1

BIRZEIT UNIVERSITY

EIR il

BIRZEIT UNIVERSITY

Trees_ 3

AVL Trees

MpP MdEXaNjorrd & DEAAmad Abusnaina COMPAZE0AfITS! By, ap

BIRZEIT UNIVERSITY

AVL Trees

Introduction

What is an AVL Tree?

AVL Tree Implementation.

Why AVL Trees?

Rotations.

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

What is an AVL Tree? ===

* An AVL (Adel’son, Vel’skii, & Lands) tree is a binary search tree with a
height balance property:

For each node v, the heights of the subtrees of v differ by at most 1.
* A subtree of an AVL tree is also an AVL tree.

* An AVL node can have a balance factor of -1, O, or +1.

Mp M Njoum@FprOARmad Abusnaina

Why AVL Trees?

* Insertion or deletion in an ordinary Binary Search Tree can cause
large imbalances.

* |In the worst case searching an imbalanced Binary Search Tree is
O(n).

* An AVL tree is rebalanced after each insertion or deletion.

The height-balance property ensures that the height of an AVL
tree with n nodes is O(log n).

Searching, insertion, and deletion are all O(log n).

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

s T e
- - M .
BIRZEIT UNIVERSITY

What is a Rotation?

* A rotation is a process of switching children and parents among
two or three adjacent nodes to restore balance to a tree.

* An insertion or deletion may cause an imbalance in an AVL tree.

* The deepest node, which is an ancestor of a deleted or an inserted
node, and whose balance factor has changed to -2 or +2 requires
rotation to rebalance the tree.

0 Deepest unbalanced node
Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

e B g

BIRZEIT UNIVERSITY

Single Rotation

* There are two kinds of single rotation:
Right Rotation. Left Rotation.

N\ N

balance factor; 2

balance factor:2

Mp M Njoum@FprOARmad Abusnaina

1

BIRZEIT UNIVERSITY

Double Rotation

* A double right-left :rotation is a right rotation followed by a left rotation.
A double left-right :rotation is a left rotation followed by a right rotation.

o balance factor: 2
A

@ balance factor:-1 G balance factor: 1 0
palance factor: 0 0
G 0 balance factor: 0

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

balance factor: 2

Thls node becomes imbalanced
after inserting node-3

LL Rotation
(Rotate Anticlockwise)

Insertion Order:1,2,3

Tree is Imbalanced

(=

Insertion Order: 3,1, 2

Thee A MibNahead U B-com

ThIS node becomes imbalanced
after inserting node-2

LR Rotation

(LL + RR Rotation)

This node becomes imbalanced
after inserting node-1

RR Rotation

(Rotate clockwise)

=%

Tree is Balanced

Tree is Balanced

Insertion Order: 3,2, 1

Tree is Imhalanced

This node becomes imbalanced
after inserting node-2

RL Rotation

RR +LL Rotation

0

Tree is Balanced

Tree is Balanced

Insertion Order:1,3,2

Tree is Imbalanced Uploaded By: anonymous

" - H = gl
BIRZEIT UNIVERSITY

Single Right Rotation

 Single right rotation:
The left child x of a node y becomes y's parent.
y becomes the right child of x.
The right child T, of x, if any, becomes the left child of y.

deepest unbalanced node
a right rotation of x about y
— y

Note: The pivot of the rotation is the deepest unbalanced node
Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

Single Left Rotation =~ ==

* Single left rotation:
The right child y of a node x becomes x's parent.
x becomes the left child of y.
The left child T, of y, if any, becomes the right child of x.

deepest unbalanced node

Note: The pivot of the rotation is the deepest unbalanced

node
Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

BIRZEIT UNIVERSITY

BST ordering property

* A rotation does not affect the ordering property of a BST.

BST ordering property requirement: BST ordering property require
Ti<x<y Ti<x<y
X<T,<y Similar X<T,<y
X<y<T, X<y<T,

« Similarly for a left rotation.

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

1

BIRZEIT UNIVERSITY

Double Right-Left Rotation
right rotation of y about f\ Q

4otation of Y

about X

Note: First pivot is the
right child of the
deepest unbalanced
node;

second pivot is the
deepest unbalanced
node

T
Mp M Njoum'€FprOARmad Abusnaina

1

BIRZEIT UNIVERSITY

Double Left-Right Rotation

° <+— deepest unbalanced node

left rotation of W
about X

Note: First pivot is
the left child of the

deepest
unbalanced node;

second pivot is the
deepest
unbalanced node

T
Mp M Njoum'€FprOARmad Abusnaina

AVL Search Trees

* |Inserting in an AVL tree
* Insertion implementation

* Deleting from an AVL tree

Mp M Njoum@FprOARmad Abusnaina

Insertion

* Insert using a BST insertion algorithm.
* Rebalance the tree if an imbalance occurs.

* Animbalance occurs if a node's balance factor changes from-1to -2 o
from+1 to +2.

* Rebalancing is done at the deepest unbalanced ancestor of the inserte
node.

* There are three insertion cases:
Insertion that does not cause an imbalance.

Same side (left-left or right-right) insertion that causes an imbalance.

* Requires a single rotation to rebalance.

Opposite side (left-right or right-left) insertion that causes an imbalance.

* Requires a double rotation to rebalance.

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

BIRZEIT UNIVERSITY

Insertion: case 1

* Example: An insertion that does not cause an imbalance.

Insert 14

Mp M Njoum@FprOARmad Abusnaina

H = T
IRZEIT UNIVERSITY

Insertion: case 2

* Case 2a: The lowest node (with a balance factor of -2) had a

taller and the insertion was on the of
its left child.

* Requires single right rotation to rebalance.

+2

ol
)

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

Rotating Right, node with value
10 as pivot

0
M§W@ENTS-H;B.com Uploaded By: anony

o5 2 o
[nsertion: case 2 (contd ===

* Case 2b: The lowest node (with a balance factor of +2) had a talle

and the insertion was on the of its righ
child.

* Requires single left rotation to rebalance.

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

Example &

-1
A () ()
oo

-2 0

Left rotate, node with value 30

Taken as pivot
> oi \ .‘@-1
0 0
H 0

Mp M Wi sum&Eprom Uploaded By: anonymou

: o By
Insertion: case 3 v

* Case 3a: The lowest node (with a balance factor of -2) had a taller

and the insertion was on the of its left
child.

* Requires a double left-right rotation to rebalance.

LS~
O

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

1

BIRZEIT UNIVERSITY

Insert node 7

Left rotation,
5 as pivot

Right rotation,

dO as pivot

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

o5 2
[nsertion: case 3 (contd ===

* Case 3b: The lowest node (with a balance factor of +2) had a

taller and the insertion was on the of
its right child.

* Requires a double right-left rotation to rebalance.

!

AN

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

BIRZEIT UNIVERSITY

Right Rotation, 16
as pivot

Left Rotation, 9

< as pivot

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

cipn B g

AVL Rotation Summary
|

+ + 2
2 2
+ -1 +1
1
Single right Double left- Single left Double right-lef
rotation right rotation rotation
rotation

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

- H = gl
BIRZEIT UNIVERSITY

Exercise: Insert into an initially empty AVL tree each of the following keys, in the
order in which they appear in the sequence: 0, 25, 19, 5, -2, 28, 13, -5, 2,6, 14, 7

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

H

D el etl on BIRZEIT UNIVERSITY

* Delete by a BST deletion by copying algorithm.
* Rebalance the tree if an imbalance occurs.

* There are three deletion cases:
Deletion that does not cause an imbalance.

Deletion that requires a single rotation to rebalance.
Deletion that requires two or more rotations to rebalance.

* Deletion case 1 example:

Mp M Njoum@FprOARmad Abusnaina wumbPloaded By, apqn

Deletion' case 2 examples ="

+1‘c

Delete 40

Mp M Njoum@FprOARmad Abusnaina

Deletion: case 2 examples

)
i

555 & F

3 - M .
BIRZEIT UNIVERSITY
Case right rotation, with node 35

/N

Deletion:

Delete 40

Mp M Njoum@FprOARmad Abusnaina

- H = T
IRZEIT UNIVERSITY

Deletion- In Depth- More
Examples

1 2 1
Deleting Node from Performing RO /
Right Sub-tree of A Rotation B
1
T3 (l-:- ?'1) T1 / A
(h " (h)
il T2 T1 {2
{2 E!
h h h h
(0 (h) () ()))
AVL Tree Non AVL Tree RO Rotated Tree

Mp M Njoum@FprOARmad Abusnaina COMPP32a(B 5 Bk, RRAN

Exam P le 1 BIRZEIT UNIVERSITY

2
/f\\CrltlcaI Node

\20|

Performing RO
rotation

w

AVL Tree Non AVL Tree RO Rotated Tree

Mp MdfeN TS-HUB.com Uploaded By: anog

H

BIRZEIT UNIVERSITY

1 2 0
Deleting Node from Performing R1
A Right Sub-tree of A Rotation B
3
0
B T3
m ") {nﬁ :
X
1l T2 1l T2
T2 T3
(h] (h']-] (h] (h']-] (h-l] [h-l]
AVL Tree Non AVL Tree R1 Rotated Tree

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

Exam pIe 2 BIRZEIT UNIVERSITY

AVL Tree
1 2 0
Node A Critical Node . Node A Node B
50
Performing R1
1 Deleting Node 55 rotation Node A
60 4 | Node Q — 50 |0
0
@
Node to be deleted
(X)
AVL Tree Non AVL Tree R1 Rotated Tree

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

- H

BIRZEIT UNIVERSITY

1 2 0

Deleting Node from Performing R-1

Right Sub-tree of A Rotation C
-1 0 0
B T4 T4 B A

X
Tl Tl T T2 T3 T4
(h-1) (h-1) (h-1) (h-1) (h-1) (h-1)
T2 T3 T2 T3
(h-1) (h-1) (h-1) (h-1)
AVL Tree Non AVL Tree R-1 Rotated Tree

Mp M Njoum@FprOARmad Abusnaina COMPP32a(B 5 Bk, RRAN

BIRZEIT UNIVERSITY

Example 3
1 2
Node A Critical Node . Node A
50
_ Performing R-1
Node B y Deleting Node 60 rotation
Node to be deleted Node B Node A
(X)
Node C Node C
AVL Tree Non AVL Tree R-1 Rotated Tree

M MAPRMNI S-HUB.com Uploaded By: anon:

BIRZEIT UNIVERSITY
Exercise (Previous Built AVL-Tree) :

A- Delete node 2

B- Delete root

C- Delete node 7, then 2 (Try it at home)

Mp M Njoum@FprOARmad Abusnaina COMPP32a(B 5 Bk, RRAN

struct Node int getBalanceFacteEsirickh

BIRZEIT UNIVER‘SIT‘E

{ int key; *N)

struct Node *left; {

struct Node *right; If (N ==NULL)

int height; return O;
I return height(N->left) - height
int max(int a, int b); >right);
int height(struct Node *N) }
{ 1f (N==NULL)

return O;

return N->height;}
int max(int a, int b)

{
return (a>b)? a: b; struct Node* newNode(int ke
} {
struct Node* node = (struct
struct Node * minValueNode(struct Node* Node*)
?Ode) malloc(sizeof(struct
struct Node* current = node; Node));
node->key = key;
while (current->left = NULL) node->left = NULL;
current = current->left; node->right = NULL:
return current; node->height = 0;
M BRI SuHEDF R mad Abusnaina retrn(nodekmoarss ot s

struct Node *rightRotate(struct Node *y) e Tave
{
struct Node *x = y->left; .
struct Node *T2 = x->right: {struct Node *leftRotate(struct
: struct Node *y = x->right;
X->right = y; *TD — v :
y->left = T2 struct Node *T2 = y->left;
y->height = max(height(y->left), height(y- ;’zfﬂht: .
>right))+1: J ’
.x->height = max(height(x->left), height(x- x->height = max(height(x->le
>nght)+1; y->height = max(height(y->le
return X;
! returny;
} \ g

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

struct Node* insertNode(struct
Node* node, int key)
{
If (node == NULL)
return(newNode(key));

If (key < node->key)
node->left = insertNode(node-
>left, key);
else if (key > node->key)
node->right =
insertNode(node->right, key);
else
return node;

node->height = 1 +
max(height(node->left),
height(node-
>right));

int balance =
getBalanceFactor(node);

M@Mﬁ%&ﬁﬁjﬁl%@mqu Abusnaina

// Right Right Case

con B g
H
BIRZEIT UNIVERSITY

If (balance < -1 && key >
return leftRotate(node)

// Left Right Case
If (balance > 1 && key > n

{

node->left = |leftRotate(
return rightRotate(nod

}

// Right Left Case
If (balance < -1 && key <

{
node->right = rightRota

return leftRotate(node)

}

return node;

COMPP32a456- B, RS

truct Node* deleteNode(struct Node* ‘BIRZEIT UNIVERSITY
root, int key)
: if (root == NULL) else _
return root: { struct Node* temp = minValueN
root->key = temp->key;
if (key < root->key) root->right = deleteNode(root->rig
root->left = deleteNode(root->left, }
key); }
else if(key > root->key)
>righ:’ol(<);-y>)€|ght = deleteNode(root- if (root == NULL)
alse return root;
{ // STEP 2: UPDATE HEIGHT OF THE CU
if((root->left == NULL) || (root- root->height = max(height(root->left), h
>right == NULL))
{ [l STEP 3: GET THE BALANCE FACT
struct Node *temp = root->left ? // this node became unbalanced)
root->left : ootoright int balance = getBalanceFactor(root);
!{f (temp == NULL) /I If this node becomes unbalanced, the
temp = root: /I Left Left Case
root = NULL; }
else

*root = *temp;

Mp M Njoum€FprOoARmad Abusnaina coMPP32a4i56: A, RRQR

H
BIRZEIT UNIVERSITY

If (balance > 1 && getBalanceFactor(root->left) >= 0)
return rightRotate(root);

// Left Right Case
iIf (balance > 1 && getBalanceFactor(root->left) < 0)

{

root->left = leftRotate(root->left);
return rightRotate(root);

}

// Right Right Case
If (balance < -1 && getBalanceFactor(root->right) <= 0)
return leftRotate(root);

// Right Left Case
If (balance < -1 && getBalanceFactor(root->right) > 0)

{
root->right = rightRotate(root->right);

return leftRotate(root);

}

return root;

}
Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

Exercise

* Rewrite the above codes for delete nodes from tree.

* Insert the following Number in AVL tree
{20,50,30,15,3,45,17,25,12,11,7,19,14,2}
Then Delete Number {45,20,15,25}
Show your works after each step (Check Balance)

Mp M Njoum@FprOARmad Abusnaina

BIRZEIT UNIVERSITY

THANK YOU

O
(©
L S
>
e
@)
o+
(®]
-}
S
)
(%)
C

Mp M Njoum@FprOARmad Abusnaina coMPP32a4i56: A, RRQR

