ENCS5337: Chip Design Verification
Spring 2023/2024

Verification Tools

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

SSSSSSSSSSSSSSSS

https://students-hub.com

Functional Verification Approaches

Verification
Static Dynamic
Reviews Code Formal Simulation Prototyping
Analysis
Dynamic Formal Silicon
Linters
FPGA
Equivalence Property Theorem Emulation
Checking Checking Proving

https://students-hub.com

Achieving Automation

Task of Verification Engineer:

= Ensure product does not contain bugs - as fast and as
cost-effective as possible.

= Parallelism, Abstraction and Automation can reduce the
duration of verification.

= Automation reduces human factor, improves efficiency
and reliability.

SSSSSSSSSSSSSSSS

https://students-hub.com

Tools used for Verification

ok ‘n

= Dynamic Verification:

— Hardware Verification Languages (HVL)

— Testbench automation

— Test generators

— Coverage collection and analysis

— General purpose HDL Simulators
= Event-driven simulation
= Cycle-based simulation (improved performance
= Waveform viewers (for debug)

— Hardware accelerators/emulators, FPGAS

~ '“.)

io¥ lglaF laie
R 03

= Static Analysis / Verification Methods (Formal
— Linting Tools
— Equivalence checkers
— Model checkers
= Property Specification Languages (ABV)
— Theorem provers

STUDENTS-HUB.com 4

https://students-hub.com

Some Commercial EDA DV Tools

Company Simulation based EDA Tools Formal Verification EDA Tools
Synopsys VCS Formality, VCS Formal
Cadence Xcelium JasperGold

Siemens Questa FormalPro

SSSSSSSSSSSSSSSS

https://students-hub.com

Linting Tools

= Linters are static checkers.

= Assist in finding common coding mistakes

— Linters exist for software and also for hardware.
" gcc -Wall (When do you use this?)

= Only identify certain classes of problems
— Many false positives are reported.

— Use a filter program to reduce these.
= Careful - don't filter true positives though!

= Does assist in enforcing coding guidelines!

= Rules for coding guidelines can be added to
Inter.

SSSSSSSSSSSSSSSS

https://students-hub.com

Simulation-Based
Verification

Directed testing with
manual checking

SSSSSSSSSSSSSSSS

https://students-hub.com

Fundamentals of Simulation-based Verification

= Verification can be divided into two separate tasks
1. Driving the design - Controllability

2. Checking its behavior - Observability

= Basic questions a verification engineer must ask
1. Am | driving all possible input scenarios? How do |

_) know when
)
2. How will | know when a failure has occurred” I'm done?

= Driving and checking are the yin and yang of verification

— We cannot find bugs without
creating the failing conditions

= Drivers

— We cannot find bugs without
detecting the incorrect behavior

= Checkers

STUDENTS-HUB.com

https://students-hub.com

What Is a Testbench?

“Code used to create a predetermined input sequence to
a design, and to then observe the response.”

— Generic term used differently across the industry.
— Always refers to a test case/scenario.

— Traditionally, a testbench refers to code written in a Hardware
Description Language (VHDL, Verilog, SystemVerilog) at the top
level of the design hierarchy.

— A testbench is a “completely closed” system, i.e.c, no input/output
of the testbench

Bugs in Testbench & S Ir
estbenc s : & g
the TB* " | 4 DUV 4

ot »*®
Driver s —» Checker
‘) o

drive stimulus into the DUV collect the response and check

STUDENTS-HUB.com

https://students-hub.com

Simulation-based Design Verification

= Simulate the design (not the implementation) before fabrication.

= Simulating the design relies on simplifications:
— Functional correctness/accuracy can be a problem.

Verification Challenge: "What input patterns to supply to the Design
Under Verification (DUV) ...”

= Simulation requires stimulus. It is dynamic, not just static!

= Requires to reproduce environment in which design will be used.
— Testbench (Remember: Verification vs Testing!)

Verification Challenge: ”... and knowing what is expected at the
output for a properly working design.”
= Simulation outputs are checked externally against design intent
(specification)
— Errors cannot be proven not to exist!

“Testing shows the presence, not the absence of bugs.”
[Edsger W. Dijkstra]

Two types of simulators: event-based and cycle-based

STUDENTS-HUB.com

10

https://students-hub.com

Simulation based on Compiled Code

= To simulate with ModelSim:
— Compile HDL source code into a library.
— Compiled design can be simulated.

Write
HDL
code

SSSSSSSSSSSSSSSS

Correct
syntax errors

il

Compile Simulate
HDL the

code design

Debug
the

design

11

https://students-hub.com

Event-based Simulators (I)

Event-based simulators are driven based on
events.

= Qutputs are a function of inputs:
— The outputs change only when the inputs do.

— The event is the input changing.

— An event causes the simulator to re-evaluate and
calculate new output.

= Qutputs (of one block) may be used as inputs (of
another) ...

SSSSSSSS -HUB.com 12

https://students-hub.com

Event-Driven Simulators (2)

= Accurate timing
= Good debugging environment
= Simulation speed is slower

Schedule

New <
l Events

More
Get
Advance event Y Event Propagate
Time for this Current Evaluation Events

Fni Event

In

N Time Y
wheel —> Finish
empty

N

SSSSSSSS -HUB.com 13

https://students-hub.com

Event Driven Principles

= The event simulator maintains many lists:
— A list of all atomic executable blocks

— Fanout lists: A data structure that represents the
Interconnect of the blocks via signals

— A time gueue — points in time when events happen

— Event queues — one queue pair for each entry in the
time queue

= Signal update queue
= Computation gueue

= The simulator needs to process all these queues
at simulation time.

SSSSSSSSSSSSSSSS

14

https://students-hub.com

Event-based Simulators

Event-based simulators are driven based on
events. ©

= Qutputs are a function of inputs:
— The outputs change only when the inputs do.
— The event is the input changing.

— An event causes the simulator to re-evaluate and
calculate new output.

= Qutputs (of one block) may be used as inputs (of
another) ...

= Re-evaluation happens until no more
changes propagate through the design.

SSSSSSSSSSSSSSSS

15

https://students-hub.com

Simulation Speed

What is holding us back?
Speedup strategies

SSSSSSSSSSSSSSSS

https://students-hub.com

Improving Simulation Speed

= The most obvious bottle-neck for functional
verification is simulation throughput

= There are several ways to improve throughput
— Parallelization
— Compiler optimization techniques
— Changing the level of abstraction

— Methodology-based subsets of HDL
= Cycle-based simulation

— Special simulation machines

SSSSSSSSSSSSSSSS

17

https://students-hub.com

Parallelization

= Efficient parallel simulation algorithms are hard
to develop
— Much parallel event-driven simulation research
— Has not yielded a breakthrough
— Hard to compete against "trivial parallelization"

= Simple solution — run independent testcases on
separate machines

SSSSSSSSSSSSSSSS

18

https://students-hub.com

Principle of Operation

= Compliler transforms combinational logic
Into Boolean operations

= Compiler schedules inter-processor
communications using a fast broadcast
technique

= Performance dictated by
— Number of processors
— Number of levels in the design

SSSSSSSSSSSSSSSS

19

https://students-hub.com

Simulation Speed Comparison

SSSSSSSSSSSSSSSS

Event Simulator

Cycle Simulator

Event driven cycle Simulator

Acceleration

Emulation

100000

20

https://students-hub.com

Verification Languages

Raising the level of abstraction

https://students-hub.com

Verification Languages

= Need to be designed to address verification principles.

= Deficiencies in RTL languages (HDLs such as Verilog and
VHDL):

— Verilog was designed with focus on describing low-level hardware
structures.

= No support for data structures (records, linked lists, etc).
= Not object/aspect-oriented.

= Limitations inhibit efficient implementation of verification
strategy.

= High-level verification languages are (currently):
— System Verilog
— e-language used for Cadence’s Specman Elite [IEEE P1647]
— (Synopsys’ Vera, SystemC)

STUDENTS-HUB.com 22

https://students-hub.com

Features of High-Level Verification Languages

Raising the level of abstraction:

— From bits/vectors to high-level data types/structures
= |ists, structs, scoreboards including ready made functions to access these

= Support for building the verification environment
— Enable testbench automation
— Modularity

= Object/aspect oriented languages
= Libraries (VIP) to enable re-use

= Support for test generation

— Constrained random test generation features
= Control over randomization to achieve the target values
= Advanced: Connection to DUV to generate stimulus depending on DUV state

= Support for coverage
— Language constructs to implement functional coverage models

STUDENTS-HUB.com 23

https://students-hub.com

Directed Testing

Focus on checking

SSSSSSSSSSSSSSSS

https://students-hub.com

The Importance of Driving and Checking

Activation Propagation ‘

= Drivers activate the bug.

= The observable effects of the bug then
need to propagate to a checker.

= A checker needs to be In place to detect the
iIncorrect behaviour.

All three are needed to find bugs!

SSSSSSSS -HUB.com 25

https://students-hub.com

Checking: How to predict expected results

= Methods for checking:

Directed testing:
= Because we know what will be driven, a checker can be
developed for each test case individually.

= Sources for checking:

STUDENTS-HUB.com

Understanding of the inputs, outputs and the transfer function of the DUV.
Understanding of the design context.

Understanding of the internal structures and algorithms (uarch).
Understanding of the top-level design description (arch).

Understanding of the specification.

26

https://students-hub.com

Limitations of Using Waveform Viewers as Checkers

= Often come as part of a simulator.

= Most common verification tools used...
— Used to visually inspect design/testbench/verification environment.
— Recording waves decreases performance of simulator. (Why?)

= Don’t use viewer to determine if DUV passes/fails a test.
— Why not?

Can use waveform viewer for debugglng
— Consider costs and alternatives.
— Benefits of automation.

— Need to increase productivity.

STUDENTS-HUB.com

https://students-hub.com

Limitations of Directed Testing: Coverage

A
----------------------------- 100%
el [Directed
Approach
© — — |
=L Constrained Pseudo-
o random Coverage
LC>3 Driven Approach
> Time

Cl’ltel’laj Directed testing has Need to
= Effectiveness many shortfalls wrt _
= Efficiency these criteria. INcCrease
= Maintainability Why would one use productivity!
= Re-usability Directed Testing?

STUDENTS-HUB.com

28

https://students-hub.com

Impact of Increasing Verification Productivity

Total
Number
of Bugs
found

SSSSSSSSSSSSSSSS

Productivity improvements drive
early problem discovery

Test

Verification

Need to find bugs early

Time

29

https://students-hub.com

Verification Tools

Third Party Models
Metrics

https://students-hub.com

Third Party Models

= Chip needs to be verified In its target environment.
— Board/SoC Verification

= Do you develop or purchase behavioural models (specs)
for board parts?
— Buying them may seem expensive!

“If it was not worth designing on your own to begin with, why
is writing your own model now justified?”

— The model you develop is not as reliable as the one you buy.
— The one you buy is used by many others - not just yourself.

= Remember: In practice, it is often more expensive to
develop your own model to the same degree of
confidence than licensing one.

STUDENTS-HUB.com 31

https://students-hub.com

Metrics

= Not really verification tools - but managers love
metrics and measurements!

— Managers often have little time to personally assess
progress.

— They want something measurable.
= Coverage is one metric - will be introduced later.

= Others metrics include:
— Number of lines of code
— Ratio of lines of code
(between design and verifier)
— Drop of source code changes
— Number of outstanding issues

SSSSSSSSSSSSSSSS

https://students-hub.com

Summary

We have covered:

Verification Tools & Languages

Basic testbench components

Writing directed tests

The importance of Driving and Checking
Checking when we use directed testing
Limitations of directed testing

Cost of debug using waveforms

SSSSSSSSSSSSSSSS

33

https://students-hub.com

