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Verification Tools
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Functional Verification Approaches

Verification
Static Dynamic
Reviews Code Formal Simulation Prototyping
Analysis
Dynamic Formal Silicon
Linters
FPGA
Equivalence Property Theorem Emulation
Checking Checking Proving
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Achieving Automation

Task of Verification Engineer:

= Ensure product does not contain bugs - as fast and as
cost-effective as possible.

= Parallelism, Abstraction and Automation can reduce the
duration of verification.

= Automation reduces human factor, improves efficiency
and reliability.
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Tools used for Verification
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= Dynamic Verification:

— Hardware Verification Languages (HVL)

— Testbench automation

— Test generators

— Coverage collection and analysis

— General purpose HDL Simulators
= Event-driven simulation
= Cycle-based simulation (improved performance
= Waveform viewers (for debug)

— Hardware accelerators/emulators, FPGAS
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= Static Analysis / Verification Methods (Formal
— Linting Tools
— Equivalence checkers
— Model checkers
= Property Specification Languages (ABV)
— Theorem provers
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Some Commercial EDA DV Tools

Company Simulation based EDA Tools Formal Verification EDA Tools
Synopsys VCS Formality, VCS Formal
Cadence Xcelium JasperGold

Siemens Questa FormalPro
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Linting Tools

= Linters are static checkers.

= Assist in finding common coding mistakes

— Linters exist for software and also for hardware.
" gcc -Wall (When do you use this?)

= Only identify certain classes of problems
— Many false positives are reported.

— Use a filter program to reduce these.
= Careful - don't filter true positives though!

= Does assist in enforcing coding guidelines!

= Rules for coding guidelines can be added to
Inter.
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Simulation-Based
Verification

Directed testing with
manual checking
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Fundamentals of Simulation-based Verification

= Verification can be divided into two separate tasks
1. Driving the design - Controllability

2. Checking its behavior - Observability

= Basic questions a verification engineer must ask
1. Am | driving all possible input scenarios? How do |

_ ) know when
)
2. How will | know when a failure has occurred” I'm done?

= Driving and checking are the yin and yang of verification

— We cannot find bugs without
creating the failing conditions

= Drivers

— We cannot find bugs without
detecting the incorrect behavior

= Checkers
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What Is a Testbench?

“Code used to create a predetermined input sequence to
a design, and to then observe the response.”

— Generic term used differently across the industry.
— Always refers to a test case/scenario.

— Traditionally, a testbench refers to code written in a Hardware
Description Language (VHDL, Verilog, SystemVerilog) at the top
level of the design hierarchy.

— A testbench is a “completely closed” system, i.e.c, no input/output
of the testbench

Bugs in Testbench & S Ir
estbenc s : & g
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drive stimulus into the DUV collect the response and check
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Simulation-based Design Verification

= Simulate the design (not the implementation) before fabrication.

= Simulating the design relies on simplifications:
— Functional correctness/accuracy can be a problem.

Verification Challenge: "What input patterns to supply to the Design
Under Verification (DUV) ...”

= Simulation requires stimulus. It is dynamic, not just static!

= Requires to reproduce environment in which design will be used.
— Testbench (Remember: Verification vs Testing!)

Verification Challenge: ”... and knowing what is expected at the
output for a properly working design.”
= Simulation outputs are checked externally against design intent
(specification)
— Errors cannot be proven not to exist!

“Testing shows the presence, not the absence of bugs.”
[Edsger W. Dijkstra]

Two types of simulators: event-based and cycle-based
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Simulation based on Compiled Code

= To simulate with ModelSim:
— Compile HDL source code into a library.
— Compiled design can be simulated.

Write
HDL
code
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Correct
syntax errors
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Compile Simulate
HDL the

code design

Debug
the

design
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Event-based Simulators (I)

Event-based simulators are driven based on
events.

= Qutputs are a function of inputs:
— The outputs change only when the inputs do.

— The event is the input changing.

— An event causes the simulator to re-evaluate and
calculate new output.

= Qutputs (of one block) may be used as inputs (of
another) ...
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Event-Driven Simulators (2)

= Accurate timing
= Good debugging environment
= Simulation speed is slower

Schedule
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l Events
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Event Driven Principles

= The event simulator maintains many lists:
— A list of all atomic executable blocks

— Fanout lists: A data structure that represents the
Interconnect of the blocks via signals

— A time gueue — points in time when events happen

— Event queues — one queue pair for each entry in the
time queue

= Signal update queue
= Computation gueue

= The simulator needs to process all these queues
at simulation time.
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Event-based Simulators

Event-based simulators are driven based on
events. ©

= Qutputs are a function of inputs:
— The outputs change only when the inputs do.
— The event is the input changing.

— An event causes the simulator to re-evaluate and
calculate new output.

= Qutputs (of one block) may be used as inputs (of
another) ...

= Re-evaluation happens until no more
changes propagate through the design.
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Simulation Speed

What is holding us back?
Speedup strategies
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Improving Simulation Speed

= The most obvious bottle-neck for functional
verification is simulation throughput

= There are several ways to improve throughput
— Parallelization
— Compiler optimization techniques
— Changing the level of abstraction

— Methodology-based subsets of HDL
= Cycle-based simulation

— Special simulation machines
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Parallelization

= Efficient parallel simulation algorithms are hard
to develop
— Much parallel event-driven simulation research
— Has not yielded a breakthrough
— Hard to compete against "trivial parallelization"

= Simple solution — run independent testcases on
separate machines
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Principle of Operation

= Compliler transforms combinational logic
Into Boolean operations

= Compiler schedules inter-processor
communications using a fast broadcast
technique

= Performance dictated by
— Number of processors
— Number of levels in the design
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Simulation Speed Comparison
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Event Simulator

Cycle Simulator

Event driven cycle Simulator

Acceleration

Emulation

100000
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Verification Languages

Raising the level of abstraction


https://students-hub.com

Verification Languages

= Need to be designed to address verification principles.

= Deficiencies in RTL languages (HDLs such as Verilog and
VHDL):

— Verilog was designed with focus on describing low-level hardware
structures.

= No support for data structures (records, linked lists, etc).
= Not object/aspect-oriented.

= Limitations inhibit efficient implementation of verification
strategy.

= High-level verification languages are (currently):
— System Verilog
— e-language used for Cadence’s Specman Elite [IEEE P1647]
— (Synopsys’ Vera, SystemC)
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Features of High-Level Verification Languages

Raising the level of abstraction:

— From bits/vectors to high-level data types/structures
= |ists, structs, scoreboards including ready made functions to access these

= Support for building the verification environment
— Enable testbench automation
— Modularity

= Object/aspect oriented languages
= Libraries (VIP) to enable re-use

= Support for test generation

— Constrained random test generation features
= Control over randomization to achieve the target values
= Advanced: Connection to DUV to generate stimulus depending on DUV state

= Support for coverage
— Language constructs to implement functional coverage models
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Directed Testing

Focus on checking
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The Importance of Driving and Checking

Activation Propagation ‘

= Drivers activate the bug.

= The observable effects of the bug then
need to propagate to a checker.

= A checker needs to be In place to detect the
iIncorrect behaviour.

All three are needed to find bugs!

SSSSSSSS -HUB.com 25


https://students-hub.com

Checking: How to predict expected results

= Methods for checking:

Directed testing:
= Because we know what will be driven, a checker can be
developed for each test case individually.

= Sources for checking:
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Understanding of the inputs, outputs and the transfer function of the DUV.
Understanding of the design context.

Understanding of the internal structures and algorithms (uarch).
Understanding of the top-level design description (arch).

Understanding of the specification.
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Limitations of Using Waveform Viewers as Checkers

= Often come as part of a simulator.

= Most common verification tools used...
— Used to visually inspect design/testbench/verification environment.
— Recording waves decreases performance of simulator. (Why?)

= Don’t use viewer to determine if DUV passes/fails a test.
— Why not?

Can use waveform viewer for debugglng
— Consider costs and alternatives.
— Benefits of automation.

— Need to increase productivity.
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Limitations of Directed Testing: Coverage

A
----------------------------- 100%
el [ Directed
Approach
© — — |
=L Constrained Pseudo-
o random Coverage
LC>3 Driven Approach
> Time

Cl’ltel’laj Directed testing has Need to
= Effectiveness many shortfalls wrt _
= Efficiency these criteria. INcCrease
=  Maintainability Why would one use productivity!
= Re-usability Directed Testing?
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Impact of Increasing Verification Productivity

Total
Number
of Bugs
found
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Productivity improvements drive
early problem discovery

Test

Verification

Need to find bugs early

Time
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Verification Tools

Third Party Models
Metrics
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Third Party Models

= Chip needs to be verified In its target environment.
— Board/SoC Verification

= Do you develop or purchase behavioural models (specs)
for board parts?
— Buying them may seem expensive!

“If it was not worth designing on your own to begin with, why
is writing your own model now justified?”

— The model you develop is not as reliable as the one you buy.
— The one you buy is used by many others - not just yourself.

= Remember: In practice, it is often more expensive to
develop your own model to the same degree of
confidence than licensing one.
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Metrics

= Not really verification tools - but managers love
metrics and measurements!

— Managers often have little time to personally assess
progress.

— They want something measurable.
= Coverage is one metric - will be introduced later.

= Others metrics include:
— Number of lines of code
— Ratio of lines of code
(between design and verifier)
— Drop of source code changes
— Number of outstanding issues
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Summary

We have covered:

Verification Tools & Languages

Basic testbench components

Writing directed tests

The importance of Driving and Checking
Checking when we use directed testing
Limitations of directed testing

Cost of debug using waveforms
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