Chapter 7.1, Problem 51E

Problem

Exercise refers to the Euler phi function, denoted ϕ , which is defined as follows: For each integer $n \ge 1$, $\phi(n)$ is the number of positive integers less than or equal to n that have no common factors with n except ±1. For example, $\phi(10)$ = 4 because there are four positive integers less than or equal to 10 that have no common factors with 10 except ±1; namely, 1, 3, 7, and 9.
Exercise
Find each of the following:
a. <i>ϕ</i> (15)
b.¢(2)
c. $\phi(5)$
d. ¢(12)
e. ¢(11)
f. φ(1)

Step-by-step solution

Step 1 of 7

If *n* is a positive integer, then the number of positive integers less than *n*, and relatively prime to *n* is denoted by $\phi(n)$, which is called the Euler totient function.

Step 2 of 7

(a) $\phi(15)$ $\therefore (1,15) = 1, (2,15) = 1, (3,15) = 3, (4,15) = 1$ (5,15) = 1, (6,15) = 3, (7,15) = 1, (8,15) = 1, (9,15) = 3 (10,15) = 5, (11,15) = 1, (12,15) = 3, (13,15) = 1, (14,15) = 1 $\therefore \phi(15) = 8$

Step 3 of 7

(b) $\phi(2) = 1$:: (1,2) = 1, (2,2) is not allowed

Step 4 of 7

STUDENTS-HUB.com

Uploaded By: anonymous

(c) $\phi(5) = 4$

 $\because (1,15) = 1, (2,15) = 1, (3,15) = 1, (4,15) = 1$

 \therefore Every positive integer less than *n* is co-prime to *n* when *n* is prime

In general $\phi(n) = (n-1)$ when *n* is a prime number

Step 5 of 7

(d) $\phi(12) = 4$

Step 6 of 7

(e) $\phi(11) = 10$, while 11 is prime

Step 7 of 7

(f) $\phi(1) = 1$