

α

∫ ∞
0

rδ(r − a) sin(κr) dr = −2mα

�2κ
a sin(κa) (κ = 2k sin(θ/2)).

(c) Note first that (b) reduces to (a) in the low-energy regime (ka � 1 =⇒ κa � 1). Since Problem 11.4
was also for low energy, what we must confirm is that Problem 11.4 reproduces (a) in the regime for
which the Born approximation holds. Inspection shows that the answer to Problem 11.4 does reduce to
f = −2mαa2/�

2 when β � 1, which is to say when f/a � 1. This is the appropriate condition, since
(Eq. 11.12) f/a is a measure of the relative size of the scattered wave, in the interaction region.
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Problem 11.14

F =
1

4πε0
q1q2

r2
r̂; F⊥ =

1
4πε0

q1q2

r2
cosφ; cosφ =

b

r
, so F⊥ =

1
4πε0

q1q2b

r3
; dt =

dx

v
.

b

q

q

F

r

r

x

φ
1

2

I⊥ =
∫

F⊥dt =
1

4πε0
q1q2b

v

∫ ∞
−∞

dx

(x2 + b2)3/2
. But

∫ ∞
−∞

dx

(x2 + b2)3/2
= 2

∫ ∞
0

dx

(x2 + b2)3/2
=

2x
b2
√
x2 + b2

∣∣∣∣∞
0

=
2
b2

, so I⊥ =
1

4πε0
2q1q2

bv
.

tan θ =
I⊥
mv

=
q1q2

4πε0
1

b( 1
2mv2)

=
q1q2

4πε0
1
bE

. θ = tan−1

[
q1q2

4πε0bE

]
.

b =
q1q2

4πε0
1

E tan θ
=

(
q1q2

8πε0E

)
(2 cot θ).

The exact answer is the same, only with cot(θ/2) in place of 2 cot θ. So I must show that cot(θ/2) ≈ 2 cot θ,
for small θ (that’s the regime in which the impulse approximation should work). Well:

cot(θ/2) =
cos(θ/2)
sin(θ/2)

≈ 1
θ/2

=
2
θ
, for small θ, while 2 cot θ = 2

cos θ
sin θ

≈ 2
1
θ
. So it works.

Problem 11.15

First let’s set up the general formalism. From Eq. 11.101:

ψ(r) = ψ0(r) +
∫

g(r− r0)V (r0)ψ0(r0) d3r0 +
∫

g(r− r0)V (r0)
[∫

g(r0 − r1)V (r1)ψ0(r1) d3r1

]
d3r0 + · · ·

Put in ψ0(r) = Aeikz, g(r) = − m

2π�2

eikr

r
:

ψ(r) = Aeikz − mA

2π�2

∫
eik|r−r0|

|r− r0|
V (r0)eikz0 d3r0

+
( m

2π�2

)2

A

∫
eik|r−r0|

|r− r0|
V (r0)

[∫
eik|r0−r1|

|r0 − r1|
V (r1)eikz1 d3r1

]
d3r0.
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In the scattering region r � r0, Eq. 11.73 =⇒ eik|r−r0|

|r− r0|
≈ eikr

r
e−ik·r0 , with k ≡ kr̂, so

ψ(r) = A

{
eikz − m

2π�2

eikr

r

∫
e−ik·r0V (r0)eikz0d3r0( m

2π�2

)2 eikr

r

∫
e−ik·r0V (r0)

[∫
eik|r0−r1|

|r0 − r1|
V (r1)eikz1d3r1

]
d3r0

}

f(θ, φ) = − m

2π�2

∫
ei(k′−k)·rV (r) d3r +

( m

2π�2

)2
∫

e−ik·rV (r)
[∫

eik|r−r0|

|r− r0|
V (r0)eikz0d3r0

]
d3r.

I simplified the subscripts, since there is no longer any possible ambiguity. For low-energy scattering we drop
the exponentials (see p. 414):

f(θ, φ) ≈ − m

2π�2

∫
V (r) d3r +

( m

2π�2

)2
∫

V (r)
[∫

1
|r− r0|

V (r0) d3r0

]
d3r.

Now apply this to the potential in Eq. 11.81:∫
1

|r− r0|
V (r0) d3r0 = V0

∫ a

0

1
|r− r0|

r2
0 sin θ0 dr0 dθ0 dφ0.

Orient the z0 axis along r, so |r− r0| = r2 + r2
0 − 2rr0 cos θ0.∫

1
|r− r0|

V (r0) d3r0 = V02π
∫ a

0

r2
0

[ ∫ π

0

1√
r2 + r2

0 − 2rr0 cos θ0

sin θ0 dθ0

]
dr0. But

∫ π

0

1√
r2 + r2

0 − 2rr0 cos θ0

sin θ0 dθ0 =
1

rr0

√
r2 + r2

0 − 2rr0 cos θ0

∣∣∣∣π
0

=
1

rr0
[(r0 + r)− |r0 − r|] =

{
2/r, r0 < r;
2/r0, r0 > r.

Here r < a (from the “outer” integral), so∫
1

|r− r0|
V (r0) d3r0 = 4πV0

[
1
r

∫ r

0

r2
0 dr0 +

∫ a

r

r0 dr0

]
= 4πV0

[
1
r

r3

3
+

1
2
(a2 − r2)

]
= 2πV0

(
a2 − 1

3
r2

)
.

∫
V (r)

[∫
1

|r− r0|
V (r0) d3r0

]
d3r = V0(2πV0)4π

∫ a

0

(
a2 − 1

3
r2

)
r2dr = 8π2V 2

0

[
a2 a

3

3
− 1

3
a5

5

]
=

32
15

π2V 2
0 a5.

f(θ) = − m

2π�2
V0

4
3
πa3 +

( m

2π�2

)2 32
15

π2V 2
0 a5 = −

(
2mV0a

3

3�2

) [
1− 4

5

(
mV0a

2

�2

)]
.

Problem 11.16

(
d2

dx2
+ k2

)
G(x) = δ(x) (analog to Eq. 11.52). G(x) =

1√
2π

∫
eisxg(s) ds (analog to Eq. 11.54).
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(
d2

dx2
+ k2

)
G =

1√
2π

∫
(−s2 + k2)g(s)eisxds = δ(x) =

1
2π

∫
eisxds =⇒ g(s) =

1√
2π(k2 − s2)

.

G(x) =
1
2π

∫ ∞
−∞

eisx

k2 − s2
ds. Skirt the poles as in Fig. 11.10. For x > 0, close above:

G(x) = − 1
2π

∮ (
eisx

s + k

)
1

s− k
ds = − 1

2π
2πi

(
eisx

s + k

)∣∣∣∣
s=k

= −i
eikx

2k
. For x < 0, close below:

G(x) = +
1
2π

∮ (
eisx

s− k

)
1

s + k
ds =

1
2π

2πi
(

eisx

s− k

)∣∣∣∣
s=−k

= −i
e−ikx

2k
.

In either case, then, G(x) = − i

2k
eik|x|. (Analog to Eq. 11.65.)

ψ(x) = G(x− x0)
2m
�2

V (x0)ψ(x0) dx0 = − i

2k
2m
�2

∫
eik|x−x0|V (x0)ψ(x0) dx0,

plus any solution ψ0(x) to the homogeneous Schrödinger equation:(
d2

dx2
+ k2

)
ψ0(x) = 0. So:

ψ(x) = ψ0(x)− im

�2k

∫ ∞
−∞

eik|x−x0|V (x0)ψ(x0) dx0.

Problem 11.17

For the Born approximation let ψ0(x) = Aeikx, and ψ(x) ≈ Aeikx.

ψ(x) ≈ A

[
eikx − im

�2k

∫ ∞
−∞

eik|x−x0|V (x0)eikx0dx0

]
= A

[
eikx − im

�2k

∫ x

−∞
eik(x−x0)V (x0)eikx0dx0 −

im

�2k

∫ ∞
x

eik(x0−x)V (x0)eikx0dx0

]
.

ψ(x) = A

[
eikx − im

�2k
eikx

∫ x

−∞
V (x0) dx0 −

im

�2k
e−ikx

∫ ∞
x

e2ikx0V (x0) dx0

]
.

Now assume V (x) is localized; for large positive x, the third term is zero, and

ψ(x) = Aeikx

[
1− im

�2k

∫ ∞
−∞

V (x0) dx0

]
. This is the transmitted wave.

For large negative x the middle term is zero:

ψ(x) = A

[
eikx − im

�2k
e−ikx

∫ ∞
−∞

e2ikx0V (x0)dx0

]
.
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Evidently the first term is the incident wave and the second the reflected wave:

R =
( m

�2k

)2
∣∣∣∣∫ ∞
−∞

e2ikxV (x) dx
∣∣∣∣2 .

If you try in the same spirit to calculate the transmission coefficient, you get

T =
∣∣∣∣1− im

�2k

∫ ∞
−∞

V (x)dx
∣∣∣∣2 = 1 +

( m

�2k

)2
[∫ ∞
−∞

V (x)dx
]2

,

which is nonsense (greater than 1). The first Born approximation gets R right, but all you can say to this order
is T ≈ 1 (you would do better using T = 1−R).

Problem 11.18

Delta function: V (x) = −αδ(x).
∫ ∞
−∞

e2ikxV (x) dx = −α, so R =
(mα

�2k

)2

,

or, in terms of energy (k2 = 2mE/�
2):

R =
m2α2

2mE�2
=

mα2

2�2E
; T = 1−R = 1− mα2

2�2E
.

The exact answer (Eq. 2.141) is
1

1 + mα2

2�2E

≈ 1− mα2

2�2E
, so they agree provided E � mα

2�2
.

Finite square well: V (x) =
{
−V0 (−a < x < a)
0 (otherwise)

}
.∫ ∞

−∞
e2ikxV (x) dx = −V0

∫ a

−a

e2ikxdx = −V0
e2ikx

2ik

∣∣∣∣a
−a

= −V0

k

(
e2ika − e−2ika

2i

)
= −V0

k
sin(2ka).

So R =
[ m

�2k

)2
(
V0

k
sin(2ka)

]2

. T = 1−
[
V0

2E
sin

(
2a
�

√
2mE

)]2

.

If E � V0, the exact answer (Eq. 2.169) becomes

T−1 ≈ 1 +
[
V0

2E
sin

(
2a
�

√
2mE

)]2

=⇒ T ≈ 1−
(

V0

2E
sin

[
2a
�

√
2mE

)]2

,

so they agree provided E � V0.

Problem 11.19

The Legendre polynomials satisfy Pl(1) = 1 (see footnote 30, p. 124), so Eq. 11.47 ⇒

f(0) =
1
k

∞∑
l=0

(2l + 1)eiδl sin δl. Therefore Im[f(0)] =
1
k

∞∑
l=0

(2l + 1) sin2 δl,

and hence (Eq. 11.48):

σ =
4π
k

Im[f(0)]. QED
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Problem 11.20

Using Eq. 11.88 and integration by parts:

f(θ) = − 2m
�2κ

∫ ∞
0

rAe−µr2
sin(κr) dr = −2mA

�2κ

∫ ∞
0

d

dr

(
− 1

2µ
e−µr2

)
sin(κr) dr

=
2mA

2µ�2κ

{
e−µr2

sin(κr)
∣∣∣∣∞
0

−
∫ ∞

0

e−µr2 d

dr
[sin(κr)] dr

}
=

mA

µ�2κ

{
0− κ

∫ ∞
0

e−µr2
cos(κr) dr

}
= −mA

µ�2

( √
π

2
√
µ
e−κ2/4µ

)
= −mA

√
π

2�2µ3/2
e−κ2/4µ, where κ = 2k sin(θ/2) (Eq. 11.89).

From Eq. 11.14, then,

dσ

dΩ
=

πm2A2

4�4µ3
e−κ2/2µ,

and hence

σ =
∫

dσ

dΩ
dΩ =

πm2A2

4�4µ3

∫
e−4k2 sin2(θ/2)/2µ sin θ dθ dφ

=
π2m2A2

2�4µ3

∫ π

0

e−2k2 sin2(θ/2)/µ sin θ dθ; write sin θ = 2 sin(θ/2) cos(θ/2) and let x ≡ sin(θ/2)

=
π2m2A2

2�4µ3

∫ 1

0

e−2k2x2/µ2x 2 dx =
2π2m2A2

�4µ3

∫ 1

0

xe−2k2x2/µ dx

=
2π2m2A2

�4µ3

[
− µ

4k2
e−2k2x2/µ

] ∣∣∣∣1
0

= −π2m2A2

2�4µ2k2

(
e−2k2/µ − 1

)
=

π2m2A2

2�4µ2k2

(
1− e−2k2/µ

)
.
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Chapter 12

Afterword

Problem 12.1

Suppose, on the contrary, that

α|φa(1)〉|φb(2)〉+ β|φb(1)〉|φa(2)〉 = |ψr(1)〉|ψs(2)〉,

for some one-particle states |ψr〉 and |ψs〉. Because |φa〉 and |φb〉 constitute a complete set of one-particle states
(this is a two-level system), any other one-particle state can be expressed as a linear combination of them. In
particular,

|ψr〉 = A|φa〉+ B|φb〉, and |ψs〉 = C|φa〉+ D|φb〉,
for some complex numbers A, B, C, and D. Thus

α|φa(1)〉|φb(2)〉+ β|φb(1)〉|φa(2)〉 =
[
A|φa(1)〉+ B|φb(1)〉

][
C|φa(2)〉+ D|φb(2)〉

]
= AC|φa(1)〉|φa(2)〉+ AD|φa(1)〉|φb(2)〉+ BC|φb(1)〉|φa(2)〉+ BD|φb(1)〉|φb(2)〉.

(i) Take the inner product with 〈φa(1)|〈φb(2)|: α = AD.
(ii) Take the inner product with 〈φa(1)|〈φa(2)|: 0 = AC.
(iii) Take the inner product with 〈φb(1)|〈φa(2)|: β = BC.
(iv) Take the inner product with 〈φb(1)|〈φb(2)|: 0 = BD.

(ii) ⇒ either A = 0 or C = 0. But if A = 0, then (i) ⇒ α = 0, which is excluded by assumption, whereas if
C = 0, then (iii) ⇒ β = 0, which is likewise excluded. Conclusion: It is impossible to express this state as a
product of one-particle states. QED
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Appendix A

Linear Algebra

Problem A.1

(a) Yes; two-dimensional.

(b) No; the sum of two such vectors has az = 2, and is not in the subset. Also, the null vector (0,0,0) is not
in the subset.

(c) Yes; one-dimensional.

Problem A.2

(a) Yes; 1, x, x2, . . . , xN−1 is a convenient basis. Dimension: N.

(b) Yes; 1, x2, x4, . . . . Dimension N/2 (if N is even) or (N + 1)/2 (if N is odd).

(c) No. The sum of two such “vectors” is not in the space.

(d) Yes; (x− 1), (x− 1)2, (x− 1)3, . . . , (x− 1)N−1. Dimension: N − 1.

(e) No. The sum of two such “vectors” would have value 2 at x = 0.

Problem A.3

Suppose |α〉 = a1|e1〉+ a2|e2〉+ · · · an|en〉 and |α〉 = b1|e1〉+ b2|e2〉+ · · ·+ bn|en〉. Subtract: 0 = (a1 − b1)|e1〉+
(a2 − b2)|e2〉+ · · ·+ (an − bn)|en〉. Suppose aj �= bj for some j; then we can divide by (aj − bj) to get:

|ej〉 = − (a1 − b1)
(aj − bj)

|e1〉 −
(a2 − b2)
(aj − bj)

|e2〉 − · · · − 0|ej〉 − · · · −
(an − bn)
(aj − bj)

|en〉,

so |ej〉 is linearly dependent on the others, and hence {|ej〉} is not a basis. If {|ej〉} is a basis, therefore, the
components must all be equal (a1 = b1, a2 = b2, . . . , an = bn). QED
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Problem A.4

(i)

〈e1|e1〉 = |1 + i|2 + 1 + |i|2 = (1 + i)(1− i) + 1 + (i)(−i) = 1 + 1 + 1 + 1 = 4. ‖e1‖ = 2.

|e′1〉 =
1
2
(1 + i) î +

1
2
ĵ +

i

2
k̂.

(ii)

〈e′1|e2〉 =
1
2
(1− i)(i) +

1
2
(3) +

(−i

2

)
1 =

1
2
(i + 1 + 3− i) = 2.

|e′′2〉 ≡ |e2〉 − 〈e′1|e2〉|e′1〉 = (i− 1− i)̂i + (3− 1)ĵ + (1− i)k̂ = (−1)̂i + (2)ĵ + (1− i)k̂.

〈e′′2 |e′′2〉 = 1 + 4 + 2 = 7. |e′2〉 =
1√
7
[−î + 2ĵ + (1− i)k̂].

(iii)

〈e′1|e3〉 =
1
2
28 = 14; 〈e′2|e3〉 =

2√
7
28 = 8

√
7.

|e′′3〉 = |e3〉 − 〈e′1|e3〉|e′1〉 − 〈e′2|e3〉|e′2〉 = |e3〉 − 7|e1〉 − 8|e′′2〉
= (0− 7− 7i + 8)̂i + (28− 7− 16)ĵ + (0− 7i− 8 + 8i)k̂ = (1− 7i)̂i + 5ĵ + (−8 + i)k̂.

‖e′′3‖2 = 1 + 49 + 25 + 64 + 1 = 140. |e′3〉 =
1

2
√

35
[(1− 7i)̂i + 5ĵ + (−8 + i)k̂].

Problem A.5

From Eq. A.21: 〈γ|γ〉 = 〈γ|
(
|β〉 − 〈α|β〉〈α|α〉 |α〉

)
= 〈γ|β〉 − 〈α|β〉〈α|α〉 〈γ|α〉. From Eq. A.19:

〈γ|β〉∗ = 〈β|γ〉 = 〈β|
(
|β〉 − 〈α|β〉〈α|α〉 |α〉

)
= 〈β|β〉 − 〈α|β〉〈α|α〉 〈β|α〉 = 〈β|β〉 − |〈α|β〉|

2

〈α|α〉 , which is real.

〈γ|α〉∗ = 〈α|γ〉 = 〈α|
(
|β〉 − 〈α|β〉〈α|α〉 |α〉

)
= 〈α|β〉 − 〈α|β〉〈α|α〉 〈α|α〉 = 0. 〈γ|α〉 = 0. So (Eq. A.20) :

〈γ|γ〉 = 〈β|β〉 − |〈α|β〉|
2

〈α|α〉 ≥ 0, and hence |〈α|β〉|2 ≤ 〈α|α〉〈β|β〉. QED
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Problem A.6

〈α|β〉 = (1− i)(4− i) + (1)(0) + (−i)(2− 2i) = 4− 5i− 1− 2i− 2 = 1− 7i; 〈β|α〉 = 1 + 7i;

〈α|α〉 = 1 + 1 + 1 + 1 = 4; 〈β|β〉 = 16 + 1 + 4 + 4 = 25; cos θ =

√
1 + 49
4 · 25

=
1√
2
; θ = 45◦.

Problem A.7

Let |γ〉 ≡ |α〉+ |β〉; 〈γ|γ〉 = 〈γ|α〉+ 〈γ|β〉.

〈γ|α〉∗ = 〈α|γ〉 = 〈α|α〉+ 〈α|β〉 =⇒ 〈γ|α〉 = 〈α|α〉+ 〈β|α〉.
〈γ|β〉∗ = 〈β|γ〉 = 〈β|α〉+ 〈β|β〉 =⇒ 〈γ|β〉 = 〈α|β〉+ 〈β|β〉.

‖(|α〉+ |β〉)‖2 = 〈γ|γ〉 = 〈α|α〉+ 〈β|β〉+ 〈α|β〉+ 〈β|α〉.
But 〈α|β〉+ 〈β|α〉 = 2Re(〈α|β〉) ≤ 2|〈α|β〉| ≤ 2

√
〈α|α〉〈β|β〉 (by Schwarz inequality), so

‖(|α〉+ |β〉)‖2 ≤ ‖α‖2 + ‖β‖2 + 2‖α‖‖β‖ = (‖α‖+ ‖β‖)2, and hence ‖(|α〉+ |β〉)‖ ≤ ‖α‖+ ‖β‖. QED

Problem A.8

(a)

 1 1 0
2 1 3
3i (3− 2i) 4

 .

(b)

(−2 + 0− 1) (0 + 1 + 3i) (i + 0 + 2i)
(4 + 0 + 3i) (0 + 0 + 9) (−2i + 0 + 6)
(4i + 0 + 2i) (0− 2i + 6) (2 + 0 + 4)

 =

 −3 (1 + 3i) 3i
(4 + 3i) 9 (6− 2i)

6i (6− 2i) 6

 .

(c) BA =

(−2 + 0 + 2) (2 + 0− 2) (2i + 0− 2i)
(0 + 2 + 0) (0 + 0 + 0) (0 + 3 + 0)

(−i + 6 + 4i) (i + 0− 4i) (−1 + 9 + 4)

 =

 0 0 0
2 0 3

(6 + 3i) −3i 12

 .

[A,B] = AB− BA =

 −3 (1 + 3i) 3i
(2 + 3i) 9 (3− 2i)

(−6 + 3i) (6 + i) −6

 .

(d)

−1 2 2i
1 0 −2i
i 3 2

 .

(e)

−1 1 −i
2 0 3
−2i 2i 2

 .
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(f)

−1 2 −2i
1 0 2i
−i 3 2

 .

(g) 4 + 0 + 0− 1− 0− 0 = 3.

(h)

B−1 =
1
3
C̃; C =

 | 1 0
3 2 | − | 0 0

i 2 | | 0 1
i 3 |

−
∣∣ 0 −i
3 2

∣∣ ∣∣ 2 −i
i 2

∣∣ − | 2 0
i 3 |∣∣ 0 −i

1 0

∣∣ −
∣∣ 2 −i
0 0

∣∣ | 2 0
0 1 |

 =

 2 0 −i
−3i 3 −6
i 0 2

 . B−1 =
1
3

 2 −3i i
0 3 0
−i −6 2

 .

BB−1 =
1
3

 (4 + 0− 1) (−6i + 0 + 6i) (2i + 0− 2i)
(0 + 0 + 0) (0 + 3 + 0) (0 + 0 + 0)

(2i + 0− 2i) (3 + 9− 12) (−1 + 0 + 4)

 =
1
3

3 0 0
0 3 0
0 0 3

 =

1 0 0
0 1 0
0 0 1

 . �

det A = 0 + 6i + 4− 0− 6i− 4 = 0. No; A does not have an inverse.

Problem A.9

(a) −i + 2i + 2i
2i + 0 + 6
−2 + 4 + 4

 =

 3i
6 + 2i

6

 .

(b)

(
−i −2i 2

)  2
1− i

0

 = −2i− 2i(1− i) + 0 = −2− 4i.

(c)

(
i 2i 2

) 2 0 −i
0 1 0
i 3 2

  2
1− i

0

 =
(
i 2i 2

)  4
1− i
3− i

 = 4i + 2i(1− i) + 2(3− i) = 8 + 4i.

(d)  i
2i
2

 (
2 (1 + i) 0

)
=

2i (−1 + i) 0
4i (−2 + 2i) 0
4 (2 + 2i) 0

 .
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Problem A.10

(a) S =
1
2
(T + T̃); A =

1
2
(T− T̃).

(b) R =
1
2
(T + T∗); M =

1
2
(T− T∗).

(c) H =
1
2
(T + T†); K =

1
2
(T− T†).

Problem A.11

(S̃T)ki = (ST)ik =
n∑

j=1

SijTjk =
n∑

j=1

T̃kjS̃ji = (T̃S̃)ki ⇒ S̃T = T̃S̃. QED

(ST)† = (S̃T)∗ = (T̃S̃)∗ = T̃∗S̃∗ = T†S†. QED
(T−1S−1)(ST) = T−1(S−1S)T = T−1T = I ⇒ (ST)−1 = T−1S−1. QED

U† = U−1, W† = W−1 ⇒ (WU)† = U†W† = U−1W−1 = (WU)−1 ⇒WU is unitary.
H = H†, J = J† ⇒ (HJ)† = J†H† = JH;

the product is hermitian ⇔ this is HJ, i.e.⇔ [H, J] = 0 (they commute).

(U + W)† = U† + W† = U−1 + W−1 ?= (U + W)−1. No; the sum of two unitary matrices is not unitary.

(H + J)† = H† + J† = H + J. Yes; the sum of two hermitian matrices is hermitian.

Problem A.12

U†U = I =⇒ (U†U)ik = δik =⇒
n∑

j=1

U†ijUjk =
n∑

j=1

U∗jiUjk = δik.

Construct the set of n vectors a(j)
i ≡ Uij (a(j) is the j-th column of U; its i-th component is Uij). Then

a(i)†a(k) =
n∑

j=1

a(i)∗
j a(k)

j =
n∑

j=1

U∗jiUjk = δik,

so these vectors are orthonormal. Similarly,

UU† = I =⇒ (UU†)ik = δik =⇒
n∑

j=1

UijU
†
jk =

n∑
j=1

U∗kjUij = δki.

This time let the vectors b(j) be the rows of U: b(j)i ≡ Uji. Then

b(k)†b(i) =
n∑

j=1

b(k)∗
j b(i)j =

n∑
j=1

U∗kjUij = δki,

so the rows are also orthonormal.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


288 APPENDIX. LINEAR ALGEBRA

Problem A.13

H† = H (hermitian)⇒ detH = det(H†) = det(H̃∗) = (det H̃)∗ = (detH)∗ ⇒ det H is real. �
U† = U−1 (unitary)⇒ det(UU†) = (detU)(detU†) = (detU)(det Ũ)∗ = |detU|2 = det I = 1, so det U = 1. �
S̃ = S−1 (orthogonal)⇒ det(SS̃) = (detS)(det S̃) = (detS)2 = 1, so det S = ±1. �

Problem A.14

(a)

î′ = cos θ î + sin θ ĵ; ĵ′ = − sin θ î + cos θ ĵ; k̂′ = k̂. Ta =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

x

z, z'

x'

yy'

θ

θ

(b)

î′ = ĵ; ĵ′ = k̂; k̂′ = î. Tb =

0 0 1
1 0 0
0 1 0

 .

x, z'

z, y'

y, x'

(c)

î′ = î; ĵ′ = ĵ; k̂′ = −k̂. Tc =

1 0 0
0 1 0
0 0 −1

 .

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

https://students-hub.com


APPENDIX. LINEAR ALGEBRA 289

(d)

T̃aTa =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

1 0 0
0 1 0
0 0 1

 . �

T̃bTb =

0 1 0
0 0 1
1 0 0

 0 0 1
1 0 0
0 1 0

 =

1 0 0
0 1 0
0 0 1

 . � T̃cTc =

1 0 0
0 1 0
0 0 −1

 1 0 0
0 1 0
0 0 −1

 =

1 0 0
0 1 0
0 0 1

 . �

detTa = cos2 θ + sin2 θ = 1. det Tb = 1. detTc = -1.

Problem A.15

x, x'

z

y

θ

θ
z'

y'

î′ = î; ĵ′ = cos θ ĵ + sin θ k̂; k̂′ = cos θ k̂ − sin θ ĵ. Tx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

x

z

x'

y, y'

θ

θ
z'

î′ = cos θ î− sin θ k̂; ĵ′ = ĵ; k̂′ = cos θ k̂ + sin θ î. Ty(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .

î′ = ĵ; ĵ′ = −î; k̂′ = k̂. S =

0 −1 0
1 0 0
0 0 1

 . S−1 =

 0 1 0
−1 0 0
0 0 1

 .
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STxS−1 =

0 −1 0
1 0 0
0 0 1

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

  0 1 0
−1 0 0
0 0 1


=

0 −1 0
1 0 0
0 0 1

  0 1 0
− cos θ 0 − sin θ
− sin θ 0 cos θ

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 = Ty(θ).

STyS−1 =

0 −1 0
1 0 0
0 0 1

  cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

  0 1 0
−1 0 0
0 0 1


=

0 −1 0
1 0 0
0 0 1

  0 cos θ sin θ
−1 0 0
0 − sin θ cos θ

 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 = Tx(−θ).

Is this what we would expect? Yes, for rotation about the x axis now means rotation about the y axis, and
rotation about the y axis has become rotation about the −x axis—which is to say, rotation in the opposite
direction about the +x axis.

Problem A.16

From Eq. A.64 we have

AfBf = SAeS−1SBeS−1 = S(AeBe)S−1 = SCeS−1 = Cf . �

Suppose S† = S−1 and He = He† (S unitary, He hermitian). Then

Hf† = (SHeS−1)† = (S−1)†He†S† = SHeS−1 = Hf , so Hf is hermitian. �

In an orthonormal basis, 〈α|β〉 = a†b (Eq. A.50). So if {|fi〉} is orthonormal, 〈α|β〉 = af†bf . But bf = Sbe

(Eq. A.63), and also af† = ae†S†. So 〈α|β〉 = ae†S†Sbe. This is equal to ae†be (and hence {|ei〉} is also
orthonormal), for all vectors |α〉 and |β〉 ⇔ S†S = I, i.e. S is unitary.

Problem A.17

Tr(T1T2) =
n∑

i=1

(T1T2)ii =
n∑

i=1

n∑
j=1

(T1)ij(T2)ji =
n∑

j=1

n∑
i=1

(T2)ji(T1)ij =
n∑

j=1

(T2T1)jj = Tr(T2T1).

Is Tr(T1T2T3) = Tr(T2T1T3)? No. Counterexample:

T1 =
(

0 1
0 0

)
, T2 =

(
0 0
1 0

)
, T3 =

(
1 0
0 0

)
.

T1T2T3 =
(

0 1
0 0

) (
0 0
1 0

) (
1 0
0 0

)
=

(
0 1
0 0

) (
0 0
1 0

)
=

(
1 0
0 0

)
=⇒ Tr(T1T2T3) = 1.

T2T1T3 =
(

0 0
1 0

) (
0 1
0 0

) (
1 0
0 0

)
=

(
0 0
1 0

) (
0 0
0 0

)
=

(
0 0
0 0

)
=⇒ Tr(T2T1T3) = 0.
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Problem A.18

Eigenvalues:∣∣∣∣(cos θ − λ) − sin θ
sin θ (cos θ − λ)

∣∣∣∣ = (cos θ − λ)2 + sin2 θ = cos2 θ − 2λ cos θ + λ2 + sin2 θ = 0, or λ2 − 2λ cos θ + 1 = 0.

λ =
2 cos θ ±

√
4 cos2 θ − 4
2

= cos θ ±
√
− sin2 θ = cos θ ± i sin θ = e±iθ.

So there are two eigenvalues, both of them complex. Only if sin θ = 0 does this matrix possess real eigenvalues,
i.e., only if θ = 0 or π.

Eigenvectors:(
cos θ − sin θ
sin θ cos θ

) (
α
β

)
= e±iθ

(
α
β

)
=⇒ cos θ α− sin θ β = (cos θ ± i sin θ)α⇒ β = ∓iα. Normalizing:

a(1) =
1√
2

(
1
−i

)
; a(2) =

1√
2

(
1
i

)
.

Diagonalization:

(S−1)11 = a
(1)
1 =

1√
2
; (S−1)12 = a

(2)
1 =

1√
2
; (S−1)21 = a

(1)
2 =

−i√
2
; (S−1)22 = a

(2)
2 =

i√
2
.

S−1 =
1√
2

(
1 1
−i i

)
; inverting: S =

1√
2

(
1 i
1 −i

)
.

STS−1 =
1
2

(
1 i
1 −i

) (
cos θ − sin θ
sin θ cos θ

) (
1 1
−i i

)
=

1
2

(
1 i
1 −i

) (
(cos θ + i sin θ) (cos θ − i sin θ)
(sin θ − i cos θ) (sin θ + i cos θ)

)
=

1
2

(
1 i
1 −i

) (
eiθ e−iθ

−ieiθ ie−iθ

)
=

1
2

(
2eiθ 0
0 2e−iθ

)
=

(
eiθ 0
0 e−iθ

)
. �

Problem A.19∣∣∣∣(1− λ) 1
0 (1− λ)

∣∣∣∣ = (1− λ)2 = 0 =⇒ λ = 1 (only one eigenvalue).

(
1 1
0 1

) (
α
β

)
=

(
α
β

)
=⇒ α + β = α =⇒ β = 0; a =

(
1
0

)
(only one eigenvector—up to an arbitrary constant factor). Since the eigenvectors do not span the space, this

matrix cannot be diagonalized. [If it could be diagonalized, the diagonal form would have to be
(

1 0
0 1

)
, since

the only eigenvalue is 1. But in that case I = SMS−1. Multiplying from the left by S−1 and on the right by
S : S−1IS = S−1SMS−1S = M. But S−1IS = S−1S = I. So M = I, which is false.]
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Problem A.20

Expand the determinant (Eq. A.72) by minors, using the first column:

det(T− λ1) = (T11 − λ)

∣∣∣∣∣∣∣∣
(T22 − λ) . . . . . .

...
. . .

... (Tnn − λ)

∣∣∣∣∣∣∣∣ +
n∑

j=2

Tj1 cofactor(Tj1).

But the cofactor of Tj1 (for j > 1) is missing two of the original diagonal elements: (T11 − λ) (from the first
column), and (Tjj − λ) (from the j-th row). So its highest power of λ will be (n − 2). Thus terms in λn and
λn−1 come exclusively from the first term above. Indeed, the same argument applied now to the cofactor of
(T11−λ) – and repeated as we expand that determinant – shows that only the product of the diagonal elements
contributes to λn and λn−1:

(T11 − λ)(T22 − λ) · · · (Tnn − λ) = (−λ)n + (−λ)n−1(T11 + T22 + · · ·+ Tnn) + · · ·

Evidently then, Cn = (−1)n, and Cn−1 = (−1)n−1 Tr(T). To get C0 – the term with no factors of λ – we simply
set λ = 0. Thus C0 = det(T). For a 3× 3 matrix:∣∣∣∣∣∣

(T11 − λ) T12 T13

T21 (T22 − λ) T23

T31 T32 (T33 − λ)

∣∣∣∣∣∣
= (T11 − λ)(T22 − λ)(T33 − λ) + T12T23T31 + T13T21T32

− T31T13(T22 − λ)− T32T23(T11 − λ)− T12T21(T33 − λ)

= −λ3 + λ2(T11 + T22 + T33)− λ(T11T22 + T11T33 + T22T33) + λ(T13T31 + T23T32 + T12T21)
+ T11T22T33 + T12T23T31 + T13T21T32 − T31T13T22 − T32T23T11 − T12T21T33

= −λ3 + λ2 Tr(T) + λC1 + det(T), with

C1 = (T13T31 + T23T32 + T12T21)− (T11T22 + T11T33 + T22T33).

Problem A.21

The characteristic equation is an n-th order polynomial, which can be factored in terms of its n (complex) roots:

(λ1 − λ)(λ2 − λ) · · · (λn − λ) = (−λ)n + (−λ)n−1(λ1 + λ2 + · · ·+ λn) + · · ·+ (λ1λ2 · · ·λn) = 0.

Comparing Eq. A.84, it follows that Tr(T) = λ1 + λ2 + · · ·λn and det(T) = λ1λ2 · · ·λn. QED

Problem A.22

(a)

[Tf
1 ,T

f
2 ] = Tf

1Tf
2−Tf

2Tf
1 = STe

1S
−1STe

2S
−1−STe

2S
−1STe

1S
−1 = STe

1T
e
2S
−1−STe

2T
e
1S
−1 = S[Te

1,T
e
2]S
−1 = 0. �
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(b) Suppose SAS−1 = D and SBS−1 = E, where D and E are diagonal:

D =


d1 0 · · · 0
0 d2 · · · 0
...

. . .
...

0 0 · · · dn

 , E =


e1 0 · · · 0
0 e2 · · · 0
...

. . .
...

0 0 · · · en

 .

Then

[A,B] = AB− BA = (S−1DS)(S−1ES)− (S−1ES)(S−1DS) = S−1DES− S−1EDS = S−1[D,E]S.

But diagonal matrices always commute:

DE =


d1e1 0 · · · 0

0 d2e2 · · · 0
...

. . .
...

0 0 · · · dnen

 = ED,

so [A,B] = 0. QED

Problem A.23

(a)

M† =
(

1 1
1 −i

)
; MM† =

(
2 (1− i)

(1 + i) 2

)
, M†M =

(
2 (1 + i)

(1− i) 2

)
; [M,M†] =

(
0 −2i
2i 0

)
�= 0. No.

(b) Find the eigenvalues:∣∣∣∣(1− λ) 1
1 (i− λ)

∣∣∣∣ = (1− λ)(i− λ)− 1 = i− λ(1 + i) + λ2 − 1 = 0;

λ =
(1 + i)±

√
(1 + i)2 − 4(i− 1)

2
=

(1 + i)±
√

4− 2i
2

.

Since there are two distinct eigenvalues, there must be two linearly independent eigenvectors, and that’s
enough to span the space. So this matrix is diagonalizable, even though it is not normal.

Problem A.24

Let |γ〉 = |α〉+ c|β〉, for some complex number c. Then

〈γ|T̂ γ〉 = 〈α|T̂α〉+ c〈α|T̂ β〉+ c∗〈β|T̂α〉+ |c|2〈β|T̂ β〉, and

〈T̂ γ|γ〉 = 〈T̂α|α〉+ c∗〈T̂ β|α〉+ c〈T̂α|β〉+ |c|2〈T̂ β|β〉.
Suppose 〈T̂ γ|γ〉 = 〈γ|T̂ γ〉 for all vectors. For instance, 〈T̂α|α〉 = 〈α|T̂α〉 and 〈T̂ β|β〉 = 〈β|T̂ β〉), so

c〈α|T̂ β〉+ c∗〈β|T̂α〉 = c〈T̂α|β〉+ c∗〈T̂ β|α〉, and this holds for any complex number c.

In particular, for c = 1: 〈α|T̂ β〉+〈β|T̂α〉 = 〈T̂α|β〉+〈T̂ β|α〉, while for c = i: 〈α|T̂ β〉−〈β|T̂α〉 = 〈T̂α|β〉−〈T̂ β|α〉.
(I canceled the i’s). Adding: 〈α|T̂ β〉 = 〈T̂α|β〉. QED
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Problem A.25

(a)

T† = T̃∗ =
(

1 1− i
1 + i 0

)
= T. �

(b) ∣∣∣∣(1− λ) (1− i)
(1 + i) (0− λ)

∣∣∣∣ = −(1−λ)λ− 1− 1 = 0; λ2−λ− 2 = 0; λ =
1±

√
1 + 8

2
=

1± 3
2

. λ1 = 2, λ2 = −1.

(c) (
1 (1− i)

(1 + i) 0

) (
α
β

)
= 2

(
α
β

)
=⇒ α + (1− i)β = 2α =⇒ α = (1− i)β.

|α|2 + |β|2 = 1 =⇒ 2|β|2 + |β|2 = 1 =⇒ β =
1√
3
. a(1) =

1√
3

(
1− i

1

)
.

(
1 (1− i)

(1 + i) 0

) (
α
β

)
= −

(
α
β

)
=⇒ α + (1− i)β = −α; α = −1

2
(1− i)β.

1
4

2|β|2 + |β|2 = 1 =⇒ 3
2
|β|2 = 1; β =

√
2
3
. a(2) =

1√
6

(
i− 1

2

)
.

a(1)†a(2) =
1

3
√

2

(
(1 + i) 1

) (
(i− 1)

2

)
=

1
3
√

2
(i− 1− 1− i + 2) = 0. �

(d)

Eq. A.81 =⇒ (S−1)11 = a
(1)
1 =

1√
3
(1− i); (S−1)12 = a

(2)
1 =

1√
6
(i− 1);

(S−1)21 = a
(1)
2 =

1√
3
; (S−1)22 = a

(2)
2 =

2√
6
.

S−1 =
1√
3

(
(1− i) (i− 1)/

√
2

1
√

2

)
; S = (S−1)† =

1√
3

(
(1 + i) 1

(−i− 1)/
√

2
√

2

)
.

STS−1 =
1
3

(
(1 + i) 1

−(1 + i)/
√

2
√

2

) (
1 (1− i)

(1 + i) 0

) (
(1− i) (i− 1)/

√
2

1
√

2

)
=

1
3

(
(1 + i) 1

−(1 + i)/
√

2
√

2

) (
2(1− i) (1− i)/

√
2

2 −
√

2

)
=

1
3

(
6 0
0 −3

)
=

(
2 0
0 −1

)
. �

(e)

Tr(T) = 1; det(T) = 0− (1 + i)(1− i) = −2. Tr(STS−1) = 2− 1 = 1. � det(STS−1) = −2. �
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Problem A.26

(a)

det(T) = 8− 1− 1− 2− 2− 2 = 0. Tr(T) = 2 + 2 + 2 = 6.

(b) ∣∣∣∣∣∣
(2− λ) i 1
−i (2− λ) i
1 −i (2− λ)

∣∣∣∣∣∣ = (2−λ)3− 1− 1− (2−λ)− (2−λ)− (2−λ) = 8− 12λ+6λ2−λ3− 8+3λ = 0.

−λ3 + 6λ2 − 9λ = −λ(λ2 − 6λ + 9) = −λ(λ− 3)2 = 0. λ1 = 0, λ2 = λ3 = 3.

λ1 + λ2 + λ3 = 6 = Tr(T). � λ1λ2λ3 = 0 = det(T). � Diagonal form:

0 0 0
0 3 0
0 0 3

 .

(c)  2 i 1
−i 2 i
1 −i 2

 α
β
γ

 = 0 =⇒
{

2α + iβ + γ = 0
−iα + 2β + iγ = 0 =⇒ α + 2iβ − γ = 0

}
.

Add the two equations: 3α + 3iβ = 0 =⇒ β = iα; 2α− α + γ = 0 =⇒ γ = −α.

a(1) =

 α
iα
−α

 . Normalizing: |α|2 + |α|2 + |α|2 = 1 =⇒ α =
1√
3
. a(1) =

1√
3

 1
i
−1

 .

 2 i 1
−i 2 i
1 −i 2

 α
β
γ

 = 3

α
β
γ

 =⇒


2α + iβ + γ = 3α =⇒ −α + iβ + γ = 0,
−iα + 2β + iγ = 3β =⇒ α− iβ − γ = 0,
α− iβ + 2γ = 3γ =⇒ α− iβ − γ = 0.

The three equations are redundant – there is only one condition here: α − iβ − γ = 0. We could pick
γ = 0, β = −iα, or β = 0, γ = α. Then

a
(2)
0 =

 α
−iα
0

 ; a
(3)
0 =

α
0
α

 .

But these are not orthogonal, so we use the Gram-Schmidt procedure (Problem A.4); first normalize a
(2)
0 :

a(2) =
1√
2

 1
−i
0

 .

a(2)†a(3)
0 =

α√
2

(
1 i 0

) 1
0
1

 =
α√
2
. So a

(3)
0 − (a(2)†a(3)

0 ) a(2) = α

1
0
1

− α

2

 1
−i
0

 = α

1/2
i/2
1

 .
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Normalize: |α|2
(

1
4

+
1
4

+ 1
)

=
3
2
|α|2 = 1 =⇒ α =

√
2
3
. a(3) =

1√
6

1
i
2

 .

Check orthogonality:

a(1)†a(2) =
1√
6

(
1 −i −1

)  1
−i
0

 =
1√
6
(1− 1 + 0) = 0. �

a(1)†a(3) =
1

3
√

2

(
1 −i −1

) 1
i
2

 =
1

3
√

2
(1 + 1− 2) = 0. �

(d) S−1 is the matrix whose columns are the eigenvectors of T (Eq. A.81):

S−1 =
1√
6


√

2
√

3 1√
2 i −

√
3 i i

−
√

2 0 2

 ; S = (S−1)† =
1√
6

√2 −
√

2 i −
√

2√
3
√

3 i 0
1 −i 2

 .

STS−1 =
1
6

√2 −
√

2 i −
√

2√
3
√

3 i 0
1 −i 2

  2 i 1
−i 2 i
1 −i 2

 
√

2
√

3 1√
2 i −

√
3 i i

−
√

2 0 2


︸ ︷︷ ︸


0 3

√
3 3

0 −3
√

3 i 3i
0 0 6




=
1
6

0 0 0
0 18 0
0 0 18

 =

0 0 0
0 3 0
0 0 3

 . �

Problem A.27

(a) 〈Ûα|Ûβ〉 = 〈Û†Ûα|β〉 = 〈α|β〉. �

(b) Û |α〉 = λ|α〉 =⇒ 〈Ûα|Ûα〉 = |λ|2〈α|α〉. But from (a) this is also 〈α|α〉. So |λ| = 1. �

(c) Û |α〉 = λ|α〉, Û |β〉 = µ|β〉 =⇒ |β〉 = µÛ−1|β〉, so Û†|β〉 =
1
µ
|β〉 = µ∗|β〉 (from (b)).

〈β|Ûα〉 = λ〈β|α〉 = 〈Û†β|α〉 = µ〈β|α〉, or (λ− µ)〈β|α〉 = 0. So if λ �= µ, then 〈β|α〉 = 0. QED

Problem A.28

(a) (i)

M2 =

0 0 4
0 0 0
0 0 0

 ; M3 =

0 0 0
0 0 0
0 0 0

 , so
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eM =

1 0 0
0 1 0
0 0 1

 +

0 1 3
0 0 4
0 0 0

 +
1
2

0 0 4
0 0 0
0 0 0

 =

1 1 5
0 1 4
0 0 1

 .

(ii)

M2 =
(
−θ2 0
0 −θ2

)
= −θ2I; M3 = −θ3M; M4 = θ4I; etc.

eM = I + θ

(
0 1
−1 0

)
− 1

2
θ2I− θ3

3!

(
0 1
−1 0

)
+

θ4

4!
I + · · ·

=
(

1− θ2

2
+

θ4

4!
− · · ·

)
I +

(
θ − θ3

3!
+

θ5

5!
− · · ·

) (
0 1
−1 0

)
= cos θ

(
1 0
0 1

)
+ sin θ

(
0 1
−1 0

)
=

(
cos θ sin θ
− sin θ cos θ

)
.

(b)

SMS−1 = D =

d1 0
. . .

0 dn

 for some S.

SeMS−1 = S

(
I + M +

1
2
M2 +

1
3!

M3 + · · ·
)

S−1. Insert SS−1 = I :

SeMS−1 = I + SMS−1 +
1
2
SMS−1SMS−1 +

1
3!

SMS−1SMS−1SMS−1 + · · ·

= I + D +
1
2
D2 +

1
3!

D3 + · · · = eD. Evidently

det(eD) = det(SeMS−1) = det(S) det(eM) det(S−1) = det(eM). But

D2 =

d2
1 0

. . .
0 d2

n

 , D3 =

d3
1 0

. . .
0 d3

n

 , Dk =

dk
1 0

. . .
0 dk

n

 , so

eD = I +

d1 0
. . .

0 dn

 +
1
2

d2
1 0

. . .
0 d2

n

 +
1
3!

d3
1 0

. . .
0 d3

n

 + · · · =

ed1 0
. . .

0 edn

 .

det(eD) = ed1ed2 · · · edn = e(d1+d2+···dn) = eTr D = eTr M (Eq. A.68), so det(eM) = eTr M. QED

(c) Matrices that commute obey the same algebraic rules as ordinary numbers, so the standard proofs of
ex+y = exey will do the job. Here are two:
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n

m

(i) Combinatorial Method: Use the binomial theorem (valid if multiplication is commutative):

eM+N =
∞∑

n=0

1
n!

(M + N)n =
∞∑

n=0

1
n!

n∑
m=0

(
n

m

)
MmNn−m =

∞∑
n=0

n∑
m=0

1
m!(n−m)!

MmNn−m.

Instead of summing vertically first, for fixed n (m : 0 → n), sum horizontally first, for fixed m (n :
m→∞, or k ≡ n−m : 0→∞)—see diagram (each dot represents a term in the double sum).

eM+N =
∞∑

m=0

1
m!

Mm
∞∑

k=0

1
k!

Nk = eMeN. QED

(ii) Analytic Method: Let

S(λ) ≡ eλMeλN;
dS

dλ
= MeλMeλN + eλMNeλN = (M + N)eλMeλN = (M + N)S.

(The second equality, in which we pull N through eλM, would not hold if M and N did not commute.)
Solving the differential equation: S(λ) = Ae(M+N)λ, for some constant A. But S(0) = I, so A = 1,
and hence eλMeλN = eλ(M+N), and (setting λ = 1) we conclude that eMeN = e(M+N). [This method
generalizes most easily when M and N do not commute—leading to the famous Baker-Campbell-
Hausdorf lemma.]

As a counterexample when [M,N] �= 0, let M =
(

0 1
0 0

)
, N =

(
0 0
−1 0

)
. Then M2 = N2 = 0, so

eM = I + M =
(

1 1
0 1

)
, eN = I + N =

(
1 0
−1 1

)
; eMeN =

(
1 1
0 1

) (
1 0
−1 1

)
=

(
0 1
−1 1

)
.

But (M + N) =
(

0 1
−1 0

)
, so (from a(ii)): eM+N =

(
cos(1) sin(1)
− sin(1) cos(1)

)
.

The two are clearly not equal.

(d)

eiH =
∞∑

n=0

1
n!

inHn =⇒ (eiH)† =
∞∑

n=0

1
n!

(−i)n(H†)n =
∞∑

n=0

1
n!

(−i)nHn = e−iH (for H hermitian).

(eiH)†(eiH) = e−iHeiH = ei(H−H) = I, using (c). So eiH is unitary. �

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.
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2nd Edition – 1st Edition Problem Correlation Grid 
N = New 
M = 1/e problem number (modified for 2/e) 
X = 2/e problem number (unchanged from 1/e) 
 

Chapter 1 
2/e 1/e 

    
1 1 

2N   
3 6 
4 7 
5 8 
6 11 
7 12 
8 13 
9 14 
10 2 
11 3 
12 4 
13 5 
14 9M 
15 10 

16N   
17N   
18N   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2 
2/e 1/e 

    
1 1 
2 2 
3 3 
4 5 
5 6M 
6 7 

7N   
8N   
9N   
10 13M 
11 14 
12 37 
13 17M 

14N   
15 15 
16 16 
17 18 
18 19M 

19N   
20 20 

21N   
22 22 
23 23 
24 24 

25N   
26 25 
27 26 
28 27 
29 28 
30 29 
31 30 
32 31 
33 32 
34 33 
35 41M 
36 4M 
37 36 
38 3.48 

39N   
40N   
41N   
42 38 
43 40 
44 39 

Chapter 2 (cont.) 
2/e 1/e 

    
45 42 
46 43 
47 44 

48N   
49 45 
50 47 
51 48M 
52 34M, 35M 
53 49 

54N   
55N   
56N   
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2nd Edition – 1st Edition Problem Correlation Grid 
N = New 
M = 1/e problem number (modified for 2/e) 
(M) = 1/e problem number (distant model for 2/e) 
X = 2/e problem number (unchanged from 1/e) 

Chapter 3 
2/e 1/e 

    
1N   
2N  (33M) 
3N  (21M) 
4N  (12M) 
5N   
6N   
7N   
8N   
9N   

10N   
11 38 
12 51 
13 41M 
14 39 

15N   
16 42 
17 43 
18 44 
19 45 
20 46 
21 57M 

22N   
23N   
24 57M 
25 25M 

26N   
27N   
28 52M 

29N   
30N   
31 53 
32 56 
33 50 
34 49M 

35N   
36N   
37N   
38N   
39 55 

40N   
 
 

Chapter 4 
2/e 1/e 

    
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7M 
8 8 
9 9M 
10 10 
11 11 
12 12 
13 13 

14N   
15N   
16 17 
17 16 
18 19 
19 20 
20 21 

21N   
22 22 
23 23 
24 25 
25 26 
26 27 
27 28 
28 29 
29 30 
30 31M 
31 32 
32 33 
33 34 
34 35 
35 36 
36 37 
37 38 
38 39 
39 40 
40 41 

41N   
42 42 

Chapter 4 (cont.) 
2/e 1/e 

    
43 43 

44N   
45 14 
46 15 

47N   
48N   
49N   
50 44 
51 45M 
52 46 

53N   
54 47 
55 48 
56 49 
57 50 

58N   
59 51 
60 52M 
61 53 
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2nd Edition – 1st Edition Problem Correlation Grid 
N = New 
M = 1/e problem number (modified for 2/e) 
X = 2/e problem number (unchanged from 1/e) 
 

Chapter 5 
2/e 1/e 

    
1 1 
2 2 

3N   
4 3 
5 4 
6 5 
7 6 
8 7 
9 8 
10 9 
11 10 
12 11M 
13 11M 
14 12 

15N   
16 13 
17 14 
18 15M 
19 16M 
20 17M 
21 18 
22 19M 
23 20 
24 21M 
25 22 
26 23 
27 24 
28 25 
29 26 
30 27M 
31 28 

32N   
33 29 
34 30 
35 31 
36 32 
37 33 

 
 
 
 
 

Chapter 6 
2/e 1/e 

    
1 1M 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 

10N   
11 10 
12 11 
13 12 
14 13 

15N   
16 14 
17 15 
18 16 
19 17 
20 18 
21 19 
22 20 
23 21 
24 22 
25 23 
26 24 
27 25 
28 26 

29N   
30N   
31N   
32 27 
33 28 
34 29 
35 30 
36 31 
37 32 
38 33 
39 34 

40N   
 
 

Chapter 7 
2/e 1/e 

    
1 1 
2 2M 
3 3M 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 10 

11N   
12N   
13 11 
14 12 
15 13 
16 14 
17 15 
18 16 
19 17 

20N   
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2nd Edition – 1st Edition Problem Correlation Grid 
N = New 
M = 1/e problem number (modified for 2/e) 
X = 2/e problem number (unchanged from 1/e) 
 

Chapter 8 
2/e 1/e 

    
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 10 
11 11 
12 12 
13 13 
14 14 
15 15 

16N   
17N   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 9 
2/e 1/e 

    
1 1 
2 2 
3 3M 
4 4 
5 5 
6 6 
7 7 
8 8 

9N   
10 9 
11 10 
12 11 
13 12 
14 13 
15 14 
16 15 
17 16 
18 17 
19 21 
20 19M 
21 20 

22N   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 10 
2/e 1/e 

    
1 1 
2 3M 
3 4 
4 5 
5 6 
6 8 
7 9 

8N   
9 10 
10 11M 
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2nd Edition – 1st Edition Problem Correlation Grid 

N = New 
M = 1/e problem number (modified for 2/e) 
X = 2/e problem number (unchanged from 1/e) 
 

Chapter 11 
2/e 1/e 

    
1 1 
2 2 
3 3 
4 4 

5N   
6N   
7N   
8 5 
9 6 
10 7 
11 8 
12 9 
13 10 
14 11 
15 12 
16 13 
17 14 
18 15 

19N   
20N   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 12 
2/e 1/e 

    
1N   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 
2/e 1/e 

    
1 3.1 
2 3.2 
3 3.3 
4 3.4 
5 3.5 
6 3.6 
7 3.7 
8 3.9 
9 3.10. 
10 3.11 
11 3.12 
12 3.16 

13N   
14N   
15 3.13 
16 3.14 
17 3.15 
18 3.17 
19 3.18 
20 3.19 
21 3.20. 
22 3.40M 

23N   
24 3.21M 
25 3.22 
26 3.23 
27 3.24 
28 3.47 
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