# COMP4388: MACHINE LEARNING

Feature Scaling

Dr. Radi Jarrar Department of Computer Science Birzeit University



#### Dr. Radi Jarrar – Birzeit University, 2019

### Feature Scaling

- Quantitative data is a measure of something: salaries, number of students, number of items, ...
- In machine learning applications, datasets are usually of multiple variables of different scales
- Feature scaling ensures that all features are on the same scale (so that they contribute equally to the distance formula)

### Feature Scaling

- This is important for learner that uses distance measure between data points
- Gradient Descent converges much faster with scaled features

#### Dr. Radi Jarrar – Birzeit University, 2019

### Feature Scaling (2)

- The aim is to get features into the range  $-1 \le x_i \le 1$
- •Scaling features means to make all features on the same scale. E.g., if one feature is on the scale 1-10 and another 1,000-10,000; then scaling the features will result in having the second feature on the scale of 1-10 as well

#### Dr. Radi Jarrar - Birzeit University, 2019 Example Price(Y) Area Nr. of • It can be well-noticed that Dis. to $(m^2)$ CC Roads the scale of $x_2$ is much X, **X**<sub>2</sub> X<sub>3</sub> higher than $x_3$ 600 40000 3000 2 650 50000 1500 2 • Scaling these features is 60000 800 2500 3 ultimately required 100000 1000 100 2 35000 600 5000 1

#### Dr. Radi Jarrar – Birzeit University, 2019

## Min-Max scaling

• Min-Max scaling transforms the features so they become in a specific range (i.e., [0, 1])

$$X_{new} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

- It indicates how far (from 0 to 100 percent) the original value fell along between the original min and max values
- The min value becomes zero, the max becomes 1, and all other features become between them. Example?
- Issues: doesn't handle outliers very well

## Min-Max scaling (2)

- Issues: doesn't handle outliers very well
- E.g., if you have 99 values between 0 & 50, and one value = 100, then 99 will be transformed to a value between 0 0.5
- Accordingly, most of the transformed data is in the range 0.0 0.5

| Example – Mi                                                  |                                        |  |  |
|---------------------------------------------------------------|----------------------------------------|--|--|
| Example – Min-Max                                             |                                        |  |  |
| Price(Y) Area Dis<br>(m²) CC<br>x <sub>1</sub> x <sub>2</sub> | . to Nr. of<br>Roads<br>x <sub>3</sub> |  |  |
| 10000 o 0.59                                                  | 1837 0.5                               |  |  |
| 0.125 0.28                                                    | 5714 0.5                               |  |  |
| 60000 0.5 0.48                                                | 97961                                  |  |  |
| 00000 1 0                                                     | 0.5                                    |  |  |
| 35000 0 1                                                     | о                                      |  |  |

### Standardisation (Z-score normalisation)

- Normalises the data using z-score
- Transforms the data such that the resulting distribution will have a mean of zero and standard deviation of 1
- $x_{new} = \frac{x_i \bar{x}}{s}$ where  $\bar{x}$  is the mean and s is the standard

and s is the standard deviation



Dr. Radi Jarrar – Birzeit University, 2019

## Standardisation (2)

- The transformed feature represents the number of standard deviations the original value is away from the features mean value (i.e., z-score in statistics)
- What if the original feature equal zero?
- This method normalises data and avoids outliers issue
- A problem with z-score: the transformed features are not on the same scale unlike min-max

10

### Standardisation (3)

- Z-score doesn't change the shape of data (normally distributed always?
- Used in PCA, Logistic Regression, SVM, and ANN

|                     |                                       |                | Γ      |  |
|---------------------|---------------------------------------|----------------|--------|--|
| lyamr               | ole – z                               | -score         | norm   |  |
| Lample Z-Score norm |                                       |                |        |  |
| Price(Y)            | Area                                  | Dis. to        | Nr. of |  |
|                     | (III <sup>-</sup> )<br>X <sub>1</sub> | X <sub>2</sub> | XJ     |  |
| 40000               | -0.325                                | 0.118367       | 0      |  |
| 50000               | -0.2                                  | -0.18776       | 0      |  |
| 60000               | 0.175                                 | 0.016327       | 0.5    |  |
| 100000              | 0.675                                 | -0.47347       | 0      |  |
| 25000               | -0.325                                | 0.526531       | -0.5   |  |