Worm Gears (1)
Wednesday, Num 23, 2021 12:22 AM
Secondary:
4 The pitch dianeter of worm gear 15:

$$dg = Ng R , where e
R = circular pitch of gear
 $R = M_{B}$ P = dianeter of the worm shall be in the range:
 $\frac{C^{0.875}}{3.0} \leq d_{W} \leq \frac{C^{0.875}}{1.7}$ [in] or $\frac{C^{0.775}}{2.002} \leq d w \leq \frac{C^{0.975}}{1.68}$ [mm]
 $\pm The pitch dianeter of the worm shall be in the range:
 $\frac{C^{0.875}}{3.0} \leq d_{W} \leq \frac{C^{0.875}}{1.77}$ [in] or $\frac{C^{0.775}}{2.002} \leq d w \leq \frac{C^{0.975}}{1.68}$ [mm]
 $\pm The velocity patient is the worm shall be in the range:
 $\frac{VR}{N} = \frac{M_{B}}{N}$ where $M_{S} > 24$ $He conter distance is:
 $\frac{VR}{N} = \frac{M_{B}}{N}$ where $M_{S} > 14$ $He conter distance is:
 $\frac{VW}{V} = \frac{T}{D}$ where $M_{S} > 14$ $\frac{W}{V} = \frac{T}{12}$ $\frac{W}{V} = \frac{T}{12}$ $\frac{W}{V} = \frac{1}{12}$
 $\pm The langential velocity of worm gear is:
 $\frac{VW}{V} = \frac{T}{D}$ where $M_{S} = \frac{W_{S}}{M}$ $\frac{W}{V} = \frac{1}{12}$ $\frac{1}{12}$ $\frac{1}$$$$$$$$

STUDENTS-HUB.com

(2)

Wednesday, June 23, 2021 8:24 PM

The addendum & dedendum are:

$$a = \frac{p_x}{\pi} = 0.3183p_x$$

$$b = \frac{1.157p_x}{\pi} = 0.3683p_x$$
(15-40)

- The full depth h_t is : $P_x = P_a$

$$h_t = \begin{cases} \frac{2.157p_x}{\pi} = 0.6866p_x & p_x \ge 0.16 \text{ in} \\ \frac{2.200p_x}{\pi} + 0.002 = 0.7003p_x + 0.002 & p_x < 0.16 \text{ in} \end{cases}$$

The worm outside diameter d_o is

 $d_o = d_{\omega} + 2a \tag{15-42}$

(15 - 41)

(15 - 44)

The worm root diameter d_r is

 $d_r = d_{\omega} - 2b \tag{15-43}$

The worm-gear throat diameter D_t is: $D_t = 0 + 2a$

The worm-gear root diameter
$$D_r$$
 is $D_r = \textcircled{D}^{-2b}$ (15-45)

The clearance c is c

$$c = b - a \tag{15-46}$$

A The worm face width (maximum) $(F_W)_{max}$ is

$$(F_W)_{\text{max}} = 2\sqrt{\left(\frac{D_t}{2}\right)^2 - \left(\frac{D}{2} - a\right)^2} = 2\sqrt{2Da}$$
 (15-47)

which was simplified using Eq. (15-44)-The worm-gear face width F_G is

$$b_{g} = F_{G} = \begin{cases} 2d_{m}/3 & p_{x} > 0.16 \text{ in} \\ 1.125\sqrt{(d_{o} + 2c)^{2} - (d_{o} - 4a)^{2}} & p_{x} \le 0.16 \text{ in} \end{cases}$$
(15-48)

+ The normal diametrical pitch (P_n) is: $P_n = \frac{P_0}{G_S \Lambda}$ + The normal circular pitch (P_n) is: $P_n = T_n$

STUDENTS-HUB.com Worm Page 2

(3)

Wednesday, June 23, 2021 12:22 AM

RH- worm -> Force Analysis: + For a shaft angle of 90°: SFWE = Fga7 Fot = Fwa Fur = For + The forgential force is: Fge = Fire Cosp. Gs2 - MSin 2 Gs du Sinz + MGsz 2020/3/28 11:36 0 → It can be found from : H = FEV 35000 The radial forces are: For = For = For Sin On = Fort Singh Godinging + MGra * The frictional force is: (FF = M Fgt MSin 2 - Gson Gs2 + The total force (Fn) is: Fn = Fwt Gs Øn Sin 2+ M Gs 2 + To fill(Fgr=Fwr) : Fwr=Fgr=Fn Sin Øn + To Find (Fwa = Fac): Fwa = Fat = Fn (Gson Gsl - MSin) + The efficiency is ° $e_{\omega} = \eta = \frac{\cos \phi_n - f \tan \lambda}{\cos \phi_n + f \cot \lambda} = \frac{H_{out}}{H_{in}}$ (13 - 46)+ Increasing (pa=pc) -> increase (c) Hen calculate (dw) min and Check if dw & (dw)min

STUDENTS-HUB.com

STUDENTS-HUB.com

(5)

Wednesday, June 23, 2021 12:22 AM

To find (Cv):

The velocity factor C_v is given by

	$(0.659 \exp(-0.0011V_s))$	$V_s < 700$ ft/min	
$C_v = \delta$	$\begin{cases} 0.659 \exp(-0.0011V_s) \\ 13.31 V_s^{-0.571} \\ 65.52 V_s^{-0.774} \end{cases}$	$700 \le V_s < 3000 \text{ ft/min}$	(15–37) —
	$65.52 V_s^{-0.774}$	$V_s > 3000$ ft/min	
	× 2	5	

 $T_g = F_{gt} dg$

+ The efficiency of He worm generics:

$$e_G = \frac{\cos \phi_n - f \cot \lambda}{\cos \phi_n + f \tan \lambda}$$
(15-55)

To ensure that the worm gear will drive the worm,

$$f_{\text{stat}} < \cos \phi_n \tan \lambda$$
 (15–56)

The heat loss rate H_{loss} from the worm-gear case in ft \cdot lbf/min is

$$H_{\rm loss} = 33\ 000(1 - e_{\rm o})H_{\rm in} \tag{15-49}$$

The temperature of the oil sump ts is given by

$$t_s = t_a + \frac{H_{\text{loss}}}{\hbar_{\text{CR}}A} = \frac{33\ 000(1-e)(H)_{\text{in}}}{\hbar_{\text{CR}}A} + t_a \tag{15-51}$$

$$\frac{W_{here}}{h_{CR}} = \begin{cases} \frac{n_W}{6494} + 0.13 & \text{no fan on worm shaft} \\ \frac{n_W}{3939} + 0.13 & \text{fan on worm shaft} \end{cases}$$

$$\frac{Labered Case}{A_{\min}} = 43.20C^{1.7} [I \ln^2] \qquad (15-52)$$

$$Labered Case}{Labered} = \frac{Labered Case}{A_{\min}} = 43.20C^{1.7} [I \ln^2] \qquad (15-52)$$

STUDENTS-HUB.com

(6)
Wednesday, June 23, 2021 9:22 PM
+ The power of the worn-generis:

$$flw = Eule Max
S3000
+ The power of the worn-generis:
 $Hg = Egle Vg$
+ Use can use the output power (140) to find (Egl) by:
 $Fgl = 35000 Md He Ka$ where $Ka = application helder$
 $* Belshing input ge output powers:
 $ew = Ha$
 Hi
+ fower loss due to friction: $Hf = [Fe] Vs$
 $S3000$
 $HF = (1 - ew) Hu$
 $* The beading stress:
 $G' = Fgl = 25^{\circ} = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor factor related to circular pich. For $\phi_n = 14.5^{\circ}$, $y = 0.125 for factor factor$$$$$$$$$$$$$$$$$$$$$$$$$

STUDENTS-HUB.com

(7)

Thursday, June 24, 2021 12:04 AM

* The wear load is:

Find Kw:

(Fge)allow = Kw dg b

Table 15-11

Wear Factor K_w for

Worm Gearing

Source: Earle Buckingham, Design of Worm and Spiral Gears, Industrial Press, New York, 1981.

Material		1	Thread /	Angle ϕ_n	
Worm	Gear	$14\frac{1}{2}^{\circ}$	20°	25°	30°
Hardened steel*	Chilled bronze	90	125	150	180
Hardened steel*	Bronze	60	80	100	120
Steel, 250 BHN (min.)	Bronze	36	50	60	72
High-test cast iron	Bronze	80	115	140	165
Gray iron [†]	Aluminum	10	12	15	18
High-test cast iron	Gray iron	90	125	150	180
High-test cast iron	Cast steel	22	31	37	45
High-test cast iron	High-test cast iron	135	185	225	270
Steel 250 BHN (min.)	Laminated phenolic	47	64	80	95
Gray iron	Laminated phenolic	70	96	120	140

*Over 500 BHN surface.

[†]For steel worms, multiply given values by 0.6.

* For the design to be safe ? For < (For) allow

* Useful fables for design:

			\bigcirc V		
Table 15-9		Maximum Lead	@ Material type		
Largest Lead Angle	φ _n	Angle λ_{max}	6) Nus		
Associated with a	14.5°	16°			
Normal Pressure Angle	20°	25°	(1) On and check for		
ϕ_n for Worm Gearing	25°	35°			
	30°	45°	(NG)min ·		
			- 6 Pa		
Table 15–10	φn	(N _G) _{min}	B) mean worn dianeter (dw)		
Minimum Number of	14.5	40	Hen Find CCS, Hen		
Gear Teeth for Normal	17.5	27	find the min. & nex.		
Pressure Angle ϕ_n	20	21			
	22.5	17	Values of (dw) and check		
	25	14	if the assumption is correct		
	27.5	12			
	30	10	B Compute everything necessary		

STUDENTS-HUB.com

Uploaded By: anonymous

to find (b) from (Fyt)a

* Design Steps:

Assume :