Chapter 7.1, Problem 41E

Problem

Let X and Y be sets, let A and B be any subsets of X, and let C and D be any subsets of Y. Determine which of the properties are true for all functions F from X to Y and which are false for at least one function F from X to Y. Justify your answers.

Exercise

If $A \subseteq B$ then $F(A) \subseteq F(B)$.

Step-by-step solution

Step 1 of 2

The given function is $f: X \to Y$.

 $f(A) \subseteq f(B)$ only if for each element $y \in f(A)$, it belongs to f(B) also.

It is given that y = f(x) for some $x \in A$.

So, $y \in f(A)$.

But A is a subset of B, $A \subseteq B$.

Therefore, if $x \in A$ then x belongs to B also.

 $x \in \mathbf{B}$

The definition of a function states a property according to which no element of the domain set of the function can have more than one image in the co-domain set.

Therefore, f(x) will always attain the same value for any particular value of $x = x_1$.

Thus, f(x) = y for $x \in B$

So, y must be inside f(B), $y \in f(B)$.

Since, $y \in f(A)$ and $y \in f(B)$

Step 2 of 2

But if A is not a subset of B, then there are values of x such that $x \in A$ but $x \notin B$.

Since, the domain of function $f: X \to Y$ doesn't fall in B, the co-domain may not be same as the co-domain for the domain of values that belong to B. So, if A is not a subset of B, then f(A) may not be subset of f(B).

Hence, it is proved that for all subsets A and B of X, if $A \subseteq B$, then $f(A) \subseteq f(B)$

STUDENTS-HUB.com

Uploaded By: anonymous