
2/5/2015

1

Recursion

By: Mamoun Nawahdah (Ph.D.)
2014/2015

Recursion
 A function that calls itself is said to be

recursive.

 A function f1 is also recursive if it calls a
function f2, which under some circumstances
calls f1, creating a cycle in the sequence of calls.

 The ability to invoke itself enables a recursive
function to be repeated with different
parameter values.

 You can use recursion as an alternative to
iteration (looping).

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

2

The Nature of Recursion
 Problems that lend themselves to a recursive

solution have the following characteristics:

 One or more simple cases of the problem have a
straightforward, non recursive solution.

 The other cases can be redefined in terms of
problems that are closer to the simple cases.

 By applying this redefinition process every time the
recursive function is called, eventually the problem
is reduced entirely to simple cases, which are
relatively easy to solve.

The Nature of Recursion

 The recursive algorithms will generally

consist of an if statement with the
following form:

if this is a simple case

solve it

else

redefine the problem using recursion

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

3

Illustration

Example
 Solve the problem of multiplying 6 by 3,

assuming we only know addition:

 Simple case: any number multiplied by 1 gives
us the original number.

 The problem can be split into the two problems:

1. Multiply 6 by 2.

1.1 Multiply 6 by 1.

1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1. 






Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

4

The simplest case is
reached when n == 1

Tracing a Recursive Function
 Hand tracing an algorithm’s execution

provides us with valuable insight into how
that algorithm works.

 By drawing an activation frame
corresponding to each call of the function.

 An activation frame shows the parameter
values for each call and summarizes the
execution of the call.

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

5

multiply(6, 3)

6

12

18

Recursive Mathematical Functions

 Many mathematical functions can be
defined recursively.

 An example is the factorial of n (n!):

0! is 1

n! is n * (n− 1)! , for n> 0

 Thus 4! is 4 *3!, which means 4 *3 *2 *1,
or 24.

The simplest case

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

6

The simplest case

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

7

Fibonacci Numbers
 The Fibonacci sequence is defined as:

Fibonacci 1 is 1

Fibonacci 2 is 1

Fibonacci n is Fibonacci n−2 +

Fibonacci n−1, for n> 2

The simplest cases

Leonardo Bonacci (c. 1170 – c. 1250)

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

8

Self Check
 Write and test a recursive function that

returns the value of the following
recursive definition:

 f(x) = 0 if x = 0

 f(x) = f(x - 1) + 2 otherwise

 What set of numbers is generated by this
definition?

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

9

Design Guidelines

 Method must be given an input value.

 Method definition must contain logic that
involves this input, leads to different cases.

 One or more cases should provide solution
that does not require recursion.

 Else infinite recursion

 One or more cases must include a recursive
invocation.

Stack of Activation Records
 Each call to a method generates an activation

record.

 Recursive method uses more memory than an
iterative method.

 Each recursive call generates an activation
record.

 If recursive call generates too many activation
records, could cause stack overflow.

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

10

Recursive Methods
That Return a Value

Recursive method to calculate

Tracing a Recursive Method
Tracing the execution of sumOf(3)

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

11

Recursively Processing an Array
Starting with array[first]

Starting with array[last]

Recursively Processing an Array

Two arrays with their middle elements within their left halves

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

12

Recursively Processing an Array

Processing array from middle.

Tower of Hanoi

Uploaded By: anonymousSTUDENTS-HUB.com

2/5/2015

13

Tower of Hanoi

move(n, A, C, B)

move(n-1, A, B, C)

moving n from A  C

move(n-1, B, C, A)

From

To

Using

of
discs

Uploaded By: anonymousSTUDENTS-HUB.com

