26/02/2025

Introduction to
Architectural Styles

Ahmad Hamo
2ndSemester 2024-2025

Coupling

Monolithic Application

@ R B . A
A kp.,ym | [Wmmm | [J (A) Collocating modules in the same
J encapsulation boundary increases
their lifecycle coupling,

Identity & Access

Service (B) Extracting the modules into
different services reduces their

Payments Authorization I ifecyc I e Co u p I | n g]
B.

Billing Service

STUDENTS-HUB.com Uploaded By: Haneen Abu al hawa1

26/02/2025

Shared Knowledge

A) shares the most
knowledge: the

I
|
1
i
i
CustomersService MySQLRepository i [customerssenvice IRepositary - concrete database
Register (..) 2T PR |+ Register (..) : i i
} hegenaiont L5 +» Begiuansacton (.0} |7 Cotmoepasoword (.. * BegivTomsection () that is being used,
+ UpdateDetails (...) s Conmit C) 1 b Zifﬁfﬁii‘“é")(“‘) S onmit) which is MySQL.
o) + Rollback (..) b + Rollback €..)
Uy '
I B) reduces the knowledge
i
' to the database family.
A, : B.
i

C) encapsulates further

CustomersService and exposes Only the
T IRepository minimal knowledge
+ ChnngePnssyzord (6%] + Save) | needed for the
+ UpdateDetails (...) + Query (.) .
+ cecjtg:u)s C.) CustomersService module
+ Find (... . .

' to implement its

(e functionality.

Monolithic Versus Distributed Architectures

* monolithic - single deployment unit of all code
e Layered architecture
¢ Pipeline architecture
* Microkernel architecture

* distributed : multiple deployment units connected through remote access
protocols:

e Service-based architecture

¢ Event-driven architecture

¢ Space-based architecture

¢ Orchestration-Driven Service-Oriented Architecture
e Microservices architecture

distributed architectures all share a common set of challenges and issues not found
in the monolithic architecture styles

STUDENTS-HUB.com Uploaded By: Haneen Abu al hawa2

26/02/2025

1. Layered Architecture Style

*Organizes software into layers

to improve separation of I

concerns

OWhen to Use . Best for usiness Layer Lsiness Layer
monolithic applications where
clear separation of L I
responsibilities is needed.

*Example : A web application
with a frontend (Ul),
middleware (business logic),
and a backend (database).

2. Pipeline Architecture Style

*Processes data in stages (pipeline),
where each stage transforms the
input and passes it to the next stage.

*When to Use: Suitable for stream Pi P

processing or data-intensive
applications.

*Example2: A video processing : v
application where frames go through "'P'!E?' """ (_ Fiter)
decoding, filtering, and encoding

steps.

*Example2: A data processing pipeline

that reads raw data, cleans it,

transforms it, and then stores it in a

database.

STUDENTS-HUB.com Uploaded By: Haneen Abu al hawa3

26/02/2025

3. Microkernel architecture

*Consists of a minimal core , ‘
system with plug-in modules for m:ﬂ;m u N CO::%-:;m
extending functionality. A
*When to Use: Useful for Plugin [Coresystem L] Plugin
applications that require a Component [omporent
stable core with flexible Plugin | L Puugin
extensions. ‘ Component J— ‘—k Component ,
*Example: Eclipse IDE, where
the core platform remains the
same while developers add
plugins.
4. Service-Based Architecture
*A variation of Service-Oriented (User Interface)
Architecture (SOA) that focuses
on lightweight services. ! ! : .
*When to Use : When you want (APl Layer (Proxy or Gateway)]
to build loosely coupled services 1
that can be independently
deployed and scaled, but are still E::::
part of a larger monolithic B |

system. ll I {

*Example : A banking system
where different services handle Database
account management,

transactions, and reporting.

STUDENTS-HUB.com Uploaded By: Haneen Abu al hawa4

5. Event-driven architecture

Sources

e
e —
—

Event Data

asynchronous communication
style where components
communicate through the
production (Publisher) and
consumption (Subscriber) of
events.

Publisher

—|

26/02/2025

Sinks

[
=L

File System

Event Data

Store

Subscriber

Apps

Subscriber

and Publisher — § 1 =

*When to Use: Best for real-time
systems needing scalability and
responsiveness.

*Example: A stock trading system
where price changes trigger buy/sell
orders.

6. Space-based architecture

Uses distributed memory
(data grids) to handle high
loads and avoid

bottlenecks.

When to Use: Suitable for
high-throughput
applications that require
scalability.

Processing Unit Processing Unit Processing Unit
t---(Component) (Component) [Cumponent) [Cnmponent] (Cnmponent] (Cnmponent)
In-Memory Data Grid In-Memory Data Grid In-Memory Data Grid
Cache QOO0 Cache QOO0 Cache QOO0
v v v
[DataReplication ¢ ||| |[, DataReplication ¢ ||| [[, DataReplication]
Engine) i Engine =) L~ Engine
Virtualized Middleware
. . ; ; . Deployment
[Messaging Grid] [Data Grid] [Processing Grid] [Manager]

Example: Large-scale —
. S S ot [0 DataReader
online gaming platforms
handling millions of — Database
---------- »@D) ¥ Data Writer
concurrent users.

STUDENTS-HUB.com

Uploaded By: Haneen Abu al hawa5

26/02/2025

7. Orchestration-Driven Service-Oriented Architecture

A centralized component P

Services

(Bs

x

(orchestrator) coordinates

and manages service

interactions. Enterprise

Service Bus

When to Use: Suitable for

v

Orchestration Engine

Integration Hub

complex business processes

that require workflow

Enterprise
Serviges (E

Pl L [

) B CE) Cs) Cs0)

management.

Example: A banking system | splcation —

Services

rvices

] ggmstructure[3][3]

where loan approvals
depend on multiple
interacting services.

8. Microservices architecture

Breaks down applications into
small, independently deployable

Client Requests

Client Requests

Client Requests

T

services communicating via
APIs.

When to Use: Best for scalable,
cloud-native applications with
independent teams managing
services.

Example: Netflix, where user
management,
recommendations, and
streaming services run
independently.

STUDENTS-HUB.com

Y

API Layer

7y
¥

Service

Database

DEEDEL

Database

-

=

-~

Database

Uploaded By: Haneen Abu al hawa6

Comparison Table 1/2

Architecture
Style

Layered
Architecture

Pipeline
Architecture

Microkernel
Architecture

Service-Based
Architecture

Event-Driven
Architecture

Key Concept

Separation of

concems into layers

Data processed in
sequential stages

Minimal core with

plugins

Lightweight services
interacting

Events trigger actions

3Cross services

Best Use Case

Manolithic
applications with clear
module separation

Stream processing,
ETL pipelines

Extensible
applications (e.g.,
IDEs, OS)

Simple modular
applications

Real-time,

asynchronous systems

Comparison Table 2/2

Architecture
Style
Event-Driven
Architecture

Space-Based
Architecture

Orchestration-
Driven SOA

Microservices
Architecture

Key Concept

Events trigger actions

across services

Distributed memory
for high load

Centralized service
coordination

Independent services
communicating via
APls

STUDENTS-HUB.com

Best Use Case
Real-time,
asynchronous systems

High-performance
applications

Complex workflows
(e.g., enterprise apps)

Cloud-native, scalable
apps

Pros

Easy to manage
and test

Modular and

easy to scale

Flexible and
stable core

Easier to
manage than
full SOA

Highly scalable
and reactive

Pros

Highly scalable
and reactive

Scales
horizontally

Central control
simplifies
workflows

High agility and
fault isolation

Cons

Can become rigid

and slow

Harder to debug
failures

Plugins must be
well-defined

Can grow into
complex

dependency chains

Complex
debugging

Cons

Complex
debugging

Harder to manage
consistency

Orchestrator
becomes a

bottleneck

Requires complex
service

management

26/02/2025

Uploaded By: Haneen Abu al hawa7

