
Chapter 7: Sorting

7.1

Original 3 1 4 1 5 9 2 6 5__

after PO=2 1 3 4 1 5 9 2 6 5
after PO=3 1 3 4 1 5 9 2 6 5
after PO=4 1 1 3 4 5 9 2 6 5
after PO=5 1 1 3 4 5 9 2 6 5
after PO=6 1 1 3 4 5 9 2 6 5
after PO=7 1 1 2 3 4 5 9 6 5
after PO=8 1 1 2 3 4 5 6 9 5
after PO=9 1 1 2 3 4 5 5 6 9___LL

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L

7.2 OO(NO) because the whileO loop terminates immediately. Of course, accidentally changing the
test to include equalities raises the running time to quadratic for this type of input.

7.3 The inversion that existed between AO[iO] and AO[iO + kO] is removed. This shows at least one
inversion is removed. For each of the kO − 1 elements AO[iO + 1], AO[iO + 2], ..., AO[iO + kO − 1],
at most two inversions can be removed by the exchange. This gives a maximum of
2(kO − 1) + 1 = 2kO − 1.

7.4

Original 9 8 7 6 5 4 3 2 1___

after 7-sort 2 1 7 6 5 4 3 9 8
after 3-sort 2 1 4 3 5 7 6 9 8
after 1-sort 1 2 3 4 5 6 7 8 9___LL

L
L
L
L

L
L
L
L
L

L
L
L
L
L

L
L
L
L
L

LL
L
L
L
L

7.5 (a) Θ(NO2). The 2-sort removes at most only three inversions at a time; hence the algorithm
is Ω(NO2). The 2-sort is two insertion sorts of size NO/ 2, so the cost of that pass is OO(NO2).
The 1-sort is also OO(NO2), so the total is OO(NO2).

7.6 Part (a) is an extension of the theorem proved in the text. Part (b) is fairly complicated; see
reference [11].

7.7 See reference [11].

7.8 Use the input specified in the hint. If the number of inversions is shown to be Ω(NO2), then
the bound follows, since no increments are removed until an htO/ 2 sort. If we consider the
pattern formed hkO through hO2kO−1, where kO = tO/ 2 + 1, we find that it has length
NO = hkO(hkO + 1)−1, and the number of inversions is roughly hkO

4/ 24, which is Ω(NO2).

7.9 (a) OO(NOlog NO). No exchanges, but each pass takes OO(NO).
(b) OO(NOlog NO). It is easy to show that after an hkO sort, no element is farther than hkO from
its rightful position. Thus if the increments satisfy hkO+1 ≤ chkO for a constant cO, which
implies OO(log NO) increments, then the bound is OO(NOlog NO).

-36-

Uploaded By: anonymousSTUDENTS-HUB.com

7.10 (a) No, because it is still possible for consecutive increments to share a common factor. An
example is the sequence 1, 3, 9, 21, 45, htO+1 = 2htO + 3.

(b) Yes, because consecutive increments are relatively prime. The running time becomes
OO(NO3/ 2).

7.11 The input is read in as
142, 543, 123, 65, 453, 879, 572, 434, 111, 242, 811, 102

The result of the heapify is
879, 811, 572, 434, 543, 123, 142, 65, 111, 242, 453, 102

879 is removed from the heap and placed at the end. We’ll place it in italics to signal that it
is not part of the heap. 102 is placed in the hole and bubbled down, obtaining

811, 543, 572, 434, 453, 123, 142, 65, 111, 242, 102, 879
Continuing the process, we obtain

572, 543, 142, 434, 453, 123, 102, 65, 111, 242, 811, 879
543, 453, 142, 434, 242, 123, 102, 65, 111, 572, 811, 879
453, 434, 142, 111, 242, 123, 102, 65, 543, 572, 811, 879
434, 242, 142, 111, 65, 123, 102, 453, 543, 572, 811, 879
242, 111, 142, 102, 65, 123, 434, 453, 543, 572, 811, 879
142, 111, 123, 102, 65, 242, 434, 453, 543, 572, 811, 879
123, 111, 65, 102, 142, 242, 434, 453, 543, 572, 811, 879
111, 102, 65, 123, 142, 242, 434, 453, 543, 572, 811, 879
102, 65, 111, 123, 142, 242, 434, 453, 543, 572, 811, 879
65, 102, 111, 123, 142, 242, 434, 453, 543, 572, 811, 879

7.12 Heapsort uses at least (roughly) NOlog NO comparisons on any input, so there are no particu-
larly good inputs. This bound is tight; see the paper by Schaeffer and Sedgewick [16]. This
result applies for almost all variations of heapsort, which have different rearrangement stra-
tegies. See Y. Ding and M. A. Weiss, "Best Case Lower Bounds for Heapsort," ComputingO
49 (1992).

7.13 First the sequence {3, 1, 4, 1} is sorted. To do this, the sequence {3, 1} is sorted. This
involves sorting {3} and {1}, which are base cases, and merging the result to obtain {1, 3}.
The sequence {4, 1} is likewise sorted into {1, 4}. Then these two sequences are merged to
obtain {1, 1, 3, 4}. The second half is sorted similarly, eventually obtaining {2, 5, 6, 9}.
The merged result is then easily computed as {1, 1, 2, 3, 4, 5, 6, 9}.

7.14 Mergesort can be implemented nonrecursively by first merging pairs of adjacent elements,
then pairs of two elements, then pairs of four elements, and so on. This is implemented in
Fig. 7.1.

7.15 The merging step always takes Θ(NO) time, so the sorting process takes Θ(NOlog NO) time on
all inputs.

7.16 See reference [11] for the exact derivation of the worst case of mergesort.

7.17 The original input is
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5

After sorting the first, middle, and last elements, we have
3, 1, 4, 1, 5, 5, 2, 6, 5, 3, 9

Thus the pivot is 5. Hiding it gives
3, 1, 4, 1, 5, 3, 2, 6, 5, 5, 9

The first swap is between two fives. The next swap has iO and PjO crossing. Thus the pivot is

-37-

Uploaded By: anonymousSTUDENTS-HUB.com

__

void
Mergesort(ElementType A[], int N)
{

ElementType *TmpArray;
int SubListSize, Part1Start, Part2Start, Part2End;

TmpArray = malloc(sizeof(ElementType) * N);
for(SubListSize = 1; SubListSize < N; SubListSize *= 2)
{

Part1Start = 0;
while(Part1Start + SubListSize < N - 1)
{

Part2Start = Part1Start + SubListSize;
Part2End = min(N, Part2Start + SubListSize - 1);
Merge(A, TmpArray, Part1Start, Part2Start, Part2End);
Part1Start = Part2End + 1;

}
}

}

Fig. 7.1.
__

swapped back with iO:
3, 1, 4, 1, 5, 3, 2, 5, 5, 6, 9

We now recursively quicksort the first eight elements:
3, 1, 4, 1, 5, 3, 2, 5

Sorting the three appropriate elements gives
1, 1, 4, 3, 5, 3, 2, 5

Thus the pivot is 3, which gets hidden:
1, 1, 4, 2, 5, 3, 3, 5

The first swap is between 4 and 3:
1, 1, 3, 2, 5, 4, 3, 5

The next swap crosses pointers, so is undone; iO points at 5, and so the pivot is swapped:
1, 1, 3, 2, 3, 4, 5, 5

A recursive call is now made to sort the first four elements. The pivot is 1, and the partition
does not make any changes. The recursive calls are made, but the subfiles are below the
cutoff, so nothing is done. Likewise, the last three elements constitute a base case, so noth-
ing is done. We return to the original call, which now calls quicksort recursively on the
right-hand side, but again, there are only three elements, so nothing is done. The result is

1, 1, 3, 2, 3, 4, 5, 5, 5, 6, 9
which is cleaned up by insertion sort.

7.18 (a) OO(NOlog NO) because the pivot will partition perfectly.

(b) Again, OO(NOlog NO) because the pivot will partition perfectly.

(c) OO(NOlog NO); the performance is slightly better than the analysis suggests because of the
median-of-three partition and cutoff.

-38-

Uploaded By: anonymousSTUDENTS-HUB.com

7.19 (a) If the first element is chosen as the pivot, the running time degenerates to quadratic in
the first two cases. It is still OO(NOlog NO) for random input.

(b) The same results apply for this pivot choice.

(c) If a random element is chosen, then the running time is OO(NOlog NO) expected for all
inputs, although there is an OO(NO2) worst case if very bad random numbers come up. There
is, however, an essentially negligible chance of this occurring. Chapter 10 discusses the
randomized philosophy.

(d) This is a dangerous road to go; it depends on the distribution of the keys. For many dis-
tributions, such as uniform, the performance is OO(NOlog NO) on average. For a skewed distri-
bution, such as with the input {1, 2, 4, 8, 16, 32, 64, ... }, the pivot will be consistently terri-
ble, giving quadratic running time, independent of the ordering of the input.

7.20 (a) OO(NOlog NO) because the pivot will partition perfectly.

(b) Sentinels need to be used to guarantee that iO and PjO don’t run past the end. The running
time will be Θ(NO2) since, because iO won’t stop until it hits the sentinel, the partitioning step
will put all but the pivot in SO1.

(c) Again a sentinel needs to be used to stop PjO. This is also Θ(NO2) because the partitioning
is unbalanced.

7.21 Yes, but it doesn’t reduce the average running time for random input. Using median-of-
three partitioning reduces the average running time because it makes the partition more bal-
anced on average.

7.22 The strategy used here is to force the worst possible pivot at each stage. This doesn’t neces-
sarily give the maximum amount of work (since there are few exchanges, just lots of com-
parisons), but it does give Ω(NO2) comparisons. By working backward, we can arrive at the
following permutation:

20, 3, 5, 7, 9, 11, 13, 15, 17, 19, 4, 10, 2, 12, 6, 14, 1, 16, 8, 18

A method to extend this to larger numbers when NO is even is as follows: The first element is
NO, the middle is NO − 1, and the last is NO − 2. Odd numbers (except 1) are written in
decreasing order starting to the left of center. Even numbers are written in decreasing order
by starting at the rightmost spot, always skipping one available empty slot, and wrapping
around when the center is reached. This method takes OO(NOlog NO) time to generate the per-
mutation, but is suitable for a hand calculation. By inverting the actions of quicksort, it is
possible to generate the permutation in linear time.

7.24 This recurrence results from the analysis of the quick selection algorithm. TO(NO) = OO(NO).
7.25 Insertion sort and mergesort are stable if coded correctly. Any of the sorts can be made

stable by the addition of a second key, which indicates the original position.

7.26 (d) PfOO(NO) can be OO(NO/ log NO). Sort the PfOO(NO) elements using mergesort in
OO(PfOO(NO)log PfOO(NO)) time. This is OO(NO) if PfOO(NO) is chosen using the criterion given. Then
merge this sorted list with the already sorted list of NO numbers in OO(NO + PfOO(NO)) = OO(NO)
time.

7.27 A decision tree would have NO leaves, so OHlog NOJ comparisons are required.

7.28 log NO! ∼∼ NOlog NO − NOlog eO.

7.29 (a) (N
2N).

-39-

Uploaded By: anonymousSTUDENTS-HUB.com

(b) The information-theoretic lower bound is log (N
2N). Applying Stirling’s formula, we

can estimate the bound as 2NO − ⁄1
2log NO. A better lower bound is known for this case:

2NO−1 comparisons are necessary. Merging two lists of different sizes MO and NO likewise

requires at least log (N
MO + N) comparisons.

7.30 It takes OO(1) to insert each element into a bucket, for a total of OO(NO). It takes OO(1) to
extract each element from a bucket, for OO(MO). We waste at most OO(1) examining each
empty bucket, for a total of OO(MO). Adding these estimates gives OO(MO + NO).

7.31 We add a dummy NO + 1thO element, which we’ll call MaybeO. MaybeO satisfies
PfalseO < MaybeO <trueO. Partition the array around MaybeO, using the standard quicksort tech-
niques. Then swap MaybeO and the NO + 1thO element. The first NO elements are then
correctly arranged.

7.32 We add a dummy NO + 1thO element, which we’ll call ProbablyFalseO. ProbablyFalseO
satisfies PfalseO < ProbablyFalseO < MaybeO. Partition the array around ProbablyFalseO as in
the previous exercise. Suppose that after the partition, ProbablyFalseO winds up in position
iO. Then place the element that is in the NO + 1thO slot in position iO, place ProbablyTrueO
(defined the obvious way) in position NO +1 , and partition the subarray from position iO
onward. Finally, swap ProbablyTrueO with the element in the NO + 1thO location. The first NO
elements are now correctly arranged. These two problems can be done without the assump-
tion of an extra array slot; assuming so simplifies the presentation.

7.33 (a) OHlog 4!OJ=5.

(b) Compare and exchange (if necessary) aO1 and aO2 so that aO1 ≥ aO2, and repeat with aO3 and
aO4. Compare and exchange aO1 and aO3. Compare and exchange aO2 and aO4. Finally, com-
pare and exchange aO2 and aO3.

7.34 (a) OHlog 5!OJ = 7.

(b) Compare and exchange (if necessary) aO1 and aO2 so that aO1 ≥ aO2, and repeat with aO3 and
aO4 so that aO3 ≥ aO4. Compare and exchange (if necessary) the two winners, aO1 and aO3.
Assume without loss of generality that we now have aO1 ≥ aO3 ≥ aO4, and aO1 ≥ aO2. (The other
case is obviously identical.) Insert aO5 by binary search in the appropriate place among aO1 ,
aO3,aO4. This can be done in two comparisons. Finally, insert aO2 among aO3 , aO4 , aO5. If it is
the largest among those three, then it goes directly after aO1 since it is already known to be
larger than aO1. This takes two more comparisons by a binary search. The total is thus seven
comparisons.

7.38 (a) For the given input, the pivot is 2. It is swapped with the last element. iO will point at
the second element, and PjO will be stopped at the first element. Since the pointers have
crossed, the pivot is swapped with the element in position 2. The input is now 1, 2, 4, 5, 6,
..., NO − 1, NO, 3. The recursive call on the right subarray is thus on an increasing sequence
of numbers, except for the last number, which is the smallest. This is exactly the same form
as the original. Thus each recursive call will have only two fewer elements than the previ-
ous. The running time will be quadratic.

(b) Although the first pivot generates equal partitions, both the left and right halves will
have the same form as part (a). Thus the running time will be quadratic because after the
first partition, the algorithm will grind slowly. This is one of the many interesting tidbits in
reference [20].

-40-

Uploaded By: anonymousSTUDENTS-HUB.com

7.39 We show that in a binary tree with LO leaves, the average depth of a leaf is at least log LO.
We can prove this by induction. Clearly, the claim is true if LO = 1. Suppose it is true for
trees with up to LO − 1 leaves. Consider a tree of LO leaves with minimum average leaf
depth. Clearly, the root of such a tree must have non-NULL left and right subtrees. Sup-
pose that the left subtree has LLO leaves, and the right subtree has LRO leaves. By the induc-
tive hypothesis, the total depth of the leaves (which is their average times their number) in
the left subtree is LLO(1 + log LLO), and the total depth of the right subtree’s leaves is
LRO(1 + log LRO) (because the leaves in the subtrees are one deeper with respect to the root of
the tree than with respect to the root of their subtree). Thus the total depth of all the leaves
is LO + LLOlog LLO + LROlog LRO. Since PfOO(xO) = xOlog xO is convex for xO ≥ 1, we know that
PfOO(xO) + PfOO(yO) ≥ 2fOO((xO+yO) / 2). Thus, the total depth of all the leaves is at least
LO + 2(LO/ 2)log (LO/ 2) ≥ LO + LO(log LO − 1) ≥ LOlog LO. Thus the average leaf depth is at least
log LO.

-41-

Uploaded By: anonymousSTUDENTS-HUB.com

