

Reinforced Concrete Design I ENCE 335 Column Design

TUDENTS-HUB.com

Columns

- ♦ Columns are defined as members that carry load mainly in compression
- ♦ Columns may carry bending moments about one or two axes of the cross-section
- ♦ In some cases, tensile forces may develop in columns

Behavior of Columns

♦ Types of columns

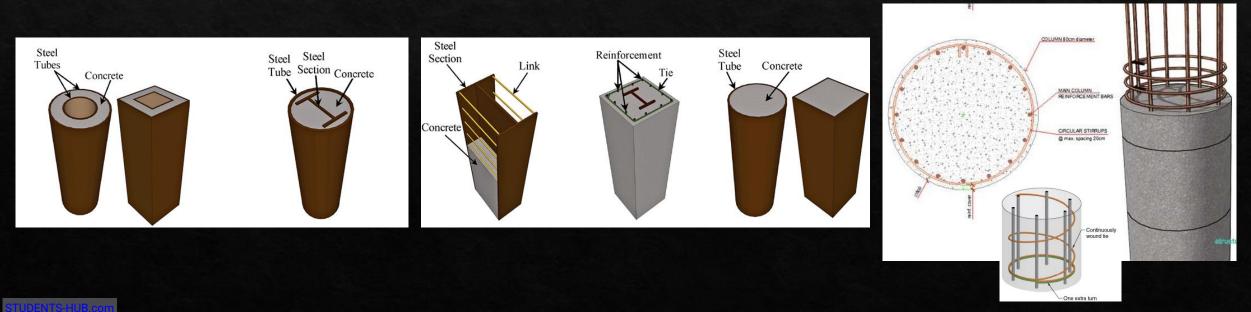
♦ Short columns

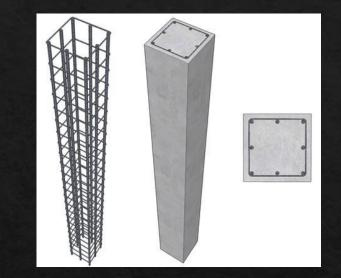
lateral dimensions are very large compared to its length (or height). Generally fail due to compression (crushing of concrete)

♦ Long (slender) columns

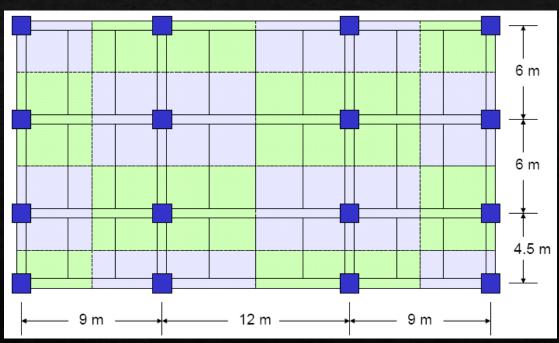
lateral dimensions are small compared to its length. Generally fails by buckling

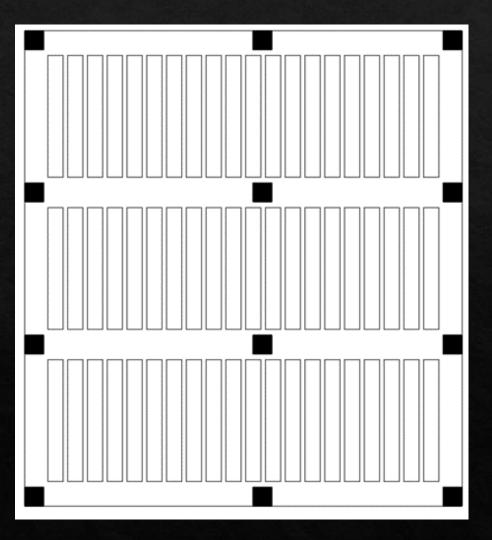
 $\mathcal{L}_{\mathcal{L}}^{\mathcal{L}} = \underbrace{\left\{ \begin{array}{c} \mathbf{1} \\ \mathbf{1}$

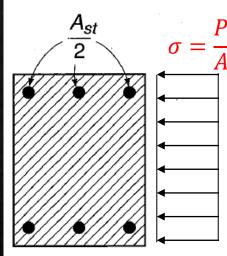




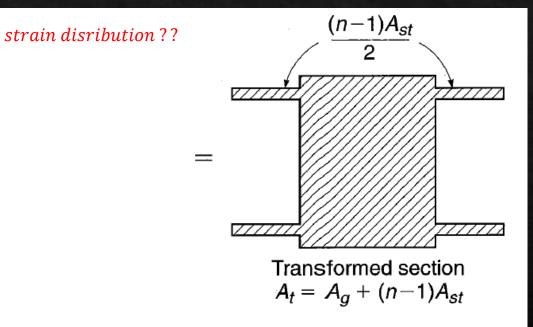
Columns

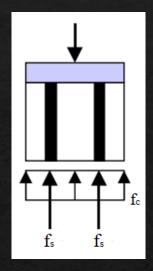

- ♦ Types of RC columns
 - Concrete reinforced with longitudinal bars and lateral ties
 - Concrete reinforced with longitudinal bars and continuous spiral
 - Composite concrete members with structural steel shapes, such as; I-sections, tubes, or pipes. With or
 without longitudinal bars and lateral ties




Load Calculation

- Reaction of beam supports
- ♦ Frame analysis
- ♦ Tributary area





Concentric Short RC Columns

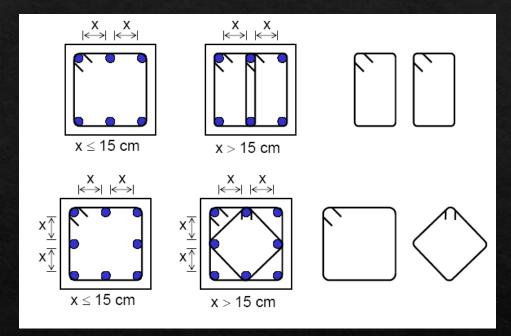
Actual section

 $P = f_c (A_g + (n - 1)A_s)$ Where: f_c is stress in *concrete* $f_s =$

 $P_n = 0.85 f_c' (A_g - A_s) + f_y A_s$ $\phi P_n \ge P_u$

ACI requirements for Columns

- * Strength reduction Factor: Spiral: $\phi = 0.75$, Tied: $\phi = 0.65$
- Steel reinforcement ratio $0.01 < \rho = \frac{A_S}{A_q} < 0.08$, generally $\rho \le 0.04$
- ♦ Min number of bars:
 - \diamond Rectangular: 4 bars
 - ♦ Circular: 6 bars
- \diamond Max spacing between bars unsupported with ties $S_{max} = 150 \ mm$
- ♦ Clear cover : External 50 mm. internal 40 mm
- ♦ Accidental eccentricity :


To account for accidental eccentricity, the design axial strength of a section in pure compression is limited to 80 to 85 percent of the nominal axial strength

$$\phi P_n = r \phi \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{St} \right]$$

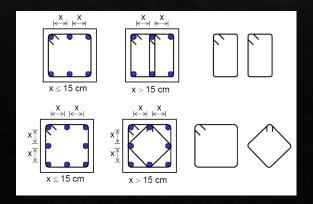
r = Reduction factor to account for accidental eccentricity

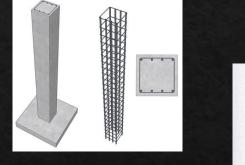
r = 0.80 (tied)

r = 0.85 (spiral)

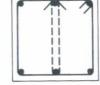
Net tensile stain ϵ_t	Classification	¢					
		Type of transverse reinforcement					
		Spirals conforming to 25.7.3		Other			
$\varepsilon_t \leq \varepsilon_{ty}$	Compression- controlled	0.75	(a)	0.65	(b)		
$\epsilon_{ty} \leq \epsilon_t \leq \epsilon_{ty} + 0.003$	Transition ^[1]	$0.75 + 0.15 \frac{(\varepsilon_t - \varepsilon_{\eta})}{(0.003)}$	(c)	$0.65 + 0.25 \frac{(\varepsilon_t - \varepsilon_y)}{(0.003)}$	(d)		
$\varepsilon_t \ge \varepsilon_{ty} + 0.003$	Tension-controlled	0.90	(e)	0.90	(f)		

ACI requirements for Columns


♦ Lateral ties and spirals


♦ Ties

♦ Size:

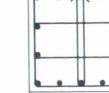

- $\Rightarrow \phi 10$ bar if longitudinal bar $\phi 32$ or smaller
- \Rightarrow ϕ 12 bar if longitudinal bar ϕ 36 or larger
- $\Leftrightarrow \phi 12$ bar if longitudinal bars are bundled
- ♦ Max spacing

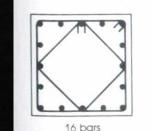
 $16d_h$ $\Leftrightarrow \min\{48 \, d_t\}$ B

-	1
	1
11	
11	

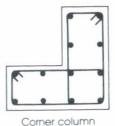
4 bars

6 bars





•	-	1
-	-	
L		


12 bars

10 bars

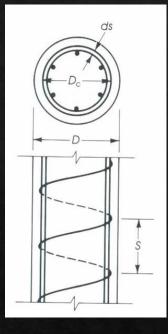
ø

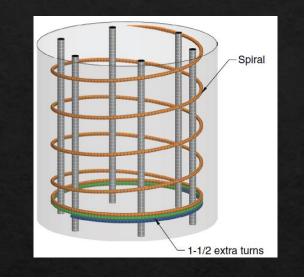
14 bars

ACI requirements for Columns

♦ Lateral ties and spirals

♦ Spirals


♦ Size:


 $\Rightarrow > \phi 10$ bar

♦ Spacing

- \diamond Minimum 25 mm or d_b
- ♦ Maximum 75 mm
- \diamond The volumetric spiral reinforcement ratio ρ_s

$$\rho_s = \frac{4A_{\rm sp}}{D_{\rm c}s} > 0.45 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f_c}{f_y}$$

TABLE A.14

Size and pitch of spirals, ACI Code, mm

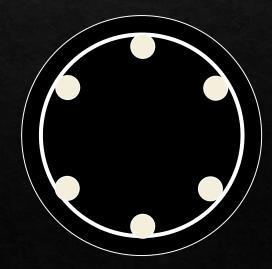
		<i>f_c</i> , MPa				
Diameter of Column, mm	Out to Out of Spiral, mm	21	28	35	42	
$f_{y} = 420 \text{ MPa}$	Pitch (spacing)					
350, 375	270, 295 SIZE	10-65	10-50	13–70	13-55	
400-475	320-395	10-65	10-50	13-70	13-60	
500	420	10-70	10-50	13-70	13-60	
525-725	445-645	10-70	10-50	13-75	13-60	
750	670	10-70	10-50	13-75	13–65	
$f_{\rm v} = 550 {\rm MPa}$						
350-425	270-345	10-85	10-65	10-50	13–75	
450, 475	370, 395	10-85	10-65	10-50	13-80	
500-550	420-470	10-85	10-65	10-55	13-80	
575-700	495-620	10-85	10–70	10-55	13-80	
725, 750	645, 670	10-85	10-70	10-55	13-85	

♦ Example

A non-slender column is subjected to axial load only. It has the geometry shown and reinforced with $6\phi30$ as shown. Calculate the maximum ultimate load the column can support.

Use fy = 420 MPa and fc' = 28 MPa

$$\phi P_n = r \phi \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{St} \right]$$



♦ Example

A non-slender circular spiral column with a diameter of 450 mm is subjected to axial load only. It has the geometry shown and reinforced with $6\phi28$ as shown. Calculate the maximum ultimate load the column can support.

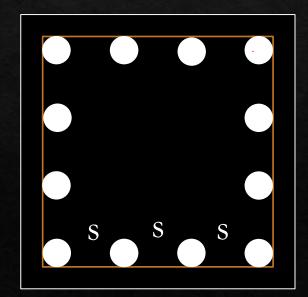
Use fy = 420 MPa and fc' = 28 MPa

$$\phi P_n = r \phi \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{st} \right]$$

Compare with Example 1 !!!

♦ Example

Design a non-slender square column which is subjected to a concentric 2300 kN and 1335 kN dead and live loads, respectively.


[Use $\rho = 0.02$, $f_y = 420 MPa$ and $f'_c = 28 MPa$]

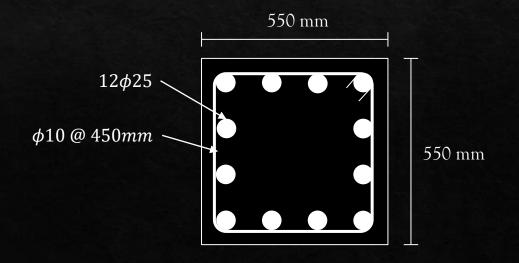
$$\phi P_n = r \phi \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{St} \right]$$

 $P_{u} = 1.2 * D + 1.6 L = 4896 kN$ $A_{st} = 0.02 A_{g}, r = 0.8, \phi = 0.65$ $\phi P_{n} = 0.8 * 0.65 [0.85 f_{c}'(A_{g} - 0.02A_{g}) + f_{y} * 0.02A_{g}$ $4896 * 10^{3} = 0.8 * 0.65 * [0.85 * 28 * (0.98A_{g}) + 420 * 0.02 * A_{g}]$ $A_{g} = 296790.6 mm^{2} \rightarrow B = 544.8 mm \sim 550 mm$ Use this value and solve for $A_{s} = 5592 mm^{2}$ $use \ 12\phi 25 \rightarrow A_{s}(provided) = 6125 mm^{2}$ Checks:
Reinforcement ratio

Spacing

 ϕP_n

♦ Example

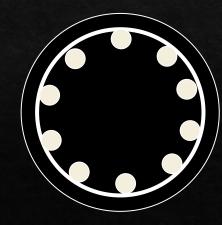

Design a non-slender square column which is subjected to a concentric 2300 kN and 1335 kN dead and live loads, respectively.

[Use $\rho = 0.02$, $f_{\gamma} = 420$ MPa and $f_c' = 28$ MPa]

Ties:

Size $\rightarrow \phi 10$ bar if longitudinal bar $\leq \phi 32 \rightarrow \text{Use } \phi \ 10$ ties

Spacing
$$\rightarrow \min \begin{cases} 16d_b \\ 48 d_t \rightarrow \\ B \end{cases} \begin{cases} 500 \\ 480 \rightarrow use \ 450 \ mm \ spacing \\ 550 \end{cases}$$


♦ Example

Design a non-slender spiraled circular column which is subjected to a concentric 2300 kN and 1335 kN dead and live loads, respectively. [Use $\rho = 0.02$, $f_y = 420 MPa$ and $f'_c = 28 MPa$]

 $\phi P_n = r \phi \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{st} \right]$

♦ Solution:

 $P_{u} = 1.2 * D + 1.6 L = 4896 kN$ $A_{st} = 0.02 A_{g}, r = 0.85, \phi = 0.7$ $\phi P_{n} = 0.85 * 0.7 [0.85 f_{c}' (A_{g} - 0.02A_{g}) + f_{y} * 0.02A_{g}$ $4896 * 10^{3} = 0.8 * 0.65 * [0.85 * 28 * (0.98A_{g}) + 420 * 0.02 * A_{g}]$ $A_{g} = 259380 mm^{2} \rightarrow D = 574.7 mm \sim 600 mm$ Use this value and solve for $A_{s} = 3785 mm^{2}$ $use \ 10\phi 22 \rightarrow A_{s(provided)} = 3870 mm^{2}$

♦ Example

Design a non-slender spiraled circular column which is subjected to a concentric 2300 kN and 1335 kN dead and live loads, respectively. [Use $\rho = 0.02$, $f_v = 420 MPa$ and $f'_c = 28 MPa$]

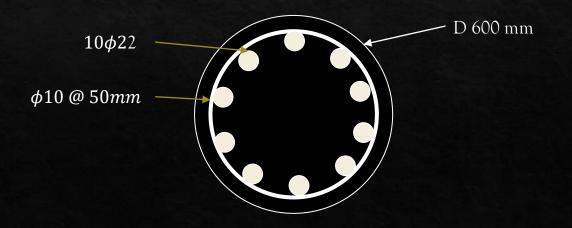
♦ Solution:

Check:

 $\rho = \frac{3870}{\frac{\pi}{4}600^2} = 0.0134 \dots \dots ok$

 $\phi P_n = 0.8 * 0.7 * \left[0.85 * 28 * \left(\frac{\pi}{4}600^2 - 3870\right) + 420 * 3870 \right]$

 $\phi P_n = 4916 \ kN > P_u \dots \dots ok$


Spiral

```
Size \rightarrow \varphi 10
```

Spacing →*Table A*14→*Column diameter*=600 mm

spiral out to out=520 mm

 \rightarrow Pitch *50 mm*

