2016/2017

Analysis of Algorithms

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to determine **how much in the way of resources**, such as **time** or **space**, the algorithm will require.

- Space Complexity → memory and storage are very cheap nowadays. *
- Time Complexity ✓ Different platforms → different time. Absolute time is hard to measure as it depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc. time is not good measurement. Number of steps is a better one.

Example:

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

Consider the problem of summing

Come up with an algorithm to solve this problem.

Algorithm A	Algorithm B	Algorithm C
sum = 0 for i = 1 to n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

Counting Basic Operations

• A basic operation of an algorithm is the most significant contributor to its total time requirement.

	Algorithm A	Algorithm B	Algorithm C
Additions	n	n(n+1)/2	1
Multiplications			1
Divisions			1
Total basic operations	n	$(n^2 + n) / 2$	3

How to calculate the time complexity?

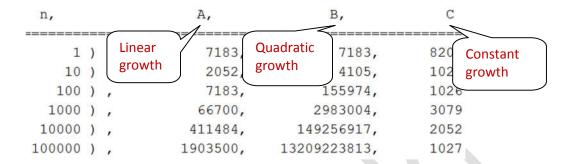
- Measure execution time. * Algorithm for small data size will take small time comparing to a large data.
- Calculate time required for an algorithm in terms of the size of input data. * Does not work as the same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time

Determine order of growth of an algorithm with respect to the size of input data. ✓

Order of time or growth of time:

Go back to summing result



In term of time complexity, we say that algorithm C is better than A and B

Types of Time Complexity

- Best case analysis
- x too optimistic
- Average case analysis
- * too complex (statistical methods)
- Worst case analysis
- ✓ it will not exceed this

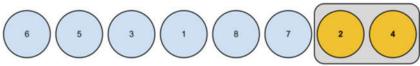
RAM model of computation

We assume that:

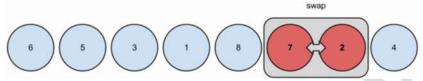
- We have infinite memory
- Each operation (+,-,*,/,=) takes 1 unit of time
- Each memory access takes 1 unit of time
- All data is in the RAM

Bubble Sort:

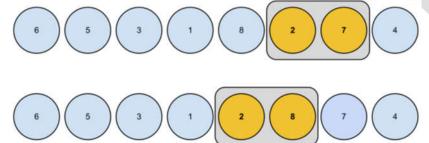
1. Each two adjacent elements are compared:



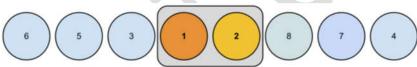
2. Swap with larger elements:



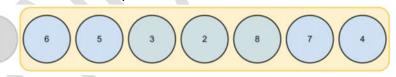
3. Move forward and swap with each larger item:



4. If there is a lighter element, then this item begins to bubble to the surface:



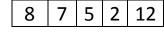
5. Finally the smallest element is on its place:



Make a demo using the following data set

12 8 7 5 2 Worst case analysis

After 1st round:



After 2nd round:

For whole sorting algorithm: **16+12+8+4** for a data size of 5 elements:

```
= 4(4+3+2+1) = 4(n-1+n-2+....+2+1) = 4(n-1*n/2) = 2*n*(n-1) \rightarrow pn^2 + qn + r \rightarrow p, q, and r are some constant.
```

Implement and test effectiveness of bubble sort algorithm

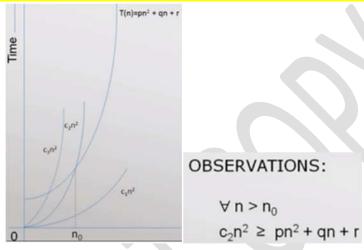
```
for (int i = 0; i < arr.length-1; i++) {</pre>
                                                       i=0
                                                                    j=n-1
                                                                                   n-1
  for (int j = 0; j <arr.length-i-1; j++) {</pre>
                                                       i=1
                                                                    j=n-2
                                                                                   n-2
     if(arr[j+1]<arr[j]){</pre>
        temp = arr[j];
        arr[j] = arr[j+1];
                                                                                    1
                                                     i=n-1
                                                                     j=0
        arr[j+1] = temp;
  }
```

The Big-O Notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to find an upper bond for this function T(n). Consider a function $c_1n^2 \leftarrow$ never over take T(n)

 C_2n^2 such that its greater than T(n) for $n>n_0$. In this case we say that C_2n^2 is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.



Big Oh $O(n^2)$: f(n): there exist positive constants c and n_0 such that $0 \le f(n) \le cn^2$ for all $n \ge n_0$. In general

O(g(n)): f(n): there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Example 1:

$$5n^2 + 6 ∈ O(n^2)$$
 ???
Find cn^2 \rightarrow c=6 and n₀=3
 \rightarrow c=5.1 n₀=8

Example 2:

$$5n+6$$
 ∈ $O(n^2)$??? ✓
Find cn^2 → $c=11$ and $n_0=1$

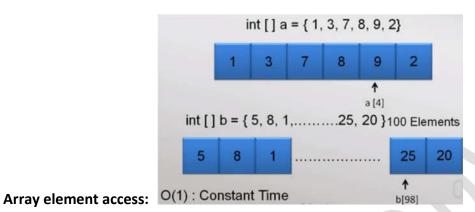
Example 3:

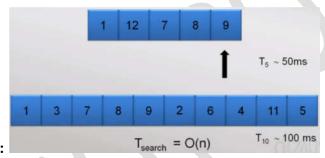
$$n^3 + 2n^2 + 4n + 8 \in O(n^2)$$
 ??? ×
Find $cn^2 \ge n^3 + 2n^2 + 4n + 8$??? ×

$$a_m n^m + a_{m-1} n^{m-1} - - - - - + a_0 \in O(n^m)$$

 $logn \le \sqrt{n} \le n \le n logn \le n^2 \le n^3 \le 2^n \le n!$

What does it mean?





Array element search:



Bubble sort algorithm:

Asymptotic Analysis

2016/2017

Asymptotic (مقارب) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an **estimation** technique. However, asymptotic analysis has proved useful to computer scientists who must determine if a particular algorithm is worth considering for implementation.

- The critical resource for a program is -most often- running time.
- The **growth rate** for an algorithm is the rate at which the cost of the algorithm grows as the size of its input grows.
 - o cn (for c any positive constant) \rightarrow linear growth rate or running time.
 - o $n^2 \rightarrow$ quadratic growth rate
 - o $2^n \rightarrow$ exponential growth rate.

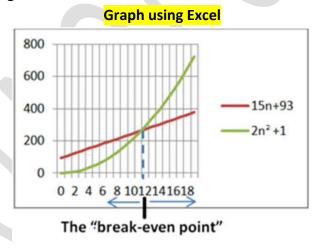
Worst case? The advantage to analyzing the worst case is that you know for certain that the algorithm must perform at least that well.

Example:

Assume: Algorithm A: time = 15n + 93

Algorithm B: time = $2n^2 + 1$

which is faster?



We are interested for large **n**

Upper bound for the growth of the algorithm's running time. It indicates the upper or highest growth rate that the algorithm can have. → **big-O notation**.

^{*} For sufficiently large n, algorithm A is faster

^{*} In the long run constants do not mater.

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist two positive constants c and n_0 such that $T(n) \le cf(n)$ for all $n > n_0$.

• Prove that 15n + 93 is O(n)

• Prove that 2n²+1 = O(n²)

Graph using Excel

Example 3.5 For a particular algorithm, $\mathbf{T}(n) = c_1 n^2 + c_2 n$ in the average case where c_1 and c_2 are positive numbers. Then, $c_1 n^2 + c_2 n \le c_1 n^2 + c_2 n^2 \le (c_1 + c_2) n^2$ for all n > 1. So, $\mathbf{T}(n) \le c n^2$ for $c = c_1 + c_2$, and $n_0 = 1$. Therefore, $\mathbf{T}(n)$ is in $O(n^2)$ by the second definition.

The **lower bound** for an algorithm is denoted by the symbol Ω , pronounced "big-Omega" or just "Omega."

For T(n) a non-negatively valued function, T(n) is in set $\Omega(g(n))$ if there exist two positive constants c and n_0 such that $T(n) \ge cg(n)$ for all $n > n_0$.

Prove that 15n+93 is Ω(n)

```
We must show +ve c and n_0 such that 15n+93 \ge c(n) for n \ge n_0
<br/>
```

Graph using Excel

Prove that 2n²+1 is Ω(n²)

Must show +ve **c** and n_0 such that $2n^2+1 \ge cn^2$ for $n \ge n_0$
because 1 is +ve>

Graph using Excel

Example 3.7 Assume $\mathbf{T}(n) = c_1 n^2 + c_2 n$ for c_1 and $c_2 > 0$. Then,

$$c_1 n^2 + c_2 n \ge c_1 n^2$$

for all n > 1. So, $\mathbf{T}(n) \ge cn^2$ for $c = c_1$ and $n_0 = 1$. Therefore, $\mathbf{T}(n)$ is in $\Omega(n^2)$ by the definition.

When the **upper** and **lower bounds** are the same within a constant factor, we indicate this by using **O** (big-Theta) notation.

$$T(n) = \Theta(g(n))$$
 iff $T(n) = O(g(n))$ and $T(n) = \Omega(g(n))$

Example: Because the **sequential search algorithm** is both in O(n) and in $\Omega(n)$ in the average case, we say it is O(n) in the average case.

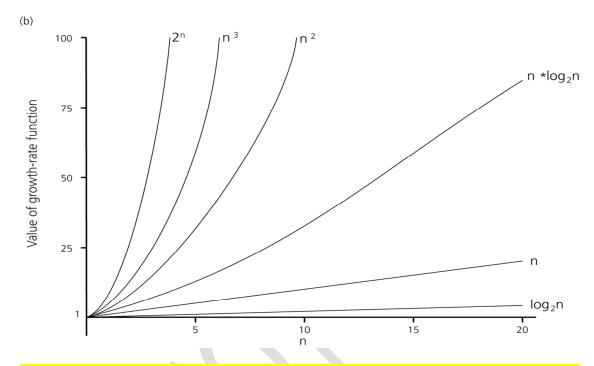
Simplifying Rules

- **1.** If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
- **2.** If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).
- 3. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n) + f_2(n)$ is in $O(\max(g_1(n), g_2(n)))$.
- **4.** If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n)f_2(n)$ is in $O(g_1(n)g_2(n))$.
- Rule (2) is that you can ignore any multiplicative constants.
- Rule (3) says that given two parts of a program run in sequence, you need to consider only the more expensive part.
- Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order terms to determine the asymptotic growth rate for any cost function.

Order of growth of some common functions:

$O(1) \le O(\log_2 n) \le O(n) \le O(n \log_2 n) \le O(n^2) \le O(n^3) \le O(2^n)$



If the problem size is always small, you can probably ignore an algorithm's efficiency

Limitations of big-O analysis:

- Overestimate.
- Analysis assumes infinite memory.
- Not appropriate for small amounts of input.
- The constant implied by the Big-Oh may be too large to be ignored (2N log N vs. 1000N)

Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

Rule 1 - for loops:

The running time of a **for** loop is at most the running time of the statements inside the **for** loop (including tests) **times** the number of iterations.

Rule 2 — Nested loops:

Analyze these **inside out**. The total running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:

These just add (which means that the maximum is the one that counts.

Rule 4 - if/else:

```
if( condition )
S1
else
S2
```

The running time of an **if/else** statement is never more than the running time of the **test** plus the larger of the running times of **S1** and **S2**.

Rule 5 — *methods call*:

If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision) → O(n²)

```
public static void bubble(int[] arr){
  int temp;
  for (int i = 0; i < arr.length-1; i++) {
    for (int j = 0; j < arr.length-i-1; j++) {
      if(arr[j+1]<arr[j]){
        temp = arr[j];
        arr[j] = arr[j+1];
      arr[j+1] = temp;
    }
  }
}</pre>
```

2- Selection Sort (revision) → O(n²): named selection because every time we select the smallest item.

```
public static void selection (int[] arr){
  int temp, minIndex;
  for (int i = 0; i < arr.length-1; i++) {
     minIndex = i;
     for (int j = i+1; j < arr.length ; j++) {
        if(arr[j] < arr[minIndex]){
            minIndex=j;
        }
     }
     if(i!= minIndex){
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
     }
}</pre>
```

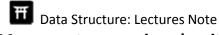
3- Insertion sort \rightarrow O(n²):

```
public static void insertion (int[] arr){
    int j, temp, current;
    for (int i = 1; i < arr.length; i++) {
        current = arr[i];
        j=i-1;
        while (j>=0 && arr[j]>current){
            arr[j+1] = arr[j];
            j--;
        }
        arr[j+1]=current;
    }
}
```

O(n²) sorting algorithms comparison:

(run demo @ http://www.sorting-algorithms.com/)

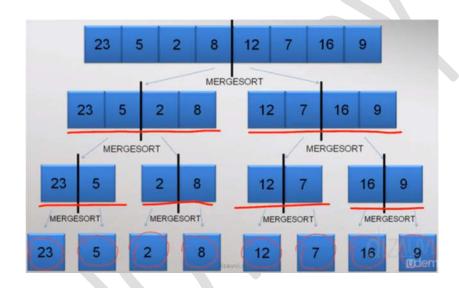
Bubble Sort	Selection Sort	Insertion Sort	
	 Better than bubble sort 	 Relatively good for small lists 	
Very inefficient	 Running time is independent 	 Relatively good for partially 	
	of ordering of elements	sorted lists	

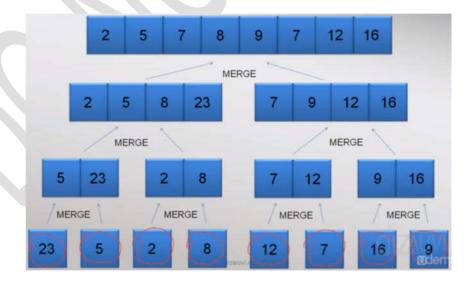


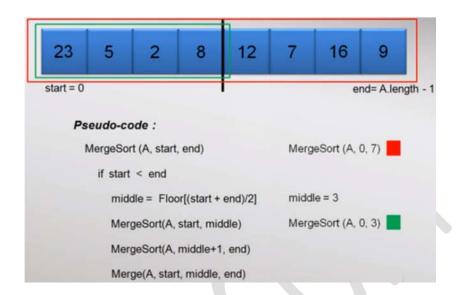
Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

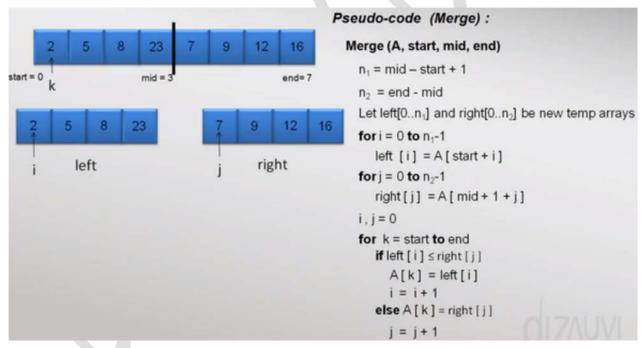
Example:







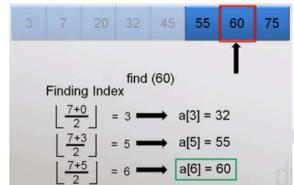
Pseudo code:



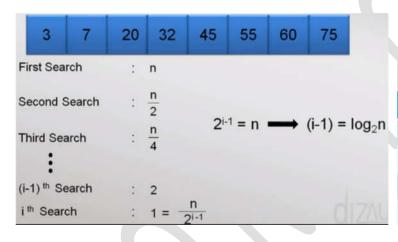
Make sure of array boundaries

H.W: implement merge sort your own

Case 1: unordered array:



Case 2: ordered array: -Binary search-



find (item) = $O(\log_2 n)$		
n	log ₂ n	
2	1	
1024	10	
1048576 (Million)	20	
1099511627776 (Trillion)	40	

Inserting and deleting items from ordered array

