
EXP #6

PUBLIC-KEY
INFRASTRUCTURE
(PKI) LAB
SLIDES BY: MOHAMAD BALAWI

Uploaded By: anonymousSTUDENTS-HUB.com

Introduction

Task 1: Becoming a Certificate Authority (CA)

Task 2: Generate a Certificate Request for a Server

Task 3: Generating a Certificate for your server

Task 4: Deploying Certificate in an Apache-Based Website

Task 5: Launching a Man-In-The-Middle Attack

Task 6: Man-In-The-Middle Attack with a Compromised CA

OUTLINE

Uploaded By: anonymousSTUDENTS-HUB.com

Task 1: CA = www.birzeit.edu

Task 2: OUR SERVER = www.mbalawi.com

CONSTANTS
USED IN THIS
PRESENTATION

Uploaded By: anonymousSTUDENTS-HUB.com

4

Apache HTTP Server Project

• The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP

server for modern operating systems including UNIX and Windows. The goal of this project is to

provide a secure, efficient and extensible server that provides HTTP services in sync with the

current HTTP standards.

• The Apache HTTP Server ("httpd") was launched in 1995 and it has been the most popular web

server on the Internet since April 1996.

Uploaded By: anonymousSTUDENTS-HUB.com

5

SSL & TLS

• SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are cryptographic protocols for

securing network communication. TLS, the successor to SSL, offers improved security and is

widely used for HTTPS and other secure connections.

• Even though TLS is the successor to SSL, but the terms are often used interchangeably. TLS

1.0 is essentially SSL 3.0, and subsequent versions of TLS have evolved independently of SSL.

• SSL versions prior to SSL 3.0 are considered insecure and deprecated due to various

vulnerabilities discovered over time.

• SSL 2.0 was first released in 1995.

• TLS 1.0 was first released in 1999.

Uploaded By: anonymousSTUDENTS-HUB.com

Becoming a Certificate Authority (CA)

Expected output of this task:

• - CA Private Key (ca.key)

• - CA Certificate (ca.crt)

TASK 1

Uploaded By: anonymousSTUDENTS-HUB.com

7

Task 1: Becoming a Certificate Authority (CA)

• A Certificate Authority (CA) is a trusted entity that issues digital certificates.

• Users who want to get digital certificates issued by the commercial CAs need to pay those CAs.

• In this lab, we need to create digital certificates, but we are not going to pay any commercial CA.

• We will become a root CA ourselves, and then use this CA to issue certificate for others.

Uploaded By: anonymousSTUDENTS-HUB.com

8

The Configuration File (openssl.conf)

• In order to use OpenSSL to create certificates, you have to have a configuration file.

• The configuration file usually has an extension .cnf

• The configuration file is used by three OpenSSL commands: ca, req and x509.

• By default, OpenSSL uses the configuration file from /usr/lib/ssl/openssl.cnf.

• Since we need to make changes to this file, we will copy it into our current directory, and

instruct OpenSSL to use this copy instead.

cp /usr/lib/ssl/openssl.cnf myCA_openssl.cnf

Later on we will use the “-config” option to use our version instead of the default one.

Uploaded By: anonymousSTUDENTS-HUB.com

9

The Configuration File (openssl.conf)

The [CA default] section of the configuration file shows the default setting that we need to prepare.

[CA_default]

Dir = ./demoCA # Where everything is kept

Certs = $dir/certs # Where the issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept

Database = $dir/index.txt # database index file.

#unique_subject = no # allows multiple certs with the same subject.

new_certs_dir = $dir/newcerts # default place for new certs.

serial = $dir/serial # The current serial number

touch index.txt For the index.txt file, simply create an empty file

echo "1000" > serial For the serial file, put a single number in string format in the file

Uploaded By: anonymousSTUDENTS-HUB.com

10

Certificate Authority (CA)

As we described before, we need to generate a self-signed certificate for our CA. You can run the following

command to generate the self-signed certificate for the CA:

openssl req -x509 -newkey rsa:4096 -sha256 -days 3650 -keyout ca.key -out ca.crt -config myCA_openssl.cnf

Argument Description

req Certificate request.

-x509 Outputs a certificate instead of a certificate request.

-newkey rsa:4096 Generate a new RSA (4096-bit) private key.

-sha256 The hashing algorithm to use for generating the certificate's fingerprint.

-days 3650 Sets the validity period of the certificate to 3650 days (approximately 10 years).

-keyout ca.key The file where the generated private key should be saved.

-out ca.crt The file where the generated X.509 certificate should be saved.

-config openssl.cnf This specifies the configuration file to use for generating the certificate.

Uploaded By: anonymousSTUDENTS-HUB.com

11

Additional Info

• We can avoid manually typing the password and the subject information, by using the following arguments:

-subj "/CN=www.birzeit.edu/O=Birzeit University/C=PS" -passout pass:dees

• Full command becomes:

openssl req -x509 -newkey rsa:4096 -sha256 -days 3650 -keyout ca.key -out ca.crt -config

myCA_openssl.cnf -subj "/CN=www.birzeit.edu/O=Birzeit University/C=PS" -passout pass:dees

• We can use the following commands to view the certificate and the key.

openssl x509 -in ca.crt -text –noout

openssl rsa -in ca.key -text -noout

Argument Description

-subj Subject’s info, including common name (CN), Organization (O), Country (C).

-passout pass:dees Specifies the password to encrypt the private key with. Here it is “dees”.

Uploaded By: anonymousSTUDENTS-HUB.com

12

openssl rsa -in ca.key -text -noout

• The output of the "openssl rsa -in ca.key -text -noout“

command provides comprehensive details regarding both the private

and public keys.

• The table on the right correlates the output of the command with the

mathematical components of the keys.

• The last three rows, (highlighted in red) are used in the Chinese

Remainder Theorem (CRT) optimization, which enables efficient

decryption and signing operations, particularly in RSA private key

operations.

Title in the CMD
output

Mathematical
symbol

modulus 𝑛 (𝑝𝑥𝑞)

publicExponent 𝑒

privateExponent 𝑑

prime1 𝑝

prime2 𝑞

exponent1 𝑑 𝑚𝑜𝑑 (𝑝 − 1)

exponent2 𝑑 𝑚𝑜𝑑 (𝑞 − 1)

coefficient 𝑞−1mod𝑝

Uploaded By: anonymousSTUDENTS-HUB.com

Generate a Certificate Request for a Server

Expected output of this task:

• - Server Private Key (server.key)

• - Certificate Request (server.csr)

TASK 2

Uploaded By: anonymousSTUDENTS-HUB.com

14

Task 2: Generate a Certificate Request for a Server

• A company called www.mbalawi.com wants to get a public-key certificate from our CA.

• First it needs to generate a Certificate Signing Request (CSR), which basically includes the

company’s public key and identity information.

• The CSR will be sent to the CA, who will verify the identity information in the request, and then

generate a certificate.

• The command to generate a CSR is similar to the one we used in creating the self-signed

certificate, the only difference is the absence of the –x509 argument.

openssl req -newkey rsa:2048 -sha256 -keyout server.key -out server.csr

-subj "/CN=www.mbalawi.com/O=Birzeit University/C=PS" -passout pass:dees

Uploaded By: anonymousSTUDENTS-HUB.com

15

Additional info

• The command will generate a pair of public/private key, and then create a certificate signing request

from the public key.

• We can use the following command to look at the decoded content of the CSR and private key files:

openssl req -in server.csr -text –noout

openssl rsa -in server.key -text –noout

Uploaded By: anonymousSTUDENTS-HUB.com

16

Adding Alternative names

• Many websites have different URLs. For example, www.example.com, example.com,

example.net, and example.org are all pointing to the same web server.

• Due to the hostname matching policy enforced by browsers, the common name in a

certificate must match with the server’s hostname, or browsers will refuse to communicate

with the server.

• To allow a certificate to have multiple names, the X.509 specification defines extensions to be

attached to a certificate. This extension is called Subject Alternative Name (SAN).

• Using the SAN extension, it’s possible to specify several hostnames in the subjectAltName

field of a certificate.

Uploaded By: anonymousSTUDENTS-HUB.com

https://www.birzeit.edu/en
https://www.birzeit.edu/en
https://www.birzeit.edu/en
https://www.birzeit.edu/en

17

Add SAN extension using command-line

• To use the SAN extension can add the "-addext" option to the "openssl req" command.

• It should be noted that the subjectAltName extension field must also include the Common Name (CN)

field; otherwise, the common name will not be accepted as a valid name.

-addext “subjectAltName = DNS:mbalawi.com, DNS:www.mbalawi.com, DNS:www.mb.com”

So the full command becomes:

openssl req -newkey rsa:2048 -sha256 -keyout server.key -out server.csr -subj

"/CN=www.mbalawi.com/O=Birzeit University/C=PS" -passout pass:dees -addext

"subjectAltName = DNS:mbalawi.com, DNS:www.mbalawi.com, DNS:www.mb.com"

Uploaded By: anonymousSTUDENTS-HUB.com

Generating a Certificate for your server

Expected output of this task:

• - Server Certificate (server.crt)

TASK 3

Uploaded By: anonymousSTUDENTS-HUB.com

19

Task 3: Generating a Certificate for your server

• The CSR file needs to have the CA’s signature to form a certificate.

• In the real world, the CSR files are usually sent to a trusted CA for their signature. In this lab,

we will use our own trusted CA to generate certificates.

• Before generating the certificate we need to create a directory called “demoCA” and move

“index.txt” and “serial” files to it, then create “newcerts” directory inside it.

mkdir demoCA && mkdir demoCA/newcerts

mv index.txt demoCA

mv serial demoCA

Uploaded By: anonymousSTUDENTS-HUB.com

20

Task 3: Generating a Certificate for your server

• The following command turns the certificate signing request (server.csr) into an X509 certificate

(server.crt), using the CA’s ca.crt and ca.key:

openssl ca -config myCA_openssl.cnf -policy policy_anything -md sha256 -days 3650 -in

server.csr -out server.crt -batch -cert ca.crt -keyfile ca.key -passin pass:dees

• where myCA_openssl.cnf is the configuration file we copied from /usr/lib/ ssl/openssl.cnf (we

also made changes to this file in Task 1).

Uploaded By: anonymousSTUDENTS-HUB.com

21

Options Description

openssl ca -config myCA_openssl.cnf -policy policy_anything -md sha256 -days 3650 -in

server.csr -out server.crt -batch -cert ca.crt -keyfile ca.key -passin pass:dees

Argument Description

-policy policy_anything Specifies the policy to use when signing the certificate. The "policy_anything“
allows for flexibility, the default policy has more restriction, requiring some of
the subject information in the request to match those in the CA’s certificate.

-md sha256 (message digest) specifies the SHA-256 signature algorithm for OpenSSL.

-batch batch mode, operates without user prompts, ideal for automated processes.

-passin pass:dees Specifies the password the private key file. Here it is “dees”.

Uploaded By: anonymousSTUDENTS-HUB.com

22

Copy the extension field

After executing the previous certificate signing command command, execute the following to read

the certificate:

openssl x509 -in server.crt -text -noout

You will notice that the subject alternative name (SAN) are not there. For security reasons, the

default setting in openssl.cnf does not allow the "openssl ca" command to copy the extension

field from the request to the final certificate. To enable that, we can go to our copy of the

configuration file, uncomment the following line, then re-execute the sign command:

copy_extensions = copy

Uploaded By: anonymousSTUDENTS-HUB.com

Deploying Certificate in an Apache-Based

HTTPS Website & add our CA to the

browser’s list of trusted CAs

Expected output of this task:

• - Secure connection to our server:

TASK 4

Uploaded By: anonymousSTUDENTS-HUB.com

24

Task 4: Deploying Certificate in an HTTPS Website

• In this task, we will see how public-key certificates are used by websites to secure web browsing.

• We will set up an HTTPS website based Apache.

• The Apache server, which is already installed in the docker container, supports the HTTPS protocol.

• You can deploy it after extracting labsetup.zip and executing dcbuild && dcup inside

labsetup directory.

• To create an HTTPS website, we just need to configure the Apache server, so it knows where to get

the private key and certificates.

• Inside our container, we have already set up an HTTPS site for bank32.com. Students can follow

this example to set up their own HTTPS site.

Uploaded By: anonymousSTUDENTS-HUB.com

25

Hosting Multiple Websites

• An Apache server can simultaneously host multiple websites.

• It needs to know the directory where a website’s files are stored.

• This is done via its VirtualHost file, located in the /etc/apache2/sites-available directory.

• In our container, we have a file called bank32_apache_ssl.conf, which contains two VirtualHosts.

• Each virtual host has its own configuration settings, enabling the server to serve different content

based on factors like domain name or IP address.

Uploaded By: anonymousSTUDENTS-HUB.com

26

VirtualHost File

• In our container, we have a file called bank32_apache_ssl.conf, which contains the following:

<VirtualHost *:443>

DocumentRoot /var/www/bank32

ServerName www.bank32.com

ServerAlias www.bank32A.com

ServerAlias www.bank32B.com

ServerAlias www.bank32W.com

DirectoryIndex index.html

SSLEngine On

SSLCertificateFile /certs/bank32.crt

SSLCertificateKeyFile /certs/bank32.key

</VirtualHost>

<VirtualHost *:80>
DocumentRoot /var/www/bank32
ServerName www.bank32.com
DirectoryIndex index_red.html

</VirtualHost>

Uploaded By: anonymousSTUDENTS-HUB.com

27

VirtualHost File Entries

• The following table contains the meaning of different entries in the VirtualHost file

entry Description

<VirtualHost *:443> Defines the port (443 is the default port for HTTPS) (80 is the default for HTTP)

DocumentRoot Specifies where the files for the website are stored.

ServerName Specifies the primary domain name for the website.

ServerAlias Specifies additional domain names (aliases) for the virtual host.

DirectoryIndex index.html Defines the default filename to be served when a directory is requested. If a
directory is accessed without specifying a filename, Apache will look for
index.html in that directory and serve it if found.

SSLEngine On Enables SSL/TLS encryption for this virtual host, allowing HTTPS connections.

SSLCertificateFile Specifies the path to the SSL certificate file. The SSL certificate file contains
the public key and other details necessary for SSL/TLS encryption.

SSLCertificateKeyFile Specifies the path to the private key file associated with the SSL certificate.

Uploaded By: anonymousSTUDENTS-HUB.com

28

Starting the Apache Server

• The Apache server is not automatically started in the container, because of the need to type

the password to unlock the private key. Let’s go to the container and run the following

command to start the server (we also list some related commands):

service apache2 start

service apache2 stop

service apache2 restart

service apache2 status

When Apache starts, it needs to load the private key for each HTTPS site. Our private key is

encrypted, so Apache will ask us to type the password for decryption.

Uploaded By: anonymousSTUDENTS-HUB.com

29

Shared Folder Between the VM and Container

• In this task, we need to copy files from the VM to the container.

• To avoid repeatedly recreating containers, we have created a shared folder between the VM

and container.

• When you use the Compose file inside the Labsetup folder to create containers, the

volumes sub-folder will be mounted to the container. Anything you put inside this folder will

be accessible from inside of the running container.

Uploaded By: anonymousSTUDENTS-HUB.com

30

What do we Need to Do?

• Add your website domain name to /etc/hosts file.

sudo sh -c 'echo "10.9.0.80 www.mbalawi.com" >> /etc/hosts'

• Copy our server’s certificate (server.crt) and key (server.key) to Labsetup/volumes.

• In bank32_apache_ssl.conf file Modify the ServerAlias and ServerName entries to represent the

website domain name and the Subject Alternative Names (SAN). Also modify SSLCertificateFile

and SSLCertificateKeyFile to point to /certs/server.crt and /certs/server.key respectively.

• Navigate to Labsetup directory and execute the following command:

dcbuild && dcup

• Get the container ID from executing the following command:

dockps

Uploaded By: anonymousSTUDENTS-HUB.com

31

What do we Need to Do?

• Enter the container by executing the following command after replacing <container_id>:

docksh <container_id>

• Now inside the container, move server.crt and server.key from /volumes to /certs directory.

• Start the Apache server using the following command:

service apache2 start

• if it asks for a password, use the one we set for our server in Task 2. it asks for a password because

when Apache starts, it needs to load the private key for each HTTPS site, and our private key is

encrypted, so Apache will ask us to type the password for decryption.

Uploaded By: anonymousSTUDENTS-HUB.com

32

What to expect?

• If you get the Apache2 Ubuntu Default Page after

accessing the HTTP port or

the HTTPS port of your

website, then there is something wrong with your

configuration.

Uploaded By: anonymousSTUDENTS-HUB.com

33

What to expect?

• When you try to access the HTTP port of

your website you will

get index_red.html page.

• The icon means that your connection is

insecure and that is because HTTP is

insecure by nature.

Uploaded By: anonymousSTUDENTS-HUB.com

34

What to expect?

• When you try to access the HTTPS port of

your website you

will get a warning page from Firefox.

• The icon means that your connection is

insecure and that is because the certificate

is invalid, there are many reasons for that, in

our case it is caused by unknown CA.

• You can bypass this warning by clicking

button then

• Read the dialoge that appears after clicking

button.

Uploaded By: anonymousSTUDENTS-HUB.com

35

What to expect?

• After bypassing the warning for the HTTPS

port of your website

you will get a index.html page which is a

“Hello, world!” title on green background.

Uploaded By: anonymousSTUDENTS-HUB.com

36

Add our CA to Firefox trusted CAs

• To avoid the browser’s warning, we need to add our CA to the browser’s list of trusted CA.

• To do that, we need to navigate to the following URL:

about:preferences#privacy

• Then go to Certificates section and click the button.

• Switch to tab.

• Then click button.

• Choose the our CA’s self signed certificate (ca.crt).

• Tick checkbox.

• Click button.

• Refresh https://www.mbalawi.com

Uploaded By: anonymousSTUDENTS-HUB.com

37

What to expect after adding our CA to Firefox?

• When you try to access the HTTPS port

of your website

you will get index.html page, but this

time the padlock icon is different.

• The icon means that your connection

is secure because it provided a certificate

that is signed by a valid CA (our CA).

Uploaded By: anonymousSTUDENTS-HUB.com

Launching a Man-In-The-Middle Attack

Expected output of this task:

• - Getting SSL_ERROR_BAD_CERT_DOMAIN
when trying to access facebook.com

TASK 5

Uploaded By: anonymousSTUDENTS-HUB.com

39

Launching a Man-In-The-Middle Attack

• In this task, we will show how PKI can defeat Man-In-The-Middle (MITM) attacks.

• Assume Alice wants to visit facebook.com via the HTTPS protocol. She needs to get the public key

from the facebook.com server; Alice will generate a secret, and encrypt the secret using the

server’s public key, and send it to the server.

• If an attacker can intercept the communication between Alice and the server, the attacker can

replace the server’s public key with its own public key.

Uploaded By: anonymousSTUDENTS-HUB.com

40

Launching a Man-In-The-Middle Attack

• Therefore, Alice’s secret is actually encrypted with the attacker’s public key, so the attacker will be

able to read the secret. The attacker can forward the secret to the server using the server’s public

key. The secret is used to encrypt the communication between Alice and server, so the attacker can

decrypt the encrypted communication.

• In the task, we will emulate an MITM attack, and see how exactly PKI can defeat it.

Uploaded By: anonymousSTUDENTS-HUB.com

41

Planning Our Attack Strategy (step 1)

• In Task 4, we have already set up an HTTPS website.

• We will use the same Apache server to impersonate www.facebook.com. To achieve that, we will

follow the instruction in Task 4 to add a VirtualHost entry to Apache’s SSL configuration file: the

ServerName should be www.facebook.com, but the rest of the configuration can be the same as

that used in Task 4. Obviously, in the real world, you won’t be able to get a valid certificate for

www.facebook.com, so we will use the same certificate that we used for our own server.

• Our goal is the following: when a user tries to visit www.facebook.com, we are going to get the user

to land in our server, which hosts a fake website for www.facebook.com. The fake site can display

a login page similar to the one in the target website. If users cannot tell the difference, they may

type their account credentials in the fake webpage, essentially disclosing the credentials.

Uploaded By: anonymousSTUDENTS-HUB.com

42

Planning Our Attack Strategy (step 2)

• There are several ways to get the user’s HTTPS request to land in our web server.

• One way is to attack the routing, so the user’s HTTPS request is routed to our web server.

• Another way is to attack DNS, so when the victim’s machine tries to find out the IP address of the target

web server, it gets the IP address of our web server.

• In this task, we simulate the attack-DNS approach. Instead of launching an actual DNS cache poisoning

attack, we simply modify the victim’s machine /etc/hosts file to emulate the result of a DNS cache

poisoning attack by mapping the hostname www.facebook.com to our malicious web server.

sudo sh -c 'echo "10.9.0.80 www.facebook.com" >> /etc/hosts'

Uploaded By: anonymousSTUDENTS-HUB.com

43

What to expect?

• When attempting to visit www.facebook.com, we

encounter a warning page denying access to the

website.

• SSL_ERROR_BAD_CERT_DOMAIN is the displayed

error message.

• This outcome is anticipated because we utilized a

certificate from www.mbalawi.com. The browser

compares the domain name on the certificate

with the domain name we are attempting to

access and detects a discrepancy, resulting in the

display of the error page.

Uploaded By: anonymousSTUDENTS-HUB.com

Launching a Man-In-The-Middle Attack with a

Compromised CA

Expected output of this task:

• - Secure connection to facebook.com

TASK 6

Uploaded By: anonymousSTUDENTS-HUB.com

45

Launching a Man-In-The-Middle Attack

• In this task, we assume that the root CA created in Task 1 is compromised by an attacker, and its

private key is stolen.

• Therefore, the attacker can generate any arbitrary certificate using this CA’s private key.

• In this task, we will see the consequence of such a compromise.

• Please design an experiment to show that the attacker can successfully launch MITM attacks on

any HTTPS website. You can use the same setting created in Task 5, but this time, you need to

demonstrate that the MITM attack is successful, i.e., the browser will not raise any suspicion when

the victim tries to visit a website but land in the MITM attacker’s fake website.

Uploaded By: anonymousSTUDENTS-HUB.com

46

Save a copy of Facebook’s frontend

• A website's UI comprises various files: HTML, CSS, and JavaScript.

• We need to save a copy of that UI, preferably as a single HTML file to avoid the

complications of dealing with multiple files.

• To acheive that, we can install the following plugin on Firefox inside our VM:

- SingleFile – Get this Extension for Firefox (en-US) (mozilla.org)

- Save an entire web page, including images and styling, as a single HTML file.

• To use it:

1. Wait until the target page is fully loaded.

2. Click on the SingleFile button in the extension toolbar to save the page.

Uploaded By: anonymousSTUDENTS-HUB.com

https://addons.mozilla.org/en-US/firefox/addon/single-file/

47

What to expect?

• A normal looking facebook login

page, that shows a normal

padlock icon (meaning that the

certificate is valid).

• The certificate should be verified

by our organization.

Uploaded By: anonymousSTUDENTS-HUB.com

