
Single-Dimensional
Arrays

Objectives
■■ To describe why arrays are necessary in programming (§7.1).

■■ To declare array reference variables and create arrays (§§7.2.1 and 7.2.2).

■■ To obtain array size using arrayRefVar.length and know default
values in an array (§7.2.3).

■■ To access array elements using indexes (§7.2.4).

■■ To declare, create, and initialize an array using an array initializer
(§7.2.5).

■■ To program common array operations (displaying arrays, summing
all elements, finding the minimum and maximum elements, random
shuffling, and shifting elements) (§7.2.6).

■■ To simplify programming using the foreach loops (§7.2.7).

■■ To apply arrays in application development (AnalyzeNumbers, and
DeckOfCards) (§§7.3 and 7.4).

■■ To copy contents from one array to another (§7.5).

■■ To develop and invoke methods with array arguments and return values
(§§7.6–7.8).

■■ To define a method with a variable-length argument list (§7.9).

■■ To search elements using the linear (§7.10.1) or binary (§7.10.2) search
algorithm.

■■ To sort an array using the selection sort approach (§7.11).

■■ To use the methods in the java.util.Arrays class (§7.12).

■■ To pass arguments to the main method from the command line (§7.13).

CHAPTER

7

M07_LIAN9966_12_SE_C07.indd 249 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

250 Chapter 7   Single-Dimensional Arrays

7.1  Introduction
A single array variable can reference a large collection of data.

Often you will have to store a large number of values during the execution of a program.
Suppose, for instance, that you need to read 100 numbers, compute their average, and find
out how many numbers are above the average. Your program first reads the numbers and
computes their average, then compares each number with the average to determine whether
it is above the average. In order to accomplish this task, the numbers must all be stored in
variables. You have to declare 100 variables and repeatedly write almost identical code 100
times. Writing a program this way would be impractical. So, how do you solve this
problem?

An efficient, organized approach is needed. Java and most other high-level languages pro-
vide a data structure, the array, which stores a fixed-size sequential collection of elements of
the same type. In the present case, you can store all 100 numbers into an array and access them
through a single array variable.

This chapter introduces single-dimensional arrays. The next chapter will introduce two-
dimensional and multidimensional arrays.

7.2  Array Basics
Once an array is created, its size is fixed. An array reference variable is used to
access the elements in an array using an index.

An array is used to store a collection of data, but often we find it more useful to think of an
array as a collection of variables of the same type. Instead of declaring individual variables,
such as number0, number1, . . . , and number99, you declare one array variable such as
numbers and use numbers[0], numbers[1], . . . , and numbers[99] to represent individual
variables. This section introduces how to declare array variables, create arrays, and process
arrays using indexes.

7.2.1  Declaring Array Variables
To use an array in a program, you must declare a variable to reference the array and specify
the array’s element type. Here is the syntax for declaring an array variable.

elementType[] arrayRefVar;

or

elementType arrayRefVar[]; // Allowed, but not preferred

The elementType can be any data type, and all elements in the array will have the same
data type. For example, the following code declares a variable myList that references an array
of double elements.

double[] myList;

or

double myList[]; // Allowed, but not preferred

Note
You can use elementType arrayRefVar[] to declare an array variable. This style
comes from the C/C+ + language and was adopted in Java to accommodate C/C+ +
programmers. The style elementType[] arrayRefVar is preferred.

Point
Key

problem
why array?

Point
Key

index

element type

preferred syntax

M07_LIAN9966_12_SE_C07.indd 250 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.2  Array Basics 251

7.2.2  Creating Arrays
Unlike declarations for primitive data type variables, the declaration of an array variable does
not allocate any space in memory for the array. It creates only a storage location for the refer-
ence to an array. If a variable does not contain a reference to an array, the value of the variable
is null. You cannot assign elements to an array unless it has already been created. After an
array variable is declared, you can create an array by using the new operator and assign its
reference to the variable with the following syntax:

arrayRefVar = new elementType[arraySize];

This statement does two things: (1) it creates an array using new elementType[arraySize]
and (2) it assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to
the variable can be combined in one statement as

elementType[] arrayRefVar = new elementType[arraySize];

or

elementType arrayRefVar[] = new elementType[arraySize];

Here is an example of such a statement:

double[] myList = new double[10];

This statement declares an array variable, myList, creates an array of 10 elements of double
type, and assigns its reference to myList. To assign values to the elements, use the syntax

arrayRefVar[index] = value;

For example, the following code initializes the array:

myList[0] = 5.6;
myList[1] = 4.5;
myList[2] = 3.3;
myList[3] = 13.2;
myList[4] = 4.0;
myList[5] = 34.33;
myList[6] = 34.0;
myList[7] = 45.45;
myList[8] = 99.993;
myList[9] = 11123;

This array is illustrated in Figure 7.1.

null

new operator

Figure 7.1  The array myList has 10 elements of double type and int indices from 0 to 9.

double[] myList = new double[10];

myList
myList[0]

myList[1]

myList[2]

myList[3]

myList[4]

myList[6]

myList[5]

myList[7]

myList[8]

myList[9]

Array reference
variable

Array element at
index 5

5.6

4.5

3.3

13.2

4.0

34.33

34.0

45.45

99.993

11123

Element value

reference

M07_LIAN9966_12_SE_C07.indd 251 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

252 Chapter 7   Single-Dimensional Arrays

Note
An array variable that appears to hold an array actually contains a reference to that array.
Strictly speaking, an array variable and an array are different, but most of the time the
distinction can be ignored. Thus, it is all right to say, for simplicity, that myList is an
array, instead of stating, at greater length, that myList is a variable that contains a
reference to an array of double elements.

7.2.3  Array Size and Default Values
When space for an array is allocated, the array size must be given, specifying the number of ele-
ments that can be stored in it. The size of an array cannot be changed after the array is created.
Size can be obtained using arrayRefVar.length. For example, myList.length is 10.

When an array is created, its elements are assigned the default value of 0 for the numeric
primitive data types, \u0000 for char types, and false for boolean types.

7.2.4  Accessing Array Elements
The array elements are accessed through the index. Array indices are 0 based; that is, they
range from 0 to arrayRefVar.length − 1. In the example in Figure 7.1, myList holds 10
double values, and the indices are from 0 to 9.

Each element in the array is represented using the following syntax, known as an indexed
variable:

arrayRefVar[index];

For example, myList[9] represents the last element in the array myList.

Caution
Some programming languages use parentheses to reference an array element, as in
myList(9), but Java uses brackets, as in myList[9].

An indexed variable can be used in the same way as a regular variable. For example, the
following code adds the values in myList[0] and myList[1] to myList[2]:

myList[2] = myList[0] + myList[1];

The following loop assigns 0 to myList[0], 1 to myList[1], . . . , and 9 to myList[9]:

for (int i = 0; i < myList.length; i++) {
 myList[i] = i;
}

7.2.5  Array Initializers
Java has a shorthand notation, known as the array initializer, which combines the declaration,
creation, and initialization of an array in one statement using the following syntax:

elementType[] arrayRefVar = {value0, value1, ..., valuek};

For example, the statement

double[] myList = {1.9, 2.9, 3.4, 3.5};

declares, creates, and initializes the array myList with four elements, which is equivalent to
the following statements:

double[] myList = new double[4];
myList[0] = 1.9;
myList[1] = 2.9;

array vs. array variable

array length

default values

0 based index

indexed variable

array initializer

M07_LIAN9966_12_SE_C07.indd 252 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.2  Array Basics 253

myList[2] = 3.4;
myList[3] = 3.5;

Caution
The new operator is not used in the array-initializer syntax. Using an array initializer,
you have to declare, create, and initialize the array all in one statement. Splitting it would
cause a syntax error. Thus, the next statement is wrong:

double[] myList;
myList = {1.9, 2.9, 3.4, 3.5}; // Wrong

7.2.6  Processing Arrays
When processing array elements, you will often use a for loop for one of two reasons:

1.	 All of the elements in an array are of the same type. They are evenly processed in the
same fashion repeatedly using a loop.

2.	 Since the size of the array is known, it is natural to use a for loop.

Assume that the array is created as follows:

double[] myList = new double[10];

The following are some examples of processing arrays:

1.	 Initializing arrays with input values: The following loop initializes the array myList
with user input values:

java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myList.length + " values: ");
for (int i = 0; i < myList.length; i++)
 myList[i] = input.nextDouble();

2.	 Initializing arrays with random values: The following loop initializes the array myList
with random values between 0.0 and 100.0, but less than 100.0:

for (int i = 0; i < myList.length; i++) {
 myList[i] = Math.random() * 100;
}

3.	 Displaying arrays: To print an array, you have to print each element in the array using
a loop such as the following:

for (int i = 0; i < myList.length; i++) {
 System.out.print(myList[i] + " ");
}

Tip
For an array of the char[] type, it can be printed using one print statement. For
example, the following code displays Dallas:

char[] city = {'D', 'a', 'l', 'l', 'a', 's'};
System.out.println(city);

4.	 Summing all elements: Use a variable named total to store the sum. Initially total is
0. Add each element in the array to total using a loop such as the following:

double total = 0;
for (int i = 0; i < myList.length; i++) {
 total += myList[i];
}

print character array

M07_LIAN9966_12_SE_C07.indd 253 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

254 Chapter 7   Single-Dimensional Arrays

5.	 Finding the largest element: Use a variable named max to store the largest
element. Initially max is myList[0]. To find the largest element in the array
myList, compare each element with max, and update max if the element is greater
than max.

double max = myList[0];
for (int i = 1; i < myList.length; i++) {
 if (myList[i] > max) max = myList[i];
}

6.	 Finding the smallest index of the largest element: Often you need to locate the largest
element in an array. If an array has multiple elements with the same largest value, find
the smallest index of such an element. Suppose that the array myList is {1, 5, 3, 4, 5,
5}. The largest element is 5, and the smallest index for 5 is 1. Use a variable named max
to store the largest element, and a variable named indexOfMax to denote the index of
the largest element. Initially max is myList[0] and indexOfMax is 0. Compare each
element in myList with max and update max and indexOfMax if the element is greater
than max.

double max = myList[0];
int indexOfMax = 0;
for (int i = 1; i < myList.length; i++) {
 if (myList[i] > max) {
 max = myList[i];
 indexOfMax = i;
 }
}

7.	 Random shuffling: In many applications, you need to randomly reorder the elements
in an array. This is called shuffling. To accomplish this, for each element myList[i],
randomly generate an index j and swap myList[i] with myList[j], as follows:

random shuffling

VideoNote

Random shuffling

swap

myList
i

[1]

[i]

for (int i = 0; i < myList.length – 1; i++) {
// Generate an index j randomly
int j = (int)(Math.random()

* myList.length);

// Swap myList[i] with myList[j]
double temp = myList[i];
myList[i] = myList[j];
myList[j] = temp;

}

.

.[0]

A random index [j]

myList

8.	 Shifting elements: Sometimes you need to shift the elements left or right. Here is an example of
shifting the elements one position to the left and filling the last element with the first element:

double temp = myList[0]; // Retain the first element

// Shift elements left
for (int i = 1; i < myList.length; i++) {
 myList[i - 1] = myList[i];
}

// Move the first element to fill in the last position
myList[myList.length - 1] = temp;

9.	 Simplifying coding: Arrays can be used to greatly simplify coding for certain tasks. For exam-
ple, suppose you wish to obtain the English name of a given month by its number. If the month
names are stored in an array, the month name for a given month can be accessed simply via

M07_LIAN9966_12_SE_C07.indd 254 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.2  Array Basics 255

the index. The following code prompts the user to enter a month number and displays
its month name:

String[] months = {"January", "February",..., "December"};
System.out.print("Enter a month number (1 to 12): ");
int monthNumber = input.nextInt();
System.out.println("The month is " + months[monthNumber − 1]);

	 If you didn’t use the months array, you would have to determine the month name using
a lengthy multiway if−else statement as follows:

if (monthNumber == 1)
 System.out.println("The month is January");
else if (monthNumber == 2)
 System.out.println("The month is February");
...
else
 System.out.println("The month is December");

7.2.7  Foreach Loops
Java supports a convenient for loop, known as a foreach loop, which enables you to traverse
the array sequentially without using an index variable. For example, the following code dis-
plays all the elements in the array myList:

for (double e: myList) {
 System.out.println(e);
}

You can read the code as “for each element e in myList, do the following.” Note that the
variable, e, must be declared as the same type as the elements in myList.

In general, the syntax for a foreach loop is

for (elementType element: arrayRefVar) {
 // Process the element
}

You still have to use an index variable if you wish to traverse the array in a different order or
change the elements in the array.

Caution
Accessing an array out of bounds is a common programming error that throws a runtime
ArrayIndexOutOfBoundsException. To avoid it, make sure you do not use
an index beyond arrayRefVar.length − 1 or simply using a foreach loop if
possible.

Programmers often mistakenly reference the first element in an array with index 1, but
it should be 0. This is called the off-by-one error. Another common off-by-one error in
a loop is using <= where < should be used. For example, the following loop is wrong:

for (int i = 0; i <= list.length; i++)
 System.out.print(list[i] + " ");

The <= should be replaced by <. Using a foreach loop can avoid the off-by-one error in
this case.

	7.2.1	 How do you declare an array reference variable and how do you create an array?

	7.2.2	 When is the memory allocated for an array?

ArrayIndexOutOfBounds-
Exception

off-by-one error

Point
Check

M07_LIAN9966_12_SE_C07.indd 255 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

256 Chapter 7   Single-Dimensional Arrays

	7.2.3	 Indicate true or false for the following statements:

a.	 Every element in an array has the same type.
b.	 The array size is fixed after an array reference variable is declared.
c.	 The array size is fixed after it is created.
d.	 The elements in an array must be of a primitive data type.

	7.2.4	 What is the output of the following code?

int x = 30;
int[] numbers = new int[x];
x = 60;
System.out.println("x is " + x);
System.out.println("The size of numbers is " + numbers.length);

	7.2.5	 How do you access elements in an array?

	7.2.6	 What is the array index type? What is the lowest index? What is the representation
of the third element in an array named a?

	7.2.7	 Which of the following statements are valid?

a.	 int i = new int(30);
b.	 double d[] = new double[30];
c.	 char[] r = new char(1..30);
d.	 int i[] = (3, 4, 3, 2);
e.	 float f[] = {2.3, 4.5, 6.6};
f.	 char[] c = new char();

	7.2.8	 Write statements to do the following:

a.	 Create an array to hold 10 double values.

b.	 Assign the value 5.5 to the last element in the array.

c.	 Display the sum of the first two elements.

d.	 Write a loop that computes the sum of all elements in the array.

e.	 Write a loop that finds the minimum element in the array.

f.	 Randomly generate an index and display the element of this index in the array.

g.	 Use an array initializer to create another array with the initial values 3.5, 5.5,
4.52, and 5.6.

	7.2.9	 What happens when your program attempts to access an array element with an
invalid index?

	7.2.10	 Identify and fix the errors in the following code:

1 public class Test {
2 public static void main(String[] args) {
3 double[100] r;
4
5 for (int i = 0; i < r.length(); i++);
6 r(i) = Math.random * 100;
7 }
8 }

	7.2.11	 What is the output of the following code?

 1 public class Test {
 2 public static void main(String[] args) {
 3 int list[] = {1, 2, 3, 4, 5, 6};

M07_LIAN9966_12_SE_C07.indd 256 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.3  Case Study: Analyzing Numbers 257

 4 for (int i = 1; i < list.length; i++)
 5 list[i] = list[i − 1];
 6
 7 for (int i = 0; i < list.length; i++)
 8 System.out.print(list[i] + " ");
 9 }
10 }

7.3  Case Study: Analyzing Numbers
The problem is to write a program that finds the number of items above the average of
all items.

Now you can write a program using arrays to solve the problem proposed at the beginning of
this chapter. The problem is to read 100 numbers, get the average of these numbers, and find
the number of the items greater than the average. To be flexible for handling any number of
inputs, we will let the user enter the number of inputs, rather than fixing it to 100. Listing 7.1
gives a solution.

Point
Key

Enter the number of items: 10

Enter the numbers: 3.4 5 6 1 6.5 7.8 3.5 8.5 6.3 9.5

Average is 5.75

Number of elements above the average is 6

Listing 7.1  AnalyzeNumbers.java
 1 public class AnalyzeNumbers {
 2 public static void main(String[] args) {
 3 java.util.Scanner input = new java.util.Scanner(System.in);
 4 System.out.print("Enter the number of items: ");
 5 int n = input.nextInt();
 6 double[] numbers = new double[n];
 7 double sum = 0;
 8
 9 System.out.print("Enter the numbers: ");
10 for (int i = 0; i < n; i++) {
11 numbers[i] = input.nextDouble();
12 sum += numbers[i];
13 }
14
15 double average = sum / n;
16
17 int count = 0; // The number of elements above average
18 for (int i = 0; i < n; i++)
19 if (numbers[i] > average)
20 count++;
21
22 System.out.println("Average is " + average);
23 System.out.println("Number of elements above the average is "
24 + count);
25 }
26 }

get average

numbers[0]:

numbers[1]:

numbers[2]:

.

.
numbers[i]: .

numbers[n-3]:

numbers[n-2]:

numbers[n-1]:

create array

store number in array

above average?

The program prompts the user to enter the array size (line 5) and creates an array with the
specified size (line 6). The program reads the input, stores numbers into the array (line 11),
adds each number to sum in line 12, and obtains the average (line 15). It then compares

M07_LIAN9966_12_SE_C07.indd 257 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

258 Chapter 7   Single-Dimensional Arrays

each number in the array with the average to count the number of values above the average
(lines 7–20).

7.4  Case Study: Deck of Cards
The problem is to create a program that will randomly select four cards from a deck
of cards.

Say you want to write a program that will pick four cards at random from a deck of 52 cards.
All the cards can be represented using an array named deck, filled with initial values 0–51,
as follows:

int[] deck = new int[52];

// Initialize cards
for (int i = 0; i < deck.length; i++)
 deck[i] = i;

Card numbers 0–12, 13–25, 26–38, and 39–51 represent 13 Spades, 13 Hearts, 13 Diamonds,
and 13 Clubs, respectively, as shown in Figure 7.2. cardNumber / 13 determines the suit
of the card, and cardNumber % 13 determines the rank of the card, as shown in Figure 7.3.
After shuffling the array deck, pick the first four cards from deck. The program displays the
cards from these four card numbers.

Point
Key

VideoNote

Deck of cards

Figure 7.3  cardNumber identifies a card’s suit and rank number.

cardNumber / 13 =

0

3

2

1

Spades

Hearts

Diamonds

Clubs

cardNumber % 13 =

0

11

10

.

Ace

1 2

.

12

Jack

Queen

King

Figure 7.2  52 cards are stored in an array named deck.

0
.
.
.

12
13
.
.
.

25
26
.
.
.

38
39
.
.
.

51

13 Diamonds ()

13 Clubs ()

0
.
.
.

12
13
.
.
.

25
26
.
.
.

38
39
.
.
.

51

deck
[0]
.
.
.

[12]
[13]

.

.

.
[25]
[26]

.

.

.
[38]
[39]

.

.

.
[51]

Random shuffle

6
48
11
24
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

deck
[0]
[1]
[2]
[3]
[4]
[5]
.
.
.

[25]
[26]

.

.

.
[38]
[39]

.

.

.
[51]

Card number 6 is the
7 (6 % 13 5 6) of
Spades (6 / 13 is 0)

Card number 48 is the
10 (48 % 13 5 9) of
Clubs (48 / 13 is 3)

Card number 11 is the
Queen (11 % 13 5 11) of
Spades (11 / 13 is 0)

Card number 24 is the
Queen (24 % 13 5 11) of
Hearts (24 / 13 is 1)

13 Hearts ()

13 Spades ()

M07_LIAN9966_12_SE_C07.indd 258 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.4  Case Study: Deck of Cards 259

Listing 7.2 gives the solution to the problem.

Listing 7.2  DeckOfCards.java
 1 public class DeckOfCards {
 2 public static void main(String[] args) {
 3 int[] deck = new int[52];
 4 String[] suits = {"Spades", "Hearts", "Diamonds", "Clubs"};
 5 String[] ranks = {"Ace", "2", "3", "4", "5", "6", "7", "8", "9",
 6 "10", "Jack", "Queen", "King"};
 7
 8 // Initialize the cards
 9 for (int i = 0; i < deck.length; i++)
10 deck[i] = i;
11
12 // Shuffle the cards
13 for (int i = 0; i < deck.length; i++) {
14 // Generate an index randomly
15 int index = (int)(Math.random() * deck.length);
16 int temp = deck[i];
17 deck[i] = deck[index];
18 deck[index] = temp;
19 }
20
21 // Display the first four cards
22 for (int i = 0; i < 4; i++) {
23 String suit = suits[deck[i] / 13];
24 String rank = ranks[deck[i] % 13];
25 System.out.println("Card number " + deck[i] + ": "
26 + rank + " of " + suit);
27 }
28 }
29 }

create array deck
array of strings

initialize deck

shuffle deck

suit of a card
rank of a card

 Card number 6: 7 of Spades
 Card number 48: 10 of Clubs
 Card number 11: Queen of Spades
 Card number 24: Queen of Hearts

The program creates an array suits for four suits (line 4) and an array ranks for 13 cards in
a suit (lines 5 and 6). Each element in these arrays is a string.

The program initializes deck with values 0–51 in lines 9 and 10. The deck value 0 rep-
resents the Ace of Spades, 1 represents the card 2 of Spades, 13 represents the Ace of Hearts,
and 14 represents the 2 of Hearts.

Lines 13–19 randomly shuffle the deck. After a deck is shuffled, deck[i] contains an
arbitrary value. deck[i] / 13 is 0, 1, 2, or 3, which determines the suit (line 23). deck[i]
% 13 is a value between 0 and 12, which determines the rank (line 24). If the suits array is
not defined, you would have to determine the suit using a lengthy multiway if−else state-
ment as follows:

if (deck[i] / 13 == 0)
 System.out.print("suit is Spades");
else if (deck[i] / 13 == 1)
 System.out.print("suit is Hearts");
else if (deck[i] / 13 == 2)
 System.out.print("suit is Diamonds");
else
 System.out.print("suit is Clubs");

M07_LIAN9966_12_SE_C07.indd 259 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

260 Chapter 7   Single-Dimensional Arrays

With suits = {"Spades", "Hearts", "Diamonds", "Clubs"} created in an array,
suits[deck[i] / 13] gives the suit for deck[i]. Using arrays greatly simplifies the
solution for this program.

	7.4.1	 Will the program pick four random cards if you replace lines 22–27 in Listing 7.2,
DeckOfCards.java, with the following code?

 for (int i = 0; i < 4; i++) {
 int cardNumber = (int)(Math.random() * deck.length);
 String suit = suits[cardNumber / 13];
 String rank = ranks[cardNumber % 13];
 System.out.println("Card number " + cardNumber + ": "
 + rank + " of " + suit);
 }

7.5  Copying Arrays
To copy the contents of one array into another, you have to copy the array’s individ-
ual elements into the other array.

Often, in a program, you need to duplicate an array or a part of an array. In such cases you
could attempt to use the assignment statement (=), as follows:

list2 = list1;

However, this statement does not copy the contents of the array referenced by list1 to list2,
but instead merely copies the reference value from list1 to list2. After this statement,
list1 and list2 reference the same array, as shown in Figure 7.4. The array previously
referenced by list2 is no longer referenced; it becomes garbage, which will be automatically
collected by the Java Virtual Machine. This process is called garbage collection.

Point
Check

Point
Key

copy reference

garbage collection

Figure 7.4  Before the assignment statement, list1 and list2 point to separate memory
locations. After the assignment, the reference of the list1 array is passed to list2.

Contents
of list1

list1

list2

Before the assignment:
list2 = list1;

list1

list2

After the assignment:
list2 = list1;

Contents
of list2

Contents
of list1

Contents
of list2

In Java, you can use assignment statements to copy primitive data type variables, but not arrays.
Assigning one array variable to another array variable actually copies one reference to another
and makes both variables point to the same memory location.

There are three ways to copy arrays:

1.	 Use a loop to copy individual elements one by one.

2.	 Use the static arraycopy method in the System class.

3.	 Use the clone method to copy arrays; this will be introduced in Chapter 13, Abstract
Classes and Interfaces.

M07_LIAN9966_12_SE_C07.indd 260 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.6  Passing Arrays to Methods 261

You can write a loop to copy every element from the source array to the corresponding element
in the target array. The following code, for instance, copies sourceArray to targetArray
using a for loop:

int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new int[sourceArray.length];
for (int i = 0; i < sourceArray.length; i++) {
 targetArray[i] = sourceArray[i];
}

Another approach is to use the arraycopy method in the java.lang.System class to copy
arrays instead of using a loop. The syntax for arraycopy is:

arraycopy(sourceArray, srcPos, targetArray, tarPos, length);

The parameters srcPos and tarPos indicate the starting positions in sourceArray and
targetArray, respectively. The number of elements copied from sourceArray to
targetArray is indicated by length. For example, you can rewrite the loop using the
following statement:

System.arraycopy(sourceArray, 0, targetArray, 0, sourceArray.length);

The arraycopy method does not allocate memory space for the target array. The target array
must have already been created with its memory space allocated. After the copying takes place,
targetArray and sourceArray have the same content but independent memory locations.

Note
The arraycopy method violates the Java naming convention. By convention, this
method should be named arrayCopy (i.e., with an uppercase C).

	7.5.1	 Use the arraycopy method to copy the following array to a target array t:
int[] source = {3, 4, 5};

	7.5.2	 Once an array is created, its size cannot be changed. Does the following code resize
the array?

int[] myList;
myList = new int[10];
// Sometime later you want to assign a new array to myList
myList = new int[20];

7.6  Passing Arrays to Methods
When passing an array to a method, the reference of the array is passed to the method.

Just as you can pass primitive type values to methods, you can also pass arrays to methods.
For example, the following method displays the elements in an int array:

public static void printArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }	
}

You can invoke it by passing an array. For example, the following statement invokes the
printArray method to display 3, 1, 2, 6, 4, and 2.

printArray(new int[]{3, 1, 2, 6, 4, 2});

arraycopy method

Point
Check

Point
Key

M07_LIAN9966_12_SE_C07.indd 261 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

262 Chapter 7   Single-Dimensional Arrays

Note
The preceding statement creates an array using the following syntax:

new elementType[]{value0, value1, ..., valuek};

There is no explicit reference variable for the array. Such array is called an anonymous
array.

Java uses pass-by-value to pass arguments to a method. There are important differences
between passing the values of variables of primitive data types and passing arrays.

■■ For an argument of a primitive type, the argument’s value is passed.

■■ For an argument of an array type, the value of the argument is a reference to an array;
this reference value is passed to the method. Semantically, it can be best described as
pass-by-sharing, that is, the array in the method is the same as the array being passed.
Thus, if you change the array in the method, you will see the change outside the method.

Take the following code, for example:

public class TestArrayArguments {
 public static void main(String[] args) {
 int x = 1; // x represents an int value
 int[] y = new int[10]; // y represents an array of int values

 m(x, y); // Invoke m with arguments x and y

 System.out.println("x is " + x);
 System.out.println("y[0] is " + y[0]);
 }

 public static void m(int number, int[] numbers) {
 number = 1001; // Assign a new value to number
 numbers[0] = 5555; // Assign a new value to numbers[0]
 }
}

anonymous array

pass-by-value

pass-by-sharing

x is 1
y[0] is 5555

You may wonder why after m is invoked, x remains 1, but y[0] becomes 5555. This is
because y and numbers, although they are independent variables, reference the same array, as
illustrated in Figure 7.5. When m(x, y) is invoked, the values of x and y are passed to number
and numbers. Since y contains the reference value to the array, numbers now contains the
same reference value to the same array.

Figure 7.5  The primitive type value in x is passed to number, and the reference value in y
is passed to numbers.

Activation record for

the main method

int[] y:

int x:

 Stack

Activation record for

method m

int[] numbers:

int number:

An array of
ten int values
is stored here

Arrays are
stored in a
heap

Heap

1

reference

1

reference

M07_LIAN9966_12_SE_C07.indd 262 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.6  Passing Arrays to Methods 263

Note
Arrays are objects in Java (objects are introduced in Chapter 9). The JVM stores the
objects in an area of memory called the heap, which is used for dynamic memory
allocation.

Listing 7.3 gives another program that shows the difference between passing a primitive data
type value and an array reference variable to a method.

The program contains two methods for swapping elements in an array. The first method,
named swap, fails to swap two int arguments. The second method, named swapFirst­
TwoInArray, successfully swaps the first two elements in the array argument.

Listing 7.3  TestPassArray.java
 1 public class TestPassArray {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 int[] a = {1, 2};
 5
 6 // Swap elements using the swap method
 7 System.out.println("Before invoking swap");
 8 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
 9 swap(a[0], a[1]);
10 System.out.println("After invoking swap");
11 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
12
13 // Swap elements using the swapFirstTwoInArray method
14 System.out.println("Before invoking swapFirstTwoInArray");
15 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
16 swapFirstTwoInArray(a);
17 System.out.println("After invoking swapFirstTwoInArray");
18 System.out.println("array is {" + a[0] + ", " + a[1] + "}");
19 }
20
21 /** Swap two variables */
22 public static void swap(int n1, int n2) {
23 int temp = n1;
24 n1 = n2;
25 n2 = temp;
26 }
27
28 /** Swap the first two elements in the array */
29 public static void swapFirstTwoInArray(int[] array) {
30 int temp = array[0];
31 array[0] = array[1];
32 array[1] = temp;
33 }
34 }

heap

false swap

swap array elements

Before invoking swap
array is {1, 2}
After invoking swap
array is {1, 2}
Before invoking swapFirstTwoInArray
array is {1, 2}
After invoking swapFirstTwoInArray
array is {2, 1}

M07_LIAN9966_12_SE_C07.indd 263 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

264 Chapter 7   Single-Dimensional Arrays

As shown in Figure 7.6, the two elements are not swapped using the swap method. However,
they are swapped using the swapFirstTwoInArray method. Since the parameters in the
swap method are primitive type, the values of a[0] and a[1] are passed to n1 and n2 inside
the method when invoking swap(a[0], a[1]). The memory locations for n1 and n2 are
independent of the ones for a[0] and a[1]. The contents of the array are not affected by
this call.

The parameter in the swapFirstTwoInArray method is an array. As shown in Figure 7.6,
the reference of the array is passed to the method. Thus, the variables a (outside the method)
and array (inside the method) both refer to the same array in the same memory location.
Therefore, swapping array[0] with array[1] inside the method swapFirstTwoInArray
is the same as swapping a[0] with a[1] outside of the method.

	7.6.1	 True or false? When an array is passed to a method, a new array is created and
passed to the method.

7.7  Returning an Array from a Method
When a method returns an array, the reference of the array is returned.

You can pass arrays when invoking a method. A method may also return an array. For example,
the following method returns an array that is the reversal of another array.

Point
Check

Point
Key

create array

return array

 l public static int[] reverse(int[] list) {
 2 int[] result = new int[list.length];
 3
 4 for (int i = 0, j = result.length - 1;
 5 i < list.length; i++, j--) {
 6 result[j] = list[i];
 7 }
 8
 9 return result;
10 }

list
i

j
result

Line 2 creates a new array result. Lines 4–7 copy elements from array list to array
result. Line 9 returns the array. For example, the following statement returns a new array
list2 with elements 6, 5, 4, 3, 2, 1:

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

Figure 7.6  When passing an array to a method, the reference of the array is passed to the
method.

Invoke swap(int n1, int n2).
The primitive type values in
a[0] and a[1] are passed to the
swap method.

Invoke swapFirstTwoInArray(int[]
array). The reference value in a is passed
to the swapFirstTwoInArray method.

The arrays are
stored in a
heap.

Stack Heap

Activation record for
the swap method

Activation record for
the main method

n2: 2
n1: 1

int[] a reference reference

reference

Stack

Activation record for the
swapFirstTwoInArray
method

Activation record for the
main method

int[] a

int[] array

a[0]: 1
a[1]: 2

M07_LIAN9966_12_SE_C07.indd 264 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.8  Case Study: Counting the Occurrences of Each Letter 265

	7.7.1	 Suppose the following code is written to reverse the contents in an array, explain
why it is wrong. How do you fix it?

int[] list = {1, 2, 3, 5, 4};

for (int i = 0, j = list.length − 1; i < list.length; i++, j−−) {
 // Swap list[i] with list[j]
 int temp = list[i];
 list[i] = list[j];
 list[j] = temp;
}

7.8 � Case Study: Counting the Occurrences
of Each Letter

This section presents a program to count the occurrences of each letter in an array of
characters.

The program given in Listing 7.4 does the following:

1.	 Generates 100 lowercase letters randomly and assigns them to an array of characters, as
shown in Figure 7.7a. You can obtain a random letter by using the getRandomLower-
CaseLetter() method in the RandomCharacter class in Listing 6.10.

2.	 Count the occurrences of each letter in the array. To do so, create an array, say counts, of
26 int values, each of which counts the occurrences of a letter, as shown in Figure 7.7b.
That is, counts[0] counts the number of a’s, counts[1] counts the number of b’s,
and so on.

Point
Check

Point
Key

Figure 7.7  The chars array stores 100 characters, and the counts array stores 26 counts,
each of which counts the occurrences of a letter.

…

…

chars[0]

chars[1]

…

…

chars[98]

chars[99]

…

…

counts[0]

counts[1]

…

…

counts[24]

counts[25]

(a) (b)

Listing 7.4  CountLettersInArray.java
 1 public class CountLettersInArray {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Declare and create an array
 5 char[] chars = createArray();
 6
 7 // Display the array
 8 System.out.println("The lowercase letters are:");
 9 displayArray(chars);
10

create array

pass array

M07_LIAN9966_12_SE_C07.indd 265 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

266 Chapter 7   Single-Dimensional Arrays

11  // Count the occurrences of each letter
12 int[] counts = countLetters(chars);
13
14  // Display counts
15 System.out.println();
16 System.out.println("The occurrences of each letter are:");
17 displayCounts(counts);
18 }
19
20  /** Create an array of characters */
21 public static char[] createArray() {
22 // Declare an array of characters and create it
23 char[] chars = new char[100];
24
25 // Create lowercase letters randomly and assign
26 // them to the array
27 for (int i = 0; i < chars.length; i++)
28 chars[i] = RandomCharacter.getRandomLowerCaseLetter();
29
30 // Return the array
31 return chars;
32 }
33
34  /** Display the array of characters */
35 public static void displayArray(char[] chars) {
36 // Display the characters in the array 20 on each line
37 for (int i = 0; i < chars.length; i++) {
38 if ((i + 1) % 20 == 0)
39 System.out.println(chars[i]);
40 else
41 System.out.print(chars[i] + " ");
42 }
43 }
44
45 /** Count the occurrences of each letter */
46 public static int[] countLetters(char[] chars) {
47 // Declare and create an array of 26 int
48 int[] counts = new int[26];
49
50 // For each lowercase letter in the array, count it
51 for (int i = 0; i < chars.length; i++)
52 counts[chars[i] - 'a']++;
53
54 return counts;
55 }
56
57 /** Display counts */
58 public static void displayCounts(int[] counts) {
59 for (int i = 0; i < counts.length; i++) {
60 if ((i + 1) % 10 == 0)
61 System.out.println(counts[i] + " " + (char)(i + 'a'));
62 else
63 System.out.print(counts[i] + " " + (char)(i + 'a') + " ");
64 }
65 }
66 }

return array

pass array

increase count

M07_LIAN9966_12_SE_C07.indd 266 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.8  Case Study: Counting the Occurrences of Each Letter 267

The createArray method (lines 21–32) generates an array of 100 random lowercase letters.
Line 5 invokes the method and assigns the array to chars. What would be wrong if you
rewrote the code as follows?

char[] chars = new char[100];
chars = createArray();

You would be creating two arrays. The first line would create an array by using new
char[100]. The second line would create an array by invoking createArray() and assign
the reference of the array to chars. The array created in the first line would be garbage because
it is no longer referenced, and as mentioned earlier, Java automatically collects garbage behind
the scenes. Your program would compile and run correctly, but it would create an array
unnecessarily.

Invoking getRandomLowerCaseLetter() (line 28) returns a random lowercase
letter. This method is defined in the RandomCharacter class in Listing 6.10.

The countLetters method (lines 46–55) returns an array of 26 int values, each of
which stores the number of occurrences of a letter. The method processes each letter in the
array and increases its count by one. A brute-force approach to count the occurrences of each
letter might be as follows:

for (int i = 0; i < chars.length; i++)
 if (chars[i] == 'a')
 counts[0]++;
 else if (chars[i] == 'b')
 counts[1]++;
 ...

However, a better solution is given in lines 51 and 52.

for (int i = 0; i < chars.length; i++)
 counts[chars[i] − 'a']++;

If the letter (chars[i]) is a, the corresponding count is counts['a' − 'a'] (i.e.,
counts[0]). If the letter is b, the corresponding count is counts['b' − 'a'] (i.e.,
counts[1]), since the Unicode of b is one more than that of a. If the letter is z, the
corresponding count is counts['z' − 'a'] (i.e., counts[25]), since the Unicode of z is
25 more than that of a.

Figure 7.8 shows the call stack and heap during and after executing createArray. See
CheckPoint Question 7.8.3 to show the call stack and heap for other methods in the program.

The lowercase letters are:
e y l s r i b k j v j h a b z n w b t v
s c c k r d w a m p w v u n q a m p l o
a z g d e g f i n d x m z o u l o z j v
h w i w n t g x w c d o t x h y v z y z
q e a m f w p g u q t r e n n w f c r f

The occurrences of each letter are:
5 a 3 b 4 c 4 d 4 e 4 f 4 g 3 h 3 i 3 j
2 k 3 l 4 m 6 n 4 o 3 p 3 q 4 r 2 s 4 t
3 u 5 v 8 w 3 x 3 y 6 z

M07_LIAN9966_12_SE_C07.indd 267 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

268 Chapter 7   Single-Dimensional Arrays

Figure 7.8  (a) An array of 100 characters is created when executing createArray.
(b) This array is returned and assigned to the variable chars in the main method.

Array of 100
characters

Stack

(a) Executing
createArray in line 5

(b) After exiting
createArray in line 5

Heap

Activation record for the
createArray method

Activation record for the
main method

Array of 100
characters

Stack Heap

Activation record for the
main method

char[] chars: refchar[] chars: ref

char[] chars: ref

	7.8.1	 Show the output of the following two programs:Point
Check

	7.8.2	 Where are the arrays stored during execution? Show the contents of the stack and
heap during and after executing displayArray, countLetters, and display­
Counts in Listing 7.4.

7.9  Variable-Length Argument Lists
A variable number of arguments of the same type can be passed to a method and
treated as an array.

You can pass a variable number of arguments of the same type to a method. The parameter in
the method is declared as follows:

typeName... parameterName

In the method declaration, you specify the type followed by an ellipsis (...). Only one
variable-length parameter may be specified in a method, and this parameter must be the last
parameter. Any regular parameters must precede it.

Point
Key

public class Test {
public static void main(String[] args) {
int number = 0;
int[] numbers = new int[1];

 m(number, numbers);

 System.out.println("number is " + number
 + " and numbers[0] is " + numbers[0]);
 }

public static void m(int x, int[] y) {
 x = 3;
 y[0] = 3;
 }
}

(a)

public class Test {
public static void main(String[] args) {

int[] list = {1, 2, 3, 4, 5};
 reverse(list);

for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 }

public static void reverse(int[] list) {
int[] newList = new int[list.length];

for (int i = 0; i < list.length; i++)
 newList[i] = list[list.length − 1 − i];

 list = newList;
 }
}

(b)

M07_LIAN9966_12_SE_C07.indd 268 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.10  Searching Arrays 269

Java treats a variable-length parameter as an array. You can pass an array or a variable
number of arguments to a variable-length parameter. When invoking a method with a variable
number of arguments, Java creates an array and passes the arguments to it. Listing 7.5 pres-
ents a method that prints the maximum value in a list of an unspecified number of values.

Listing 7.5  VarArgsDemo.java
 1 public class VarArgsDemo {
 2 public static void main(String[] args) {
 3 printMax(34, 3, 3, 2, 56.5);
 4 printMax(new double[]{1, 2, 3});
 5 }
 6
 7 public static void printMax(double... numbers) {
 8 if (numbers.length == 0) {
 9 System.out.println("No argument passed");
10 return;
11 }
12
13 double result = numbers[0];
14
15 for (int i = 1; i < numbers.length; i++)
16 if (numbers[i] > result)
17 result = numbers[i];
18
19 System.out.println("The max value is " + result);
20 }
21 }

Line 3 invokes the printMax method with a variable-length argument list passed to the array
numbers. If no arguments are passed, the length of the array is 0 (line 8).

Line 4 invokes the printMax method with an array.

	7.9.1	 What is wrong with each of the following method headers?

a.	public static void print(String... strings, double... numbers)
b.	public static void print(double... numbers, String name)
c.	public static double... print(double d1, double d2)

	7.9.2	 Can you invoke the printMax method in Listing 7.5 using the following statements?

a.	printMax(1, 2, 2, 1, 4);
b.	printMax(new double[]{1, 2, 3});
c.	printMax(new int[]{1, 2, 3});

7.10  Searching Arrays
If an array is sorted, binary search is more efficient than linear search for finding an
element in the array.

Searching is the process of looking for a specific element in an array—for example, discovering
whether a certain score is included in a list of scores. Searching is a common task in computer
programming. Many algorithms and data structures are devoted to searching. This section
discusses two commonly used approaches, linear search and binary search.

7.10.1  The Linear Search Approach
The linear search approach compares the key element key sequentially with each element in
the array. It continues to do so until the key matches an element in the array, or the array is
exhausted without a match being found. If a match is made, the linear search returns the index

pass variable-length arg list
pass an array arg

a variable-length arg
parameter

Point
Check

Point
Key

linear search
binary search

M07_LIAN9966_12_SE_C07.indd 269 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

270 Chapter 7   Single-Dimensional Arrays

of the element in the array that matches the key. If no match is found, the search returns −1.
The linearSearch method in Listing 7.6 gives the solution.

Listing 7.6  LinearSearch.java
linear search animation on
Companion Website

list

key Compare key with list[i] for i = 0, 1, …

[0] [1] [2] …

1 public class LinearSearch {
2 /** The method for finding a key in the list */
3 public static int linearSearch(int[] list, int key) {
4 for (int i = 0; i < list.length; i++) {
5 if (key == list[i])
6 return i;
7 }
8 return 21;
9 }
10 }

To better understand this method, trace it with the following statements:

1 int[] list = {1, 4, 4, 2, 5, −3, 6, 2};
2 int i = linearSearch(list, 4); // Returns 1
3 int j = linearSearch(list, −4); // Returns −1
4 int k = linearSearch(list, −3); // Returns 5

The linear search method compares the key with each element in the array. The elements
can be in any order. On average, the algorithm will have to examine half of the elements
in an array before finding the key, if it exists. Since the execution time of a linear search
increases linearly as the number of array elements increases, linear search is inefficient for
a large array.

7.10.2  The Binary Search Approach
Binary search is the other common search approach for a list of values. For binary search to
work, the elements in the array must already be ordered. Assume that the array is in ascending
order. The binary search first compares the key with the element in the middle of the array.
Consider the following three cases:

1.	 If the key is less than the middle element, you need to continue to search for the key
only in the first half of the array.

2.	 If the key is equal to the middle element, the search ends with a match.

3.	 If the key is greater than the middle element, you need to continue to search for the
key only in the second half of the array.

Clearly, the binary search method eliminates at least half of the array after each comparison.
Suppose the array has n elements. For convenience, let n be a power of 2. After the first com-
parison, n/2 elements are left for further search; after the second comparison, (n/2)/2 ele-
ments are left. After the kth comparison, n/2k elements are left for further search. When k =
log2n, only one element is left in the array, and you need only one more comparison. There-
fore, in the worst case when using the binary search approach, you need log2n+1 comparisons
to find an element in the sorted array. In the worst case for a list of 1024 (210) elements, binary
search requires only 11 comparisons, whereas a linear search requires 1024 comparisons in
the worst case.

The portion of the array being searched shrinks by half after each comparison. Let low and
high denote, respectively, the first index and last index of the array that is currently being
searched. Initially, low is 0 and high is list.length − 1. Let mid denote the index of the
middle element, so mid is (low + high)/2. Figure 7.9 shows how to find key 11 in the list
{2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79} using binary search.

binary search animation on
Companion Website

M07_LIAN9966_12_SE_C07.indd 270 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.10  Searching Arrays 271

Figure 7.9  Binary search eliminates half of the list from further consideration after each
comparison.

key is 11 low

key , 50

key . 7

[0] [1] [2] [3] [4] [5] [7] [8] [9] [10] [11]

2list 4 7 10 11 45 50 59 60 66 69 70 79

mid

[6]

high

[12]

low

[0] [1] [2] [3] [4] [5]

2list 4 7 10 11 45

mid high

key 55 11

[3] [4] [5]

list 10 11 45

low mid high

You now know how the binary search works. The next task is to implement it in Java. Don’t
rush to give a complete implementation. Implement it incrementally, one step at a time. You
may start with the first iteration of the search, as shown in Figure 7.10a. It compares the key
with the middle element in the list whose low index is 0 and high index is list.length −
1. If key < list[mid], set the high index to mid − 1; if key == list[mid], a match is
found and return mid; if key > list[mid], set the low index to mid + 1.

Next, consider implementing the method to perform the search repeatedly by adding a loop,
as shown in Figure 7.10b. The search ends if the key is found, or if the key is not found when
low > high.

why not -1?

Figure 7.10  Binary search is implemented incrementally.

(a) Version 1

public static int binarySearch(
int[] list, int key) {

int low = 0;
int high = list.length − 1;

int mid = (low + high) / 2;
if (key < list[mid])

 high = mid − 1;
else if (key == list[mid])

return mid;
else

 low = mid + 1;

}

public static int binarySearch(
int[] list, int key) {

int low = 0;
int high = list.length − 1;

while (high >= low) {
int mid = (low + high) / 2;
if (key < list[mid])

 high = mid - 1;
else if (key == list[mid])

return mid;
else

 low = mid + 1;
}

return -1; // Not found
}

(b) Version 2

When the key is not found, low is the insertion point where a key would be inserted to
maintain the order of the list. It is more useful to return the insertion point than −1. The method
must return a negative value to indicate that the key is not in the list. Can it simply return
−low? No. If the key is less than list[0], low would be 0. −0 is 0. This would indicate the
key matches list[0]. A good choice is to let the method return −low − 1 if the key is not
in the list. Returning −low − 1 indicates not only that the key is not in the list, but also where
the key would be inserted.

M07_LIAN9966_12_SE_C07.indd 271 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

272 Chapter 7   Single-Dimensional Arrays

The complete program is given in Listing 7.7.

Listing 7.7  BinarySearch.java
 1 public class BinarySearch {
 2 /** Use binary search to find the key in the list */
 3 public static int binarySearch(int[] list, int key) {
 4 int low = 0;
 5 int high = list.length − 1;
 6
 7 while (high >= low) {
 8 int mid = (low + high) / 2;
 9 if (key < list[mid])
10 high = mid − 1;
11 else if (key == list[mid])
12 return mid;
13 else
14 low = mid + 1;
15 }
16
17 return –low - 1; // Now high < low, key not found
18 }
19 }

The binary search returns the index of the search key if it is contained in the list (line 12).
Otherwise, it returns −low − 1 (line 17).

What would happen if we replaced (high >= low) in line 7 with (high > low)? The
search would miss a possible matching element. Consider a list with just one element. The
search would miss the element.

Does the method still work if there are duplicate elements in the list? Yes, as long as the
elements are sorted in increasing order. The method returns the index of one of the matching
elements if the element is in the list.

The precondition for the binary search method is that the list must be sorted in increasing
order. The postcondition is that the method returns the index of the element that matches the
key if the key is in the list or a negative integer k such that −k - 1 is the position for inserting
the key. Precondition and postcondition are the terms often used to describe the properties of
a method. Preconditions are the things that are true before the method is invoked, and
postconditions are the things that are true after the method is returned:

To better understand this method, trace it with the following statements and identify low
and high when the method returns.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
int i = BinarySearch.binarySearch(list, 2); // Returns 0
int j = BinarySearch.binarySearch(list, 11); // Returns 4
int k = BinarySearch.binarySearch(list, 12); // Returns –6
int l = BinarySearch.binarySearch(list, 1); // Returns –1
int m = BinarySearch.binarySearch(list, 3); // Returns –2

Here is the table that lists the low and high values when the method exits, and the value
returned from invoking the method.

Method Low High Value Returned

binarySearch(list, 2) 0 1 0 (mid)

binarySearch(list, 11) 3 5 4 (mid)

binarySearch(list, 12) 5 4 −6

binarySearch(list, 1) 0 −1 −1

binarySearch(list, 3) 1 0 −2

first half

second half

precondition

postcondition

M07_LIAN9966_12_SE_C07.indd 272 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.11  Sorting Arrays 273

Note
Linear search is useful for finding an element in a small array or an unsorted array, but it
is inefficient for large arrays. Binary search is more efficient, but it requires that the array
be presorted.

	7.10.1	 If high is a very large integer such as the maximum int value 2147483647,
(low + high) / 2 may cause overflow. How do you fix it to avoid overflow?

	7.10.2	 Use Figure 7.9 as an example to show how to apply the binary search approach to a
search for key 10 and key 12 in list {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79}.

	7.10.3	 If the binary search method returns −4, is the key in the list? Where should the key
be inserted if you wish to insert the key into the list?

7.11  Sorting Arrays
Sorting, like searching, is a common task in computer programming. Many different
algorithms have been developed for sorting. This section introduces an intuitive sort-
ing algorithm: selection sort.

Suppose you want to sort a list in ascending order. Selection sort finds the smallest number in
the list and swaps it with the first element. It then finds the smallest number remaining and
swaps it with the second element, and so on, until only a single number remains. Figure 7.11
shows how to sort the list {2, 9, 5, 4, 8, 1, 6} using selection sort.

binary search benefits

Point
Check

Point
Key

VideoNote

Selection sort

selection sort animation on
Companion Website

Figure 7.11  Selection sort repeatedly selects the smallest number and swaps it with the first number in the list.

Select 1 (the smallest) and swap it
with 2 (the first) in the list.

The number 1 is now in the
correct position, and thus no
longer needs to be considered.

The number 2 is now in the
correct position, and thus no
longer needs to be considered.

The number 4 is now in the
correct position, and thus no
longer needs to be considered.

The number 5 is now in the
correct position, and thus no
longer needs to be considered.

The number 6 is now in the
correct position, and thus no
longer needs to be considered.

2

1

1

1

1

1

1

9

9

2

2

2

2

2

5

swap

5

5

4

4

4

4

4

4

4

5

5

5

5

8

8

8

8

8

6

6

1

2

9

9

9

9

8

6

6

6

6

6

8

9
The number 8 is now in the
correct position, and thus no
longer needs to be considered.

Select 2 (the smallest) and swap it
with 9 (the first) in the remaining

with 5 (the first) in the remaining

with 8 (the first) in the remaining

with 9 (the first) in the remaining

list.

Select 4 (the smallest) and swap it

list.

5 is the smallest and in the right
position. No swap is necessary.

Select 6 (the smallest) and swap it

list.

Select 8 (the smallest) and swap it

list.

Since there is only one element
remaining in the list, the sort is
completed.

swap

swap

swap

swap

You know how the selection-sort approach works. The task now is to implement it in Java.
Beginners find it difficult to develop a complete solution on the first attempt. Start by writing
the code for the first iteration to find the smallest element in the list and swap it with the first
element, then observe what would be different for the second iteration, the third, and so on.
The insight this gives will enable you to write a loop that generalizes all the iterations.

M07_LIAN9966_12_SE_C07.indd 273 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

274 Chapter 7   Single-Dimensional Arrays

The solution can be described as follows:

for (int i = 0; i < list.length − 1; i++) {
 select the smallest element in list[i..list.length−1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration applies on list[i+1..list.length−1]
}

Listing 7.8 implements the solution.

Listing 7.8  SelectionSort.java
 1 public class SelectionSort {
 2 /** The method for sorting the numbers */
 3 public static void selectionSort(double[] list) {
 4 for (int i = 0; i < list.length - 1; i++) {
 5 // Find the minimum in the list[i..list.length−1]
 6 double currentMin = list[i];
 7 int currentMinIndex = i;
 8
 9 for (int j = i + 1; j < list.length; j++) {
10 if (currentMin > list[j]) {
11 currentMin = list[j];
12 currentMinIndex = j;
13 }
14 }
15
16 // Swap list[i] with list[currentMinIndex] if necessary
17 if (currentMinIndex != i) {
18 list[currentMinIndex] = list[i];
19 list[i] = currentMin;
20 }
21 }
22 }
23 }

The selectionSort(double[] list) method sorts any array of double elements. The
method is implemented with a nested for loop. The outer loop (with the loop control variable i
in line 4) is iterated in order to find the smallest element in the list, which ranges from list[i]
to list[list.length−1], and exchanges it with list[i].

The variable i is initially 0. After each iteration of the outer loop, list[i] is in the right
place. Eventually, all the elements are put in the right place; therefore, the whole list is sorted.

To understand this method better, trace it with the following statements:

double[] list = {1, 9, 4.5, 6.6, 5.7, −4.5};
SelectionSort.selectionSort(list);

	7.11.1	 Use Figure 7.11 as an example to show how to apply the selection-sort approach to
sort {3.4, 5, 3, 3.5, 2.2, 1.9, 2}.

	7.11.2	 How do you modify the selectionSort method in Listing 7.8 to sort numbers in
decreasing order?

7.12  The Arrays Class
The java.util.Arrays class contains useful methods for common array operations
such as sorting and searching.

select

swap

Point
Check

Point
Key

M07_LIAN9966_12_SE_C07.indd 274 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.12  The Arrays Class 275

The java.util.Arrays class contains various static methods for sorting and searching
arrays, comparing arrays, filling array elements, and returning a string representation of the
array. These methods are overloaded for all primitive types.

You can use the sort or parallelSort method to sort a whole array or a partial array.
For example, the following code sorts an array of numbers and an array of characters:

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers); // Sort the whole array
java.util.Arrays.parallelSort(numbers); // Sort the whole array

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
java.util.Arrays.sort(chars, 1, 3); // Sort part of the array
java.util.Arrays.parallelSort(chars, 1, 3); // Sort part of the array

Invoking sort(numbers) sorts the whole array numbers. Invoking sort(chars, 1, 3)
sorts a partial array from chars[1] to chars[3−1]. parallelSort is more efficient if your
computer has multiple processors.

You can use the binarySearch method to search for a key in an array. The array must be pre-
sorted in increasing order. If the key is not in the array, the method returns −(insertionIndex
 + 1). For example, the following code searches the keys in an array of integers and an array
of characters:

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.println("1. Index is " +
 java.util.Arrays.binarySearch(list, 11));
System.out.println("2. Index is " +
 java.util.Arrays.binarySearch(list, 12));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println("3. Index is " +
 java.util.Arrays.binarySearch(chars, 'a'));
System.out.println("4. Index is " +
 java.util.Arrays.binarySearch(chars, 't'));

The output of the preceding code is as follows:

Index is 4

Index is –6

Index is 0

Index is –4

You can use the equals method to check whether two arrays are strictly equal. Two arrays
are strictly equal if their corresponding elements are the same. In the following code, list1
and list2 are equal, but list2 and list3 are not.

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 10};
int[] list3 = {4, 2, 7, 10};
System.out.println(java.util.Arrays.equals(list1, list2)); // true
System.out.println(java.util.Arrays.equals(list2, list3)); // false

You can use the fill method to fill in all or part of the array. For example, the following code
fills list1 with 5 and fills 8 into elements list2[1] through list2[5−1].

int[] list1 = {2, 4, 7, 10};
int[] list2 = {2, 4, 7, 7, 7, 10};
java.util.Arrays.fill(list1, 5); // Fill 5 to the whole array
java.util.Arrays.fill(list2, 1, 5, 8); // Fill 8 to a partial array

sort

parallelSort

binarySearch

equals

fill
toString

M07_LIAN9966_12_SE_C07.indd 275 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

276 Chapter 7   Single-Dimensional Arrays

You can also use the toString method to return a string that represents all elements in the array.
This is a quick and simple way to display all elements in the array. For example, the following code:

int[] list = {2, 4, 7, 10};
System.out.println(java.util.Arrays.toString(list));

displays [2, 4, 7, 10].

	7.12.1	 What types of array can be sorted using the java.util.Arrays.sort method?
Does this sort method create a new array?

	7.12.2	 To apply java.util.Arrays.binarySearch(array, key), should the array
be sorted in increasing order, in decreasing order, or neither?

	7.12.3	 Show the output of the following code:

int[] list1 = {2, 4, 7, 10};
java.util.Arrays.fill(list1, 7);
System.out.println(java.util.Arrays.toString(list1));

int[] list2 = {2, 4, 7, 10};
System.out.println(java.util.Arrays.toString(list2));
System.out.print(java.util.Arrays.equals(list1, list2));

7.13  Command-Line Arguments
The main method can receive string arguments from the command line.

Perhaps you have already noticed the unusual header for the main method, which has the
parameter args of the String[] type. It is clear that args is an array of strings. The main
method is just like a regular method with a parameter. You can call a regular method by passing
actual parameters. Can you pass arguments to main? Yes, of course you can. In the following
examples, the main method in class TestMain is invoked by a method in A:

Point
Check

Point
Key

public class A {
 public static void main(String[] args) {
 String[] strings = {"New York",
 "Boston", "Atlanta"};
 TestMain.main(strings);
 }
}

public class TestMain {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

A main method is just like a regular method. Furthermore, you can pass arguments to a
main method from the command line.

7.13.1  Passing Strings to the main Method
You can pass strings to a main method from the command line when you run the program.
The following command line, for example, starts the program TestMain with three strings:
arg0, arg1, and arg2:

java TestMain arg0 arg1 arg2

arg0, arg1, and arg2 are strings, but they don’t have to appear in double quotes on the com-
mand line. The strings are separated by a space. A string that contains a space must be enclosed
in double quotes. Consider the following command line:

java TestMain "First num" alpha 53

It starts the program with three strings: First num, alpha, and 53. Since First num is a
string, it is enclosed in double quotes. Note 53 is actually treated as a string. You can use "53"
instead of 53 in the command line.

M07_LIAN9966_12_SE_C07.indd 276 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

7.13  Command-Line Arguments 277

When the main method is invoked, the Java interpreter creates an array to hold
the command-line arguments and pass the array reference to args. For example, if you invoke
a program with n arguments, the Java interpreter creates an array such as the one that follows:

args = new String[n];

The Java interpreter then passes args to invoke the main method.

Note
If you run the program with no strings passed, the array is created with new
String[0]. In this case, the array is empty with length 0. args references to this
empty array. Therefore, args is not null, but args.length is 0.

7.13.2  Case Study: Calculator
Suppose you are to develop a program that performs arithmetic operations on integers. The
program receives an expression. The expression consists of an integer followed by an operator
and another integer. For example, to add two integers, use this command:

java Calculator 2 + 3

The program will display the following output:

2 + 3 = 5

Figure 7.12 shows sample runs of the program.
The strings passed to the main program are stored in args, which is an array of strings. The

first string is stored in args[0], and args.length is the number of strings passed.
Here are the steps in the program:

1.	 Use args.length to determine whether the expression has been provided as three
arguments in the command line. If not, terminate the program using System.exit(1).

2.	 Perform a binary arithmetic operation on the operands args[0] and args[2] using the
operator in args[1].

VideoNote

Command-line arguments

Figure 7.12  The program takes three arguments (operand1 operator operand2) from
the command line and displays the expression and the result of the arithmetic operation.

Add

Subtract

Multiply

Divide

M07_LIAN9966_12_SE_C07.indd 277 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

278 Chapter 7   Single-Dimensional Arrays

The program is given in Listing 7.9.

Listing 7.9  Calculator.java
 1 public class Calculator {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Check number of strings passed
 5 if (args.length != 3) {
 6 System.out.println(
 7 "Usage: java Calculator operand1 operator operand2");
 8 System.exit(1);
 9 }
10
11 // The result of the operation
12 int result = 0;
13
14 // Determine the operator
15 switch (args[1].charAt(0)) {
16 case '+': result = Integer.parseInt(args[0]) +
17 Integer.parseInt(args[2]);
18 break;
19 case '−': result = Integer.parseInt(args[0]) −
20 Integer.parseInt(args[2]);
21 break;
22 case '.': result = Integer.parseInt(args[0]) *
23 Integer.parseInt(args[2]);
24 break;
25 case '/': result = Integer.parseInt(args[0]) /
26 Integer.parseInt(args[2]);
27 }
28
29 // Display result
30 System.out.println(args[0] + ' ' + args[1] + ' ' + args[2]
31 + " = " + result);
32 }
33 }

Integer.parseInt(args[0]) (line 16) converts a digital string into an integer. The string
must consist of digits. If not, the program will terminate abnormally.

We used the . symbol for multiplication, not the common * symbol. The reason for this is
the * symbol refers to all the files in the current directory when it is used on a command line.
The following program displays all the files in the current directory when issuing the command
java Test *:

public class Test {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

To circumvent this problem, we will have to use a different symbol for the multiplication operator.

	7.13.1	 This book declares the main method as

public static void main(String[] args)

Can it be replaced by one of the following lines?

a.	public static void main(String args[])
b.	public static void main(String[] x)

check argument

check operator

Point
Check

M07_LIAN9966_12_SE_C07.indd 278 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Haneen Abu al hawa

Chapter Summary 279

c.	public static void main(String x[])
d.	static void main(String x[])

	7.13.2	 Show the output of the following program when invoked using

1.	 java Test I have a dream

2.	 java Test “1 2 3”

3.	 java Test

public class Test {
 public static void main(String[] args) {
 System.out.println("Number of strings is " + args.length);
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

Key Terms

anonymous array 262
array 250
array initializer 252
binary search 269
garbage collection 260
index 250

indexed variable 252
linear search 269
off-by-one error 255
postcondition 272
precondition 272
selection sort 273

Chapter Summary

1.	 A variable is declared as an array type using the syntax elementType[] arrayRefVar
or elementType arrayRefVar[]. The style elementType[] arrayRefVar is
preferred, although elementType arrayRefVar[] is legal.

2.	 Unlike declarations for primitive data type variables, the declaration of an array variable
does not allocate any space in memory for the array. An array variable is not a primitive
data type variable. An array variable contains a reference to an array.

3.	 You cannot assign elements to an array unless it has already been created. You
can create an array by using the new operator with the following syntax: new
elementType[arraySize].

4.	 Each element in the array is represented using the syntax arrayRefVar[index]. An
index must be an integer or an integer expression.

5.	 After an array is created, its size becomes permanent and can be obtained using
arrayRefVar.length. Since the index of an array always begins with 0, the last
index is always arrayRefVar.length − 1. An out-of-bounds error will occur if you
attempt to reference elements beyond the bounds of an array.

6.	 Programmers often mistakenly reference the first element in an array with index 1, but
it should be 0. This is called the index off-by-one error.

M07_LIAN9966_12_SE_C07.indd 279 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

280 Chapter 7   Single-Dimensional Arrays

7.	 When an array is created, its elements are assigned the default value of 0 for the numeric
primitive data types, \u0000 for char types, and false for boolean types.

8.	 Java has a shorthand notation, known as the array initializer, which combines declaring
an array, creating an array, and initializing an array in one statement, using the syntax
elementType[] arrayRefVar = {value0, value1, . . . , valuek}.

9.	 When you pass an array argument to a method, you are actually passing the reference of
the array; that is, the called method can modify the elements in the caller’s original array.

10.	 If an array is sorted, binary search is more efficient than linear search for finding an
element in the array.

11.	 Selection sort finds the smallest number in the list and swaps it with the first element.
It then finds the smallest number remaining and swaps it with the first element in the
remaining list, and so on, until only a single number remains.

Quiz

Answer the quiz for this chapter online at the Companion Website.

Programming Exercises

Sections 7.2–7.5
	 *7.1	 (Assign grades) Write a program that reads student scores, gets the best score, and

then assigns grades based on the following scheme:

Grade is A if score is Ú best -10;
Grade is B if score is Ú best -20;
Grade is C if score is Ú best -30;
Grade is D if score is Ú best -40;
Grade is F otherwise.

		 The program prompts the user to enter the total number of students, then prompts
the user to enter all of the scores, and concludes by displaying the grades. Here is
a sample run:

Enter the number of students: 4

Enter 4 scores: 40 55 70 58
Student 0 score is 40 and grade is C

Student 1 score is 55 and grade is B

Student 2 score is 70 and grade is A

Student 3 score is 58 and grade is B

	 7.2	 (Reverse the numbers entered) Write a program that reads 10 integers then dis-
plays them in the reverse of the order in which they were read.

M07_LIAN9966_12_SE_C07.indd 280 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 281

	 **7.3	 (Count occurrence of numbers) Write a program that reads the integers between
1 and 100 and counts the occurrences of each. Assume the input ends with 0. Here
is a sample run of the program: Note that if a number occurs more than one time, the
plural word “times” is used in the output. Numbers are displayed in increasing order.

Enter the integers between 1 and 100: 2 5 6 5 4 3 23 43 2 0
2 occurs 2 times
3 occurs 1 time
4 occurs 1 time
5 occurs 2 times
6 occurs 1 time
23 occurs 1 time
43 occurs 1 time

	 7.4	 (Analyze scores) Write a program that reads an unspecified number of scores and
determines how many scores are above or equal to the average, and how many
scores are below the average. Enter a negative number to signify the end of the
input. Assume the maximum number of scores is 100.

	 **7.5	 (Print distinct numbers) Write a program that reads in 10 numbers and displays the
number of distinct numbers and the distinct numbers in their input order and sepa-
rated by exactly one space (i.e., if a number appears multiple times, it is displayed
only once). (Hint: Read a number and store it to an array if it is new. If the number is
already in the array, ignore it.) After the input, the array contains the distinct numbers.
Here is the sample run of the program:

Enter 10 numbers: 1 2 3 2 1 6 3 4 5 2
The number of distinct numbers is 6
The distinct numbers are: 1 2 3 6 4 5

	 *7.6	 (Revise Listing 5.15, PrimeNumber.java) Listing 5.15 determines whether a num-
ber n is prime by checking whether 2, 3, 4, 5, 6, . . . , n/2 is a divisor. If a divisor
is found, n is not prime. A more efficient approach is to check whether any of the
prime numbers less than or equal to 2n can divide n evenly. If not, n is prime.
Rewrite Listing 5.15 to display the first 50 prime numbers using this approach.
You need to use an array to store the prime numbers, and later use them to check
whether they are possible divisors for n.

	 *7.7	 (Count single digits) Write a program that generates 100 random integers between
0 and 9 and displays the count for each number. (Hint: Use an array of 10 integers,
say counts, to store the counts for the number of 0s, 1s, . . . , 9s.)

Sections 7.6–7.8
	 7.8	 (Average an array) Write two overloaded methods that return the average of an

array with the following headers:

public static double average(int[] array)
public static double average(double[] array)

		 Write a test program that prompts the user to enter 10 integers, invokes the first
method, then displays the average value; prompts the user to enter 10 double
values, invokes the second method, then displays the average value.

M07_LIAN9966_12_SE_C07.indd 281 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

282 Chapter 7   Single-Dimensional Arrays

	 7.9	 (Find the smallest element) Write a method that finds the smallest element in an
array of double values using the following header:

public static double min(double[] array)

		 Write a test program that prompts the user to enter 10 numbers, invokes this
method to return the minimum value, and displays the minimum value. Here is a
sample run of the program:

Enter 10 numbers: 1.9 2.5 3.7 2 1.5 6 3 4 5 2
The minimum number is 1.5

	 7.10	 (Find the index of the smallest element) Write a method that returns the index of
the smallest element in an array of integers. If the number of such elements is
greater than 1, return the smallest index. Use the following header:

public static int indexOfSmallestElement(double[] array)

		 Write a test program that prompts the user to enter 10 numbers, invokes this
method to return the index of the smallest element, and displays the index.

	 *7.11	 (Statistics: compute deviation) Programming Exercise 5.45 computes the standard
deviation of numbers. This exercise uses a different but equivalent formula to
compute the standard deviation of n numbers.

mean =
a

n

i=1
xi

n
=

x1 + x2 + g + xn

n
 deviation = H a

n

i=1
(xi - mean)2

n - 1

		 To compute the standard deviation with this formula, you have to store the indi-
vidual numbers using an array, so they can be used after the mean is obtained.

		 Your program should contain the following methods:

/** Compute the deviation of double values */
public static double deviation(double[] x)

/** Compute the mean of an array of double values */
public static double mean(double[] x)

		 Write a test program that prompts the user to enter 10 numbers and displays the
mean and standard deviation, as presented in the following sample run:

Enter 10 numbers: 1.9 2.5 3.7 2 1 6 3 4 5 2
The mean is 3.11
The standard deviation is 1.55738

	 *7.12	 (Reverse an array) The reverse method in Section 7.7 reverses an array by
copying it to a new array. Rewrite the method that reverses the array passed in
the argument and returns this array. Write a test program that prompts the user to
enter 10 numbers, invokes the method to reverse the numbers, and displays the
numbers.

M07_LIAN9966_12_SE_C07.indd 282 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 283

Section 7.9
	 *7.13	 (Random number chooser) Write the following method that returns a random

number between start and end, excluding the numbers.

public static int getRandom(int start, int end, int... numbers)

		 For example, invoking getRandom(1,100,4,8,95,93) returns a random num-
ber between 1 and 100 excluding 4,8,95,and 93. Write a test program that
invokes getRandom(1,100,4,8,95,93) 45 times and displays the resulting
numbers 15 per line using the format %4d.

	 7.14	 (Compute gcd) Write a method that returns the gcd of an unspecified number of
integers. The method header is specified as follows:

public static int gcd(int... numbers)

		 Write a test program that prompts the user to enter five numbers, invokes the
method to find the gcd of these numbers, and displays the gcd.

Sections 7.10–7.12
	 7.15	 (Eliminate duplicates) Write a method that returns a new array by eliminating the

duplicate values in the array using the following method header:

public static int[] eliminateDuplicates(int[] list)

		 Write a test program that reads in 10 integers, invokes the method, and displays
the distinct numbers separated by exactly one space. Here is a sample run of the
program:

Enter 10 numbers: 1 2 3 2 1 6 3 4 5 2
The distinct numbers are: 1 2 3 6 4 5

	 7.16	 (Execution time) Write a program that randomly generates an array of 100,000
integers and a key. Estimate the execution time of invoking the linearSearch
method in Listing 7.6. Sort the array and estimate the execution time of invoking
the binarySearch method in Listing 7.7. You can use the following code tem-
plate to obtain the execution time:

long startTime = System.nanoTime();
perform the task;
long endTime = System.nanoTime();
long executionTime = endTime − startTime;

	 **7.17	 (Sort students) Write a program that prompts the user to enter the number of stu-
dents, the students’ names, and their scores and prints student names in decreasing
order of their scores. Assume the name is a string without spaces, use the Scan­
ner’s next() method to read a name.

	 **7.18	 (Bubble sort) Write a sort method that uses the bubble-sort algorithm. The
bubble-sort algorithm makes several passes through the array. On each pass, suc-
cessive neighboring pairs are compared. If a pair is not in order, its values are
swapped; otherwise, the values remain unchanged. The technique is called a bub-
ble sort or sinking sort because the smaller values gradually “bubble” their way to
the top, and the larger values “sink” to the bottom. Write a test program that reads
in 10 double numbers, invokes the method, and displays the sorted numbers.

M07_LIAN9966_12_SE_C07.indd 283 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

284 Chapter 7   Single-Dimensional Arrays

	 **7.19	 (Sorted?) Write the following method that returns true if the list is already sorted
in nondecreasing order:

public static boolean isSorted(int[] list)

		 Write a test program that prompts the user to enter a list and displays whether the
list is sorted or not. Here is a sample run. Note that the program first prompts the
user to enter the size of the list.

Enter the size of the list: 8
Enter the contents of the list: 10 1 5 16 61 9 11 1
The list has 8 integers 10 1 5 16 61 9 11 1
The list is not sorted

Enter the size of the list: 10
Enter the contents of the list: 1 1 3 4 4 5 7 9 11 21
The list has 10 integers 1 1 3 4 4 5 7 9 11 21
The list is already sorted

	 *7.20	 (Revise selection sort) In Listing 7.8, you used selection sort to sort an array. The
selection-sort method repeatedly finds the smallest number in the current array
and swaps it with the first. Rewrite this program by finding the largest number and
swapping it with the last. Write a test program that reads in 10 double numbers,
invokes the method, and displays the sorted numbers.

Section 7.13
	 *7.21	 (Sum integers) Write a program that passes an unspecified number of integers from

command line and displays their total.

	 *7.22	 (Find the number of uppercase letters in a string) Write a program that passes a string
to the command line and displays the number of uppercase letters in the string.

Comprehensive
	 **7.23	 (Game: locker puzzle) A school has 100 lockers and 100 students. All lockers are

closed on the first day of school. As the students enter, the first student, denoted
as S1, opens every locker. Then the second student, S2, begins with the second
locker, denoted as L2, and closes every other locker. Student S3 begins with the
third locker and changes every third locker (closes it if it was open and opens it if
it was closed). Student S4 begins with locker L4 and changes every fourth locker.
Student S5 starts with L5 and changes every fifth locker, and so on, until student
S100 changes L100.

		 After all the students have passed through the building and changed the lockers,
which lockers are open? Write a program to find your answer and display all open
locker numbers separated by exactly one space.

		 (Hint: Use an array of 100 Boolean elements, each of which indicates whether a
locker is open (true) or closed (false). Initially, all lockers are closed.)

	 **7.24	 (Simulation: coupon collector’s problem) Coupon collector is a classic statistics
problem with many practical applications. The problem is to repeatedly pick
objects from a set of objects and find out how many picks are needed for all the
objects to be picked at least once. A variation of the problem is to pick cards from
a shuffled deck of 52 cards repeatedly, and find out how many picks are needed
before you see one of each suit. Assume a picked card is placed back in the deck

VideoNote

Coupon collector's problem

M07_LIAN9966_12_SE_C07.indd 284 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 285

before picking another. Write a program to simulate the number of picks needed
to get four cards from each suit and display the four cards picked (it is possible a
card may be picked twice). Here is a sample run of the program:

Queen of Spades
5 of Clubs
Queen of Hearts
4 of Diamonds
Number of picks: 12

	 7.25	 (Algebra: solve quadratic equations) Write a method for solving a quadratic equa-
tion using the following header:

public static int solveQuadratic(double[] eqn, double[] roots)

		 The coefficients of a quadratic equation ax2 + bx + c = 0 are passed to the array
eqn and the real roots are stored in roots. The method returns the number of real
roots. See Programming Exercise 3.1 on how to solve a quadratic equation.

		 Write a program that prompts the user to enter values for a, b, and c and displays
the number of real roots and all real roots.

	 7.26	 (Strictly identical arrays) The arrays list1 and list2 are strictly identical
if their corresponding elements are equal. Write a method that returns true if
list1 and list2 are strictly identical, using the following header:

public static boolean equals(int[] list1, int[] list2)

		 Write a test program that prompts the user to enter two lists of integers and displays
whether the two are strictly identical. Here are the sample runs. Note the first num-
ber in the input for each list indicates the number of the elements in the list. This
number is not part of the list.

Enter list1 size and contents: 5 2 5 6 1 6

Enter list2 size and contents: 5 2 5 6 1 6

Two lists are strictly identical

Enter list1 size and contents: 5 2 5 6 6 1

Enter list2 size and contents: 5 2 5 6 1 6

Two lists are not strictly identical

	 7.27	 (Identical arrays) The arrays list1 and list2 are identical if they have the same
contents. Write a method that returns true if list1 and list2 are identical,
using the following header:

public static boolean equals(int[] list1, int[] list2)

		 Write a test program that prompts the user to enter two lists of integers and dis-
plays whether the two are identical. Here are the sample runs. Note the first num-
ber in the input for each list indicates the number of the elements in the list. This
number is not part of the list.

M07_LIAN9966_12_SE_C07.indd 285 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

286 Chapter 7   Single-Dimensional Arrays

	 **7.28	 (Math: combinations) Write a program that prompts the user to enter 10 integers
and displays all combinations of picking two numbers from the 10 numbers.

	 **7.29	 (Game: pick four cards) Write a program that picks four cards from a deck of 52
cards and computes their sum. An Ace, King, Queen, and Jack represent 1, 13, 12,
and 11, respectively. Your program should display the number of picks that yields
the sum of 24.

	 *7.30	 (Pattern recognition: consecutive four equal numbers) Write the following method
that tests whether the array has four consecutive numbers with the same value:

public static boolean isConsecutiveFour(int[] values)

		 Write a test program that prompts the user to enter a series of integers and dis-
plays it if the series contains four consecutive numbers with the same value. Your
program should first prompt the user to enter the input size—i.e., the number of
values in the series. Here are sample runs:

VideoNote

Consecutive four

Enter list1 size and contents: 5 2 5 6 6 1

Enter list2 size and contents: 5 5 2 6 1 6
Two lists are identical

Enter list1: 5 5 5 6 6 1
Enter list2: 5 2 5 6 1 6

Two lists are not identical

Enter the number of values: 8

Enter the values: 3 4 5 5 5 5 4 5

The list has consecutive fours

Enter the number of values: 9

Enter the values: 3 4 5 5 6 5 5 4 5

The list has no consecutive fours

	 **7.31	 (Merge two sorted lists) Write the following method that merges two sorted lists
into a new sorted list:

public static int[] merge(int[] list1, int[] list2)

		 Implement the method in a way that takes at most list1.length + list2.
length comparisons. See liveexample.pearsoncmg.com/dsanimation/
MergeSortNeweBook.html for an animation of the implementation. Write a test
program that prompts the user to enter two sorted lists and displays the merged
list. Here is a sample run. Note the first number in the input indicates the number
of the elements in the list. This number is not part of the list.

Enter list1 size and contents: 5 1 5 16 61 111

Enter list2 size and contents: 4 2 4 5 6

list1 is 1 5 16 61 111

list2 is 2 4 5 6

The merged list is 1 2 4 5 5 6 16 61 111

M07_LIAN9966_12_SE_C07.indd 286 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises 287

	 **7.32	 (Partition of a list) Write the following method that partitions the list using the
first element, called a pivot:

public static int partition(int[] list)

		 After the partition, the elements in the list are rearranged so all the elements before
the pivot are less than or equal to the pivot, and the elements after the pivot are
greater than the pivot. The method returns the index where the pivot is located in
the new list. For example, suppose the list is {5, 2, 9, 3, 6, 8}. After the partition,
the list becomes {3, 2, 5, 9, 6, 8}. Implement the method in a way that takes at
most list.length comparisons. See liveexample.pearsoncmg.com/dsanima-
tion/QuickSortNeweBook.html for an animation of the implementation. Write a
test program that prompts the user to enter the size of the list and the contents of
the list and displays the list after the partition. Here is a sample run.

Enter list size: 8

Enter list content: 10 1 5 16 61 9 11 1

After the partition, the list is 9 1 5 1 10 61 11 16

	 *7.33	 (Culture: Chinese Zodiac) Simplify Listing 3.9 using an array of strings to store
the animal names.

	 **7.34	 (Sort characters in a string) Write a method that returns a sorted string using the
following header:

public static String sort(String s)

For example, sort("acb") returns abc.

		 Write a test program that prompts the user to enter a string and displays the sorted
string.

***7.35	 (Game: hangman) Write a hangman game that randomly generates a word and
prompts the user to guess one letter at a time, as presented in the sample run.
Each letter in the word is displayed as an asterisk. When the user makes a correct
guess, the actual letter is then displayed. When the user finishes a word, display
the number of misses and ask the user whether to continue to play with another
word. Declare an array to store words, as follows:
// Add any words you wish in this array
String[] words = {"write", "that",...};

(Guess) Enter a letter in word ******* > p

(Guess) Enter a letter in word p****** > r

(Guess) Enter a letter in word pr**r** > p

 p is already in the word

(Guess) Enter a letter in word pr**r** > o

(Guess) Enter a letter in word pro*r** > g

(Guess) Enter a letter in word progr** > n

 n is not in the word

(Guess) Enter a letter in word progr** > m

(Guess) Enter a letter in word progr*m > a

The word is program. You missed 1 time

Do you want to guess another word? Enter y or n>

M07_LIAN9966_12_SE_C07.indd 287 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

288 Chapter 7   Single-Dimensional Arrays

***7.36		 (Game: Eight Queens) The classic Eight Queens puzzle is to place eight queens on a
chessboard such that no two queens can attack each other (i.e., no two queens are on
the same row, same column, or same diagonal). There are many possible solutions.
Write a program that displays one such solution. A sample output is shown below:

		 Balls are dropped from the opening of the board. Every time a ball hits a nail, it
has a 50% chance of falling to the left or to the right. The piles of balls are accu-
mulated in the slots at the bottom of the board.

		 Write a program that simulates the bean machine. Your program should prompt the
user to enter the number of the balls and the number of the slots in the machine.
Simulate the falling of each ball by printing its path. For example, the path for
the ball in Figure 7.13b is LLRRLLR and the path for the ball in Figure 7.13c is
RLRRLRR. Display the final buildup of the balls in the slots in a histogram. Here
is a sample run of the program:

		 (Hint: Create an array named slots. Each element in slots stores the number of
balls in a slot. Each ball falls into a slot via a path. The number of Rs in a path is the
position of the slot where the ball falls. For example, for the path LRLRLRR, the ball
falls into slots[4], and for the path RRLLLLL, the ball falls into slots[2].)

***	7.37	 (Game: bean machine) The bean machine, also known as a quincunx or the Gal-
ton box, is a device for statistics experiments named after English scientist Sir
Francis Galton. It consists of an upright board with evenly spaced nails (or pegs)
in a triangular form, as shown in Figure 7.13.

(a) (b) (c)

Q							
				Q			
							Q
					Q		
		Q					
						Q	
	Q						
			Q				

Enter the number of balls to drop: 5

Enter the number of slots in the bean machine: 8

LRLRLRR

RRLLLRR

LLRLLRR

RRLLLLL

LRLRRLR

 O

 O

 OOO

M07_LIAN9966_12_SE_C07.indd 288 14/09/19 9:14 AM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

