Analysis of Bode Plots

Informal definitions:

= The gain margin is the factor by which the gain can
be increased before instability results.

= The phase margin is the amount of phase by which
G(jw) exceeds -180 degrees when |KG(jw)|=1

= These are easily measured on Bode diagrams.
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Gain Margin

e The greater the Gain Margin (GM), the greater the stability of the
system. The gain margin refers to the amount of gain, which can be
increased or decreased without making the system unstable. It is
usually expressed as a magnitude in dB.

e The gain margin is calculated directly from the Bode plot (as shown
in the diagram below). This is done by calculating the vertical
distance between the magnitude curve (on the Bode magnitude
plot) and the x-axis at the frequency where the Bode phase plot = -
180° or 180°. This point is known as the phase crossover frequency.

Gain Margin Formula

e The formula for Gain Margin (GM) can be expressed as:
GM=0-GdB

e Where G is the gain. This is the magnitude (in dB) as read from the
vertical axis of the magnitude plot at the phase crossover
frequency. In our example shown in the graph above, the Gain (G)
is 20. Hence using our formula for gain margin, the gain margin is
equal to 0 — 20 dB =-20 dB (unstable).

Phase Margin

o The greater the Phase Margin (PM), the greater will be the stability
of the system. The phase margin refers to the amount of phase,
which can be increased or decreased without making the system
unstable. It is usually expressed as a phase in degrees.

e The phase margin is calculated directly from the Bode plot (as
shown in the diagram above). This is done by calculating the
vertical distance between the phase curve (on the Bode phase plot)
and the x-axis at the frequency where the Bode magnitude plot =0
dB. This point is known as the gain crossover frequency.
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Phase Margin Formula
e The formula for Phase Margin (PM) can be expressed as:
PM = ¢ — {—180°)
o Where ®is the phase lag (a number less than 0). This is the phase as
read from the vertical axis of the phase plot at the gain crossover
frequency.

e In our example shown in the graph above, the phase lag is -189°.

Hence using our formula for phase margin, the phase margin is
equal to -189° — (-180°) = -9° (unstable).
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Steady-State Error Characteristics
from Frequency Response

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type 0 Type 1 Type2
Steady-state Static error Static error Static error
Input error formula constant Error constant Error constant Error
1 1
Step, u(t} 7K, K, = Constant 7K, Ky =00 0 Ky =00 0
1
Ramp, ru(t) kl— K, =0 00 K, = Constant ' K, =00 0
Parabola, %rzu(r] KL,, K, =0 ) K,=0 ) K, = Constant Klu

To find K, consider the following Type 0 system:

=

(s + zi)
Gis)=KE——
1(S+pf)

s|I

(10.74)

i

A typical unnormalized and unscaled Bode log-magnitude plot is shown in
Figure 10.51(a). The initial value is

n

H Zi
201log M = 20 log K =1 (10.75)

m

[1p

i=1

But for this system

H

Iz
K,=KZ! (10.76)

m

[1p:

i=]

which is the same as the value of the low-frequency axis. Thus, for an unnormalized
and unscaled Bode log-magnitude plot, the low-frequency magnitude is 20 log K, for
a Type 0 system.
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20 log M

20 log X,
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(a)
Velocity Constant

To find K, for a Type 1 system, consider the following open-loop transfer function of
a Type 1 system:

[1(s + zi)
G(s) = K= (10.77)
s I;[l(s +pi)

n
i

A typical unnormalized and unscaled Bode log-magnitude diagram is shown in
Figure 10.51(b) for this Type 1 system. The Bode plot starts at

[1z
20log M = 20log K ==

(10.78)
wo E[IPi

The initial —20 dB/decade slope can be thought of as originating from a function,

n

H <i
G(s) =K

m

(10.79)
s 1:[1;3.»
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G'(s) intersects the frequency axis when

w=K=! (10.80)
Di
i=1
But for the original system (Eq. (10.77)),
n
Il
K,=KEZ (10.81)
[1p:

i=1

which is the same as the frequency-axis intercept, Eq. (10.80). Thus, we can find X,
by extending the initial —20 dB/decade slope to the frequency axis on an unnor-

malized and unscaled Bode diagram. The intersection with the frequency axis is K.
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Acceleration Constant
To find K, for a Type 2 system, consider the following:

ﬁ(s + zi)
G(s) =K —— (10.82)
s? T1(s +p;)

t‘:l

A typical unnormalized and unscaled Bode plot for a Type 2 system is shown in
Figure 10.51(c). The Bode plot starts at

n
1z
20log M = 20 log K =L (10.83)
w§ [1p;

i=1

The initial —40 dB/decade slope can be thought of as coming from a function,

n
[Tz
G'(s) = K-=5 (10.84)
52 1__[1 Pi

G'(s) intersects the frequency axis when

(10.85)
But for the original system (Eq. (10.82)),
n
Iz
K,=KE! (10.86)
[1p:
i=1

Thus, the initial —40 dB/decade slope intersects the frequency axis at /K.
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Relation Between Closed-Loop Transient and
Closed-Loop Frequency Responses

Consider the following second order system

R(s) + E(s)_ 3 C(s)
s(s+2¢w,) -

FIGURE 10.38 Second-order closed-loop
system

Cs) _ sy = @
R(s) T = T e+ o} (10.4)

Let us now find the frequency response of Eq. (10.49), define characteristics of
this response, and relate these characteristics to the transient response. Substituting
s = jw into Eq. (10.49), we evaluate the magnitude of the closed-loop frequency

I'CSPOIISC as
(.02
M = |T(jo)| = n (10.51)
V(@2 — ?)? + 4r2a2?
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A representative sketch of the log plot of Eq. (10.51) is shown in Figure 10.39.

We now show that a relationship exists between the peak value of the closed-
loop magnitude response and the damping ratio. Squaring Eq. (10.51), differentiat-
ing with respect to w?, and setting the derivative equal to zero yields the maximum
value of M, M, where

(10.52)
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at a frequency, wj, of

wp = wp/1 - 202 (10.53)
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Response Speed and Closed-Loop Frequency Response
Another relationship between the frequency response and time response is between
the speed of the time response (as measured by settling time, peak time, and rise
time) and the bandwidth of the closed-loop frequency response, which is defined
here as the frequency, wgw, at which the magnitude response curve is 3 dB down
from its value at zero frequency (see Figure 10.39).
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The bandwidth of a two-pole system can be found by finding that frequency for
which M = 1/+/2 (that is, =3 dB) in Eq.(10.51). The derivation is left as an exercise
for the student. The result is

! wWBW = wp \/ (1-282) +/4¢4 - 42 + 2 (10.54)

L—

To relate wpw to settling time, we substitute w, = 4/7¢ into Eq. (10.54) and obtain

(1-222) +\/4r4 — 422 42 (10.55)

sC

[
| woaw
|
L

Similarly, since, w, = 7/(T,\/1 - £?),

VALt — 48 + (10.56)

(1-222)+
WBwW Tp\/l—?—\/ :)

To relate the bandwidth to rise time, T,, we use Figure 4.16, knowing the desired ¢ and 7.
For example, assume ¢ = 0.4 and 7, = 0.2 second. Using Figure 4.16, the ordinate
T,w, = 1.463, from which w, = 1.463/0.2 = 7.315 rad/s. Using Eq. (10.54), wpw =
10.05 rad/s. Normalized plots of Egs. (10.55) and (10.56) and the relationship between
bandwidth normalized by rise time and damping ratio are shown in Figure 10.41.
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FIGURE 10.41 Normalized bandwidth vs. damping ratio for a. settling time; b, peak time;
c. rise time

Relation Between Closed-Loop
Transient and Open-Loop
Frequency Responses

Damping Ratio from Phase Margin

Let us now derive the relationship between the phase margin and the damping ratio.
This relationship will enable us to evaluate the percent overshoot from the phase
margin found from the open-loop frequency response.
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The difference between the angle of Eq. (10.72) and —180° is the phase margin, ¢,,. Thus,

@y =90 — tan~!

V-2t + VT art

2
28

= tan~ !

\/-28 + /14 4¢4

(10.73)

Equation (10.73), plotted in Figure 10.48, shows the relationship between phase

margin and damping ratio.
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