ENEE2360 Analog Electronics

T9: Field Effect Transistor- FET

Instructor: Nasser Ismail

2

FET Vs conventional Transistors (BJT)

Advantages

- 1- High input impedance; ~100 M!
- 2- Fewer steps in manufacturing process.
- 3- More devices can be packaged into smaller area for integrated circuit IC

Disadvantages

- 1- Low values of voltage gain.
- 2- Poor high frequency performance.
- 3- Sensitivity to Electro-static Discharge (ESD) and special handling is required.

JFET Characteristics: Pinch Off

- · If V_{GS} = 0 V and V_{DS} continually increases to a more positive voltage, a point is reached where the depletion region gets so large that it pinches off the channel.
- This suggests that the current in channel (I_D) drops to 0 A, but it does not: As V_{DS} increases, so does I_{D} . However, once pinch off occurs, further increases in V_{DS} do not cause I_D to increase.

Pinch of voltage V_P :

For $V_{GS} = 0$, the value of V_{DS} at which I_{DS} becomes essentially constant

Is the absolute of the pinch of voltage $V_{DS} = |V_P|$

Some literature refer to Vp as VGS(off)

 $V_P = \begin{cases} negative \ value \ for \ n_channel \\ positive \ value \ for \ p_channel \end{cases}$

JFET Transfer characteristic curve:

$$I_{DS}(\mathbf{t}) = I_{DSS} \left(1 - \frac{V_{GS}(t)}{V_P}\right)^2$$

In pinch off region:

$$V_P < V_{GS} \le 0$$

$$|V_{DS}| > |V_P| - |V_{GS}|$$

P-channel JFET

$$I_{DS}(t) = I_{DSS} \left(1 - \frac{V_{GS}(t)}{V_P} \right)^2$$

In pinch off region:

$$|V_{DS}| > |V_P| - |V_{GS}|$$

$$V_P > V_{GS} \ge 0$$

Summary

Pinch off voltage:

- ✓ The voltage that cusses the depletion region to touch and close the channel is called pinch off voltage
- ✓ For the n-channel JFET to be in the pinch off region:

$$V_P < V_{GS} \le 0$$

$$|V_{DS}| > |V_P| - |V_{GS}|$$

✓ For the p-channel JFET to be in the pinch off region:

$$|V_{DS}| > |V_P| - |V_{GS}|$$

$$V_P > V_{GS} \ge 0$$

Common JFET Biasing Circuits

- Fixed-Bias
- > Self-Bias
- Voltage-Divider Bias

Basic Current Relationships

For all FETs:

$$I_G \cong 0 A$$

$$I_{D} = I_{S} = I_{DS}$$

For JFETS

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Fixed-Bias Configuration

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_S = 0 \text{ V}$$

$$\therefore V_D = V_{DS}$$

$$\therefore V_{GS} = -V_{GG}$$

Example

$$V_{GS} = V_G - V_S = -1.5 - 0 = -1.5 \text{ V}$$

Assuming JFET is in pinch off region

1)
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

= $10 \text{ mA} \left(1 - \frac{-1.5}{-4} \right)^2$
= 3.9 mA

2)
$$V_{DS} = V_{DD} - I_D R_D$$

= 16 - ((2k)(3.9 mA))
= 8.2 V

3)check for $|V_{DS}| > |V_P| - |V_{GS}|$?

$$|8.2| > |-4| - |-1.5|$$

assumption is true

2

2) Self - bias circuit

 Assume that the JFET is in the pinch off region

$$I_{DS} = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$$

$$V_{GS} = V_G - V_S$$

$$V_{GS} = -(0.6K) I_{DS}$$

Sub 2 into 1

$$\therefore I_{DS} = 10 \times 10^{-3} \left(1 - \frac{-0.6KI_{DS}}{-4}\right)^{-2}$$

$$I_{DS}$$
 = 14.77 mA , 3mA
Since I_{DS} = 14.77mA > I_{DSS}

$$I_{DS} = 3mA$$

$$V_{GS} = -1.8 \text{ V}$$

$$V_{DD}$$
= $R_D I_{DS}$ + V_{DS} + $R_S I_{DS}$
 V_{DS} = 8.7 V

For the JFET to be in the pinch off

•
$$|V_{DS}| > |V_P| - |V_{GS}|$$

> |-4| - |-1.8|
 $|V_{DS}| > 2.2 \text{ V}$

- Since $\mid V_{DS} \mid >$ 2.2 V , the JFET is in the pinch off region and our assumption is ok and
- I_{DS} = 3.0 mA V_{DS} = 8.7 V V_{GS} = -1.8 V

KVL:

 $V_{GS} = -4 + (1.56K) I_{DS}.....2$ sub 2 into 1, we obtain

 V_{DS} = -5.93 V

Example

 V_s must be more positive than V_G to keep the gate – source junction reverse biased

$$V_{S} = I_{D}R_{S}$$

$$V_{GS} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$$

$$V_{GS} = V_{G} - I_{D}R_{S}$$

$$V_{GS} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}} - I_{D}R_{S}$$

$$V_{D} = V_{DD} - I_{D}R_{D} = 7 \text{ V}$$

$$I_{D} = \frac{V_{DD} - V_{D}}{R_{D}} = \frac{12 - 7}{3300} = 1.52 \text{ mA}$$

35

Example

$$V_S = I_D R_S = (1.52 \text{mA}) (2.2 \text{k}\Omega) = 3.34 \text{ V}$$

$$V_G = \frac{1 \text{ M}}{1 \text{ M} + 6 \text{ M}} 15 = 1.54 \text{ V}$$

$$V_{GS} = 1.54 - 3.34 = -1.8 \text{ V} < 0 \iff OK$$
 also

$$I_D = \frac{V_S}{R_S} = \frac{3.34}{2200} = 1.52 \text{ mA}$$

36

Metal Oxide Semiconductor Field Effect Transistor MOSFET

- 1) Depletion type MOSFET: DMOSFET
- 2) Enhancement type MOSFET: EMOSFET
- The MOSFET differs from the JFET in that it has no pn junction structure; instead, the gate of the MOSFET in insulated from the channel by a silicon dioxide (S_iO_2) large.
- Due to this the input resistance of MOSFET is greater than JFET.

Depletion type MOSFET:

Construction of n-channel DMOSFET:

Operation, characteristic and parameters of DMOSFET

♦ <u>n-channel DMOSFET</u>

- On the application of V_{DS} and keeping V_{GS} =0 electrons from the n-channel are attracted towards positive potential of the drain terminal .
- This establishes current through the channel to be denoted as I_{DSS} at V_{GS} =0 .
- If we apply negative gate voltage (V_{GS} < 0) the negative charge on the gate repel electrons from the channel . The number of repelled electrons depends on the magnitude of the negative voltage V_{GS} .
- The greater the negative voltage applied at the gate , the level of drain current will be reduced until it reaches zero ; V_{GS} = V_P .

- For positive value of V_{GS} , the positive gate will draw additional electrons from the p-type substrate and the drain current increases .

In the pinch off region

$$i_{DS}(t)$$
= I_{DSS} (1 - $\frac{V_{GS}}{V_P}$) 2

♦ For the n- channel

$$V_{GS} > V_P$$
 (negative) $V_{DS} > V_{GS} - V_P$

♦ For the p- channel

$$V_{GS} < V_P$$
 (positive)
 $V_{DS} < V_{GS} - V_P$

Example

Suppose that the DMOSFET is in the pinch off region

$$I_{DS}{=}\;I_{DSS}(1-\frac{V_{GS}}{V_P}\;)^2$$
1

$$V_{GS} = V_G - V_S = V_G$$

$$V_G = \frac{11M}{11M + 100M}(12) = 1.19 \text{ v}$$
2

sub 2 into 1, we obtain

 I_{DS} = 6.13mA > I_{DSS} !! THIS IS POSSIBLE AND DMOSFET WILL OPERATE IN ENHANCEMENT MODE

$$V_{DS} = V_{DD}$$
- 0.5K $I_{DS} = 8.93$ v $V_{DS} > V_{GS} - V_{P} = 6.19$ v

Operation, characteristic and parameters of EMOSFET

- On the application of V_{DS} and keeping V_{GS} =0 practically zero current flows .
- If we increase V_{GS} in the positive direction the concentration of electrons near the ${\rm Si}O_2$ surface increases ,
- At particular value of V_{GS} there is a measurable current flow between drain and source ; I_{DS} .
- This value of V_{GS} is called threshold voltage denoted by V_T or V_{GS(TH)}
- A positive V_{GS} above V_T induce a channel and hence the drain current (I_{DS}) by creating a thin layer of negative charges (electrons) in the substrait adjacent to the $\mathrm{Si}O_2$ large .

The conductivity of the channel is enhanced by increasing V_{GS} and thus pulling more electrons into the channel .

$$y_{12} = \frac{ig}{v_{ds}} \Big|_{v_{gs=0}} = \frac{\Delta i_{G(t)}}{\Delta V_{DS(t)}} \Big|_{v_{GS(t)}=v_{GSQ}}$$
But $i_{G(t)}=0$

$$\therefore y_{12}=0$$

$$(open circuit)$$

$$y_{22} = \frac{i_{ds}}{v_{ds}} \Big|_{v_{gs=0}} = \frac{\Delta i_{DS(t)}}{\Delta V_{DS(t)}} \Big|_{v_{GS(t)} = v_{GSQ}}$$

$$\frac{1}{y_{22}} = r_{ds} = \frac{V_A}{I_{DSQ}}$$

$$y_{21} = \frac{i_{ds}}{v_{gs}} \Big|_{v_{ds=0}} = \frac{\Delta i_{DS(t)}}{\Delta V_{GS(t)}} \Big|_{v_{DS(t)} = v_{DSQ}}$$

$$y_{21} = \frac{d i_{DS(t)}}{d v_{GS(t)}} \Big|_{Q}$$

$$y_{21} = g_m; \text{ Forward Transconductance}$$

Definition: Transconductance g_m

For JFETs and DMOSFETs

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$

$$g_{m} = g_{m0} \left[1 - \frac{V_{GS}}{V_{P}} \right] = g_{m0} \sqrt{\frac{I_{D}}{I_{DSS}}} \qquad g_{m0} = \frac{2I_{DSS}}{|V_{P}|}$$
For EMOSFET
$$I_{D} = K \left(V_{GS} - V_{GS(TH)} \right)^{2} \qquad g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = 2K \left(V_{GS} - V_{GS(TH)} \right)$$

$$K = \frac{I_{D}}{\left(V_{GS} - V_{GS(TH)} \right)^{2}} \qquad (V_{GS} - V_{GS(TH)}) = \sqrt{\frac{I_{D}}{K}}$$

$$\therefore g_{m} = 2K \sqrt{\frac{I_{D}}{K}} = 2\sqrt{\frac{I_{D}K^{2}}{K}} = 2\sqrt{I_{D}K}$$

AC Small Signal Equivalent Circuit (MODEL Valid for all FET Types)

$$g_{m} = \frac{i_{d}}{v_{gs}} \Longrightarrow i_{d} = g_{m}v_{gs}$$

• Or

$$\mu = g_m r_{ds}$$
 - amplification factor

FET Ac Small Signal Amplifiers

• 1) Common Source Amplifier

•
$$g_m = \frac{-2I_{DSS}}{V_p} \left(1 - \frac{V_{GS}}{V_P}\right)$$

•
$$V_{GS} = -2 \text{ v}$$

∴
$$g_m$$
= 3m A/V

$$V_{O} = -g_{m}V_{gs}(100\text{K} \setminus 4\text{K} \setminus 12\text{K})$$

$$V_{gs} = V_{g} - V_{s}$$

$$v_{g} = \frac{1M \setminus 2.2M}{1M \setminus 2.2M + 10K} v_{i} \quad ; v_{s} = 0$$

$$A_{v} = \frac{V_{O}}{V_{i}} = -11.48$$

$$Z_{i} = 1\text{M} \setminus 2.2\text{M}$$

 Z_o = 100K $\setminus \setminus$ 4K

Impedance Reflection

KVL for the drain - source loop

$$V_3 - i_D R_D - i_D r_{ds} - i_D R_S + \mu V_{gs} - V_2 = 0...(1)$$

but

$$V_{gs} = V_g - V_S = V_g - (i_D R_S + V_2)$$
....(2)

substituting (2) in (1) yields:

$$V_{3} - i_{D}R_{D} - i_{D}r_{ds} - i_{D}R_{S} + \mu(V_{g} - (i_{D}R_{S} + V_{2})) - V_{2} = 0$$

$$V_{3} - i_{D}R_{D} - i_{D}r_{ds} - i_{D}R_{S} + \mu V_{g} - \mu i_{D}R_{S} - \mu V_{2} - V_{2} = 0$$

$$V_{3} - i_{D}R_{D} - i_{D}r_{ds} - i_{D}R_{S}(\mu + 1) + \mu V_{g} - V_{2}(\mu + 1) = 0$$

$$i_{D}R_{D} + i_{D}r_{ds} + i_{D}R_{S}(\mu + 1) = V_{3} + \mu V_{g} - V_{2}(\mu + 1)$$

$$V_{3} - i_{D}R_{D} - i_{D}r_{ds} - i_{D}R_{S} + \mu(V_{g} - (i_{D}R_{S} + V_{2})) - V_{2} = 0$$

$$i_{D} = \frac{V_{3} + \mu V_{g} - V_{2}(\mu + 1)}{R_{D} + r_{ds} + R_{S}(\mu + 1)}.....(3)$$

(3) is the drain Equivalent circuit equation

• Two outputs:

▶Vo1 from drain

➤ Vo2 from source

Find A_V, A_I, Z_{O1}, Z_{O2} and Z_I

Solution: continued

3) To Find Z_{02} , V_{02} Source equivalent circuit is required

since both of these quantities are seen from the source

4) To Find $Z_{O2}|_{\substack{Vi=0\\Vg=0}}$

$$Z_{O2}|_{Vg=0}^{Vi=0} = R_S / \left[\frac{r_{ds} + R_D}{(\mu + 1)} \right]$$

If $r_{ds} = \infty$

$$Z_{O2}|_{Vg=0}^{Vi=0}|_{r_{ds}\to\infty} = R_S / \frac{1}{g_m}$$

$$\lim_{r_{ds} \to \infty} \frac{R_d + r_{ds}}{g_m r_{ds} + 1} = \frac{1}{g_m}$$

$$Z_i = R_{th} = R_1 // R_2$$

• Drain Equivalent circuit to find Vo and Zo

$$Z_{\rm O}|_{{\rm Vi}=0} = R_D / \left(r_{ds} + \frac{R_i(\mu + 1)}{2} \right)$$

ENEE236

• To find Zi source equivalent circuit is needed

FET Amplifier Design (Important)

• Design a fixed bias network such that the ac voltage gain |Av| = 10, i.e. find value of R_D

$$V_{p} = -4 V$$
$$I_{DSS} = 10 \text{ mA}$$
$$r_{ds} = 50 \text{ k}\Omega$$

$V_{GS} = V_G - V_S = 0V$

$I_D = I_{DSS} \left(1 - \frac{0}{-4} \right)^2 = I_{DSS} = 10 mA$

Eor IEETa

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$
$$= \frac{2(10\text{mA})}{|-4|} \left[1 - \frac{0}{-4} \right] = 5 \text{ mS}$$

$$V_{gs} = V_i$$

$$A_{v} = \frac{V_{o}}{V_{\cdot}}$$

$$V_o = -g_m V_{gs}(r_{ds}//R_D)$$

$$V_o = -g_m V_i (r_{ds} / / R_D)$$

$$\left|A_{v}\right| = \left|\frac{V_{o}}{V_{i}}\right| = \left|-g_{m}(r_{ds}/R_{D})\right|$$

Solution

ac ss equivalent circuit

Since Av & gm are known, then

$$\left|A_{v}\right| = \left|\frac{V_{o}}{V}\right| = \left|-g_{m}(r_{d}/R_{D})\right| = 10$$

$$\therefore (r_d / / R_D) = \frac{10}{g_m} = \frac{10}{5 \text{ mS}} = 2 \text{ k}\Omega$$

Substitute $r_{ds} = 50 \text{ k}\Omega$

$$(r_d/R_D) = \frac{r_{ds} \cdot R_D}{r_{ds} + R_D} = \frac{50 \text{ k}\Omega \cdot R_D}{50 \text{ k}\Omega + R_D} = 2 \text{ k}\Omega$$

$$\rightarrow R_D = \frac{2 \,\mathrm{k}\Omega \cdot 50 \,\mathrm{k}\Omega}{48 \,\mathrm{k}\Omega} = 2.08 \,\mathrm{k}\Omega$$

Design Example 2 (Important)

Choose the values of R_D and R_S that will result in

voltage gain |Av| = 8 using the value of g_m defined at $V_{GSQ} = \frac{1}{4}V_p$

$$V_{P} = -4 V$$

$$I_{DSS} = 10 \text{ mA}$$

$$r_{ds} = 50 \text{ k}\Omega$$

Solution (value of RD?)

ac ss equivalent circuit

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$
$$= \frac{2(10\text{mA})}{|-4|} \left[1 - \frac{-1}{-4} \right] = 3.75 \text{ mS}$$

$$V_{gs} = V_i$$

$$A_{_{\scriptscriptstyle V}} = \frac{V_{_{\scriptscriptstyle O}}}{V_{_{\scriptscriptstyle i}}}$$

$$V_o = -g_m V_{gs}(r_{ds}/R_D)$$

$$V_o = -g_m V_i (r_{ds} //R_D)$$

$$\left|A_{v}\right| = \left|\frac{V_{o}}{V_{i}}\right| = \left|-g_{m}(r_{ds}/R_{D})\right|$$

Since Av & gm are known, then

$$\left|A_{v}\right| = \left|\frac{V_{o}}{V_{i}}\right| = \left|-g_{m}(r_{ds}/R_{D})\right| = 8$$

$$(r_{ds}/R_D) = \frac{8}{g_m} = \frac{8}{3.75 \text{ mS}} = 2.133 \text{ k}\Omega$$

Substitute
$$r_{ds} = 50 \text{ k}\Omega$$

$$(r_{ds}/R_D) = \frac{r_{ds}.R_D}{r_{ds} + R_D} = \frac{50 \text{ k}\Omega.R_D}{50 \text{ k}\Omega + R_D} = 2.133 \text{ k}\Omega$$

$$\rightarrow R_D = \frac{2.133 \,\mathrm{k}\Omega \cdot 50 \,\mathrm{k}\Omega}{47.867 \,\mathrm{k}\Omega} = 2.22 \,\mathrm{k}\Omega$$

Value of Rs?

The value of R_s is determined from DC analysis

Given

$$V_{GS} = V_G - V_S = \frac{1}{4} V_p = -1$$

$$V_G = 0$$

$$V_{\rm S} = I_{\rm D} R_{\rm S} = 1$$

but
$$I_D = I_{DSS} \left(1 - \frac{-1}{-4} \right)^2 = I_{DSS} \cdot 0.5625 = 5.625 \text{ mA}$$

$$\therefore R_s = \frac{V_s}{I_p} = \frac{1 \text{ V}}{5.625 \text{ mA}} = 177.8 \Omega$$

Design Example 3

Choose the values of R_D and R_S that will result in

voltage gain |Av| = 8 using the value of g_m defined at $V_{GSQ} = \frac{1}{4}V_p$

VDD

$$V_{P} = -4 \text{ V}$$

$$I_{DSS} = 10 \text{ mA}$$

$$r_{ds} = \infty$$

$$+20V$$

$$RD$$

$$??$$

$$VDD$$

$$+20V$$

Zo

Note: This is the same previous example except that no Cs (source capacitor)

Solution

$$V_{GS} = -1 \text{ V}$$
$$I_D = 5.625 \text{ mA}$$

 $g_m = 3.75 \text{ mS}$ (from previous example)

$$A_{_{\scriptscriptstyle
m V}}=rac{V_{_{\scriptscriptstyle o}}}{V_{_{i}}}$$

$$V_o = -g_m V_{gs}(r_{ds}//R_D)$$

$$V_{gs} = V_{g} - g_{m}V_{gs}R_{s}$$

$$V_{g} = V_{i}$$

$$V_{gs} = V_i - g_m V_{gs} R_S$$

$$V_{i} = V_{gs} + g_{m}V_{gs}R_{s}$$

$$V_{o} = \frac{-g_{m}V_{gs}(R_{D})}{V_{gs} + g_{m}V_{gs}R_{S}} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}}$$

$$\left|A_{v}\right| = \left|\frac{V_{o}}{V_{i}}\right| = \left|\frac{-g_{m}R_{D}}{1 + g_{m}R_{S}}\right| = 8$$

Since Av & gm and $\boldsymbol{R}_{s} \;$ are known , then

 $R_s = 180 \Omega$ (based on DC analysis)

$$\therefore R_{\scriptscriptstyle D} = 3.573 \,\mathrm{k}\Omega$$

Value of Rs?

The value of R_s is determined from DC analysis

Given

$$V_{GS} = V_G - V_S = \frac{1}{4} V_p = -1$$

$$V_G = 0$$

$$V_{\scriptscriptstyle S} = I_{\scriptscriptstyle D} R_{\scriptscriptstyle S} = -1$$

but
$$I_D = I_{DSS} \left(1 - \frac{-1}{-4} \right)^2 = I_{DSS}.0.5625 = 5.625 mA$$

$$\therefore R_s = \frac{V_s}{I_D} = \frac{1 \text{ V}}{5.625 \text{ mA}} = 177.8 \Omega$$

choose standard value 180Ω

Drain Feedback Configuration (self study)

$$I_i = g_m V_{gs} + \frac{V_o}{R_D / / r_{ds}}$$

$$V_{\sigma s} = V_i$$

$$I_i = g_m V_i + \frac{V_o}{R_D / r_{ds}}$$

$$I_i - g_m V_i = \frac{V_o}{R_D / r_{ds}}$$

$$V_{o} = (I_{i} - g_{m}V_{i})(R_{D} / / r_{ds})$$

$$also$$

$$I_{i} = \frac{V_{i} - V_{O}}{R_{F}}$$

$$= \frac{V_{i} - ((I_{i} - g_{m}V_{i})(R_{D} / / r_{ds}))}{R_{F}}$$

$$I_{i}R_{F} = V_{i} - ((I_{i} - g_{m}V_{i})(R_{D} / / r_{ds}))$$

$$V_{i}[1 + g_{m}(R_{D} / / r_{ds})] = I_{i}[R_{F} + (R_{D} / / r_{ds})]$$

$$\vdots$$

$$Z_{i} = \frac{V_{i}}{I_{i}} = \frac{[R_{F} + (R_{D} / / r_{ds})]}{[1 + g_{m}(R_{D} / / r_{ds})]}$$

$$Z_{o|_{vi=0}} = R_{D} / / r_{ds} / / R_{F}$$

$$I_{i} = g_{m}V_{gs} + \frac{V_{o}}{(R_{D}//r_{ds})}$$

$$V_{gs} = V_{i} \quad also \quad I_{i} = \frac{V_{i} - V_{o}}{R_{F}}$$

$$\frac{V_{i} - V_{o}}{R_{F}} = g_{m}V_{gs} + \frac{V_{o}}{(R_{D}//r_{ds})}$$

$$\frac{V_{i}}{R_{F}} - \frac{V_{o}}{R_{F}} = g_{m}V_{i} + \frac{V_{o}}{(R_{D}//r_{ds})}$$

$$I_{i} = g_{m}V_{gs} + \frac{V_{o}}{(R_{D}//r_{ds})}$$

$$V_{gs} = V_{i} \quad also \quad I_{i} = \frac{V_{i} - V_{o}}{R_{F}}$$

$$\frac{V_{i} - V_{o}}{R_{F}} = g_{m}V_{gs} + \frac{V_{o}}{(R_{D}//r_{ds})}$$

$$V_{i} = \frac{V_{o}}{R_{F}} - g_{m}V_{i} = \frac{V_{o}}{(R_{D}//r_{ds})} + \frac{V_{o}}{R_{F}}$$

$$V_{i} = \frac{1}{R_{F}} - g_{m}V_{o} = V_{o} = \frac{1}{(R_{D}//r_{ds})} + \frac{1}{R_{F}}$$

$$A_{V} = \frac{V_{o}}{V_{i}} = \frac{1}{(R_{D}//r_{ds})} + \frac{1}{R_{F}}$$

Common Source Amplifier : Design

 Design a Common source MOSFET Amplifier to provide a voltage gain $\left|\frac{V_o}{V_i}\right| = 10$, between a small signal voltage source having a resistance $10k\Omega$ and load $R_L=10k$

and $Zi = 1M\Omega$.

The MOSFET has rds = 20k, VT = 1.419 V, Kn = $\frac{2 mA}{v^2}$,

and IDS = 5mA.

Assume VDD = 24V.

$$\therefore A_{v} = -g_{m} (R_{D} \setminus 20K \setminus 10K)$$
Using $gm = 2\sqrt{Kn IDS}$ $gm = 6.23m \circlearrowleft$

$$RD = 2.1K\Omega$$

$$DC \text{ Analysis}$$
Let $VS = VDD/5 = 4.8V$ $RS = 0.96K \Omega$

$$But \ I_{DS} = K_{n}(V_{GS} - V_{T})^{2}$$

$$For \ I_{DS} = 5mA \qquad \therefore VGS = 3V$$

$$V_{GS} = V_{G} - V_{S} \qquad Solving for R1 and R2 , we get$$

$$\therefore VG = 7.8V \qquad R1 = 3.1M \Omega$$

$$NOW \qquad R2 = 1.48M \Omega$$

$$V_{G} = \frac{R^{2}}{R^{2} + R^{1}} (24) = 7.8V$$

$$Z_{l} = R1 \setminus R2 = 1M \Omega$$

