2/5/2015

N T =als

BIRZEIT UNIVERSITY

L
5 ._. _. ‘% . F,

f | BN

i

Recursion

By: Mamoun Nawahdah (Ph.D.)
2014/2015

Recursion

» A function that calls itself is said to be
recursive.

+» A function f1 is also recursive if it calls a
function f2, which under some circumstances
calls f1, creating a cycle in the sequence of calls.

¢ The ability to invoke itself enables a recursive
function to be repeated with different
parameter values.

+* You can use recursion as an alternative to
iteration (looping).

L i

1
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

The Nature of Recursion

¢ Problems that lend themselves to a recursive
solution have the following characteristics:

* One or more simple cases of the problem have a
straightforward, non recursive solution.

= The other cases can be redefined in terms of
problems that are closer to the simple cases.

= By applying this redefinition process every time the
recursive function is called, eventually the problem
is reduced entirely to simple cases, which are
relatively easy to solve.

L i

The Nature of Recursion

+** The recursive algorithms will generally
consist of an if statement with the
following form:

if this is a simple case

solve it

else

redefine the problem using recursion

L i

2
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

lllustration

L i

size n —> size n—1
problem problem

size 2
problem

SEJ‘IE —_—

prohlem

size 1 size 1
problem problem

size 1 f;i?a:n
problem P

size 1
problem

Example

L i

¢ Solve the problem of multiplying 6 by 3,
assuming we only know addition:
+* Simple case: any number multiplied by 1 gives
us the original number.
+* The problem can be split into the two problems:

1. Multiply 6 by 2.
1.1 Multiply 6 by 1.

1.2 Add 6 to the result of problem 1.1.
2. Add 6 to the result of problem 1.

N NN %

STUDENTS-HUB.com

3

Uploaded By: anonymous

2/5/2015

FIGURE 9.2 Recursive Function multiply

1. *

2, * Performs integer multiplication using + operator.
E * Pre: n are defined and n > 0

4. * Post: returns m * n

5. 1

6. int

7. multiply(int m, int n})

N The simplest case is
9. int ans; reached when n ==
10.

11. if (n == 1)

12. ans = m; /* simple case */

13. else

14. ans = m + multiply(m, n - 1); /* recursive step */
15,

16. return (ans);

17 }

L% .

Tracing a Recursive Function

+* Hand tracing an algorithm’s execution
provides us with valuable insight into how
that algorithm works.

+** By drawing an activation frame
corresponding to each call of the function.

+** An activation frame shows the parameter
values for each call and summarizes the
execution of the call.

L i

4
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

multiply(6, 3)

ultiply(6,)
is

t. ans s 6 + multiply(6, 2) =

m 6
n 3
3 == 1 isfalse
18 .return (ans) A W

m is 6
12 n is 2
2 == 1 isfalse
ans 5 6 + multiply (6, 1) ==
return (ans) |
m is 6
6 n is 1

1 == 1 istrue

= ans is &
return (ans)

Recursive Mathematical Functions

** Many mathematical functions can be
defined recursively.

s An example is the factorial of n (n!):
sQlis1 ———

The simplest case

"nlis n*(n-1)!, forn>0

** Thus 4! is 4 *3!, which means 4 *3 *2 *1,
or 24.

L i

5
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

FIGURE 5.7 Function to Compute Factorial

.

2. * Computes n!

3. * Pre: n is greater than or equal to zero
4 */

5. int

6. factorial(int n)

1. {

8. int i, /* local variables */

9. product; /* accumulator for

10.

11. product = 1;

12. /* Computes the product n x (n-1) x (n-2) x . ..
13. for (1 = n; i > 1; =--i) {

14. product = product * 1i;

15. }

16.

17. /* Returns function result */

18. return (product);

19 1

product computation */

5% 2 & e

L% _

FIGURE 9.10 Recursive factorial Function
i
2. * Compute n! using a recursive definition
3. * Pre: n >= 0
_ x/
5 int
B.| factorial(int n)
. The simplest case
8. int ans;
9.
10. if (n == 0)
11. ans = 1;
12. else
13. ans = n * factorial(n - 1);
14.
15. return (ans);
e

STUDENTS-HUB.com

6

Uploaded By: anonymous

2/5/2015

fact = factorial(3) ¥ —|
6 nis 3
ans is 3 i factorial(2)
return (ans) !
2 nis 2
ans is 2 j factorial(l)
return (ans) ;
1 nis 1
ans is 1 * factorial(0)
return [ans}“ ‘
1 nis o0
ans is 1
return (ans)
- @

Fibonacci Numbers

¢ The Fibonacci sequence is defined as:

" Fibonaccil is 1 } __— |The simplest cases
= Fibonacci2 is1

» Fibonacci n is Fibonacci n-2 +
Fibonacci n-1, for n>2
@ 1 Pair

After one month @ @ 1 Pair
3 After two months @@ @ b‘ 2 Pairs

/ DEa— @ @@ @@ 3 Pairs
Leonardo Bonacci (c. 1170 — 6. 1250) after 4 n,n,..hi@ @ O 1) @@ @ @ @ @ 5 Pairs

7
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

FIGURE 9.13 Recursive Function fibonacci
1=
2. * Computes the nth Fibonacci number
3. Pre: > 0
4.
B int
6. fibonaceci(int n)
.
8. int ans;
9.
10. if (n==1 || n == 2)
11 ans = 1;
12. else
13. ans = fibonacci(n - 2) + fibonaceci{(n - 1)
14.
15. return (ans);
168)
M il

Self Check

** Write and test a recursive function that
returns the value of the following
recursive definition:

= f(x)=0 ifx=0
= f(x)=f(x-1)+2 otherwise

** What set of numbers is generated by this
definition?

L i

8
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

Design Guidelines

+* Method must be given an input value.

+* Method definition must contain logic that
involves this input, leads to different cases.

+* One or more cases should provide solution
that does not require recursion.

» E|se infinite recursion

** One or more cases must include a recursive
invocation.

L i

Stack of Activation Records

+¢* Each call to a method generates an activation
record.

¢ Recursive method uses more memory than an
iterative method.

= Each recursive call generates an activation
record.

¢ If recursive call generates too many activation
records, could cause stack overflow.

L i

9
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

Recursive Methods
That Return a Value

Recursive method to calculate ZE

public static int sumOf(int n)

{
int sum;
if (n == 1)
sum = 1;
else

sum = sumOf(n - 1) + n;
return sum;

* }

Tracing a Recursive Method

Tracing the execution of sumOf (3)

(a)

(b) (c)

sum0f(1):
return 1;
3
SUMOF(2) : sun0f(2): ¥
return sumOf(1) + 2; return sumOf(l) + 2;

sumOf(3):
return sum0f(2) + 3;

sum0f(3):

sum0f(3):
return sumOf(2) + 3;

return sum0f(2) + 3;

(d) (e) (f)

|—>» 6 is displayed
sum0f(2):
return 1 + 2 = 3;

sum0f(3):

{ sum0f(3):
return sumOf(2) + 3; return 3 + 3 = G;/

10
STUDENTS-HUB.com

Uploaded By: anonymous

2/5/2015

Recursively Processing an Array

Starting with array[first]

public static void displayArray(int array[], int first, int Tlast)
{
System.out.print(array[first] + " ");
if (first < last)
displayArray(array, first + 1, last);

Starting with array[last]

public static void displayArray(int array[], int first, int last)
{
if (first <= last)
{
displayArray(array, first, last - 1);
System.out.print (array[last] + " ");

}

P

Recursively Processing an Array

int mid = (first + last) / 2;

=
]
2
s

L

=)
~

Two arrays with their middle elements within their left halves

L i

11
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

Recursively Processing an Array

public static void displayArray(int array[], int first, int last)
{
if (first == last)
System.out.print(array[first] + " ");
else
{
int mid = (first + last) / 2;
displayArray(array, first, mid);
displayArray(array, mid + 1, last);
}
}

Processing array from middle.

L i

Tower of Hanoi

12
STUDENTS-HUB.com Uploaded By: anonymous

2/5/2015

Tower of Hanoi

From
] /
N\ / /e
move(n, A, C, B)
move(n-1, A, B, C)

moving nfrom A > C
move(n-1, B, C, A)

13
STUDENTS-HUB.com Uploaded By: anonymous

