
Objectives
 ■ To define a subclass from a superclass through inheritance (§11.2).

 ■ To invoke the superclass’s constructors and methods using the super
keyword (§11.3).

 ■ To override instance methods in the subclass (§11.4).

 ■ To distinguish differences between overriding and overloading (§11.5).

 ■ To explore the toString() method in the Object class (§11.6).

 ■ To discover polymorphism and dynamic binding (§§11.7 and 11.8).

 ■ To describe casting and explain why explicit downcasting is necessary
(§11.9).

 ■ To explore the equals method in the Object class (§11.10).

 ■ To store, retrieve, and manipulate objects in an ArrayList (§11.11).

 ■ To construct an array list from an array, to sort and shuffle a list, and
to obtain max and min element from a list (§11.12).

 ■ To implement a Stack class using ArrayList (§11.13).

 ■ To enable data and methods in a superclass accessible from subclasses
using the protected visibility modifier (§11.14).

 ■ To prevent class extending and method overriding using the final
modifier (§11.15).

IĆĀýĊāČùĆûý
ùĆü PćĄđąćĊĈĀāċą

CHAPTER

11

M11_LIAN9966_12_SE_C11.indd 411 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

412 Chapter 11 Inheritance and Polymorphism

11.1 Introduction
Object-oriented programming allows you to define new classes from existing classes.
This is called inheritance.

As discussed in the preceding chapter, the procedural paradigm focuses on designing methods,
and the object-oriented paradigm couples data and methods together into objects. Software
design using the object-oriented paradigm focuses on objects and operations on objects. The
object-oriented approach combines the power of the procedural paradigm with an added dimen-
sion that integrates data with operations into objects.

Inheritance is an important and powerful feature for reusing software. Suppose you need
to define classes to model circles, rectangles, and triangles. These classes have many common
features. What is the best way to design these classes so as to avoid redundancy and make the
system easy to comprehend and easy to maintain? The answer is to use inheritance.

11.2 Superclasses and Subclasses
Inheritance enables you to define a general class (i.e., a superclass) and later extend it
to more specialized classes (i.e., subclasses).

You use a class to model objects of the same type. Different classes may have some common
properties and behaviors, which can be generalized in a class that can be shared by other
classes. You can define a specialized class that extends the generalized class. The specialized
classes inherit the properties and methods from the general class.

Consider geometric objects. Suppose you want to design the classes to model geometric
objects such as circles and rectangles. Geometric objects have many common properties and
behaviors. They can be drawn in a certain color and be filled or unfilled. Thus, a general class
GeometricObject can be used to model all geometric objects. This class contains the proper-
ties color and filled and their appropriate getter and setter methods. Assume this class also
contains the dateCreated property, and the getDateCreated() and toString() methods.
The toString() method returns a string representation of the object. Since a circle is a spe-
cial type of geometric object, it shares common properties and methods with other geometric
objects. Thus, it makes sense to define the Circle class that extends the GeometricObject
class. Likewise, Rectangle can also be defined as a special type of GeometricObject.
Figure 11.1 shows the relationship among these classes. A triangular arrow pointing to the gen-
eralized class is used to denote the inheritance relationship between the two classes involved.

In Java terminology, a class C1 extended from another class C2 is called a subclass, and C2
is called a superclass. A superclass is also referred to as a parent class or a base class, and a
subclass as a child class, an extended class, or a derived class. A subclass inherits accessible
data fields and methods from its superclass and may also add new data fields and methods.
Therefore, Circle and Rectangle are subclasses of GeometricObject, and
 GeometricObject is the superclass for Circle and Rectangle. A class defines a type. A
type defined by a subclass is called a subtype, and a type defined by its superclass is called a
supertype. Therefore, you can say that Circle is a subtype of GeometricObject, and
 GeometricObject is a supertype for Circle.

The subclass and its superclass are said to form a is-a relationship. A Circle object is a
special type of general GeometricObject. The Circle class inherits all accessible data fields
and methods from the GeometricObject class. In addition, it has a new data field, radius,
and its associated getter and setter methods. The Circle class also contains the getArea(),
getPerimeter(), and getDiameter() methods for returning the area, perimeter, and diam-
eter of the circle.

The Rectangle class inherits all accessible data fields and methods from the
 GeometricObject class. In addition, it has the data fields width and height and their
associated getter and setter methods. It also contains the getArea() and getPerimeter()

Point
Key

inheritance

why inheritance?

Point
Key

subclass
superclass

subtype
supertype

is-a relationship

width and height

VideoNote

Geometric class hierarchy

M11_LIAN9966_12_SE_C11.indd 412 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.2 Superclasses and Subclasses 413

methods for returning the area and perimeter of the rectangle. Note that you may have used
the terms width and length to describe the sides of a rectangle in geometry. The common terms
used in computer science are width and height, where width refers to the horizontal length, and
height to the vertical length.

The GeometricObject, Circle, and Rectangle classes are shown in Listings 11.1, 11.2,
and 11.3 respectively.

LISTING 11.1 GeometricObject.java
 1 public class GeometricObject {
 2 private String color = "white";
 3 private boolean filled;
 4 private java.util.Date dateCreated;
 5
 6 /** Construct a default geometric object */
 7 public GeometricObject() {
 8 dateCreated = new java.util.Date();
 9 }
10

data fields

constructor
date constructed

FIGURE 11.1 The GeometricObject class is the superclass for Circle and Rectangle.

The color of the object (default: white).

The date when the object was created.

Indicates whether the object is filled with a color (default: false).

Creates a GeometricObject.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

GeometricObject

–color: String

–filled: boolean

–dateCreated: java.util.Date

+GeometricObject()

Creates a GeometricObject
 values.

+GeometricObject(color: String,
 filled: boolean)
+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

Circle

–radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
 filled: boolean)

+getRadius(): double

+getArea(): double

+setRadius(radius: double): void

+printCircle(): void

+getPerimeter(): double

+getDiameter(): double

Rectangle

–height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
 color: String, filled: boolean)

+getWidth(): double

+getHeight(): double

+setHeight(height: double): void

+setWidth(width: double): void

+getArea(): double

+getPerimeter(): double

–width: double

with the specified color and filled

M11_LIAN9966_12_SE_C11.indd 413 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

414 Chapter 11 Inheritance and Polymorphism

11 /** Construct a geometric object with the specified color
12 * and filled value */
13 public GeometricObject(String color, boolean filled) {
14 dateCreated = new java.util.Date();
15 this.color = color;
16 this.filled = filled;
17 }
18
19 /** Return color */
20 public String getColor() {
21 return color;
22 }
23
24 /** Set a new color */
25 public void setColor(String color) {
26 this.color = color;
27 }
28
29 /** Return filled. Since filled is boolean,
30 its getter method is named isFilled */
31 public boolean isFilled() {
32 return filled;
33 }
34
35 /** Set a new filled */
36 public void setFilled(boolean filled) {
37 this.filled = filled;
38 }
39
40 /** Get dateCreated */
41 public java.util.Date getDateCreated() {
42 return dateCreated;
43 }
44
45 /** Return a string representation of this object */
46 public String toString() {
47 return "created on " + dateCreated + "\ncolor: " + color +
48 " and filled: " + filled;
49 }
50 }

LISTING 11.2 Circle.java
 1 public class Circle extends GeometricObject {
 2 private double radius;
 3
 4 public Circle() {
 5 }
 6
 7 public Circle(double radius) {
 8 this.radius = radius;
 9 }
10
11 public Circle(double radius,
12 String color, boolean filled) {
13 this.radius = radius;
14 setColor(color);
15 setFilled(filled);
16 }
17

extends superclass
data fields

constructor

M11_LIAN9966_12_SE_C11.indd 414 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

11.2 Superclasses and Subclasses 415

18 /** Return radius */
19 public double getRadius() {
20 return radius;
21 }
22
23 /** Set a new radius */
24 public void setRadius(double radius) {
25 this.radius = radius;
26 }
27
28 /** Return area */
29 public double getArea() {
30 return radius * radius * Math.PI;
31 }
32
33 /** Return diameter */
34 public double getDiameter() {
35 return 2 * radius;
36 }
37
38 /** Return perimeter */
39 public double getPerimeter() {
40 return 2 * radius * Math.PI;
41 }
42
43 /** Print the circle info */
44 public void printCircle() {
45 System.out.println("The circle is created " + getDateCreated() +
46 " and the radius is " + radius);
47 }
48 }

The Circle class (Listing 11.2) extends the GeometricObject class (Listing 11.1) using
the following syntax:

methods

Subclass Superclass

public class Circle extends GeometricObject

The keyword extends (lines 1 and 2) tells the compiler that the Circle class extends the
GeometricObject class, thus inheriting the methods getColor, setColor, isFilled,
setFilled, and toString.

The overloaded constructor Circle(double radius, String color, boolean
filled) is implemented by invoking the setColor and setFilled methods to set the
color and filled properties (lines 14 and 15). The public methods defined in the superclass
GeometricObject are inherited in Circle, so they can be used in the Circle class.

You might attempt to use the data fields color and filled directly in the constructor as
follows:

public Circle(double radius, String color, boolean filled) {
 this.radius = radius;
 this.color = color; // Illegal
 this.filled = filled; // Illegal
}

private member in superclass

M11_LIAN9966_12_SE_C11.indd 415 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

416 Chapter 11 Inheritance and Polymorphism

This is wrong because the private data fields color and filled in the GeometricObject
class cannot be accessed in any class other than in the GeometricObject class itself. The
only way to read and modify color and filled is through their getter and setter methods.

The Rectangle class (Listing 11.3) extends the GeometricObject class (Listing 11.1)
using the following syntax:

Subclass Superclass

public class Rectangle extends GeometricObject

The keyword extends (lines 1 and 2) tells the compiler the Rectangle class extends the
GeometricObject class, thus inheriting the methods getColor, setColor, isFilled,
setFilled, and toString.

LISTING 11.3 Rectangle.java
 1 public class Rectangle extends GeometricObject {
 2 private double width;
 3 private double height;
 4

 5 public Rectangle() {
 6 }
 7
 8 public Rectangle(double width, double height) {
 9 this.width = width;
10 this.height = height;
11 }
12
13 public Rectangle(
14 double width, double height, String color, boolean filled) {
15 this.width = width;
16 this.height = height;
17 setColor(color);
18 setFilled(filled);
19 }
20
21 /** Return width */

22 public double getWidth() {
23 return width;
24 }
25
26 /** Set a new width */
27 public void setWidth(double width) {
28 this.width = width;
29 }
30
31 /** Return height */
32 public double getHeight() {
33 return height;
34 }
35
36 /** Set a new height */
37 public void setHeight(double height) {
38 this.height = height;
39 }
40

extends superclass
data fields

constructor

methods

M11_LIAN9966_12_SE_C11.indd 416 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

11.2 Superclasses and Subclasses 417

41 /** Return area */
42 public double getArea() {
43 return width * height;
44 }
45
46 /** Return perimeter */
47 public double getPerimeter() {
48 return 2 * (width + height);
49 }
50 }

The code in Listing 11.4 creates objects of Circle and Rectangle and invokes the methods
on these objects. The toString() method is inherited from the GeometricObject class and
is invoked from a Circle object (line 4) and a Rectangle object (line 11).

LISTING 11.4 TestCircleRectangle.java
 1 public class TestCircleRectangle {
 2 public static void main(String[] args) {
 3 Circle circle = new Circle(1);
 4 System.out.println("A circle " + circle.toString());
 5 System.out.println("The color is " + circle.getColor());
 6 System.out.println("The radius is " + circle.getRadius());
 7 System.out.println("The area is " + circle.getArea());
 8 System.out.println("The diameter is " + circle.getDiameter());
 9
10 Rectangle rectangle = new Rectangle(2, 4);
11 System.out.println("\nA rectangle " + rectangle.toString());
12 System.out.println("The area is " + rectangle.getArea());
13 System.out.println("The perimeter is " +
14 rectangle.getPerimeter());
15 }
16 }

Circle object
invoke toString
invoke getColor

Rectangle object
invoke toString

A circle created on Thu Feb 10 19:54:25 EST 2011

color: white and filled: false
The color is white
The radius is 1.0
The area is 3.141592653589793
The diameter is 2.0
A rectangle created on Thu Feb 10 19:54:25 EST 2011
color: white and filled: false
The area is 8.0
The perimeter is 12.0

Note the following points regarding inheritance:

 ■ Contrary to the conventional interpretation, a subclass is not a subset of its super-
class. In fact, a subclass usually contains more information and methods than its
superclass.

 ■ Private data fields in a superclass are not accessible outside the class. Therefore, they
cannot be used directly in a subclass. They can, however, be accessed/mutated through
public accessors/mutators if defined in the superclass.

more in subclass

private data fields

M11_LIAN9966_12_SE_C11.indd 417 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

418 Chapter 11 Inheritance and Polymorphism

 ■ Not all is-a relationships should be modeled using inheritance. For example, a square
is a rectangle, but you should not extend a Square class from a Rectangle class,
because the width and height properties are not appropriate for a square. Instead,
you should define a Square class to extend the GeometricObject class and define
the side property for the side of a square.

 ■ Inheritance is used to model the is-a relationship. Do not blindly extend a class just
for the sake of reusing methods. For example, it makes no sense for a Tree class to
extend a Person class, even though they share common properties such as height
and weight. A subclass and its superclass must have the is-a relationship.

 ■ Some programming languages allow you to derive a subclass from several classes.
This capability is known as multiple inheritance. Java, however, does not allow
multiple inheritance. A Java class may inherit directly from only one superclass.
This restriction is known as single inheritance. If you use the extends keyword to
define a subclass, it allows only one parent class. Nevertheless, multiple inheritance
can be achieved through interfaces, which will be introduced in Section 13.5.

 11.2.1 True or false? A subclass is a subset of a superclass.

 11.2.2 What keyword do you use to define a subclass?

 11.2.3 What is single inheritance? What is multiple inheritance? Does Java support mul-
tiple inheritance?

11.3 Using the super Keyword
The keyword super refers to the superclass and can be used to invoke the superclass’s
methods and constructors.

A subclass inherits accessible data fields and methods from its superclass. Does it inherit con-
structors? Can the superclass’s constructors be invoked from a subclass? This section addresses
these questions and their ramifications.

Section 9.14, The this Reference, introduced the use of the keyword this to reference
the calling object. The keyword super refers to the superclass of the class in which super
appears. It can be used in two ways:

1. To call a superclass constructor

2. To call a superclass method

11.3.1 Calling Superclass Constructors
A constructor is used to construct an instance of a class. Unlike properties and methods, the
constructors of a superclass are not inherited by a subclass. They can only be invoked from
the constructors of the subclasses using the keyword super.

The syntax to call a superclass’s constructor is:

super() or super(arguments);

The statement super() invokes the no-arg constructor of its superclass, and the statement
super(arguments) invokes the superclass constructor that matches the arguments.
The statement super() or super(arguments) must be the first statement of the subclass’s
constructor; this is the only way to explicitly invoke a superclass constructor. For example, the
constructor in lines 11–16 in Listing 11.2 can be replaced by the following code:

public Circle(double radius, String color, boolean filled) {
 super(color, filled);
 this.radius = radius;
}

nonextensible is-a

multiple inheritance

single inheritance

Point
Check

no blind extension

Point
Key

M11_LIAN9966_12_SE_C11.indd 418 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Sticky Note
no

BelalHamdeh
Sticky Note
extends

https://students-hub.com

11.3 Using the super Keyword 419

Caution
You must use the keyword super to call the superclass constructor, and the call must
be the first statement in the constructor. Invoking a superclass constructor’s name in a
subclass causes a syntax error.

11.3.2 Constructor Chaining
A constructor may invoke an overloaded constructor or its superclass constructor. If neither
is invoked explicitly, the compiler automatically puts super() as the first statement in the
constructor. For example:

In any case, constructing an instance of a class invokes the constructors of all the super-
classes along the inheritance chain. When constructing an object of a subclass, the subclass
constructor first invokes its superclass constructor before performing its own tasks. If the
superclass is derived from another class, the superclass constructor invokes its parent-class
constructor before performing its own tasks. This process continues until the last
 constructor along the inheritance hierarchy is called. This is called constructor
chaining.

Consider the following code:

 1 public class Faculty extends Employee {
 2 public static void main(String[] args) {
 3 new Faculty();
 4 }
 5
 6 public Faculty() {
 7 System.out.println("(4) Performs Faculty's tasks");
 8 }
 9 }
10
11 class Employee extends Person {
12 public Employee() {
13 this("(2) Invokes Employee's overloaded constructor");
14 System.out.println("(3) Performs Employee's tasks ");
15 }
16
17 public Employee(String s) {
18 System.out.println(s);
19 }
20 }
21
22 class Person {
23 public Person() {
24 System.out.println("(1) Performs Person's tasks");
25 }
26 }

constructor chaining

invoke overloaded
constructor

public ClassName() {
 // some statements
}

Equivalent

public ClassName() {
 super();
 // some statements
}

public ClassName(parameters) {
 // some statements
}

Equivalent

public ClassName(parameters) {
 super();
 // some statements
}

M11_LIAN9966_12_SE_C11.indd 419 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

420 Chapter 11 Inheritance and Polymorphism

The program produces the preceding output. Why? Let us discuss the reason. In line 3, new
Faculty() invokes Faculty’s no-arg constructor. Since Faculty is a subclass of Employee,
Employee’s no-arg constructor is invoked before any statements in Faculty’s constructor
are executed. Employee’s no-arg constructor invokes Employee’s second constructor (line
13). Since Employee is a subclass of Person, Person’s no-arg constructor is invoked before
any statements in Employee’s second constructor are executed. This process is illustrated in
the following figure.

(1) Performs Person’s tasks
(2) Invokes Employee’s overloaded constructor
(3) Performs Employee’s tasks
(4) Performs Faculty’s tasks

Faculty() {

 Performs Faculty's
 tasks;

}

Employee() {
 this("(2) ...");

 Performs Employee's
 tasks;

}

Employee(String s) {

 Performs Employee's
 tasks;

}

Person() {

 Performs Person's
 tasks;

}

Caution
If a class is designed to be extended, it is better to provide a no-arg constructor to avoid
programming errors. Consider the following code:

1 public class Apple extends Fruit {
2 }
3
4 class Fruit {
5 public Fruit(String name) {
6 System.out.println("Fruit's constructor is invoked");
7 }
8 }

Since no constructor is explicitly defined in Apple, Apple’s default no-arg constructor
is defined implicitly. Since Apple is a subclass of Fruit, Apple’s default constructor
automatically invokes Fruit’s no-arg constructor. However, Fruit does not have a
no-arg constructor, because Fruit has an explicit constructor defined. Therefore, the
program cannot be compiled.

Design Guide
If possible, you should provide a no-arg constructor for every class to make the class easy
to extend and to avoid errors.

11.3.3 Calling Superclass Methods
The keyword super can also be used to reference a method other than the constructor in the
superclass. The syntax is

super.method(arguments);

You could rewrite the printCircle() method in the Circle class as follows:

public void printCircle() {
 System.out.println("The circle is created " +
 super.getDateCreated() + " and the radius is " + radius);
}

no-arg constructor

no-arg constructor

M11_LIAN9966_12_SE_C11.indd 420 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.4 Overriding Methods 421

It is not necessary to put super before getDateCreated() in this case, however, because
getDateCreated is a method in the GeometricObject class and is inherited by the
Circle class. Nevertheless, in some cases, as shown in the next section, the keyword
super is needed.

 11.3.1 What is the output of running the class C in (a)? What problem arises in compiling
the program in (b)? Point

Check

class A {
 public A() {
 System.out.println(
 "A's no-arg constructor is invoked");
 }
}

class B extends A {
}

public class C {
 public static void main(String[] args) {
 B b = new B();
 }
}

class A {
 public A(int x) {
 }
}

class B extends A {
 public B() {
 }
}

public class C {
 public static void main(String[] args) {
 B b = new B();
 }
}

(a) (b)

 11.3.2 How does a subclass invoke its superclass’s constructor?

 11.3.3 True or false? When invoking a constructor from a subclass, its superclass’s no-arg
constructor is always invoked.

11.4 Overriding Methods
To override a method, the method must be defined in the subclass using the same
 signature as in its superclass.

A subclass inherits methods from a superclass. Sometimes, it is necessary for the subclass to modify
the implementation of a method defined in the superclass. This is referred to as method overriding.

The toString method in the GeometricObject class (lines 46–49 in Listing 11.1)
returns the string representation of a geometric object. This method can be overridden to return
the string representation of a circle. To override it, add the following new method in the
 Circle class in Listing 11.2:

 1 public class Circle extends GeometricObject {
 2 // Other methods are omitted
 3
 4 // Override the toString method defined in the superclass
 5 public String toString() {
 6 return super.toString() + "\nradius is " + radius;
 7 }
 8 }

The toString() method is defined in the GeometricObject class and modified
in the Circle class. Both methods can be used in the Circle class. To invoke the
toString method defined in the GeometricObject class from the Circle class, use
super.toString() (line 6).

Point
Key

method overriding

toString in superclass

M11_LIAN9966_12_SE_C11.indd 421 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

422 Chapter 11 Inheritance and Polymorphism

Can a subclass of Circle access the toString method defined in the GeometricObject
class using syntax such as super.super.toString()? No. This is a syntax error.

Several points are worth noting:

 ■ The overriding method must have the same signature as the overridden method and
same or compatible return type. Compatible means that the overriding method’s
return type is a subtype of the overridden method’s return type.

 ■ An instance method can be overridden only if it is accessible. Thus, a private method can-
not be overridden, because it is not accessible outside its own class. If a method defined in
a subclass is private in its superclass, the two methods are completely unrelated.

 ■ Like an instance method, a static method can be inherited. However, a static method
cannot be overridden. If a static method defined in the superclass is redefined in a
subclass, the method defined in the superclass is hidden. The hidden static methods
can be invoked using the syntax SuperClassName.staticMethodName.

 11.4.1 True or false? You can override a private method defined in a superclass.

 11.4.2 True or false? You can override a static method defined in a superclass.

 11.4.3 How do you explicitly invoke a superclass’s constructor from a subclass?

 11.4.4 How do you invoke an overridden superclass method from a subclass?

11.5 Overriding vs. Overloading
Overloading means to define multiple methods with the same name but different
signatures. Overriding means to provide a new implementation for a method in the
subclass.

You learned about overloading methods in Section 6.8. To override a method, the method must
be defined in the subclass using the same signature and the same or compatible return type.

Let us use an example to show the differences between overriding and overloading. In (a)
below, the method p(double i) in class A overrides the same method defined in class B. In
(b), however, the class A has two overloaded methods: p(double i) and p(int i). The
method p(double i) is inherited from B.

no super.super.methodName()

override accessible instance
method

cannot override static method

Point
Check

Point
Key

public class TestOverriding {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}

class B {
 public void p(double i) {
 System.out.println(i * 2);
 }
}

class A extends B {
 // This method overrides the method in B
 public void p(double i) {
 System.out.println(i);
 }
}

public class TestOverloading {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}

class B {
 public void p(double i) {
 System.out.println(i * 2);
 }
}

class A extends B {
 // This method overloads the method in B
 public void p(int i) {
 System.out.println(i);
 }
}

(a) (b)

M11_LIAN9966_12_SE_C11.indd 422 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.5 Overriding vs. Overloading 423

When you run the TestOverriding class in (a), both a.p(10) and a.p(10.0) invoke the
p(double i) method defined in class A to display 10.0. When you run the TestOverloading
class in (b), a.p(10) invokes the p(int i) method defined in class A to display 10 and
a.p(10.0) invokes the p(double i) method defined in class B to display 20.0.

Note the following:

 ■ Overridden methods are in different classes related by inheritance; overloaded meth-
ods can be either in the same class, or in different classes related by inheritance.

 ■ Overridden methods have the same signature; overloaded methods have the same
name but different parameter lists.

To avoid mistakes, you can use a special Java syntax, called override annotation, to place
@Override before the overriding method in the subclass. For example,

1 public class Circle extends GeometricObject {
2 // Other methods are omitted
3
4 @Override
5 public String toString() {
6 return super.toString() + "\nradius is " + radius;
7 }
8 }

This annotation denotes that the annotated method is required to override a method in its
 superclass. If a method with this annotation does not override its superclass’s method, the
compiler will report an error. For example, if toString is mistyped as tostring, a compile
error is reported. If the @Override annotation isn’t used, the compiler won’t report an error.
Using the @Override annotation avoids mistakes.

 11.5.1 Identify the problems in the following code:

 1 public class Circle {
 2 private double radius;
 3
 4 public Circle(double radius) {
 5 radius = radius;
 6 }
 7
 8 public double getRadius() {
 9 return radius;
10 }
11
12 public double getArea() {
13 return radius * radius * Math.PI;
14 }
15 }
16
17 class B extends Circle {
18 private double length;
19
20 B(double radius, double length) {
21 Circle(radius);
22 length = length;
23 }
24
25 @Override
26 public double getArea() {
27 return getArea() * length;
28 }
29 }

override annotation

toString in superclass

Point
Check

M11_LIAN9966_12_SE_C11.indd 423 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Highlight

https://students-hub.com

424 Chapter 11 Inheritance and Polymorphism

 11.5.2 Explain the difference between method overloading and method overriding.

 11.5.3 If a method in a subclass has the same signature as a method in its superclass with
the same return type, is the method overridden or overloaded?

 11.5.4 If a method in a subclass has the same signature as a method in its superclass with
a different return type, will this be a problem?

 11.5.5 If a method in a subclass has the same name as a method in its superclass with dif-
ferent parameter types, is the method overridden or overloaded?

 11.5.6 What is the benefit of using the @Override annotation?

11.6 The Object Class and Its toString() Method
Every class in Java is descended from the java.lang.Object class.

If no inheritance is specified when a class is defined, the superclass of the class is Object by
default. For example, the following two class definitions in (a) and (b) are the same:Point

Key

Classes such as String, StringBuilder, Loan, and GeometricObject are implicitly
subclasses of Object (as are all the main classes you have seen in this book so far).
It is important to be familiar with the methods provided by the Object class so that you
can use them in your classes. This section introduces the toString method in the Object
class.

The signature of the toString() method is:

public String toString()

Invoking toString() on an object returns a string that describes the object. By default, it
returns a string consisting of a class name of which the object is an instance, an at sign (@),
and the object’s memory address in hexadecimal. For example, consider the following code
for the Loan class defined in Listing 10.2:

Loan loan = new Loan();
System.out.println(loan.toString());

The output for this code displays something like Loan@15037e5. This message is not very
helpful or informative. Usually you should override the toString method so that it returns
a descriptive string representation of the object. For example, the toString method in the
Object class was overridden in the GeometricObject class in lines 46–49 in Listing 11.1
as follows:

public String toString() {
 return "created on " + dateCreated + "\ncolor: " + color +
 " and filled: " + filled;
}

Note
You can also pass an object to invoke System.out.println(object) or System.
out.print(object). This is equivalent to invoking System.out.println(object.
toString()) or System.out.print(object.toString()). Thus, you could replace
System.out.println(loan.toString()) with System.out.println(loan).

toString()

string representation

print object

 public class ClassName {
 ...
 }

Equivalent

 public class ClassName extends Object {
 ...
 }

(a) (b)

M11_LIAN9966_12_SE_C11.indd 424 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.8 Dynamic Binding 425

11.7 Polymorphism
Polymorphism means that a variable of a supertype can refer to a subtype object.

The three pillars of object-oriented programming are encapsulation, inheritance, and polymor-
phism. You have already learned the first two. This section introduces polymorphism.

The inheritance relationship enables a subclass to inherit features from its superclass
with additional new features. A subclass is a specialization of its superclass; every instance
of a subclass is also an instance of its superclass, but not vice versa. For example, every
circle is a geometric object, but not every geometric object is a circle. Therefore, you can
always pass an instance of a subclass to a parameter of its superclass type. Consider the
code in Listing 11.5.

LISTING 11.5 PolymorphismDemo.java
 1 public class PolymorphismDemo {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Display circle and rectangle properties
 5 displayObject(new Circle(1, "red", false));
 6 displayObject(new Rectangle(1, 1, "black", true));
 7 }
 8
 9 /** Display geometric object properties */
10 public static void displayObject(GeometricObject object) {
11 System.out.println("Created on " + object.getDateCreated() +
12 ". Color is " + object.getColor());
13 }
14 }

Point
Key

polymorphic call
polymorphic call

The method displayObject (line 10) takes a parameter of the GeometricObject
type. You can invoke displayObject by passing any instance of GeometricObject
(e.g., new Circle(1, "red", false) and new Rectangle(1, 1, "black", true)
in lines 5 and 6). An object of a subclass can be used wherever its superclass object is
used. This is commonly known as polymorphism (from a Greek word meaning “many
forms”). In simple terms, polymorphism means that a variable of a supertype can refer to
a subtype object.

 11.7.1 What are the three pillars of object-oriented programming? What is polymorphism?

11.8 Dynamic Binding
A method can be implemented in several classes along the inheritance chain. The JVM
decides which method is invoked at runtime.

A method can be defined in a superclass and overridden in its subclass. For example, the
toString() method is defined in the Object class and overridden in GeometricObject.
Consider the following code:

Object o = new GeometricObject();
System.out.println(o.toString());

what is polymorphism?

Point
Check

Point
Key

Created on Mon Mar 09 19:25:20 EDT 2011. Color is red
Created on Mon Mar 09 19:25:20 EDT 2011. Color is black

M11_LIAN9966_12_SE_C11.indd 425 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

426 Chapter 11 Inheritance and Polymorphism

Which toString() method is invoked by o? To answer this question, we first introduce two
terms: declared type and actual type. A variable must be declared a type. The type that declares
a variable is called the variable’s declared type. Here, o’s declared type is Object. A variable
of a reference type can hold a null value or a reference to an instance of the declared type.
The instance may be created using the constructor of the declared type or its subtype. The
actual type of the variable is the actual class for the object referenced by the variable at runtime.
Here, o’s actual type is GeometricObject, because o references an object created using new
GeometricObject(). Which toString() method is invoked by o is determined by o’s
actual type. This is known as dynamic binding.

Dynamic binding works as follows: Suppose that an object o is an instance of classes C1,
C2, . . . , Cn-1, and Cn, where C1 is a subclass of C2, C2 is a subclass of C3, . . . , and Cn-1 is a
subclass of Cn, as shown in Figure 11.2. That is, Cn is the most general class, and C1 is the
most specific class. In Java, Cn is the Object class. If o invokes a method p, the JVM searches
for the implementation of the method p in C1, C2, . . . , Cn-1, and Cn, in this order, until it is
found. Once an implementation is found, the search stops and the first-found implementation
is invoked.

declared type

actual type

dynamic binding

FIGURE 11.2 The method to be invoked is dynamically bound at runtime.

.

Cn is java.lang.Object
If o is an instance of C1, o is also an
instance of C2, C3, …, Cn-1, and Cn

Cn Cn-1 C2 C1

Listing 11.6 gives an example to demonstrate dynamic binding.

LISTING 11.6 DynamicBindingDemo.java
 1 public class DynamicBindingDemo {
 2 public static void main(String[] args) {
 3 m(new GraduateStudent());
 4 m(new Student());
 5 m(new Person());
 6 m(new Object());
 7 }
 8
 9 public static void m(Object x) {
10 System.out.println(x.toString());
11 }
12 }
13
14 class GraduateStudent extends Student {
15 }
16
17 class Student extends Person {
18 @Override
19 public String toString() {
20 return "Student";
21 }
22 }
23
24 class Person extends Object {
25 @Override

VideoNote

Polymorphism and dynamic
binding demo

dynamic binding

polymorphic call

override toString()

override toString()

M11_LIAN9966_12_SE_C11.indd 426 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.8 Dynamic Binding 427

Student
Student
Person
java.lang.Object@130c19b

26 public String toString() {
27 return "Person";
28 }
29 }

Method m (line 9) takes a parameter of the Object type. You can invoke m with any object (e.g.,
new GraduateStudent(), new Student(), new Person(), and new Object()) in lines 3–6).

When the method m(Object x) is executed, the argument x’s toString method is invoked.
x may be an instance of GraduateStudent, Student, Person, or Object. The toString
method is implemented in Student, Person, and Object. Which implementation is used will
be determined by x’s actual type at runtime. Invoking m(new GraduateStudent()) (line 3)
causes the toString method defined in the Student class to be invoked.

Invoking m(new Student()) (line 4) causes the toString method defined in the
 Student class to be invoked; invoking m(new Person()) (line 5) causes the toString
method defined in the Person class to be invoked; and invoking m(new Object()) (line 6)
causes the toString method defined in the Object class to be invoked.

Matching a method signature and binding a method implementation are two separate issues.
The declared type of the reference variable decides which method to match at compile time.
The compiler finds a matching method according to the parameter type, number of parameters,
and order of the parameters at compile time. A method may be implemented in several classes
along the inheritance chain. The JVM dynamically binds the implementation of the method at
runtime, decided by the actual type of the variable.

 11.8.1 What is dynamic binding?

 11.8.2 Describe the difference between method matching and method binding.

 11.8.3 Can you assign new int[50], new Integer[50], new String[50], or new
Object[50] into a variable of Object[] type?

 11.8.4 What is wrong in the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 Integer[] list1 = {12, 24, 55, 1};
 4 Double[] list2 = {12.4, 24.0, 55.2, 1.0};
 5 int[] list3 = {1, 2, 3};
 6 printArray(list1);
 7 printArray(list2);
 8 printArray(list3);
 9 }
10
11 public static void printArray(Object[] list) {
12 for (Object o: list)
13 System.out.print(o + " ");
14 System.out.println();
15 }
16 }

matching vs. binding

Point
Check

M11_LIAN9966_12_SE_C11.indd 427 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

428 Chapter 11 Inheritance and Polymorphism

 11.8.5 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 new Person().printPerson();
 new Student().printPerson();
 }
}

class Student extends Person {
 @Override
 public String getInfo() {
 return "Student";
 }
}

class Person {
 public String getInfo() {
 return "Person";
 }

 public void printPerson() {
 System.out.println(getInfo());
 }
}

public class Test {
 public static void main(String[] args) {
 new Person().printPerson();
 new Student().printPerson();
 }
}

class Student extends Person {
 private String getInfo() {
 return "Student";
 }
}

class Person {
 private String getInfo() {
 return "Person";
 }

 public void printPerson() {
 System.out.println(getInfo());
 }
}

(a) (b)

 11.8.6 Show the output of following program:

 1 public class Test {
 2 public static void main(String[] args) {
 3 A a = new A(3);
 4 }
 5 }
 6
 7 class A extends B {
 8 public A(int t) {
 9 System.out.println("A's constructor is invoked");
10 }
11 }
12
13 class B {
14 public B() {
15 System.out.println("B's constructor is invoked");
16 }
17 }

Is the no-arg constructor of Object invoked when new A(3) is invoked?

 11.8.7 Show the output of following program:

public class Test {
 public static void main(String[] args) {
 new A();
 new B();
 }
}

M11_LIAN9966_12_SE_C11.indd 428 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.9 Casting Objects and the instanceof Operator 429

class A {
 int i = 7;

 public A() {
 setI(20);
 System.out.println("i from A is " + i);
 }

 public void setI(int i) {
 this.i = 2 * i;
 }
}

class B extends A {
 public B() {
 System.out.println("i from B is " + i);
 }

 public void setI(int i) {
 this.i = 3 * i;
 }
}

11.9 Casting Objects and the instanceof Operator
One object reference can be typecast into another object reference. This is called
 casting object.

In the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type. This statement is
equivalent to

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as implicit casting, is legal because an
instance of Student is an instance of Object.

Suppose you want to assign the object reference o to a variable of the Student type using
the following statement:

Student b = o;

In this case a compile error would occur. Why does the statement Object o = new
 Student() work, but Student b = o doesn’t? The reason is that a Student object is always
an instance of Object, but an Object is not necessarily an instance of Student. Even though
you can see that o is really a Student object, the compiler is not clever enough to know it. To
tell the compiler o is a Student object, use explicit casting. The syntax is similar to the one
used for casting among primitive data types. Enclose the target object type in parentheses and
place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

It is always possible to cast an instance of a subclass to a variable of a superclass (known as
upcasting) because an instance of a subclass is always an instance of its superclass. When
casting an instance of a superclass to a variable of its subclass (known as downcasting), explicit

Point
Key

casting object

implicit casting

explicit casting

upcasting
downcasting

M11_LIAN9966_12_SE_C11.indd 429 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

430 Chapter 11 Inheritance and Polymorphism

casting must be used to confirm your intention to the compiler with the (SubclassName) cast
notation. For the casting to be successful, you must make sure the object to be cast is an
instance of the subclass. If the superclass object is not an instance of the subclass, a runtime
ClassCastException occurs. For example, if an object is not an instance of Student, it
cannot be cast into a variable of Student. It is a good practice, therefore, to ensure the object
is an instance of another object before attempting a casting. This can be accomplished by using
the instanceof operator. Consider the following code:

 void someMethod(Object myObject) {
 ... // Some lines of code
 /** Perform casting if myObject is an instance of Circle */
 if (myObject instanceof Circle) {
 System.out.println("The circle diameter is " +
 ((Circle)myObject).getDiameter());
 ...
 }
 }

You may be wondering why casting is necessary. The variable myObject is declared Object.
The declared type decides which method to match at compile time. Using myObject.
getDiameter() would cause a compile error, because the Object class does not have the
getDiameter method. The compiler cannot find a match for myObject.getDiameter().
Therefore, it is necessary to cast myObject into the Circle type to tell the compiler that
myObject is also an instance of Circle.

Why not declare myObject as a Circle type in the first place? To enable generic programming,
it is a good practice to declare a variable with a supertype that can accept an object of any subtype.

Note
instanceof is a Java keyword. Every letter in a Java keyword is in lowercase.

Tip
To help understand casting, you may also consider the analogy of fruit, apple, and
orange, with the Fruit class as the superclass for Apple and Orange. An apple is a
fruit, so you can always safely assign an instance of Apple to a variable for Fruit.
However, a fruit is not necessarily an apple, so you have to use explicit casting to assign
an instance of Fruit to a variable of Apple.

Listing 11.7 demonstrates polymorphism and casting. The program creates two objects
(lines 5 and 6), a circle and a rectangle, and invokes the displayObject method to
display them (lines 9 and 10). The displayObject method displays the area and diameter if
the object is a circle (line 15), and the area if the object is a rectangle (line 21).

LISTING 11.7 CastingDemo.java
 1 public class CastingDemo {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Create and initialize two objects
 5 Object object1 = new Circle(1);
 6 Object object2 = new Rectangle(1, 1);
 7
 8 // Display circle and rectangle
 9 displayObject(object1);
10 displayObject(object2);
11 }
12

ClassCastException

instanceof

lowercase keywords

casting analogy

M11_LIAN9966_12_SE_C11.indd 430 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.9 Casting Objects and the instanceof Operator 431

13 /** A method for displaying an object */
14 public static void displayObject(Object object) {
15 if (object instanceof Circle) {
16 System.out.println("The circle area is " +
17 ((Circle)object).getArea());
18 System.out.println("The circle diameter is " +
19 ((Circle)object).getDiameter());
20 }
21 else if (object instanceof Rectangle) {
22 System.out.println("The rectangle area is " +

23 ((Rectangle)object).getArea());
24 }
25 }
26 }

polymorphic call

polymorphic call

The circle area is 3.141592653589793
The circle diameter is 2.0
The rectangle area is 1.0

The displayObject(Object object) method is an example of generic programming. It
can be invoked by passing any instance of Object.

The program uses implicit casting to assign a Circle object to object1 and a Rectangle
object to object2 (lines 5 and 6), then invokes the displayObject method to display the
information on these objects (lines 9–10).

In the displayObject method (lines 14–25), explicit casting is used to cast the object to
Circle if the object is an instance of Circle, and the methods getArea and getDiameter
are used to display the area and diameter of the circle.

Casting can be done only when the source object is an instance of the target class. The
program uses the instanceof operator to ensure that the source object is an instance of the
target class before performing a casting (line 15).

Explicit casting to Circle (lines 17 and 19) and to Rectangle (line 23) is necessary
because the getArea and getDiameter methods are not available in the Object class.

Caution
The object member access operator (.) has higher precedence than the casting operator.
Use parentheses to ensure that casting is done before the . operator, as in

 ((Circle)object).getArea();

Casting a primitive-type value is different from casting an object reference. Casting a
 primitive-type value returns a new value. For example:

int age = 45;
byte newAge = (byte)age; // A new value is assigned to newAge

However, casting an object reference does not create a new object. For example:

Object o = new Circle();
Circle c = (Circle)o; // No new object is created

Now, reference variables o and c point to the same object.

precedes casting

M11_LIAN9966_12_SE_C11.indd 431 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

432 Chapter 11 Inheritance and Polymorphism

 11.9.1 Indicate true or false for the following statements:

a. You can always successfully cast an instance of a subclass to a superclass.

b. You can always successfully cast an instance of a superclass to a subclass.

 11.9.2 For the GeometricObject and Circle classes in Listings 11.1 and 11.2, answer
the following questions:

a. Assume that circle and object1 are created as follows:
 Circle circle = new Circle(1);
 GeometricObject object1 = new GeometricObject();

 Are the following Boolean expressions true or false?
 (circle instanceof GeometricObject)
 (object instanceof GeometricObject)
 (circle instanceof Circle)
 (object instanceof Circle)

b. Can the following statements be compiled?
 Circle circle = new Circle(5);
 GeometricObject object = circle;

c. Can the following statements be compiled?
 GeometricObject object = new GeometricObject();
 Circle circle = (Circle)object;

 11.9.3 Suppose Fruit, Apple, Orange, GoldenDelicious, and McIntosh are defined
in the following inheritance hierarchy:

Point
Check

Fruit

Apple

McIntosh

Orange

GoldenDelicious

Assume the following code is given:

Fruit fruit = new GoldenDelicious();
Orange orange = new Orange();

Answer the following questions:

a. Is fruit instanceof Fruit?

b. Is fruit instanceof Orange?

c. Is fruit instanceof Apple?

d. Is fruit instanceof GoldenDelicious?

e. Is fruit instanceof McIntosh?

f. Is orange instanceof Orange?

M11_LIAN9966_12_SE_C11.indd 432 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.10 The Object’s equals Method 433

g. Is orange instanceof Fruit?

h. Is orange instanceof Apple?

i. Suppose the method makeAppleCider is defined in the Apple class. Can
Fruit invoke this method? Can orange invoke this method?

j. Suppose the method makeOrangeJuice is defined in the Orange class. Can
orange invoke this method? Can Fruit invoke this method?

k. Is the statement Orange p = new Apple() legal?

l. Is the statement McIntosh p = new Apple() legal?

m. Is the statement Apple p = new McIntosh() legal?

 11.9.4 What is wrong in the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 Object fruit = new Fruit();
 4 Object apple = (Apple)fruit;
 5 }
 6 }
 7
 8 class Apple extends Fruit {
 9 }
10
11 class Fruit {
12 }

11.10 The Object’s equals Method
Like the toString() method, the equals(Object) method is another useful
method defined in the Object class.

Another method defined in the Object class that is often used is the equals method. Its
signature is

public boolean equals(Object o)

This method tests whether two objects are equal. The syntax for invoking it is

object1.equals(object2);

The default implementation of the equals method in the Object class is

public boolean equals(Object obj) {
 return this == obj;
}

This implementation checks whether two reference variables point to the same object using the
== operator. You should override this method in your custom class to test whether two distinct
objects have the same content.

The equals method is overridden in many classes in the Java API, such as java.lang.String
and java.util.Date, to compare whether the contents of two objects are equal. You have
already used the equals method to compare two strings in Section 4.4.7, The String Class.
The equals method in the String class is inherited from the Object class, and is overridden
in the String class to test whether two strings are identical in content.

Point
Key

M11_LIAN9966_12_SE_C11.indd 433 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

434 Chapter 11 Inheritance and Polymorphism

You can override the equals method in the Circle class to compare whether two circles
are equal based on their radius as follows:

@Override
public boolean equals(Object o) {
 if (o instanceof Circle)
 return radius == ((Circle)o).radius;
 else
 return false;
}

Note
The == comparison operator is used for comparing two primitive-data-type values or for
determining whether two objects have the same references. The equals method is intended
to test whether two objects have the same contents, provided the method is overridden in
the defining class of the objects. The == operator is stronger than the equals method in
that the == operator checks whether the two reference variables refer to the same object.

Caution
Using the signature equals(SomeClassName obj) (e.g., equals(Circle c))
to override the equals method in a subclass is a common mistake. You should use
equals(Object obj). See CheckPoint Question 11.10.2.

 11.10.1 Does every object have a toString method and an equals method? Where do
they come from? How are they used? Is it appropriate to override these methods?

 11.10.2 When overriding the equals method, a common mistake is mistyping its signa-
ture in the subclass. For example, the equals method is incorrectly written as
equals(Circle circle), as shown in (a) in the following code; instead, it
should be equals(Object circle), as shown in (b). Show the output of running
class Test with the Circle class in (a) and in (b), respectively.

== vs. equals

equals(Object)

Point
Check

public class Test {
 public static void main(String[] args) {
 Object circle1 = new Circle();
 Object circle2 = new Circle();
 System.out.println(circle1.equals(circle2));
 }
}

class Circle {
 double radius;

 public boolean equals(Circle circle) {
 return this.radius == circle.radius;
 }
}

(a)

class Circle {
 double radius;

 public boolean equals(Object o) {
 return this.radius ==
 ((Circle)o).radius;
 }
}

(b)

If Object is replaced by Circle in the Test class, what would be the output
to run Test using the Circle class in (a) and (b), respectively?

11.11 The ArrayList Class
An ArrayList object can be used to store a list of objects.

Now we are ready to introduce a very useful class for storing objects. You can create an array to
store objects. However, once the array is created, its size is fixed. Java provides the ArrayList

Point
Key

M11_LIAN9966_12_SE_C11.indd 434 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.11 The ArrayList Class 435

class, which can be used to store an unlimited number of objects. Figure 11.3 shows some
methods in ArrayList.

FIGURE 11.3 An ArrayList stores an unlimited number of objects.

java.util.ArrayList<E>

+ArrayList()

+add(e: E): void

+add(index: int, e: E): void

+clear(): void

+contains(o: Object): boolean

+get(index: int): E

+indexOf(o: Object): int

+isEmpty(): boolean

+lastIndexOf(o: Object): int

+remove(o: Object): boolean

+size(): int

+remove(index: int): E

+set(index: int, e: E): E

Appends a new element

at the specified index in this list.

e at the end of this list.

Adds a new element e

Removes all elements from this list.

Returns true if this list contains the element o.

Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the first element CDT from this list. Returns true

 if an element is removed.

Returns the number of elements in this list.

Removes the element at the specified index. Returns

Sets the element at the specified index.

 the removed element.

Creates an empty list.

ArrayList is known as a generic class with a generic type E. You can specify a concrete
type to replace E when creating an ArrayList. For example, the following statement creates
an ArrayList and assigns its reference to variable cities. This ArrayList object can be
used to store strings.

ArrayList<String> cities = new ArrayList<String>();

The following statement creates an ArrayList and assigns its reference to variable dates.
This ArrayList object can be used to store dates.

ArrayList<java.util.Date> dates = new ArrayList<java.util.Date>();

Note
Since JDK 7, the statement

ArrayList <AConcreteType> list = new ArrayList<AConcreteType>();

can be simplified by

ArrayList<AConcreteType> list = new ArrayList<>();

The concrete type is no longer required in the constructor, thanks to a feature called
type inference. The compiler is able to infer the type from the variable declaration. More
discussions on generics including how to define custom generic classes and methods
will be introduced in Chapter 19, Generics.

Listing 11.8 gives an example of using ArrayList to store objects.

type inference

M11_LIAN9966_12_SE_C11.indd 435 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

436 Chapter 11 Inheritance and Polymorphism

LISTING 11.8 TestArrayList.java
 1 import java.util.ArrayList;
 2
 3 public class TestArrayList {
 4 public static void main(String[] args) {
 5 // Create a list to store cities
 6 ArrayList<String> cityList = new ArrayList<>();
 7
 8 // Add some cities in the list
 9 cityList.add("London");
10 // cityList now contains [London]
11 cityList.add("Denver");
12 // cityList now contains [London, Denver]
13 cityList.add("Paris");
14 // cityList now contains [London, Denver, Paris]
15 cityList.add("Miami");
16 // cityList now contains [London, Denver, Paris, Miami]
17 cityList.add("Seoul");
18 // Contains [London, Denver, Paris, Miami, Seoul]
19 cityList.add("Tokyo");
20 // Contains [London, Denver, Paris, Miami, Seoul, Tokyo]
21
22 System.out.println("List size? " + cityList.size());
23 System.out.println("Is Miami in the list? " +
24 cityList.contains("Miami"));
25 System.out.println("The location of Denver in the list? "
26 + cityList.indexOf("Denver"));
27 System.out.println("Is the list empty? " +
28 cityList.isEmpty()); // Print false
29
30 // Insert a new city at index 2
31 cityList.add(2, "Xian");
32 // Contains [London, Denver, Xian, Paris, Miami, Seoul, Tokyo]
33
34 // Remove a city from the list
35 cityList.remove("Miami");
36 // Contains [London, Denver, Xian, Paris, Seoul, Tokyo]
37
38 // Remove a city at index 1
39 cityList.remove(1);
40 // Contains [London, Xian, Paris, Seoul, Tokyo]
41
42 // Display the contents in the list
43 System.out.println(cityList.toString());
44
45 // Display the contents in the list in reverse order
46 for (int i = cityList.size() − 1; i >= 0; i––)
47 System.out.print(cityList.get(i) + " ");
48 System.out.println();
49
50 // Create a list to store two circles
51 ArrayList<Circle> list = new ArrayList<>();
52
53 // Add two circles
54 list.add(new Circle(2));
55 list.add(new Circle(3));
56
57 // Display the area of the first circle in the list
58 System.out.println("The area of the circle? " +

get element

toString()

remove element

is empty?

add element

create ArrayList

list size

create ArrayList

contains element?

element index

import ArrayList

remove element

M11_LIAN9966_12_SE_C11.indd 436 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

11.11 The ArrayList Class 437

List size? 6
Is Miami in the list? true
The location of Denver in the list? 1
Is the list empty? false
[London, Xian, Paris, Seoul, Tokyo]
Tokyo Seoul Paris Xian London
The area of the circle? 12.566370614359172

Since the ArrayList is in the java.util package, it is imported in line 1. The program
creates an ArrayList of strings using its no-arg constructor and assigns the reference to
cityList (line 6). The add method (lines 9–19) adds strings to the end of list. Thus, after
cityList.add("London") (line 9), the list contains

[London]

After cityList.add("Denver") (line 11), the list contains

[London, Denver]

After adding Paris, Miami, Seoul, and Tokyo (lines 13–19), the list contains

[London, Denver, Paris, Miami, Seoul, Tokyo]

Invoking size() (line 22) returns the size of the list, which is currently 6. Invoking
 contains("Miami") (line 24) checks whether the object is in the list. In this case, it
returns true, since Miami is in the list. Invoking indexOf("Denver") (line 26) returns
the index of Denver in the list, which is 1. If Denver were not in the list, it would return
–1. The isEmpty() method (line 28) checks whether the list is empty. It returns false,
since the list is not empty.

The statement cityList.add(2, "Xian") (line 31) inserts an object into the list at the
specified index. After this statement, the list becomes

[London, Denver, Xian, Paris, Miami, Seoul, Tokyo]

The statement cityList.remove("Miami") (line 35) removes the object from the list. After
this statement, the list becomes

[London, Denver, Xian, Paris, Seoul, Tokyo]

The statement cityList.remove(1) (line 39) removes the object at the specified index from
the list. After this statement, the list becomes

[London, Xian, Paris, Seoul, Tokyo]

The statement in line 43 is same as

System.out.println(cityList);

The toString() method returns a string representation of the list in the form of
[e0.toString(), e1.toString(), ..., ek.toString()], where e0, e1, . . . , and
ek are the elements in the list.

The get(index) method (line 47) returns the object at the specified index.
ArrayList objects can be used like arrays, but there are many differences. Table 11.1 lists

their similarities and differences.
Once an array is created, its size is fixed. You can access an array element using the

square-bracket notation (e.g., a[index]). When an ArrayList is created, its size is 0.

add(Object)

size()

add(index, Object)

remove(Object)

remove(index)

toString()

get(index)

array vs. ArrayList

59 list.get(0).getArea());
60 }
61 }

M11_LIAN9966_12_SE_C11.indd 437 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

438 Chapter 11 Inheritance and Polymorphism

You cannot use the get(index) and set(index, element) methods if the element is not
in the list. It is easy to add, insert, and remove elements in a list, but it is rather complex to
add, insert, and remove elements in an array. You have to write code to manipulate the array in
order to perform these operations. Note you can sort an array using the java.util.Arrays.
sort(array) method. To sort an array list, use the java.util. Collections.sort
(arraylist) method.

Suppose you want to create an ArrayList for storing integers. Can you use the following
code to create a list?

ArrayList<int> listOfIntegers = new ArrayList<>();

No. This will not work because the elements stored in an ArrayList must be of an object
type. You cannot use a primitive data type such as int to replace a generic type. However,
you can create an ArrayList for storing Integer objects as follows:

ArrayList<Integer> listOfIntegers = new ArrayList<>();

Note the remove(int index) method removes an element at the specified index. To remove
an integer value v from listOfIntegers, you need to use listOfIntegers.remove
(Integer.valueOf(v)). This is not a good design in the Java API because it could easily lead
to mistakes. It would be much better if remove(int) is renamed removeAt(int).

Listing 11.9 gives a program that prompts the user to enter a sequence of numbers and dis-
plays the distinct numbers in the sequence. Assume the input ends with 0, and 0 is not counted
as a number in the sequence.

LISTING 11.9 DistinctNumbers.java
 1 import java.util.ArrayList;
 2 import java.util.Scanner;
 3
 4 public class DistinctNumbers {
 5 public static void main(String[] args) {
 6 ArrayList<Integer> list = new ArrayList<>();
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.print("Enter integers (input ends with 0): ");
10 int value;
11
12 do {
13 value = input.nextInt(); // Read a value from the input
14

remove(int) vs. remove(Integer)

create an array list

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();

Accessing an element a[index] list.get(index);

Updating an element a[index] = "London"; list.set(index, "London");

Returning size a.length list.size();

Adding a new element list.add("London");

Inserting a new element list.add(index, "London");

Removing an element list.remove(index);

Removing an element list.remove(Object);

Removing all elements list.clear();

TABLE 11.1 Differences and Similarities between Arrays and ArrayList

M11_LIAN9966_12_SE_C11.indd 438 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

11.11 The ArrayList Class 439

15 if (!list.contains(value) && value != 0)
16 list.add(value); // Add the value if it is not in the list
17 } while (value != 0);
18
19 // Display the distinct numbers
20 System.out.print("The distinct integers are: ");
21 for (int i = 0; i < list.size(); i++)
22 System.out.print(list.get(i) + " ");
23 }
24 }

contained in list?
add to list

Enter numbers (input ends with 0): 1 2 3 2 1 6 3 4 5 4 5 1 2 3 0

The distinct numbers are: 1 2 3 6 4 5

The program creates an ArrayList for Integer objects (line 6) and repeatedly reads a value
in the loop (lines 12–17). For each value, if it is not in the list (line 15), add it to the list (line 16).
You can rewrite this program using an array to store the elements rather than using an ArrayList.
However, it is simpler to implement this program using an ArrayList for two reasons.

1. The size of an ArrayList is flexible so you don’t have to specify its size in advance.
When creating an array, its size must be specified.

2. ArrayList contains many useful methods. For example, you can test whether an
element is in the list using the contains method. If you use an array, you have to
write additional code to implement this method.

You can traverse the elements in an array using a foreach loop. The elements in an array list
can also be traversed using a foreach loop using the following syntax:

for (elementType element: arrayList) {
 // Process the element
}

For example, you can replace the code in lines 20 and 21 using the following code:

for (Integer number: list)
 System.out.print(number + " ");

or

for (int number: list)
 System.out.print(number + " ");

Note the elements in list are Integer objects. They are automatically unboxed into int
in this foreach loop.

 11.11.1 How do you do the following?

a. Create an ArrayList for storing double values?

b. Append an object to a list?

c. Insert an object at the beginning of a list?

d. Find the number of objects in a list?

e. Remove a given object from a list?

f. Remove the last object from a list?

g. Check whether a given object is in a list?

h. Retrieve an object at a specified index from a list?

foreach loop

Point
Check

M11_LIAN9966_12_SE_C11.indd 439 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

440 Chapter 11 Inheritance and Polymorphism

 11.11.2 Identify the errors in the following code.

ArrayList<String> list = new ArrayList<>();
list.add("Denver");
list.add("Austin");
list.add(new java.util.Date());
String city = list.get(0);
list.set(3, "Dallas");
System.out.println(list.get(3));

 11.11.3 Suppose the ArrayList list contains {"Dallas", "Dallas", "Hous-
ton", "Dallas"}. What is the list after invoking list.remove("Dallas")
one time? Does the following code correctly remove all elements with value
"Dallas" from the list? If not, correct the code.

for (int i = 0; i < list.size(); i++)
 list.remove("Dallas");

 11.11.4 Explain why the following code displays [1, 3] rather than [2, 3].

ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);
list.remove(1);
System.out.println(list);
How do you remove integer value 3 from the list?

 11.11.5 Explain why the following code is wrong:

ArrayList<Double> list = new ArrayList<>();
list.add(1);

11.12 Useful Methods for Lists
Java provides the methods for creating a list from an array, for sorting a list, and for
finding maximum and minimum element in a list, and for shuffling a list.

Often you need to create an array list from an array of objects or vice versa. You can write the
code using a loop to accomplish this, but an easy way is to use the methods in the Java API.
Here is an example to create an array list from an array:

String[] array = {"red", "green", "blue"};
ArrayList<String> list = new ArrayList<>(Arrays.asList(array));

The static method asList in the Arrays class returns a list that is passed to the ArrayList
constructor for creating an ArrayList. Conversely, you can use the following code to create
an array of objects from an array list:

String[] array1 = new String[list.size()];
list.toArray(array1);

Invoking list.toArray(array1) copies the contents from list to array1. If the ele-
ments in a list are comparable, such as integers, double, or strings, you can use the static
sort method in the java.util.Collections class to sort the elements. Here are some
examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
java.util.Collections.sort(list);
System.out.println(list);

Point
Key

array to array list

array list to array

sort a list

M11_LIAN9966_12_SE_C11.indd 440 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.13 Case Study: A Custom Stack Class 441

You can use the static max and min in the java.util.Collections class to return the
maximum and minimal element in a list. Here are some examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
System.out.println(java.util.Collections.max(list));
System.out.println(java.util.Collections.min(list));

You can use the static shuffle method in the java.util.Collections class to perform a
random shuffle for the elements in a list. Here are some examples:

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));
java.util.Collections.shuffle(list);
System.out.println(list);

 11.12.1 Correct errors in the following statements:

int[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new ArrayList<>(Arrays.asList(array));

 11.12.2 Correct errors in the following statements:

int[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
System.out.println(java.util.Collections.max(array));

11.13 Case Study: A Custom Stack Class
This section designs a stack class for holding objects.

Section 10.6 presented a stack class for storing int values. This section introduces a
stack class to store objects. You can use an ArrayList to implement Stack, as shown in
Listing 11.10. The UML diagram for the class is shown in Figure 11.4.

max and min methods

shuffle method

Point
Check

Point
Key

FIGURE 11.4 The MyStack class encapsulates the stack storage and provides the operations
for manipulating the stack.

Returns true if this stack is empty.

Returns the number of elements in this stack.

Returns the top element in this stack without removing it.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

A list to store elements.

MyStack

+isEmpty(): boolean

+getSize(): int

+peek(): Object

+pop(): Object

+push(o: Object): void

-list: ArrayList<Object>

LISTING 11.10 MyStack.java
 1 import java.util.ArrayList;
 2
 3 public class MyStack {
 4 private ArrayList<Object> list = new ArrayList<>();
 5
 6 public boolean isEmpty() {
 7 return list.isEmpty();

stack empty?

array list

M11_LIAN9966_12_SE_C11.indd 441 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

442 Chapter 11 Inheritance and Polymorphism

 8 }
 9
10 public int getSize() {
11 return list.size();
12 }
13
14 public Object peek() {
15 return list.get(getSize() − 1);
16 }
17
18 public Object pop() {
19 Object o = list.get(getSize() − 1);
20 list.remove(getSize() − 1);
21 return o;
22 }
23
24 public void push(Object o) {
25 list.add(o);
26 }
27
28 @Override
29 public String toString() {
30 return "stack: " + list.toString();
31 }
32 }

An array list is created to store the elements in the stack (line 4). The isEmpty() method (lines
6–8) returns list.isEmpty() . The getSize() method (lines 10–12) returns
list.size(). The peek() method (lines 14–16) retrieves the element at the top of the stack
without removing it. The end of the list is the top of the stack. The pop() method (lines 18–22)
removes the top element from the stack and returns it. The push(Object element) method
(lines 24–26) adds the specified element to the stack. The toString() method (lines 28–31)
defined in the Object class is overridden to display the contents of the stack by invoking
list.toString(). The toString() method implemented in ArrayList returns a string
representation of all the elements in an array list.

Design Guide
In Listing 11.10, MyStack contains ArrayList. The relationship between MyStack and
ArrayList is composition. Composition essentially means declaring an instance variable
for referencing an object. This object is said to be composed. While inheritance models an
is-a relationship, composition models a has-a relationship. You could also implement
 MyStack as a subclass of ArrayList (see Programming Exercise 11.10). Using compo-
sition is better, however, because it enables you to define a completely new stack class
without inheriting the unnecessary and inappropriate methods from ArrayList.

 11.13.1 Write statements that create a MyStack and add number 11 to the stack.

11.14 The protected Data and Methods
A protected member of a class can be accessed from a subclass.

So far you have used the private and public keywords to specify whether data fields and
methods can be accessed from outside of the class. Private members can be accessed only from
inside of the class, and public members can be accessed from any other classes.

Often it is desirable to allow subclasses to access data fields or methods defined in the
superclass, but not to allow nonsubclasses in different packages to access these data fields and
methods. To accomplish this, you can use the protected keyword. This way you can access
protected data fields or methods in a superclass from its subclasses.

get stack size

peek stack

remove

push

composition

has-a

Point
Check

Point
Key

why protected?

M11_LIAN9966_12_SE_C11.indd 442 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.14 The protected Data and Methods 443

The modifiers private, protected, and public are known as visibility or accessibility
modifiers because they specify how classes and class members are accessed. The visibility of
these modifiers increases in this order:

Visibility increases

private, default (no modifier), protected, public

Table 11.2 summarizes the accessibility of the members in a class. Figure 11.5 illustrates how
a public, protected, default, and private datum or method in class C1 can be accessed from a
class C2 in the same package, a subclass C3 in the same package, a subclass C4 in a different
package, and a class C5 in a different package.

Use the private modifier to hide the members of the class completely so they cannot be
accessed directly from outside the class. Use no modifiers (the default) in order to allow the
members of the class to be accessed directly from any class within the same package but not
from other packages. Use the protected modifier to enable the members of the class to be
accessed by the subclasses in any package or classes in the same package. Use the public
modifier to enable the members of the class to be accessed by any class.

Modifier on
Members
in a Class

Accessed
from the

Same Class

Accessed
from the

Same Package

Accessed
from a Subclass in a
Different Package

Accessed
from a Different

Package

Public ✓ ✓ ✓ ✓

Protected ✓ ✓ ✓ –

Default (no modifier) ✓ ✓ – –

Private ✓ – – –

TABLE 11.2 Data and Methods Visibility

FIGURE 11.5 Visibility modifiers are used to control how data and methods are accessed.

public class C1 {
 public int x;
 protected int y;
 int z;
 private int u;

 protected void m() {

package p1;

package p2;

public class C2 {
 C1 o = new C1();
 can access o.x;
 can access o.y;
 can access o.z;
 cannot access o.u;

 can invoke o.m();

public class C3
 extends C1 {
 can access x;
 can access y;
 can access z;
 cannot access u;

 can invoke m();

public class C4
 extends C1 {
 can access x;
 can access y;
 cannot access z;
 cannot access u;

 can invoke m();

public class C5 {
 C1 o = new C1();
 can access o.x;
 cannot access o.y;
 cannot access o.z;
 cannot access o.u;

 cannot invoke o.m();
}

}
}

}

} }

M11_LIAN9966_12_SE_C11.indd 443 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

444 Chapter 11 Inheritance and Polymorphism

Your class can be used in two ways: (1) for creating instances of the class and (2) for defining
subclasses by extending the class. Make the members private if they are not intended for
use from outside the class. Make the members public if they are intended for the users of
the class. Make the fields or methods protected if they are intended for the extenders of the
class but not for the users of the class.

The private and protected modifiers can be used only for members of the class. The
public modifier and the default modifier (i.e., no modifier) can be used on members of the
class as well as on the class. A class with no modifier (i.e., not a public class) is not accessible
by classes from other packages.

Note
A subclass may override a protected method defined in its superclass and change its
visibility to public. However, a subclass cannot weaken the accessibility of a method
defined in the superclass. For example, if a method is defined as public in the superclass,
it must be defined as public in the subclass.

 11.14.1 What modifier should you use on a class so a class in the same package can
access it, but a class in a different package cannot access it?

 11.14.2 What modifier should you use so a class in a different package cannot access the
class, but its subclasses in any package can access it?

 11.14.3 In the following code, the classes A and B are in the same package. If the ques-
tion marks in (a) are replaced by blanks, can class B be compiled? If the question
marks are replaced by private, can class B be compiled? If the question marks
are replaced by protected, can class B be compiled?

package p1;

public class A {
 ? int i;

 ? void m() {
 ...
 }
}

package p1;

public class B extends A {
 public void m1(String[] args) {
 System.out.println(i);
 m();
 }
}

(a) (b)

 11.14.4 In the following code, the classes A and B are in different packages. If the ques-
tion marks in (a) are replaced by blanks, can class B be compiled? If the question
marks are replaced by private, can class B be compiled? If the question marks
are replaced by protected, can class B be compiled?

package p1;

public class A {
 ? int i;

 ? void m() {

 }
}

package p2;

public class B extends A {
 public void m1(String[] args) {
 System.out.println(i);
 m();
 }
}

(a) (b)

change visibility

Point
Check

M11_LIAN9966_12_SE_C11.indd 444 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

11.15 Preventing Extending and Overriding 445

11.15 Preventing Extending and Overriding
Neither a final class nor a final method can be extended. A final data field is a constant.

You may occasionally want to prevent classes from being extended. In such cases, use the
final modifier to indicate a class is final and cannot be a parent class. The Math class is a final
class. The String, StringBuilder, and StringBuffer classes, and all wrapper classes
for primitive data types are also final classes. For example, the following class A is final and
cannot be extended:

public final class A {
 // Data fields, constructors, and methods omitted
}

You also can define a method to be final; a final method cannot be overridden by its subclasses.
For example, the following method m is final and cannot be overridden:

public class Test {
 // Data fields, constructors, and methods omitted

 public final void m() {
 // Do something
 }
}

Note
The modifiers public, protected, private, static, abstract, and final are
used on classes and class members (data and methods), except that the final modifier
can also be used on local variables in a method. A final local variable is a constant
inside a method.

 11.15.1 How do you prevent a class from being extended? How do you prevent a method
from being overridden?

 11.15.2 Indicate true or false for the following statements:

a. A protected datum or method can be accessed by any class in the same package.

b. A protected datum or method can be accessed by any class in different packages.

c. A protected datum or method can be accessed by its subclasses in any package.

d. A final class can have instances.

e. A final class can be extended.

f. A final method can be overridden.

Point
Key

Point
Check

KEY TERMS

actual type 426
casting objects 429
constructor chaining 419
declared type 426
dynamic binding 426
inheritance 412
instanceof 430
is-a relationship 412
method overriding 421
multiple inheritance 418

override 421
polymorphism 425
protected 442
single inheritance 418
subclass 412
subtype 412
superclass 412
supertype 412
type inference 435

M11_LIAN9966_12_SE_C11.indd 445 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

446 Chapter 11 Inheritance and Polymorphism

CHAPTER SUMMARY

1. You can define a new class from an existing class. This is known as class inheritance.
The new class is called a subclass, child class, or extended class. The existing class is
called a superclass, parent class, or base class.

2. A constructor is used to construct an instance of a class. Unlike properties and methods,
the constructors of a superclass are not inherited in the subclass. They can be invoked
only from the constructors of the subclasses, using the keyword super.

3. A constructor may invoke an overloaded constructor or its superclass’s constructor. The
call must be the first statement in the constructor. If none of them is invoked explicitly,
the compiler puts super() as the first statement in the constructor, which invokes the
superclass’s no-arg constructor.

4. To override a method, the method must be defined in the subclass using the same sig-
nature and the same or compatible return type as in its superclass.

5. An instance method can be overridden only if it is accessible. Thus, a private method can-
not be overridden because it is not accessible outside its own class. If a method defined
in a subclass is private in its superclass, the two methods are completely unrelated.

6. Like an instance method, a static method can be inherited. However, a static method can-
not be overridden. If a static method defined in the superclass is redefined in a subclass,
the method defined in the superclass is hidden.

7. Every class in Java is descended from the java.lang.Object class. If no superclass
is specified when a class is defined, its superclass is Object.

8. If a method’s parameter type is a superclass (e.g., Object), you may pass an object
to this method of any of the parameter’s subclasses (e.g., Circle or String). This is
known as polymorphism.

9. It is always possible to cast an instance of a subclass to a variable of a superclass because
an instance of a subclass is always an instance of its superclass. When casting an instance
of a superclass to a variable of its subclass, explicit casting must be used to confirm your
intention to the compiler with the (SubclassName) cast notation.

10. A class defines a type. A type defined by a subclass is called a subtype, and a type defined
by its superclass is called a supertype.

11. When invoking an instance method from a reference variable, the actual type of the
variable decides which implementation of the method is used at runtime. This is known
as dynamic binding.

12. You can use obj instanceof AClass to test whether an object is an instance of a class.

13. You can use the ArrayList class to create an object to store a list of objects.

14. You can use the protected modifier to prevent the data and methods from being
accessed by nonsubclasses from a different package.

15. You can use the final modifier to indicate a class is final and cannot be extended and
to indicate a method is final and cannot be overridden.

M11_LIAN9966_12_SE_C11.indd 446 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

Programming Exercises 447

QUIZ

Answer the quiz for this chapter online at the book Companion Website.

PROGRAMMING EXERCISES

Sections 11.2–11.4
 11.1 (The Triangle class) Design a class named Triangle that extends

 GeometricObject. The class contains:

 ■ Three double data fields named side1, side2, and side3 with default val-
ues 1.0 to denote three sides of a triangle.

 ■ A no-arg constructor that creates a default triangle.
 ■ A constructor that creates a triangle with the specified side1, side2, and side3.
 ■ The accessor methods for all three data fields.
 ■ A method named getArea() that returns the area of this triangle.
 ■ A method named getPerimeter() that returns the perimeter of this triangle.
 ■ A method named toString() that returns a string description for the triangle.

For the formula to compute the area of a triangle, see Programming Exercise 2.19.
The toString() method is implemented as follows:

return "Triangle: side1 = " + side1 + " side2 = " + side2 +
 " side3 = " + side3;

Draw the UML diagrams for the classes Triangle and GeometricObject and
implement the classes. Write a test program that prompts the user to enter three
sides of the triangle, a color, and a Boolean value to indicate whether the triangle
is filled. The program should create a Triangle object with these sides and set
the color and filled properties using the input. The program should display
the area, perimeter, color, and true or false to indicate whether it is filled or not.

Sections 11.5–11.14
 11.2 (The Person, Student, Employee, Faculty, and Staff classes) Design a class

named Person and its two subclasses named Student and Employee. Make
Faculty and Staff subclasses of Employee. A person has a name, address,
phone number, and e-mail address. A student has a class status (freshman, soph-
omore, junior, or senior). Define the status as a constant. An employee has an
office, salary, and date hired. Use the MyDate class defined in Programming
Exercise 10.14 to create an object for date hired. A faculty member has office
hours and a rank. A staff member has a title. Override the toString method in
each class to display the class name and the person’s name.

Draw the UML diagram for the classes and implement them. Write a test program
that creates a Person, Student, Employee, Faculty, and Staff, and invokes
their toString() methods.

 11.3 (Subclasses of Account) In Programming Exercise 9.7, the Account class was
defined to model a bank account. An account has the properties account number,
balance, annual interest rate, and date created, and methods to deposit and with-
draw funds. Create two subclasses for checking and saving accounts. A checking
account has an overdraft limit, but a savings account cannot be overdrawn.

Draw the UML diagram for the classes and implement them. Write a test program
that creates objects of Account, SavingsAccount, and CheckingAccount and
invokes their toString() methods.

M11_LIAN9966_12_SE_C11.indd 447 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

448 Chapter 11 Inheritance and Polymorphism

 11.4 (Maximum element in ArrayList) Write the following method that returns the
maximum value in an ArrayList of integers. The method returns null if the
list is null or the list size is 0.

public static Integer max(ArrayList<Integer> list)

Write a test program that prompts the user to enter a sequence of numbers ending
with 0 and invokes this method to return the largest number in the input.

 11.5 (The Course class) Rewrite the Course class in Listing 10.6. Use an ArrayList
to replace an array to store students. Draw the new UML diagram for the class.
You should not change the original contract of the Course class (i.e., the defi-
nition of the constructors and methods should not be changed, but the private
members may be changed.)

 11.6 (Use ArrayList) Write a program that creates an ArrayList and adds a Loan
object, a Date object, a string, and a Circle object to the list, and use a loop to
display all the elements in the list by invoking the object’s toString() method.

 11.7 (Shuffle ArrayList) Write the following method that shuffles the elements in
an ArrayList of integers:

public static void shuffle(ArrayList<Integer> list)

 **11.8 (New Account class) An Account class was specified in Programming Exercise 9.7.
Design a new Account class as follows:

 ■ Add a new data field name of the String type to store the name of the
customer.

 ■ Add a new constructor that constructs an account with the specified name, id,
and balance.

 ■ Add a new data field named transactions whose type is ArrayList that
stores the transaction for the accounts. Each transaction is an instance of the
Transaction class, which is defined as shown in Figure 11.6.

VideoNote

New Account class

FIGURE 11.6 The Transaction class describes a transaction for a bank account.

Transaction

The methods for these data

diagram for brevity.
fields are provided in the class, but omitted in the UML

The date of this transaction.

The type of the transaction, such as "W" for withdrawal,
 "D" for deposit.

The amount of the transaction.

The new balance after this transaction.

Construct a Transaction with the specified date, type,
 balance, and description.

The description of this transaction.

+Transaction(type: char,
 amount: double, balance:
 double, description: String)

-date: java.util.Date

-type: char

-amount: double

-balance: double

-description: String

setget and

 ■ Modify the withdraw and deposit methods to add a transaction to the
transactions array list.

 ■ All other properties and methods are the same as in Programming Exercise 9.7.

M11_LIAN9966_12_SE_C11.indd 448 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

Programming Exercises 449

Write a test program that creates an Account with annual interest rate 1.5%,
balance 1000, id 1122, and name George. Deposit $30, $40, and $50 to the
account and withdraw $5, $4, and $2 from the account. Print an account summary
that shows the account holder name, interest rate, balance, and all transactions.

 *11.9 (Largest rows and columns) Write a program that randomly fills in 0s and 1s
into an n-by-n matrix, prints the matrix, and finds the rows and columns with the
most 1s. (Hint: Use two ArrayLists to store the row and column indices with
the most 1s.) Here is a sample run of the program:

Enter the array size n: 4

The random array is

0011

0011

1101

1010

The largest row index: 2

The largest column index: 2, 3

 11.10 (Implement MyStack using inheritance) In Listing 11.10, MyStack
is implemented using composition. Define a new stack class that extends
ArrayList.

Draw the UML diagram for the classes then implement MyStack. Write a test pro-
gram that prompts the user to enter five strings and displays them in reverse order.

 11.11 (Sort ArrayList) Write the following method that sorts an ArrayList of numbers:

public static void sort(ArrayList<Integer> list)

Write a test program that prompts the user to enter five numbers, stores them in
an array list, and displays them in increasing order.

 11.12 (Sum ArrayList) Write the following method that returns the sum of all num-
bers in an ArrayList:

public static double sum(ArrayList<Double> list)

Write a test program that prompts the user to enter five numbers, stores them in
an array list, and displays their sum.

 *11.13 (Remove duplicates) Write a method that removes the duplicate elements from
an array list of integers using the following header:

public static void removeDuplicate(ArrayList<Integer> list)

Write a test program that prompts the user to enter 10 integers to a list and dis-
plays the distinct integers in their input order and separated by exactly one space.
Here is a sample run:

Enter 10 integers: 34 5 3 5 6 4 33 2 2 4

The distinct integers are 34 5 3 6 4 33 2

 11.14 (Combine two lists) Write a method that returns the union of two array lists of
integers using the following header:

public static ArrayList<Integer> union(
 ArrayList<Integer> list1, ArrayList<Integer> list2)

M11_LIAN9966_12_SE_C11.indd 449 16/09/19 6:52 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

450 Chapter 11 Inheritance and Polymorphism

For example, the addition of two array lists {2, 3, 1, 5} and {3, 4, 6} is
{2, 3, 1, 5, 3, 4, 6}. Write a test program that prompts the user to enter two lists,
each with five integers, and displays their union. The numbers are separated by
exactly one space. Here is a sample run:

Enter five integers for list1: 3 5 45 4 3

Enter five integers for list2: 33 51 5 4 13

The combined list is 3 5 45 4 3 33 51 5 4 13

 *11.15 (Area of a convex polygon) A polygon is convex if it contains any line segments
that connects two points of the polygon. Write a program that prompts the user
to enter the number of points in a convex polygon, enter the points clockwise,
then displays the area of the polygon. For the formula for computing the area of
a polygon, see http://www.mathwords.com/a/area_convex_polygon.htm. Here is
a sample run of the program:

Enter the number of points: 7

Enter the coordinates of the points:
 −12 0 −8.5 10 0 11.4 5.5 7.8 6 -5.5 0 −7 −3.5 −5.5

The total area is 244.57

 **11.16 (Addition quiz) Rewrite Listing 5.1, RepeatAdditionQuiz.java, to alert the user
if an answer is entered again. (Hint: use an array list to store answers.) Here is a
sample run of the program:

What is 5 + 9? 12
Wrong answer. Try again. What is 5 + 9? 34
Wrong answer. Try again. What is 5 + 9? 12
You already entered 12
Wrong answer. Try again. What is 5 + 9? 14
You got it!

 **11.17 (Algebra: perfect square) Write a program that prompts the user to enter an inte-
ger m and find the smallest integer n such that m * n is a perfect square. (Hint:
Store all smallest factors of m into an array list. n is the product of the factors that
appear an odd number of times in the array list. For example, consider m = 90,
store the factors 2, 3, 3, and 5 in an array list. 2 and 5 appear an odd number of
times in the array list. Thus, n is 10.) Here is a sample run of the program:

Enter an integer m: 1500

The smallest number n for m * n to be a perfect square is 15

m * n is 22500

Enter an integer m: 63

The smallest number n for m * n to be a perfect square is 7

m * n is 441

M11_LIAN9966_12_SE_C11.indd 450 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 451

 **11.18 (ArrayList of Character) Write a method that returns an array list of Character
from a string using the following header:

public static ArrayList<Character> toCharacterArray(String s)

For example, toCharacterArray("abc") returns an array list that contains
characters 'a', 'b', and 'c'.

 **11.19 (Bin packing using first fit) The bin packing problem is to pack the objects of var-
ious weights into containers. Assume each container can hold a maximum of 10
pounds. The program uses an algorithm that places an object into the first bin in
which it would fit. Your program should prompt the user to enter the total number
of objects and the weight of each object. The program displays the total number
of containers needed to pack the objects and the contents of each container. Here
is a sample run of the program:

 Does this program produce an optimal solution, that is, finding the minimum
number of containers to pack the objects?

Enter the number of objects: 6

Enter the weights of the objects: 7 5 2 3 5 8

Container 1 contains objects with weight 7 2

Container 2 contains objects with weight 5 3

Container 3 contains objects with weight 5

Container 4 contains objects with weight 8

M11_LIAN9966_12_SE_C11.indd 451 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

M11_LIAN9966_12_SE_C11.indd 452 16/09/19 6:52 PM

STUDENTS-HUB.com

https://students-hub.com

