E Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Analysis of Algorithms

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to
determine how much in the way of resources, such as time or space, the algorithm will require.

e Space Complexity = memory and storage are very cheap nowadays. ¥
e Time Complexity v Different platforms =» different time. Absolute time is hard to measure as it

depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc.
time is not good measurement. Number of steps is a better one.

Example:

N
>

ol £}

St

* Consider the problem of summing #=1
Come up with an algorithm to solve this problem.

Algorithm A Algorithm B Algorithm C

sum = 0 sum = 0 sum =n * (n +1) /2
for i = 11w n for i =1twn
sum = sum + i {
for j = 11w i
sum = sum + 1

Counting Basic Operations

* A basic operation of an algorithm is the most significant contributor to its total time requirement.

Algorithm A Algorithm B Algorithm C

Additions n nn+1)/2 1
Multiplications 1
Divisions 1
Total basic operations n (n2+n)/2 3

How to calculate the time complexity?

e Measure execution time. x Algorithm for small data size will take small time comparing to a large data.
e Calculate time required for an algorithm in terms of the size of input data. * Does not work as the
same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time
e Determine order of growth of an algorithm with respect to the size of input data. v/

STUDENTS-HUB.com Uploaded By: anonymous

13

E Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Order of time or growth of time:

Go back to summing result

n, A, B, B

1) Linear 7183/ Quadratic 7183, 82d constant
10) | 8rowth 2052 growth 4105, 104 growth
100) , 7183, 155974, 102%
1000) , 66700, 2983004, 3079
10000) , 411484, 149256917, 2052
100000) , 1903500, 13209223813, 1027

In term of time complexity, we say that algorithm C is better than A and B

Types of Time Complexity

e Best case analysis % too optimistic
e Average case analysis X too complex (statistical methods)
e Worst case analysis v" it will not exceed this

RAM model of computation

We assume that:
e We have infinite memory
e Each operation (+,-,*,/,=) takes 1 unit of time
e Fach memory access takes 1 unit of time
e All data is in the RAM

14

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016/2017

Bubble Sort:

1. Each two adjacent elements are compared:

Prepared by: Dr. Mamoun Nawahdah

00000000

2. Swap with larger elements:

00000 T ©

3. Move forward and swap with each larger item:

00000000
COOCBOOC

4. If there is a lighter element, then this item begins to bubble to the surface:

000 [©000

5. Finally the smallest element is on its place:

swap

OOOOOOO

Make a demo using the following data set

12| 8

7

5

2

After 1° round:

STUDENTS-HUB.com

Worst case
analysis

Uploaded By: anonymous

E Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

After 2" round:

For whole sorting algorithm: 16+12+8+4 for a data size of 5 elements:

=4(4+3+2+1) = 4(n-1+n2+..+2+1) =4 (n-1*n/2)=
2
2*n*(n-1)=> pn +qn+r -2 p, g, and r are some constant.

Implement and test effectiveness of bubble sort algorithm

for (inti=0;i<arr.length-1; i++) { i=0 j=n-1 n-1
for (int j = 0; j <arr.length-i-1 ; j++) { i=1 j=n-2 n-2
if(arr[j+1]<arr[j]){ : :
temp = arrlj]; : : :
arr[j] = arr[j+1]; i=n-1 j=0 1
arr[j+1] = temp;

}

}

}

16

STUDENTS-HUB.com Uploaded By: anonymous

m Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah
The Big-O Notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to
find an upper bond for this function T(n). Consider a function c;n” € never over take T(n)

C,n such that its greater than T(n) for n>ng . In this case we say that C;n* is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

Tin)=pn’ s qn +r
g
E
| OBSERVATIONS:
| vYn>n,
0. no CoN% 2 pn?+qgn+r

Big Oh O(n?): f(n): there exist positive constants € and Ny such that 0 < f(n) < cn® forall n 2 ng
In general
O(g(n)) : f(n): there exist positive constants € and Ng such that 0 < f(n) < cg(n) forall n2ng

Example 1:
5n’+6 € O(n?) ??? v
Find cn® = ¢=6 and ng=3
= ¢=5.1 no=8

Example 2:
5n+6 € O(n%) ??? v
Find cn’ = ¢=11 and np=1

Example 3:
n*+2n’+4n+8 e O(n?) ??? x
Find cn? > n®+2n*+4n+872?? x

a,nm+a . Nml---oooooooo + a, € O(n™M)
logn<Vn< n< nlogn € n2< n®<2"<n!

What does it mean?
17

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

int[Ja={1,3,7,8,9, 2

4’
al4]
int[]b={5,8,1,.......... 25, 20 }100 Elements
—_— h
Array element access: ©(1) : Constant Time b[98]

I Ts ~ 50ms

= Tye ~100 ms
Array element search: Teearch = O(N) »

B

Aloop inside a loop in an algorithm usually represents a time complexity of
0(n?)

Bubble sort algorithm: R b s L

18

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Asymptotic Analysis

Asymptotic (<u%«) analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer
scientists who must determine if a particular algorithm is worth considering for implementation.

e The critical resource for a program is -most often- running time.
e The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its
input grows.
o ¢n (for c any positive constant) = linear growth rate or running time.
o n*> quadratic growth rate

o 2" exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the
algorithm must perform at least that well.

Example:
Assume: Algorithm A: time =15n + 93
Algorithm B: time = 2n%+1 which is faster?
Graph using Excel

800

600
400 15n+93
I’/ 2n* +1
- /l
|
0 \

0246 81012141618

The “break-even point”

We are interested for large n

* For sufficiently large n, algorithm A is faster
* In the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or
highest growth rate that the algorithm can have. = big-O notation.

19

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah
For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist

two positive constants ¢ and ng such that T(n) < ¢f(n) for all n > n,.

e Prove that 15n +93is O(n)
We must show +ve ¢ and ng such that 15n + 93 < ¢(n) for n2ng
<provided n=93> =» 15n+n=>» 16n<cn > <providedc=16>
Soforc=16 andny=93 = //proved
Graph using Excel

e Prove that 2n*+1 = O(n?)
Must show +ve ¢, ng such that 2n*+1 < ¢(n?) for n 2 ng
2n’+1 <provided n=1>
2n’+n*> & 3n> <provided c=3>
2n’+1 < 3n?
So, ¢=3, ne=1 //proved
Graph using Excel

Example 3.5 For a particular algorithm, T(n) = ¢;n? + ¢on in the av-
erage case where ¢; and ¢, are positive numbers. Then, ¢;n? + eon <
c1n? + con? < (¢1 + eo)n? forall n > 1. So, T(n) < en? for ¢ = ¢; + c»,
and ng = 1. Therefore, T(n) is in O(n?) by the second definition.

The lower bound for an algorithm is denoted by the symbol Q, pronounced “big-

Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Q(g(n)) if there exist
two positive constants ¢ and ng such that T(n) 2 cg(n) for all n > ny.

e Prove that 15n+93 is Q(n)
We must show +ve ¢ and ng such that 15n+93 2 ¢(n) for n2ng
<because 93 is +ve>2 c¢(n) =» <provided c=15> < so any ng > 0 will do
So ¢=15, ng=1 // proved

Graph using Excel

e Prove that 2n’+1 is Q(n?)
Must show +ve ¢ and ng such that 2n’+1 2 cn® for n2 ng
<because 1 is +ve>

20

STUDENTS-HUB.com Uploaded By: anonymous

E Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah
So ¢=2, np=1 // proved

Graph using Excel
Example 3.7 Assume T(n) = ¢;n? + con for ¢; and ¢ > 0. Then,
Co n? + con > rmg

for all n > 1. So, T(n) > en? for ¢ = ¢; and ng = 1. Therefore, T(n) is
in £2(n?) by the definition.

When the upper and lower bounds are the same within a constant factor, we
indicate this by using O (big-Theta) notation.
= 0(g(n)) iff T(n)=0O(g(n)) and T(n)=0(g(n))

Example: Because the sequential search algorithm is both in O(n) and in Q(n) in the average case,
we say it is @(n) in the average case.

Simplifying Rules
1. If f(n)isin O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
2. If f(n)isin O(kg(n)) for any constant k& > 0, then f(n) is in O(g(n)).

3. If fi(n)is in O(gy(n)) and fa(n) is in O(g2(n)), then fi(n) + fa(n) isin

O(max(g1(n), g2(n))).
4. If fi(n) is in O(g;(n)) and fa(n) is in O(g2(n)), then fi(n)fa(n) is in

O(g1(n)g2(n)).

e Rule (2) is that you can ignore any multiplicative constants.

e Rule (3) says that given two parts of a program run in sequence, you need to consider only the
more expensive part.

e Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order
terms to determine the asymptotic growth rate for any cost function.

21

STUDENTS-HUB.com Uploaded By: anonymous

m Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Order of growth of some common functions:

0(1) < O(log;n) < O(n) < O(n log,n) < O(n?) < O(n%) < 0(2")

(b)
100 - 2" n3 n 2
n *log,n
c
X} 75 7
=
o
c
>
=
(<%
g
O
e
S 50 A
o
(@)}
-
o
=
©
= 25 4
n
log,n
1 Ll 1 I 1
5 10 15 20

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-O analysis:
e Overestimate.
e Analysis assumes infinite memory.
e Not appropriate for small amounts of input.
e The constant implied by the Big-Oh may be too large to be ignored (2Nlog N vs. 1000N)

22

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

Rule 1 — for loops:
The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops:
Analyze these inside out. The total running time of a statement inside a group of nested loops
is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:
These just add (which means that the maximum is the one that counts.

Rule 4 — if/else:
if(condition)
S1
else
S2

The running time of an if/else statement is never more than the running time of the test plus
the larger of the running times of S1 and S2.

Rule 5 — methods call:
If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision) = O(n?)

public static void bubble(int[] arr){
int temp;
for (inti=0;i<arr.length-1; i++) {
for (intj = 0; j <arr.length-i-1 ; j++) {
if(arr[j+1]<arr([j]){
temp =arrl[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}

23

STUDENTS-HUB.com Uploaded By: anonymous

m Data Structure: Lectures Note

2016/2017

Prepared by: Dr. Mamoun Nawahdah

2- Selection Sort (revision) & O(n?): named selection because every time we select the

smallest item.

}

public static void selection (int[] arr){

int temp, minindex;
for (inti=0; i< arr.length-1; i++) {
minindex = i;
for (intj = i+1; j <arr.length ; j++) {
if(arr[jl<arr[minindex]){
minlndex=j;
}
}
if(i!= minIndex){
temp = arrli];
arr[i] = arr[minindex];
arr[minindex] = temp;
}
}

3- Insertion sort & O(n?):

public static void insertion (int[] arr){
int j, temp, current;
for (inti=1;i<arr.length; i++) {

j=i-1;

-
}

}

}

current = arr[i];

while (j>=0 && arr[j]>current){
arr[j+1] = arr[j];

arr[j+1]=current;

0(n?) sorting algorithms comparison:

(run demo @ http://www.sorting-algorithms.com/)

Bubble Sort Selection Sort Insertion Sort
e Better than bubble sort e Relatively good for small lists
Very inefficient e Running time is independent e Relatively good for partially
of ordering of elements sorted lists

STUDENTS-HUB.com

24

Uploaded By: anonymous

Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Example:

2lafslefe
zleleie, alrlee

MERGESORT

MERGE

MERGE MERGE
 MERGE MERGE MERGE MERGE

. . - ."!IU"'. - . .

25

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

start=0 | end= A length - 1

Pseudo-code :
MergeSort (A, start, end) MergeSort (A, 0,7) [l
if start < end
middle = Floor[(start + end)/2] middle = 3
MergeSort(A, start, middle) MergeSort (A, 0,3) [l
MergeSort(A, middie+1, end)
Pseudo code: Merge(A, start, middle, end)

Pseudo-code (Merge) :
Merge (A, start, mid, end)

'“'ok idm e n1=mid-stén+1
n, =end - mid
Let left[0..n,] and right[0..n,] be new temp arrays
fori=0ton,-1
left [i] =A[start+1i]

% |eft . right
i j 8 forj= 0ton,1
right[j] =A[mid+1+]]
i.j=0

for k = start to end
ifleft [i] <right[j]
Al[k] = left[i]
i=i+1
else A[k]=right[j]
=i+

Make sure of array boundaries

H.W: implement merge sort your own

26

STUDENTS-HUB.com Uploaded By: anonymous

Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Searching elements in an array:

af=5 : o(1)
find(8) : O(n)
Case 1: unordered array: delete (item) : O(n)

3 7 20| 32 45
I 1 !

find (60)
Finding Index

| 52| =3 == ai3=32
LTT“J = 5 wemmp a[5] = 55

(2] -0 b

Case 2: ordered array: -Binary search-

First Search ©on find (item) = O(log,n)
Second Search % n ‘ log,n
Third Search 3 27=n == (-1) = log;n 2 1

. 1024 10
(1) u: Saatbh 2 1048576 (Million) 20
i Search v 4= % 1099511627776 (Trillion) 40

Inserting and deleting items from ordered array

Insert (52)

Insert (item) = O (n)
Search (item) = O (log,n)

Delete (55)
Delete (item) = O (n)

27

STUDENTS-HUB.com Uploaded By: anonymous

