
Birzeit University Faculty of Engineering and Technology Civil Engineering Department SURVEYING Lab ENCE316

Experiment no.8: Traverse measurement using Total station Prepared by: Eng. Shuroq Jamal

• Points A1, A2, A3, A4 and A5 are traverse points

• BM1 and BM2 are bench mark points

The aim of this experiment:

- Determine the coordinate of each traverse point (E, N)
- Determine the elevation of each traverse point (Z)

The following table must be filled in the field where,

HCR: Horizontal circle reading

Z.A: Zenith angle

SD: Slope distance

HD: Horizontal distance

VD: Vertical distance

HI: Height of instrument

RH: Reflector height

									Charles Contraction
-		Point	HCR	Z.A	SD	HD	VD	ні	RH
	Station	Fond							
	Al	BM2	0°0'0''						
		A2	V						
			55° 04 11						
								V	V
	A1	A2	0°0'0''	۷ ۹2 32 5	69.54	6 69.477	-3.214	1.49	1.53
		A5				1		\checkmark	1.20
2034	24.3		1303600	2453	st and	96 93.2	34 8.211	1.49	1.00
	A2	A3	0°0'0''	8378 4	Nor W	V 7 87 86	9 9.69	1.42	3.5
		A1	V	1 2	1 1	N N	N N	N N	3.5
			563043	8717	\$ 695	1769.44	3.15	1.42	5.)
	A3	A4	0°0'0''	896	N 44	.53 V 44.5	25 0.57	5 1.39	1.53
		A2	1 7 2	2" V		1445	V V	- 1 A	
			17213	9329	29" 86.0	xol 85.8	347 -5.36	5 1.39	3.88
e.	A4	A5	0°0'0''	27°23	NA N	G6.7	1 80	V	~
		A3	1	+	00		2.11	M 1.40	1.53
			982230	6952	ોમ પપ	485 44.	485 -0.0	319 24	0 153
	4.								5.6
	A5	A1	0°0'0''		1			7	
				94 ⁹ 49	15 93.1	60 93.	529 -7.9	989 1.3.	F 1.53
		A4		γ	Y	V	N	V	V
L		1	622014	9229	00 66.	770 66.7	14 -2.	854 1.3	57 1.53

Calculations:

Internal angle correction

- The sum of internal angle = 180 (n-2) , where n: # of traverse points
- Angular misclosure = \sum internal angle 180 (n-2)
- \mathcal{E} allowable = $c\sqrt{n}$, c = 90 "

If Angular misclosure < E allowable then you error is accepted.

• You have to correct all of the internal angle using the following equation:

Correction = $-\frac{Miscloser\ error}{n}$ (Note: all internal angle have the same correction) Corrected angle = observed angle + correction

201.240

Azimuth calculation

•
$$\alpha_{A1-BM2} = \tan^{-1} \frac{EBM2-EA1}{NBM2-NA1}$$

• Find the azimuth for each traverse leg. (α_{A1-A2} , α_{A2-A3} ,etc)

Horizontal distances

The accepted difference between any two reading : Δℓ= (0.0007 ℓ + 0.03)
 Then find the average value for length of each traverse leg (Horizontal distances)
 For example, ℓ_{A1A2} - ℓ_{A2A1} < Δℓ

 $\ell \overline{A1 A2} = (\ell_{A1 A2} + \ell_{A2 A1})/2$

Coordinates and their corrections

- $\Delta E = l_{\text{BVE}} \sin \alpha$
- $\Delta N = l_{avg} \cos \alpha$

Find the for all traverse leg: $(\Delta E_{12}, \Delta N_{12})$, $(\Delta E_{23}, \Delta N_{23})$, $(\Delta E_{34}, \Delta N_{34})$,....

- For Departure error $(\delta \Delta E) = \sum \Delta E$
- For Latitude error $(\delta \Delta N) = \sum \Delta N$
- Total closing error $\delta = \sqrt{(\Sigma \Delta E)^2 + (\Sigma \Delta N)^2}$
- δ allowable = 0.0009 (ΣL) + 0.2

- Dept. correction for traverse leg = Leg length * Total Dept. error
- Lat. correction for traverse leg = $-\frac{\text{Leg length}}{\text{Sum of length}} * \text{Total Lat. error}$ For example, ΔE_{12} correction = $-\frac{\text{L12 avg}}{\Sigma L} * (\delta \Delta E)$

$$\Delta N_{12} \text{ correction} = - \frac{L12 \text{ avg}}{\sum L} * (\delta \Delta N)$$

Then find corrected coordinates

For example, ΔE_{12} corrected= ΔE_{12} calculated+ ΔE_{12} correction ΔN_{12} corrected= ΔN_{12} calculated+ ΔN_{12} correction

> $E_2=E_1+\Delta E_{12}$ corrected $N_2=N_1+\Delta N_{12}$ corrected

Based on the corrected coordinates find the value of the azimuth of each traverse leg.

 $\alpha = \tan^{-1} \frac{\Delta E \ corrected}{\Delta N \ corrected} + c$

$$C=360$$

$$IV$$

$$\Delta E - \& \Delta N + \qquad \Delta E + \& \Delta N + \qquad E$$

$$\Delta E - \& \Delta N - \qquad \Delta E + \& \Delta N - \qquad E$$

$$III$$

$$C=180$$

$$S$$

Elevation of traverse point

 $H_2 = H_1 + H_1 + VD_{12} - RH_2$

 $H_3 = H_2 + HI_2 + VD_{23} - RH_3$

Find the calculated elevation for all points then correct them.

4

Birzeit University Faculty of Engineering and Technology Civil Engineering Department SURVEYING Lab ENCE316

Experiment name: Mapping using Total station

Prepared by: Eng. Shuroq Jamal

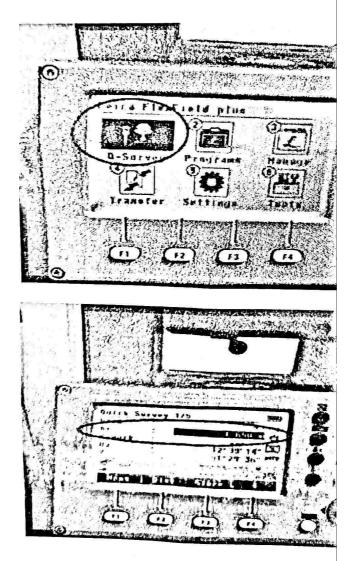
Note : The coordinate for traverse points near University theatre.

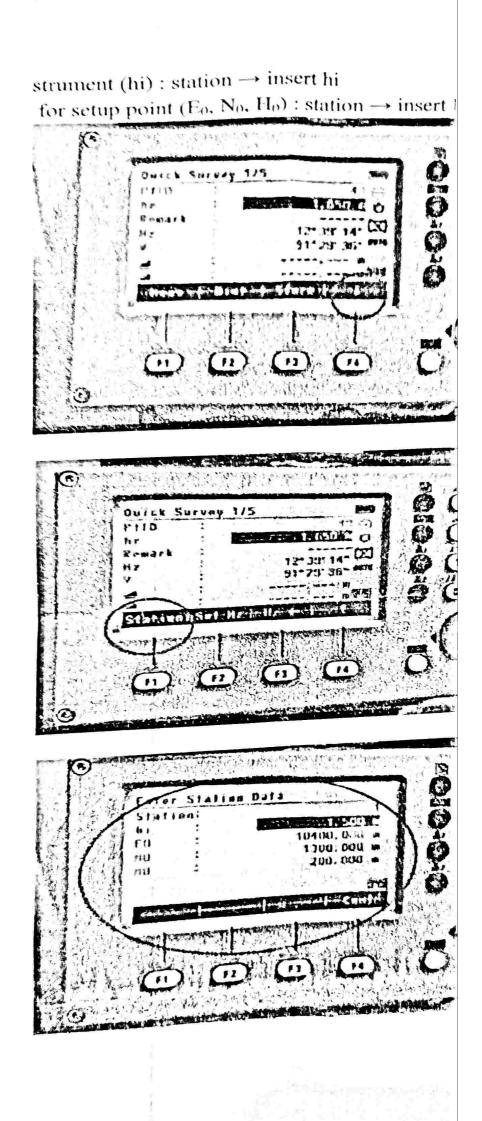
<u>Group A</u>

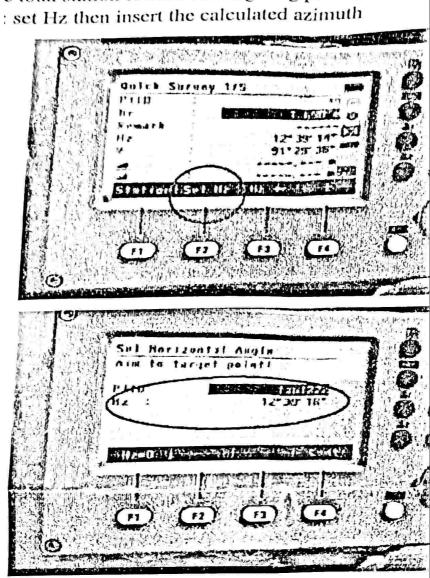
Point A4	Easting (m)	Northing (m)	Flower
A5	167572.206 167582.648	152150.081	Elevation (m) 781.059
Azimuth Ad As		152084.777	784.146

Azimuth A4-A5 =

<u>Group B</u>


$\frac{Point}{B4}$ $B5$ Azimuth B4 - B5 =	Easting (m) 167571.167 167580.866	Northing (m) 152151.186 152085.214	, Elev;	ation (m) 81.069
= B5 =			5	83.959


Group C


T	Easting (m)	No
	167569.739	15
	167566.707	15:

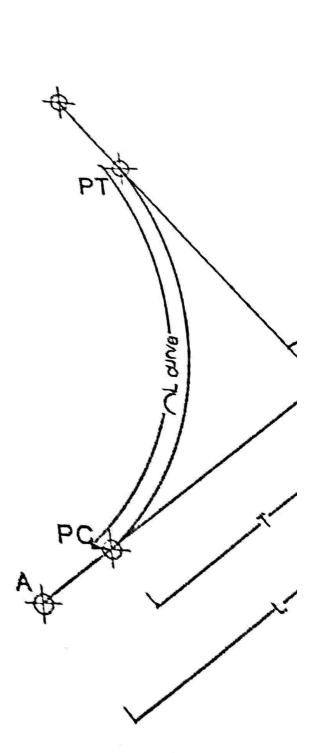
pping?

ert the following Data in the total static ector (hr) : from the main screen (Q-S

e total station toward the targeting point (Point w ; set Hz then insert the calculated azimuth

d check the coordinate of targeted point

<u>equirement</u> ata and sketch orking area (A3 Paper.) Birzeit University Faculty of Engineering and Technology Civil Engineering Department SURVEYING Lab ENCE316


Experiment name: Setting out simple circular curve Prepared by: Eng. Shuroq Jamal

P1 : Point of intersection PC: Point of curvature PT: Point of tangency Δ: Intersection angle or central angle R: Curve radius L: Length of tangent T: Tangent Lcurve: Curve length Lc: Chord Length For this experiment: R= 200 m

Δ=16°

$$C \leq \frac{R}{20}$$

 $L = \sqrt{\Delta E^2 + \Delta N^2}$ $T = R \tan \frac{\Delta}{2}$

Lcurve= $\frac{\Delta}{180} \pi R$

2

To find intermediate points:

Sta P1= Sta Pc + (C=10) then approximate Sta P1 to nearest 5 (Smaller number)

$$C1 = StaP1 - StaPc$$

Sta Pn= Sta PT - (C=10) then approximate Sta Pn to nearest 5 (Larger number)

$$C2 = StaPT - StaPn$$

 $n = \frac{L \, curve - C1 - C2}{C}$ Number of require 1

Number of required points = n+1

Calculate,
$$\alpha_{A-BM}$$

 $\delta i = \frac{\Delta Li}{2 \ Lcurve}$
 $\alpha = \alpha_{A-BM} - \delta i$
 $Lc = 2R \sin \delta i$

$$E_{PC} = E_A + (L-T) \sin \alpha_{A-BM}$$
$$N_{PC} = N_A + (L-T) \cos \alpha_{A-BM}$$

$$E_{P1} = E_{PC} + L_{c1} \sin \alpha_1$$
$$N_{P1} = N_{PC} + L_{c1} \cos \alpha_1$$

			5	ki.			
	Point	Station	0; somer tsi	δί	α []	c E	
0	Pc P ₁ P ₂	$\frac{\text{StaPc}}{\text{StaPc} + \text{C1}}$ $\frac{\text{StaP}_1 + \text{C}}{\text{StaP}_1 + \text{C}}$	 C1 C1+C				
a design of the second s	P ₃	$StaP_2 + C$	C1+C C1+2C	N			
	Pn	$StaP_{n-1} + C$	C1+nC		+ + +		
	РТ	StaPn + C2	C1+nC+C2 = Lcurve	$\frac{\Delta}{2}$			

ΔE/ΔN -0.44524 α B-BM 335.9995

	a B-BM	335.9995		1.		\cap		
			the	\checkmark		×//	/	
R	point.	station	STATUS IN SUCCESSION	δI	A STATE OF LAND	The states		
200	Рс	28.62492	***	***	***	***	167264.7189	151929.6551
200	P1	35	6.375078	0.913626.	335.086	6,378	167262.0321	151935.4396
200	P2	45	16.37508	2.346747	333.653	16.379	167257.4499	151944.3324
200	P3	55	26.37508	3.779868	332.22	26.369	167252.4286	151952.9851
200	P4	65	36.37508	5.212989	330.786	36.343	167246.981	151961.3758
200	P5	75	46.37508	6.64611	329.353	46.295	167241.1206	151969.4836
200	PT	84.44714	55.82222	8	327.999	55.669	167235.2183	151976.865

Q

PC 1 4 CM

16.39 26.386 36,327 STUDENTS-HUB.com 46.315

elen el	an a		given inform	nations:	and the second	1. In a report
R	200		В	PI		
Δ	16	E	167276.362	167253.286	ΔE	-23.
C< R/20	10	N	151903.505	151955.333	ΔN	51.

				Calcula	tions:		a constant
L	56.7331	m			Sta Pc	28.6249	
T	28.1082	m			Sta PT	84.4471	
L curve	55.8222	m					
Sta p1	38.6249	m	35				
C1	6.37508	m					
Sta P last	74.4471	m	75				
C2	9.44714	m					
n	4						
#of points	5		5	points			

°c - 28.64 4

28.6249

PZ

23:10.82