
Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: AVL Trees

Trees_3

AVL Trees

Faculty of Engineering and Tecnology

Computer Science Department

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

AVL Trees

• Introduction

• What is an AVL Tree?

• AVL Tree Implementation.

• Why AVL Trees?

• Rotations.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

What is an AVL Tree?
• An AVL (Adel’son, Vel’skii, & Lands) tree is a binary search tree with a

height balance property:

• For each node v, the heights of the subtrees of v differ by at most 1.

• A subtree of an AVL tree is also an AVL tree.

• An AVL node can have a balance factor of -1, 0, or +1.

3

1

2

4

10

13

7 -1

1

00

0

1

-1

AVL

Tree

3

1

2

10

13

7 -1

1

0

0

1

-2

Not an AVL Tree

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Why AVL Trees?
• Insertion or deletion in an ordinary Binary Search Tree can cause

large imbalances.

• In the worst case searching an imbalanced Binary Search Tree is
O(n).

• An AVL tree is rebalanced after each insertion or deletion.

• The height-balance property ensures that the height of an AVL
tree with n nodes is O(log n).

• Searching, insertion, and deletion are all O(log n).

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

What is a Rotation?
• A rotation is a process of switching children and parents among

two or three adjacent nodes to restore balance to a tree.

• An insertion or deletion may cause an imbalance in an AVL tree.

• The deepest node, which is an ancestor of a deleted or an inserted
node, and whose balance factor has changed to -2 or +2 requires
rotation to rebalance the tree.

45

40

78

50 -1

0

-1 0 45

40

78

50-2

1

-2 0

35
0

Insert 35

Deepest unbalanced node
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

• There are two kinds of single rotation:

Right Rotation. Left Rotation.

Single Rotation

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

• A double right-left :rotation is a right rotation followed by a left rotation.
• A double left-right :rotation is a left rotation followed by a right rotation.

Double Rotation

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL TreesUploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Single Right Rotation
• Single right rotation:

• The left child x of a node y becomes y's parent.

• y becomes the right child of x.

• The right child T2 of x, if any, becomes the left child of y.

x

T1 T2

y

T3

deepest unbalanced node

a right rotation of x about y

y

T3T2

x

T1

Note: The pivot of the rotation is the deepest unbalanced node

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Single Left Rotation
• Single left rotation:

• The right child y of a node x becomes x's parent.

• x becomes the left child of y.

• The left child T2 of y, if any, becomes the right child of x.

y

T3T2

x

T1

deepest unbalanced node

a left rotation of y about x

x

T1 T2

y

T3

Note: The pivot of the rotation is the deepest unbalanced

node
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

BST ordering property
• A rotation does not affect the ordering property of a BST.

y

T3T2

x

T1

x

T1 T2

y

T3

a right rotation of x about y

BST ordering property requirement: BST ordering property requirement:

T1 < x < y T1 < x < y

x < T2 < y Similar x < T2 < y

x < y < T3 x < y < T3

• Similarly for a left rotation.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Double Right-Left Rotation

z

T4T3

y

T2

x

T1
y

T3T2

z

T4

x

T1

z

T4T3

x

T1

y

T2

right rotation of y about

z

deepest unbalanced

left rotation of Y

about X
Note: First pivot is the

right child of the

deepest unbalanced

node;

second pivot is the

deepest unbalanced

node

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Double Left-Right Rotation

w

T2 T3

v

T1

x

T4
v

T1 T2

w

T3

x

T4

x

T4T3

v

T1

w

T2

left rotation of w about v

deepest unbalanced node

left rotation of W

about X

Note: First pivot is

the left child of the

deepest

unbalanced node;

second pivot is the

deepest

unbalanced node

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

AVL Search Trees
• Inserting in an AVL tree

• Insertion implementation

• Deleting from an AVL tree

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Insertion
• Insert using a BST insertion algorithm.

• Rebalance the tree if an imbalance occurs.

• An imbalance occurs if a node's balance factor changes from -1 to -2 or
from+1 to +2.

• Rebalancing is done at the deepest unbalanced ancestor of the inserted
node.

• There are three insertion cases:

1. Insertion that does not cause an imbalance.

2. Same side (left-left or right-right) insertion that causes an imbalance.

• Requires a single rotation to rebalance.

3. Opposite side (left-right or right-left) insertion that causes an imbalance.

• Requires a double rotation to rebalance.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Insertion: case 1
• Example: An insertion that does not cause an imbalance.

Insert 14

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Insertion: case 2
• Case 2a: The lowest node (with a balance factor of -2) had a

taller left-subtree and the insertion was on the left-subtree of
its left child.

• Requires single right rotation to rebalance.

+2

+1

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL TreesUploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Insertion: case 2 (contd)
• Case 2b: The lowest node (with a balance factor of +2) had a taller

right-subtree and the insertion was on the right-subtree of its right
child.

• Requires single left rotation to rebalance.

-2

-1

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Example

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Insertion: case 3
• Case 3a: The lowest node (with a balance factor of -2) had a taller

left-subtree and the insertion was on the right-subtree of its left
child.

• Requires a double left-right rotation to rebalance.

+2

-1

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL TreesUploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Insertion: case 3 (contd)
• Case 3b: The lowest node (with a balance factor of +2) had a

taller right-subtree and the insertion was on the left-subtree of
its right child.

• Requires a double right-left rotation to rebalance.

-2

+1

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Example

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

AVL Rotation Summary

+1

+

2

-1

+

2

+

1

-1

-2-2

Single right

rotation

Double left-

right

rotation

Single left

rotation

Double right-left

rotation

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Exercise: Insert into an initially empty AVL tree each of the following keys, in the
order in which they appear in the sequence: 0, 25, 19, 5, -2, 28, 13, -5, 2, 6, 14, 7.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Deletion
• Delete by a BST deletion by copying algorithm.

• Rebalance the tree if an imbalance occurs.

• There are three deletion cases:

1. Deletion that does not cause an imbalance.

2. Deletion that requires a single rotation to rebalance.

3. Deletion that requires two or more rotations to rebalance.

• Deletion case 1 example:

Delete 7

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Deletion: case 2 examples

Delete 40

right rotation, with node 35 as the pivot

30

35

4032

31

5

1

-1

+1

0

+1

0
+1

0

30

35

32

31

5

1

-1

+1

0

+2

+1

0

30

32

3531

5

1

0

+1

0

0

0
0

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Deletion: case 2 examples

Delete 32

left rotation, with node 44 as the

pivot

44

62

7850

48 54 88

17

32

-1

-1

0

0

-10

00 0

44

62

7850

48 54 88

17

-2

0
0

-10

00 0

62

78

8850

48 54

44

17

+1

-1

0

-1

00

00

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Deletion: case 3

Delete 40

right rotation, with node 35

right rotation, with node 30

30

35

40
3210

22
0

20

25

+1

+1

+1

0
+1

031

1

5

1
5

0

+1

+1

+1

0

30

35

3210

22
0

20

25

+1

+1

+2

+1

031

1

5
1
5

0

+1

+1

+1

0

30

32

35
3110

22
0

20

25

+2

+1

0

0
0

1

5

1
5

0

+1

+1

+1

0

30
10

22

0

20

25

0

+1

0

1

5
1
5

0

+1

+1

0

32

35
31

0

0

0

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Deletion- In Depth- More
Examples

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Example 1

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL TreesUploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Example 2

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL TreesUploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Example 3

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Exercise (Previous Built AVL-Tree) :

A- Delete node 2

B- Delete root

C- Delete node 7, then 2 (Try it at home)

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

struct Node

{ int key;

struct Node *left;

struct Node *right;

int height;

};

int max(int a, int b);

int height(struct Node *N)

{ if (N == NULL)

return 0;

return N->height;}

int max(int a, int b)

{

return (a > b)? a : b;

}

struct Node* newNode(int key)

{

struct Node* node = (struct

Node*)

malloc(sizeof(struct

Node));

node->key = key;

node->left = NULL;

node->right = NULL;

node->height = 0;

return(node);

}

int getBalanceFactor(struct Node

*N)

{

if (N == NULL)

return 0;

return height(N->left) - height(N-

>right);

}

struct Node * minValueNode(struct Node*

node)

{

struct Node* current = node;

while (current->left != NULL)

current = current->left;

return current;

} Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

struct Node *rightRotate(struct Node *y)

{

struct Node *x = y->left;

struct Node *T2 = x->right;

x->right = y;

y->left = T2;

y->height = max(height(y->left), height(y-

>right))+1;

x->height = max(height(x->left), height(x-

>right))+1;

return x;

}

struct Node *leftRotate(struct Node *x)

{

struct Node *y = x->right;

struct Node *T2 = y->left;

y->left = x;

x->right = T2;

x->height = max(height(x->left), height(x

y->height = max(height(y->left), height(y

return y;

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

struct Node* insertNode(struct

Node* node, int key)

{

if (node == NULL)

return(newNode(key));

if (key < node->key)

node->left = insertNode(node-

>left, key);

else if (key > node->key)

node->right =

insertNode(node->right, key);

else

return node;

node->height = 1 +

max(height(node->left),

height(node-

>right));

int balance =

getBalanceFactor(node);

// If this node becomes

// Right Right Case

if (balance < -1 && key > node->right

return leftRotate(node);

// Left Right Case

if (balance > 1 && key > node->left

{

node->left = leftRotate(node->left

return rightRotate(node);

}

// Right Left Case

if (balance < -1 && key < node->right

{

node->right = rightRotate(node-

return leftRotate(node);

}

return node;

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

truct Node* deleteNode(struct Node*

root, int key)

{

if (root == NULL)

return root;

if (key < root->key)

root->left = deleteNode(root->left,

key);

else if(key > root->key)

root->right = deleteNode(root-

>right, key);

else

{

if((root->left == NULL) || (root-

>right == NULL))

{

struct Node *temp = root->left ?

root->left :

root->right;

if (temp == NULL)

{

temp = root;

root = NULL; }

else

*root = *temp;

free(temp);

else

{ struct Node* temp = minValueNode(root->

root->key = temp->key;

root->right = deleteNode(root->right, temp->

}

}

if (root == NULL)

return root;

// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE

root->height = max(height(root->left), height(root

// STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether

// this node became unbalanced)

int balance = getBalanceFactor(root);

// If this node becomes unbalanced, then there are

// Left Left Case

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

if (balance > 1 && getBalanceFactor(root->left) >= 0)

return rightRotate(root);

// Left Right Case

if (balance > 1 && getBalanceFactor(root->left) < 0)

{

root->left = leftRotate(root->left);

return rightRotate(root);

}

// Right Right Case

if (balance < -1 && getBalanceFactor(root->right) <= 0)

return leftRotate(root);

// Right Left Case

if (balance < -1 && getBalanceFactor(root->right) > 0)

{

root->right = rightRotate(root->right);

return leftRotate(root);

}

return root;

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

Exercise
• Rewrite the above codes for delete nodes from tree.

• Insert the following Number in AVL tree

{20,50,30,15,3,45,17,25,12,11,7,19,14,2}

Then Delete Number {45,20,15,25}

Show your works after each step (Check Balance)

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:AVL Trees

THANK YOU

In
st

ru
ct

o
r:

 M
u

ra
d

N

jo
u

m

44

Uploaded By: anonymousSTUDENTS-HUB.com

