
+ 
Chapter 11
Instruction Set Architecture 

Addressing Modes and Formats

1

WEEK5

Uploaded By: anonymousSTUDENTS-HUB.com



+
Types of Operand

◼Addresses

◼Numbers

◼ Integer/floating point

◼Characters

◼ ASCII etc.

◼ Logical Data

◼ Bits or flags

2

Uploaded By: anonymousSTUDENTS-HUB.com



+
Memory Locations and Operations

◼ The (main) memory can be modeled as an array of millions 

of adjacent cells, each capable of storing a binary digit (bit), 

having value of 1 or 0.

◼ These cells are organized in the form of groups of fixed 

number, say n, of cells that can be dealt with as an atomic 

entity. An entity consisting of 8-bit is called a byte.

◼ The entity consisting of n-bit that can be stored and retrieved 

in and out of the memory using one basic memory operation 

is called a word.

3

Uploaded By: anonymousSTUDENTS-HUB.com



+
Memory Locations and Operations

◼ In order to be able to move a word in and out of the memory, 

a distinct address has to be assigned to each word.

◼ This address will be used to determine the location in the 

memory in which a given word is to be stored. This is called a 

memory write operation.

◼ Similarly, the address will be used to determine the memory 

location from which a word is to be retrieved from the 

memory. This is called a memory read operation.

4

Uploaded By: anonymousSTUDENTS-HUB.com



+
Registers and Operations

◼ CPU must have some working space (temporary storage) Called 
registers

◼ Number and function vary between processor designs

◼ Top level of memory hierarchy

◼ User Visible Registers

◼ Data register

◼ Address register

◼ In order to be able to move a word in and out of the Register, a 
distinct address or register number has to be assigned.

◼ This address will be used to determine the specific register in 
which a given word is to be stored or read.

5

Uploaded By: anonymousSTUDENTS-HUB.com



Addressing Modes

Immediate

Direct

Indirect

Register

Register indirect

Displacement (Indexed)

Stack

6

Uploaded By: anonymousSTUDENTS-HUB.com



+
Immediate Addressing

◼ Operand is part of instruction

◼ Operand = address field

◼ e.g. ADD 5

◼ Add 5 to contents of accumulator

◼ 5 is operand

◼ No memory reference to fetch data

◼ Fast and simple form of addressing

◼ Limited range

◼ The use of immediate addressing leads to poor programming practice. 
This is because a change in the value of an operand requires a change 
in every instruction that uses the immediate value of such operand.

7

Uploaded By: anonymousSTUDENTS-HUB.com



+
Direct Addressing

◼ Address field contains address of operand

◼ Effective address (EA) = address field (A)

◼ e.g. ADD A

◼ Add contents of cell A to accumulator

◼ Look in memory at address A for operand

◼ Single memory reference to access data

◼ No additional calculations to work out effective address

◼ Limited address space

8

Uploaded By: anonymousSTUDENTS-HUB.com



+
Direct Addressing Diagram

9

Uploaded By: anonymousSTUDENTS-HUB.com



+
Indirect Addressing 

◼ Memory cell pointed to by address field contains the address 

of (pointer to) the operand

◼ EA = (A)

◼ Look in A, find address (A) and look there for operand

◼ e.g. ADD (A)

◼ Add contents of cell pointed to by contents of A to accumulator

10

Uploaded By: anonymousSTUDENTS-HUB.com



+
Indirect Addressing

◼ Large address space

◼ 2n where n = word length

◼ May be nested, multilevel, cascaded

◼ e.g. EA = (((A)))

◼ Instruction execution requires two memory references to 

fetch the operand

◼ One to get its address and a second to get its value

11

Uploaded By: anonymousSTUDENTS-HUB.com



+
Indirect Addressing Diagram

12

Uploaded By: anonymousSTUDENTS-HUB.com



+
Register Addressing 

◼ Operand is held in register named in address field

◼ EA = R

◼ Limited number of registers

◼ Very small address field needed

◼ Shorter instructions

◼ Faster instruction fetch

13

Uploaded By: anonymousSTUDENTS-HUB.com



+
Register Addressing 

◼ No memory access

◼ Very fast execution

◼ Very limited address space

◼ Multiple registers helps performance

◼ Requires good assembly programming or compiler writing

◼ N.B. C programming

◼ register int a;

◼ c.f. Direct addressing

14

Uploaded By: anonymousSTUDENTS-HUB.com



+
Register Addressing Diagram

15

Uploaded By: anonymousSTUDENTS-HUB.com



+
Register Indirect Addressing

◼ C.f. indirect addressing

◼ EA = (R)

◼ Operand is in memory cell pointed to by contents of register 

R

◼ Large address space (2n)

◼ One fewer memory access than indirect addressing

16

Uploaded By: anonymousSTUDENTS-HUB.com



+
Register Indirect Addressing 

Diagram

17

Uploaded By: anonymousSTUDENTS-HUB.com



+
Displacement Addressing

◼ Combines the capabilities of direct addressing and register indirect 

addressing

◼ EA = A + (R); address field hold two values

◼ A = base value

◼ R = register that holds displacement

◼ or vice versa

◼ Requires that the instruction have two address fields, at least one of which is 

explicit

◼ The value contained in one address field (value = A) is used directly

◼ The other address field refers to a register whose contents are added to A to produce 

the effective address

◼ Most common uses:

◼ Relative addressing

◼ Base-register addressing

◼ Indexing 

18

Uploaded By: anonymousSTUDENTS-HUB.com



+
Displacement Addressing Diagram

19

Uploaded By: anonymousSTUDENTS-HUB.com



Relative Addressing

The implicitly referenced register is the program counter (PC)

EA = A + (PC)

• The next instruction address is added to the address field to produce the EA

• Typically the address field is treated as a twos complement number for this 
operation

• Thus the effective address is a displacement relative to the address of the 
instruction

Exploits the concept of locality

Saves address bits in the instruction if most memory references 
are relatively near to the instruction being executed

20

Uploaded By: anonymousSTUDENTS-HUB.com



+
Base-Register Addressing

◼ Effective address of the operand is obtained by adding the 

content of base register with the address part of the 

instruction.

◼ EA= Content of Base Register + Address part of the 

instruction

21

Uploaded By: anonymousSTUDENTS-HUB.com



Indexing

◼ The address field references a main memory address and the referenced 
register contains a positive displacement from that address

◼ The method of calculating the EA is the same as for base-register addressing

◼ An important use is to provide an efficient mechanism for performing 
iterative operations

◼ Autoindexing

◼ Automatically increment or decrement the index register after each reference to it

◼ EA = A + (R)

◼ (R)  (R) + 1

◼ Postindexing

◼ Indexing is performed after the indirection

◼ EA = (A) + (R)

◼ Preindexing

◼ Indexing is performed before the indirection

◼ EA = (A + (R))

22

•LD W0, [X1,4]

•ADD X1,X1,4

•LD W0, [X1]

•LD W0, [X1], 4

• LD W0, [X1]

• ADD X1,X1,4

Uploaded By: anonymousSTUDENTS-HUB.com



+
Stack Addressing

◼ A stack is a linear array of locations
◼ Sometimes referred to as a pushdown list or last-in-first-out queue

◼ A stack is a reserved block of locations
◼ Items are appended to the top of the stack so that the block is 

partially filled

◼ Associated with the stack is a pointer whose value is the 
address of the top of the stack
◼ The stack pointer is maintained in a register

◼ Thus references to stack locations in memory are in fact register 
indirect addresses

◼ ADD:

◼ This instruction simply pops out symbols contained at the 
top of the stack.

◼ The addition of those operands is performed.

◼ The result so obtained after addition is pushed again at the 
top of the stack.

23

Uploaded By: anonymousSTUDENTS-HUB.com



+
Example

24

a. 20

b. 40

c. 60

d. 30

e. 50

f. 70 

Uploaded By: anonymousSTUDENTS-HUB.com



+
Example

25

a) 14 (The address field).

b) Memory location 14.

c) The memory location whose address is in memory 

location 14.

d) Register 14.

e) The memory location whose address is in register 14. 

Uploaded By: anonymousSTUDENTS-HUB.com



+
Example

26

a) X3=X2

b) X3=(X2)

c) X3=X1+X2+1

d) X3=X2+X4

Uploaded By: anonymousSTUDENTS-HUB.com



+
Example

27

a) 500 1100 

b) 201 500 

c) 1100 1700

d) 201+1+500 =702 1302 

e) 500+100=600 1200 

f) R1 400 

g) 400 1000 

h) 400 1000 >> R1 = 400+1Uploaded By: anonymousSTUDENTS-HUB.com



+

Addressing Modes Applications

Immediate • To initialize registers to a constant value

Direct and Register 

Direct 

• To access static data

• To implement variables

Indirect and Register 

Indirect 

• To implement pointers because pointers are memory locations that 

store the address of another variable

• To pass array as a parameter because array name is the base 

address and pointer is needed to point the address

Relative

• For program relocation at run time i.e. for position independent 

code

• To change the normal sequence of execution of instructions

• For branch type instructions since it directly updates the program 

counter

Index • For array implementation or array addressing

Base Register • For handling recursive procedures

Auto-increment 

And Auto-decrement 

• For implementing loops

• For stepping through arrays in a loop

• For implementing a stack as push and pop

28

Uploaded By: anonymousSTUDENTS-HUB.com



+
Pentium Addressing Modes

◼ Virtual or effective address is offset into segment

◼ Starting address plus offset gives linear address

◼ This goes through page translation if paging enabled

◼ 12 addressing modes available

◼ Immediate

◼ Register operand

◼ Displacement

◼ Base

◼ Base with displacement

◼ Scaled index with displacement

◼ Base with index and displacement

◼ Base scaled index with displacement

◼ Relative

29

Uploaded By: anonymousSTUDENTS-HUB.com


	Slide 1: Chapter 11
	Slide 2: Types of Operand
	Slide 3: Memory Locations and Operations
	Slide 4: Memory Locations and Operations
	Slide 5: Registers and Operations
	Slide 6: Addressing Modes
	Slide 7: Immediate Addressing
	Slide 8: Direct Addressing
	Slide 9: Direct Addressing Diagram
	Slide 10: Indirect Addressing 
	Slide 11: Indirect Addressing
	Slide 12: Indirect Addressing Diagram
	Slide 13: Register Addressing 
	Slide 14: Register Addressing 
	Slide 15: Register Addressing Diagram
	Slide 16: Register Indirect Addressing
	Slide 17: Register Indirect Addressing Diagram
	Slide 18: Displacement Addressing
	Slide 19: Displacement Addressing Diagram
	Slide 20: Relative Addressing
	Slide 21: Base-Register Addressing
	Slide 22: Indexing
	Slide 23: Stack Addressing
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Example
	Slide 28
	Slide 29: Pentium Addressing Modes

