Coreference Resolution using Web-Scale Statistics

Shane Bergsma
Johns Hopkins University
Stony Brook University
Stony Brook, NY

Pronoun Resolution

From Wikipedia:

"The first European to explore the California coast was... Juan Rodríguez Cabrillo... landing on September 28, 1542, on the shores of San Diego Bay. He claimed California for Spain."

- Task: He → "Juan Rodríguez Cabrillo"
- Query (e.g. Google Search):

"When did Cabrillo claim California for Spain?"

ويوضح محمد أن المردود المالي لعمله بات ضئيلا ولا يكفي لسد احتياجاته الاساسية

القدس كبرى مدن فلسطين [الوطن] وعاصمتها التاريخية تم تحرير ها سنة 1108 القدس كبرى مدن الوطن وعاصمته التاريخية تم تحرير ها سنة

Pronouns but also others: that, الذي, The plaintiff, المتهم, Strauss, the president of Brazil, المركة ابل ورئيسها ستيف جوبس استحقوا ثناء خاصا من الوزير

When did Cabrillo claim California for Spain?

Web

Show options...

Results 1 - 10 of about 156,000 for When did Cabrillo claim California for Spain?. (0.15 seconds)

Juan Rodriguez Cabrillo

Spain began looking northward with the intention of increasing her empire. ... for a voyage up the California coast under the flag of Spain. ... Because of adverse winds Cabrillo turned back. harboring at San Miguel Island, and did not ...

www.sandiegohistory.org/bio/cabrillo/cabrillo.htm - Cached - Similar

Discoverers Web: Cabrillo

In his days the Cabrillo expedition had no major impact. Spain did not make anything of its claims to California until the late 18th century, ...

www.win.tue.nl/~engels/discovery/cabrillo.html - Cached - Similar

Juan Rodríguez Cabrillo

19 Mar 2000 ... Meanwhile, in 1532, Cabrillo traveled to Spain where he met Beatriz ... As the Cabrillo family grew, so did his wealth and reputation as a ship builder. ... only a few hundred miles west of the coast of California. ...

www.nps.gov/cabr/juan.html - Cached - Similar

Juan Rodríguez Cabrillo - Wikipedia, the free encyclopedia

Cabrillo was then commissioned by the new Viceroy of New Spain, Antonio de Mendoza, ... The Cabrillo National Monument in San Diego, California ...

en.wikipedia.org/wiki/Juan Rodríguez Cabrillo - Cached - Similar

Juan Rodríguez Cabrillo: Biography from Answers.com

He was also instructed to discover and claim all new lands for Spain and, ... Cabrillo's ships sailed north, reaching the coast of southern California. ... sailed on to Northwest Cape beyond San Francisco Bay, which he did not find. ...

www.answers.com/topic/juan-rodriguez-cabrillo - Cached - Similar

متى ولد فون نيومان

All

Images

Videos

News

Maps

More

Settings

Tools

About 896,000 results (0.64 seconds)

John von Neumann / Date of birth

December 28, 1903

People also search for

Alan Turing June 23, 1912

Oskar Morgenstern January 24, 1902

Charles Babbage December 26, 1791

Feedback

جون فون نيومان - ويكيبيديا، الموسوعة الحرة

https://ar.wikipedia.org/wiki/نبومان خون_نبومان Translate this page حون_فون_نبومان ولا في بودايست Translate this page حداثبات: 40.348695°N 74.592251°W / 40.348695°55′20°40 ; ... جون قون تبومان ولا في بودايست إحداثبات: 40.348695°S 74.592251°W / 40.348695′55′20°40 ; ... وهو الأخ الأكبر من بين ثلاثة أشقاء أظهر جون مواهبه وقدراته في اللغات والرياضيات، فقام والده باستجار السهاماته - حباته إسهاماته - حباته

John von Neumann

American-Hungarian ma

John von Neumann was American mathematician computer scientist. He na contributions to a number including mathematics, p economics, computing, a Wikipedia

Born: December 28, 19

Hungary

Died: February 8, 1957,

United States

Education: ETH Zurich,

University

Spouse: Klara Dan von 1938–1957), Mariette Ko

1930-1937)

Quotes

There's no sense in bein you don't even know wh

Uses for Pronoun Resolution

Text summarization (e.g. Google News):
 "[Juan Rodríguez Cabrillo] claimed California for Spain in 1542."

Summary of a case:

رفع س دعوى إخلاء ضد ص وحكم بسجن المتهم لمدة 5 سنوات

Uses for Pronoun Resolution

- Text summarization (e.g. Google News):
 - "[Juan Rodríguez Cabrillo] claimed California for Spain in 1542."
- Machine translation (e.g. Google Translate):

"the dog/cat doesn't like its food anymore"

"Der Hund/Die Katze mag sein/*sein[ihr] Futter nicht mehr"

الكلب /القطة لم يعد/تعد يحب/تحب طعامه/ها

Or consider this:

قال الرجل أن الوزير قد استدعاه قال الرجل أن الوزير قد أقاله الرئيس

Outline

- 1. Introduction to Pronoun Resolution
- Web-Scale Statistics for Pronoun Resolution:
 Leveraging World Knowledge
 - A. Noun Gender (prevailant in Arabic, together with plural types, some detectable from verbs بحب/تحب)
 - B. Pattern Coreference
 - C. Non-Referential Pronouns

1) Introduction to Pronoun Resolution Coreference Resolution:

- "President Obama says he plans to discuss these issues with other leaders at the summit."
- What do we know about these *nouns*? What do they *refer* to? Which are *anaphora*?
- PhD topics: NP coreference, other-anaphora, detecting anaphora, resolving pronouns, etc.
- Related topics: database de-duping, citation matching, cross-document coreference, and many others

Anaphora: the use of a word referring back to a word used earlier in text or conversation, to avoid repetition, for example the pronouns *he*, *she*, *it*, and *they* and the verb in "*I like it and so do they*".

Pronoun Resolution

- Scope: third-person anaphoric pronouns, including reflexives:
 - (masculine)ھو،ھما، ھم؟ mesculine)
 - (feminine)هي هن Feminine)
 - It, its, itself (neutral)
 - (plural)هم، هن، هما plural)
 - بالعربية هنالك الضمائر المتصلة: نحتاج لتحديدها قبل التعامل معها «اشترى محمد لعمرو هدية واعطاه اياها»

Pronoun Resolution

"In 2004, Exxon Mobil paid its chairman, Lee Raymond, a total of \$38.1 million."

في عام 2004 دفعت شركة اكسون-موبيل لرئيسها، لي رايموند، ما مجموعه 38.1 مليون دولار

Question: "Who is the chairman of Exxon Mobil?"

Goal:

Resolve pronoun: "its" 🕨

To antecedent: "Exxon Mobil"

Get: "Exxon Mobil's Chairman, Lee Raymond"

Traditional Pronoun Resolution

"In 2004, Exxon Mobil paid its Chairman Lee Raymond a total of \$38.1 million."

Resolving a pronoun typically involves:

- 1. Parse text to determine noun phrases
- 2. Build list of *preceding* nouns as candidates
- 3. Filter candidates based on gender/number agreement, grammar violations, etc.
- 4. Select *most likely* candidate of remaining nouns based on measures of frequency, emphasis, etc.

a) "John never saw the car. **He** arrived late." "John never saw the car. **It** arrived late."

a) "John never saw the car. **He** arrived late." "John never saw the car. **It** arrived late."

Knowledge = Noun Gender

- a) "John never saw the car. **He** arrived late." "John never saw the car. **It** arrived late."
- b) "John needs **his** friend."

 "John needs **his** support."

- a) "John never saw the car. **He** arrived late." "John never saw the car. **It** arrived late."
- b) "John needs **his** friend."

 "John needs **his** support."

Knowledge = You don't need your own support

- a) "John never saw the car. **He** arrived late." "John never saw the car. **It** arrived late."
- b) "John needs **his** friend."

 "John needs **his** support."
- c) "You can make **it** in advance."

 "You can make **it** in Hollywood."

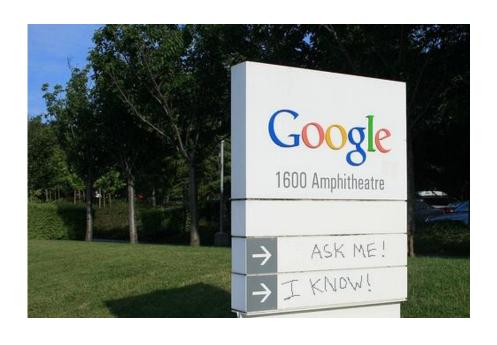
- a) "John never saw the car. **He** arrived late." "John never saw the car. **It** arrived late."
- b) "John needs **his** friend."

 "John needs **his** support."

Knowledge = "make it" is an idiom

c) "You can make **it** in advance."

"You can make **it** in Hollywood."


- a) "John never saw the car. **He** arrived late." "John never saw the car. **It** arrived late."
- b) "John needs **his** friend."

 "John needs **his** support."
- c) "You can make **it** in advance."

 "You can make **it** in Hollywood."

Knowledge via Web-Scale Counts

 Use an Internet search engine to harness all the linguistic data on the web

"Britney Spears"

"Britany Spears"

64,100,000 pages 434,000 pages

Deep Knowledge via Web-Scale Counts

 Positive or negative sentiment, connotation (Turney '02)

– E.g. "unethical"

unethical excellent

unethical poor

916,000 pages

1,600,000 pages

A) Noun Gender Knowledge

"John never saw the car. He arrived late."

"John never saw the car. It arrived late."

Learning Noun Gender

- Input:
 - English noun (John, car, Google)
- Output:
 - -Gender class: masculine (he), feminine (she), neutral (it), or plural (they)
- Result: improved pronoun resolution

If we had labeled data...

"John never saw the car. He arrived late."
 John.countMale++;

"John loves his Honda."
 John.countMale++;

- "Was that John? Has he lost weight?"
 John.countMale++;
- John: 100% male

Web-Mining Gender

Count number of pages returned, e.g.

"John * himself" "John * herself" "John * itself"

Web-Mining Gender

Count number of pages returned, e.g:
 "John * himself" "John * herself" "John * itself"

Other patterns:

```
"John * his" "John * her" "John * its" 
"John * he" "John * she" "John * it" 
...
```

WordNet vs. Statistical Gender

Noun	WordNet: Masculine acceptable?	Corpus Reflexives: P(Masculine)
John	OK	99.7%
Company	OK	0% (93% neutral)
Computer	OK	0% (99.2% neutral)

Supervised Machine Learning

- $\mathbf{x} = (x_1, x_2, ..., x_n)$: Features (log-counts)
- $\mathbf{w} = (w_1, w_2, ..., w_n)$: Learned weights
- Decision function:

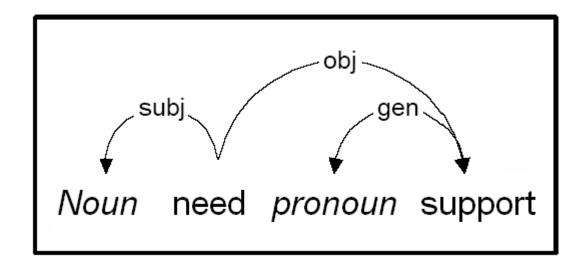
$$f(x) = w \cdot x$$

 Set the weights using a small number of labeled examples (SVM)

Gender Implementation

- Get counts using Google API
- Tested:
 - Gender assignment accuracy
 - within end-to-end pronoun resolution system (not as common as you might think)

Gender Results


- Gender classification F-Score
 - 85.4% using a corpus
 - 90.4% using the web
 - 92.2% using both
 - 88.8% for humans
- Pronoun resolution accuracy:
 - From 63.2% to 73.3% when adding learned gender information

B) Pattern Coreference

- "John needs his friend."
- "John needs his support."
- "John offered his support."

Dependency Path/Pattern

 Sequence of dependency links between terminal entities in a typed dependency tree

Short form: <u>Noun</u> needs <u>pronoun's</u> support

Learning Pattern Coreference

Input:

```
p = "Noun needs pronoun's support"
```

- Output:
 - Are <u>Noun</u> and <u>pronoun</u> coreferent in p?

STUDENTS-HUB.com

Learning Pattern Coreference

- If we had labeled data...
 - Count how often noun and pronoun co-refer in each labeled p
- Instead, learn from unambiguous examples:

```
"We need your support"
```

» not coreferent

Pronoun Class Agreement

<u>I</u> need <u>his</u> support	Disagree
They need my support	Disagree
We need her support	Disagree
<u>He</u> needs <u>his</u> support	Agree
<u>I</u> need <u>your</u> support	Disagree

Agreement = 20% → *non-coreferent*

Learned Patterns

- Example non-coreferent patterns:
 - "John married his mother."
 - "Sue wrote her obituary."
- Example coreferent patterns:
 - "Google says it intends to..."
 - "The revolutionaries consolidated their power."

Using Pattern Coreference

- Use it directly as a feature in your system
- Enhancing a semantic compatibility model
- Use it to bootstrap probabilistic noun gender/number information:
 - "The newspaper says it intends to..."
 - Assume coreference, count as instance of "newspaper" being neutral

Results

- Adding path coreference:
 - From 1.3% to 1.8% improvement on three datasets (significant, p=0.05)
- Share large corpus of noun gender collected using the patterns
 - Useful for many people (e.g., used in NLP course at Stanford, 2011 CoNLL shared task)
 - Described in Jurafsky & Martin 2nd Edition

C) Non-Referential Pronouns

- E.g. the word "it" in English
- "You can make it in advance."
 - referential (50-75%)
- "You can make it in Hollywood."
 - non-referential (25-50%)

Non-Referential Pronouns

- [Hirst, 1981]: detect non-referential pronouns, "lest precious hours be lost in bootless searches for textual referents."
- Most existing pronoun/coreference systems just ignore the problem
- A common ambiguity:
 - "it" comprises 1% of English tokens

Non-Referential Pronouns

Not just an English phenomenon:

```
– "Wie geht es Ihnen?" (German)
```

- "S'il vous plaît." (French)
- Non-ref pronouns also in pro-drop languages:

```
— "<> Es importante." (Spanish, referential)
```

— "<> Es important que ..." (Spanish, non-referential)

Non-Ref Detection as Classification

Input:

s = "You can make it in advance"

Output:

Is *it* a non-referential pronoun in *s*?

Method: train a supervised classifier to make this decision on the basis of some features

[Evans, 2001, Boyd et al. 2005, Müller 2006]

A Machine Learning Approach

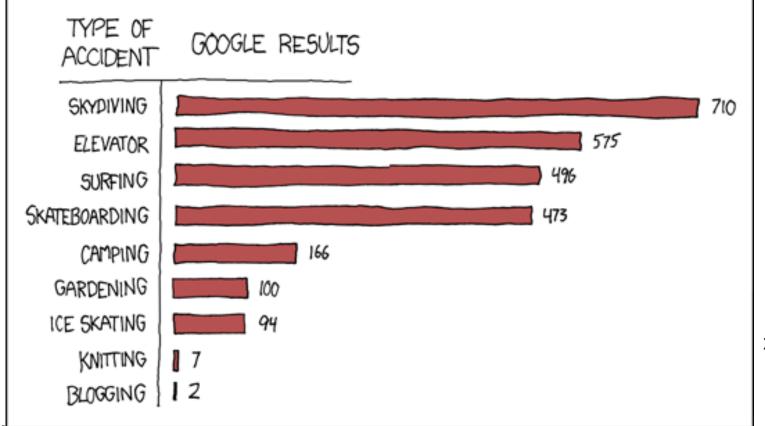
```
h(\underline{x}) = \underline{w} \cdot \underline{x} (predict non-ref if h(\underline{x}) > 0)
```

 Typical 'lexical' features: binary indicators of context:

```
x = (previous-word=make, next-word=in, previous-
two-words=can+make, ...)
```

- Use training data to learn good values for the weights, w
 - Classifier learns, e.g., to give negative weight to
 PPs immediately preceding 'it' (e.g. ... from it)

Better: Features from the Web


[Bergsma, Lin, Goebel, ACL 2008, IJCAI 2009]

- Convert sentence to a context pattern:
 - "make in advance"
- Collect counts from the web:
 - -"make it/them in advance"
 - 442 vs. 449 occurrences in Google N-gram Data
 - "make it/them in Hollywood"
 - 3421 vs. 0 occurrences in Google N-gram Data

DANGERS

INDEXED BY THE NUMBER OF GOOGLE RESULTS FOR

"DIED IN A _____ ACCIDENT"

From: xkcd.com

Applying the Web Counts

- How wide should the patterns span?
 - We can use all that Google N-gram Data allows:

```
You can make _ in can make _ in advance _ in advance .
```

- Five 5-grams, four 4-grams, three 3-grams and two bigrams
- What fillers to use? (e.g. it, they/them, any NP?)

Web Count Features

```
"it":
 log-cnt("You can make it in")
                                        5-grams
 log-cnt("can make it in advance")
 log-cnt("make it in advance .")
 log-cnt("You can make it")
                                       4-grams
 log-cnt("can make it in")
  ...
                                        ...
"them":
 log-cnt("You can make them in")
                                        5-grams
  • • •
                                   ...
```

A Machine Learning Approach Revisited

```
h(\underline{x}) = \underline{w} \cdot \underline{x} (predict non-ref if h(\underline{x}) > 0)
```

Typical features: binary indicators of context:

```
\underline{\mathbf{x}} = (previous-word=make, next-word=in, previous-two-words=can+make, ...)
```

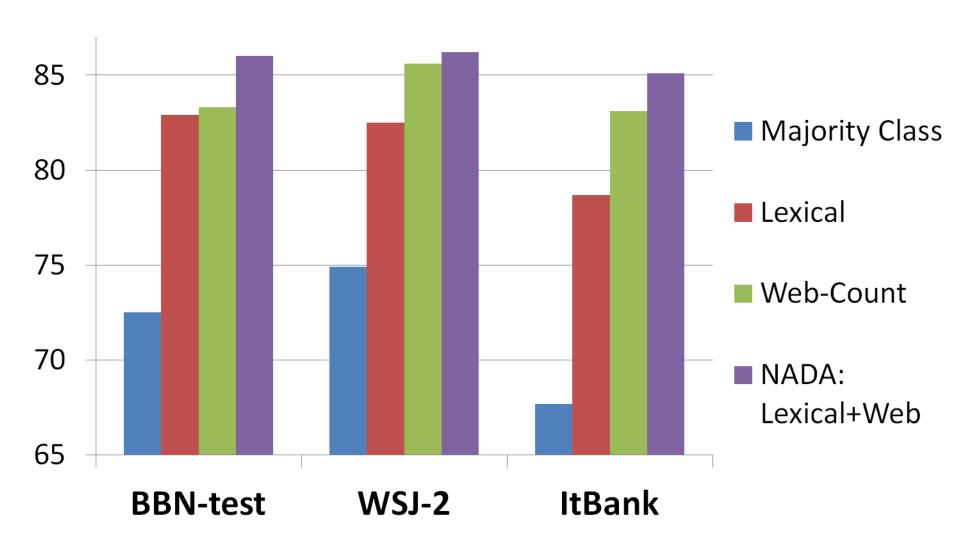
New features: real-valued counts in web text:

```
x = (log-cnt("make it in advance"), log-cnt("make
them in advance", log-cnt("make * in advance"), ...)
```

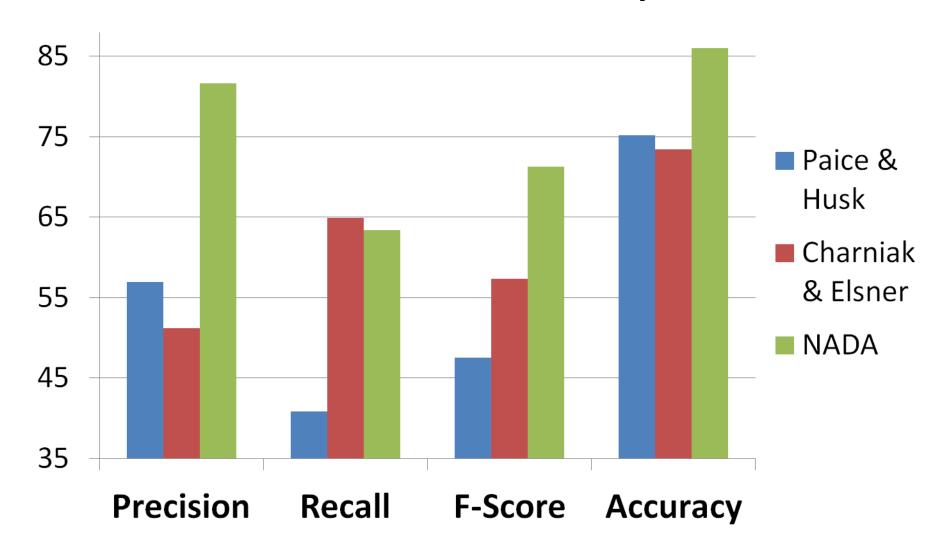
 Key conclusion: classifiers with web features are robust on new domains! [Bergsma, Pitler, Lin, ACL 2010]

NADA [Bergsma & Yarowsky, DAARC 2011]

- Non-Anaphoric Detection Algorithm:
 - a system for identifying non-referential pronouns


http://code.google.com/p/nada-nonref-pronoun-detector/

- Works on raw sentences; no parsing/tagging of input needed
- Classifies 'it' in up to 20,000 sentences/second
- It works well when used out-of-domain
 - Because it's got those Web count features


Using web counts works great... but is it practical?

All N-grams in the Google N-gram corpus	93 GB
Extract N-grams of length-4 only	33 GB
Extract N-grams containing it, they, them only	500 MB
Lower-case, truncate tokens to four characters, replace special tokens (e.g. named	189 MB
entities, pronouns, digits) with symbols, etc.	
Encode tokens (6 bytes) and values (2 bytes), store only changes from previous line	44 MB
gzip resulting file	33 MB

Accuracy with Different Features

NADA versus Other Systems

Conclusion

- Web-derived knowledge is very useful for pronoun resolution:
 - Gender
 - Pattern coreference
 - Non-referential pronoun patterns
- Useful to share data and software that leverage web-scale knowledge
 - always the best way to have an impact on the field

Thanks