
ENCS5337: Chip Design Verification

Spring 2023/2024

Verification Tools

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

STUDENTS-HUB.com

https://students-hub.com

2

Functional Verification Approaches

Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode

Analysis

Dynamic Formal

Linters

Theorem

Proving

Property

Checking

Equivalence

Checking

Silicon

FPGA

Emulation

STUDENTS-HUB.com

https://students-hub.com

3

Achieving Automation

Task of Verification Engineer:

 Ensure product does not contain bugs - as fast and as
cost-effective as possible.

 Parallelism, Abstraction and Automation can reduce the
duration of verification.

 Automation reduces human factor, improves efficiency
and reliability.

STUDENTS-HUB.com

https://students-hub.com

4

Tools used for Verification
 Dynamic Verification:

– Hardware Verification Languages (HVL)

– Testbench automation

– Test generators

– Coverage collection and analysis

– General purpose HDL Simulators

 Event-driven simulation

 Cycle-based simulation (improved performance)

 Waveform viewers (for debug)

– Hardware accelerators/emulators, FPGAs

 Static Analysis / Verification Methods (Formal Methods):

– Linting Tools

– Equivalence checkers

– Model checkers

 Property Specification Languages (ABV)

– Theorem provers

STUDENTS-HUB.com

https://students-hub.com

5

Some Commercial EDA DV Tools

Company Simulation based EDA Tools Formal Verification EDA Tools

Synopsys VCS Formality, VCS Formal

Cadence Xcelium JasperGold

Siemens Questa FormalPro

STUDENTS-HUB.com

https://students-hub.com

6

Linting Tools

 Linters are static checkers.

 Assist in finding common coding mistakes
– Linters exist for software and also for hardware.

 gcc -Wall (When do you use this?)

 Only identify certain classes of problems
– Many false positives are reported.

– Use a filter program to reduce these.
 Careful - don’t filter true positives though!

 Does assist in enforcing coding guidelines!

 Rules for coding guidelines can be added to
linter.

STUDENTS-HUB.com

https://students-hub.com

Simulation-Based

Verification
Directed testing with

manual checking

STUDENTS-HUB.com

https://students-hub.com

8

Fundamentals of Simulation-based Verification

Driver

Checker

How do I

know when

I’m done?

 Verification can be divided into two separate tasks

1. Driving the design - Controllability

2. Checking its behavior - Observability

 Basic questions a verification engineer must ask

1. Am I driving all possible input scenarios?

2. How will I know when a failure has occurred?

 Driving and checking are the yin and yang of verification

– We cannot find bugs without

creating the failing conditions

 Drivers

– We cannot find bugs without

detecting the incorrect behavior

 Checkers

STUDENTS-HUB.com

https://students-hub.com

9

What is a Testbench?
“Code used to create a predetermined input sequence to

a design, and to then observe the response.”

– Generic term used differently across the industry.

– Always refers to a test case/scenario.

– Traditionally, a testbench refers to code written in a Hardware
Description Language (VHDL, Verilog, SystemVerilog) at the top
level of the design hierarchy.

– A testbench is a “completely closed” system, i.e.c, no input/output
of the testbench

Testbench

Driver CheckerDUV

collect the response and checkdrive stimulus into the DUV

Bugs in

the TB

Bugs in

DUV

STUDENTS-HUB.com

https://students-hub.com

10

Simulation-based Design Verification

 Simulate the design (not the implementation) before fabrication.

 Simulating the design relies on simplifications:
– Functional correctness/accuracy can be a problem.

Verification Challenge: ”What input patterns to supply to the Design
Under Verification (DUV) ...”

 Simulation requires stimulus. It is dynamic, not just static!

 Requires to reproduce environment in which design will be used.
– Testbench (Remember: Verification vs Testing!)

Verification Challenge: ”... and knowing what is expected at the
output for a properly working design.”

 Simulation outputs are checked externally against design intent
(specification)
– Errors cannot be proven not to exist!

“Testing shows the presence, not the absence of bugs.”

[Edsger W. Dijkstra]

Two types of simulators: event-based and cycle-based

STUDENTS-HUB.com

https://students-hub.com

11

Simulation based on Compiled Code

 To simulate with ModelSim:

– Compile HDL source code into a library.

– Compiled design can be simulated.

Write

HDL

code

Compile

HDL

code

Simulate

the

design

HDL files
HDL library

Compile Simulate

Correct

syntax errors

Debug

the

design

STUDENTS-HUB.com

https://students-hub.com

12

Event-based Simulators (I)

Event-based simulators are driven based on
events.

 Outputs are a function of inputs:
– The outputs change only when the inputs do.

– The event is the input changing.

– An event causes the simulator to re-evaluate and
calculate new output.

 Outputs (of one block) may be used as inputs (of
another) ...

STUDENTS-HUB.com

https://students-hub.com

13

Event-Driven Simulators (2)
 Accurate timing

 Good debugging environment

 Simulation speed is slower

Get

Current

Event

Propagate

Events

Event

Evaluation

Advance

Time

Schedule

New

Events

More

event

for this

time

Time

wheel

empty

Finish
N

N

Y

Y

STUDENTS-HUB.com

https://students-hub.com

14

Event Driven Principles

 The event simulator maintains many lists:
– A list of all atomic executable blocks

– Fanout lists: A data structure that represents the
interconnect of the blocks via signals

– A time queue – points in time when events happen

– Event queues – one queue pair for each entry in the
time queue
 Signal update queue

 Computation queue

 The simulator needs to process all these queues
at simulation time.

STUDENTS-HUB.com

https://students-hub.com

15

Event-based Simulators

Event-based simulators are driven based on
events. 

 Outputs are a function of inputs:
– The outputs change only when the inputs do.

– The event is the input changing.

– An event causes the simulator to re-evaluate and
calculate new output.

 Outputs (of one block) may be used as inputs (of
another) ...

 Re-evaluation happens until no more
changes propagate through the design.

STUDENTS-HUB.com

https://students-hub.com

Simulation Speed

What is holding us back?

Speedup strategies

STUDENTS-HUB.com

https://students-hub.com

17

Improving Simulation Speed

 The most obvious bottle-neck for functional
verification is simulation throughput

 There are several ways to improve throughput
– Parallelization

– Compiler optimization techniques

– Changing the level of abstraction

– Methodology-based subsets of HDL
 Cycle-based simulation

– Special simulation machines

STUDENTS-HUB.com

https://students-hub.com

18

Parallelization

 Efficient parallel simulation algorithms are hard

to develop

– Much parallel event-driven simulation research

– Has not yielded a breakthrough

– Hard to compete against "trivial parallelization"

 Simple solution – run independent testcases on

separate machines

STUDENTS-HUB.com

https://students-hub.com

19

Principle of Operation

 Compiler transforms combinational logic

into Boolean operations

 Compiler schedules inter-processor

communications using a fast broadcast

technique

 Performance dictated by

– Number of processors

– Number of levels in the design

STUDENTS-HUB.com

https://students-hub.com

20

Event Simulator 1

Cycle Simulator 20

Event driven cycle Simulator 50

Acceleration 1000

Emulation 100000

Simulation Speed Comparison

STUDENTS-HUB.com

https://students-hub.com

Verification Languages

Raising the level of abstraction

STUDENTS-HUB.com

https://students-hub.com

22

Verification Languages

 Need to be designed to address verification principles.

 Deficiencies in RTL languages (HDLs such as Verilog and
VHDL):
– Verilog was designed with focus on describing low-level hardware

structures.
 No support for data structures (records, linked lists, etc).

 Not object/aspect-oriented.

 Limitations inhibit efficient implementation of verification
strategy.

 High-level verification languages are (currently):
– System Verilog

– e-language used for Cadence’s Specman Elite [IEEE P1647]

– (Synopsys’ Vera, SystemC)

STUDENTS-HUB.com

https://students-hub.com

23

Features of High-Level Verification Languages

 Raising the level of abstraction:

– From bits/vectors to high-level data types/structures

 lists, structs, scoreboards including ready made functions to access these

 Support for building the verification environment

– Enable testbench automation

– Modularity

 Object/aspect oriented languages

 Libraries (VIP) to enable re-use

 Support for test generation

– Constrained random test generation features

 Control over randomization to achieve the target values

 Advanced: Connection to DUV to generate stimulus depending on DUV state

 Support for coverage

– Language constructs to implement functional coverage models

STUDENTS-HUB.com

https://students-hub.com

Directed Testing

Focus on checking

STUDENTS-HUB.com

https://students-hub.com

25

The Importance of Driving and Checking

 Drivers activate the bug.

 The observable effects of the bug then

need to propagate to a checker.

 A checker needs to be in place to detect the

incorrect behaviour.

All three are needed to find bugs!

Activation Propagation Detection

STUDENTS-HUB.com

https://students-hub.com

26

Checking: How to predict expected results

 Methods for checking:
– Directed testing:

 Because we know what will be driven, a checker can be

developed for each test case individually.

 Sources for checking:
– Understanding of the inputs, outputs and the transfer function of the DUV.

– Understanding of the design context.

– Understanding of the internal structures and algorithms (uarch).

– Understanding of the top-level design description (arch).

– Understanding of the specification.

STUDENTS-HUB.com

https://students-hub.com

27

Limitations of Using Waveform Viewers as Checkers

 Often come as part of a simulator.

 Most common verification tools used...
– Used to visually inspect design/testbench/verification environment.

– Recording waves decreases performance of simulator. (Why?)

 Don’t use viewer to determine if DUV passes/fails a test.
– Why not?

 Can use waveform viewer for debugging.
– Consider costs and alternatives.

– Benefits of automation.

– Need to increase productivity.

STUDENTS-HUB.com

https://students-hub.com

28

Limitations of Directed Testing: Coverage

Criteria:

 Effectiveness

 Efficiency

 Maintainability

 Re-usability

C
o
v
e
ra

g
e

Time

100%

Directed

Approach

Constrained Pseudo-

random Coverage

Driven Approach

Need to

increase

productivity!

Directed testing has

many shortfalls wrt

these criteria.

Why would one use

Directed Testing?

STUDENTS-HUB.com

https://students-hub.com

29

Impact of Increasing Verification Productivity

Time

Total

Number

of Bugs

found Test

Verification

Productivity improvements drive

early problem discovery

Need to find bugs early

STUDENTS-HUB.com

https://students-hub.com

Verification Tools
Third Party Models

Metrics

STUDENTS-HUB.com

https://students-hub.com

31

Third Party Models

 Chip needs to be verified in its target environment.
– Board/SoC Verification

 Do you develop or purchase behavioural models (specs)
for board parts?
– Buying them may seem expensive!

“If it was not worth designing on your own to begin with, why
is writing your own model now justified?”

– The model you develop is not as reliable as the one you buy.

– The one you buy is used by many others - not just yourself.

 Remember: In practice, it is often more expensive to
develop your own model to the same degree of
confidence than licensing one.

STUDENTS-HUB.com

https://students-hub.com

32

Metrics

 Not really verification tools - but managers love
metrics and measurements!
– Managers often have little time to personally assess

progress.

– They want something measurable.

 Coverage is one metric - will be introduced later.

 Others metrics include:
– Number of lines of code

– Ratio of lines of code

(between design and verifier)

– Drop of source code changes

– Number of outstanding issues

STUDENTS-HUB.com

https://students-hub.com

33

Summary

We have covered:

 Verification Tools & Languages

 Basic testbench components

 Writing directed tests

 The importance of Driving and Checking

 Checking when we use directed testing

 Limitations of directed testing

 Cost of debug using waveforms

STUDENTS-HUB.com

https://students-hub.com

