Channel Capacity and Channel Models [<v<*
m In this module, we address and try to find an answer to the questions

Q1: What happens to information when transmitted over a channel?
Q2: What is the maximum rate at which information can be transmitted.
m We will consider two channel models,
¢ The Discrete Memory-less channel (in this module)

x, =0

Discrete Input Discrete Output

»OW =1

¢ The continuous Gaussian channel (in the next module).

x, =1

AWGN n(t)

input ' output
e ‘ channel ) el

i y(t) Continuous Output

Continuous Input  X(t)
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Discrete Memoryless Channel (DMC)

m Definition of DMC

+ Channel with input X (of size J) and output Y (of size K)
which is a noisy version of X. In general, J does not
necessarily equal K.

¢ Discrete when both X and Y are alphabets of finite sizes.

+ Memoryless when present values of X affect only present
values of Y. No dependency on past values of X.

mIf X;,X,,...,X,is asequence of input symbolsand ¥Y,¥Y,,....,Y, is
the corresponding sequence of output symbols, then

P(YL Yo Y le,xz,---,xn)=1_£[p(yi X )
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Model of a Discrete Channel

Channel is characterized by a set of transition probabilities.

o 1 | 1

Channel X: Discrete . Line Modu- :

™™ coder 1’| coder lation |,

X Y z € Ay ! |
input alphabet :

: |

I a 1

_ P(Y=0|X=0) _ 1 discrete Physical |1
P(X—O) > Y—O | channel channel | !
I :

I 1

I I

y = Aont : :

Channel | outputalphabet | [T ;hq Demodu | 1

P (X: 1) Y: 1 “ 77 decoder | | decoder -lation |}

Y: Discrete '=ececcccccccccaad

P(Y= K-1|X=1) P(Y=1[X=J-1)

P(X=1],Y=k)=P(X=])P(Y =k|X=])

P(Y=0[|X=J-1) X=)-1
P(Y=K-1|X=0) P(Y =)= Z PIX=J)P(Y =k[X=1)
X=0
P(X=J-1) P(Y= K-1|X=3-1) Y=K-1 - X:ZJTP(X =j,Y =k)
X=0
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Discrete Memoryless Channel

= Given the marginal pdf of X, P(X = x;) , and the
channel transition probabilities P(yy /x;)

¢ The joint prob. distribution of X and Y
p(X;, ¥i) = P(X =X, Y =y, )= p(X =x;)p(Y =y, [ X =X;)
= p(x;)p(y, /X))

¢ The marginal pdf of the output Y,
p(y )=pl =v,) Zp =X;)pl =y, [X =x))

J-1
=) px;)ply, /x;), for k=01.,K-1
0

j:
4
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Example: Discrete Memoryless Channel

Consider a DMC with two equally probable input symbols (0, 1) and three
output symbols (0O, 1, 2). The transition probabilities are as shown in the
figure. Find the probability distribution of the channel output.

p(X;, Yi) = P(X;) Py, / X))

X 08 Y

P(X=0)=0.5 "Y=0 2

(X=0) 0(y,) =Y pX =x)p(Y =¥, / X =X
0.0 0.15 i=0

P(X=1)=0.5

P(Y =0)=0.5*0.8+0.5*%0.05=0.425

P(Y =1)=0.5*%0.15+0.5*0.15=0.15

P(Y =2)=0.5*0.05+0.5*0.8=0.425

Probabilities sumto 1
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Binary Symmetric Channel (BSC)

m For the binary symmetric channel, P(y,/X;)=P(y,/Xy) = p.

“(s1(t) — s5())2dt
PZ=Q<JIO(51 Zsz : >=p

1-R AOR/E

>O Y, =1

P(Y=0)=P(X=0)1-p)+P(X=1p
P(Y=1)=P(X=0)p+P(X=1)(1-p)

6
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Example: Binary Symmetric Channel (BSC)
LetP(X=0)=0.3andp =0.1. Find
c a.P(Y=0)
+ b.P(Y=0,1/X=0,0)
« aaP(Y=0)=0.3%x0.9+0.7+0.1=0.34
« bh.P(Y=0,1X=00=P¥Y =0/X=0PY¥ =1|X=0) =
(1—-p)p=0.9%0.1 =0.09 (using the memoryless property)

1-R 5O Y, =0

Xy =

>O Y, =1

P(Y=0)=P(X=0)1-p)+P(X=1p
P(Y=1)=P(X=0)p+P(X=1)(1-p)

I
[T

X

7
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Joint Entropy and Mutual Information s

Review. Consider a source S with the following probability
distribution:

symbol| 53| S, | 7 | Sy
probability| P4 P2 [ Pum

m The entropy H of S is defined as:
— \'M -
mH(S) = )i—=1 —p;log, p; (bit/symbol)
m The entropy H can be interpreted as
¢+ The average amount of information in the source

¢ It is a measure of uncertainty in the source

¢ The minimum number of bits/symbol that is needed to
represent the source (the source coding theorem)
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The Joint Entropy

- Let X = {xq, X5, ..., x;} be the input to a channel and let
Y = {y{,¥,, ..., Yk} be the channel output .

- Let P(X = x;,Y = yy} be the joint pdf of Xand Y.

- The joint occurrence of (x;, yx) can be considered as a
source in a two-dimensional space.

- The joint entropy of X and Y, represents the uncertainty
in the joint event (X,Y) and is defined as:

H(X,Y)=E{log(l/P(X,Y))}

- ZZ P(X;, Yi) 109, P(x;, ¥, )
j=1 k=1
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Joint and the Conditional Entropies
An alternative representation of the joint entropy can be found as:

J-1K-1
H(X,Y)==> > P(x;,y,)log, P(X;,y,)
J=1 k=1
J-1K-1
== 2 P(x)P(y I x;)log, P(x,)P(y, / X;)
x=1 k=1
== P(x,)> Py, / x,)1og,P(x;) = > P(x,, ) 10g,P(y, | X;)
X Y XY
=H(X)+H(Y | X) The uncertainty in the joint event

(X,Y) is the sum of the uncertainty

H (X ,Y) — | (X) +H (Y | X) in X plus the remaining uncertainty
in Y after X is known.
H (X ’Y) =H (Y) +H (X |Y) The uncertainty in the joint event

When X and Y are (X,Y) is the sum of the uncertainties
independent (prove) in X and Y when they are

independent
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Joint and Conditional Entropies: Example

Consider two random variables X and Y with the joint pdf as shown in
the table below. Find H(X, Y), H(X), H(Y), H(Y/X) and H(X/Y).
P(Y =y) 1/2 1/4 1/8 1/8

H(X,Y) =
P(X=x) Y o0 1 2 3 i
X :—;;P(Xj,yk)mgz P(X;,Y,)
1/4 0 1/8 1/16 1/32 1/32
1/4 1 1/16 1/8 1/32 1/32 H($) = L1241 ~pilogz b,
1/4 2 1/16 1/16 1/16 1/16
1/4 3 1/4 0 0 0

H(X,Y) = 2 + (%) log,(8) + 6 (1—16)log2(16)+(1/4) Lo g, (4)+4%(1/32)

log;(32) = (3) +(3) + (5) + (3) = 3.375bits

H(Y) = <%> log,(2) + <%> log,(4) + 2 * (%) log,(8) = 1.75 bits
1 _ Note that
HX) =4 « <Z> log,(4) = 2 bits H(X,Y) > HX)

_ _ _ H(X,Y) > H(Y)
H(X/Y) =H(X,Y) —H(Y)=3.375—-1.75=1.625
MEN}S:HM{XM‘X) - H(X) =3.375—-2=1.375 Upllcgla(d)éd%y ﬁolr-lla(mxrgaal_AIv-{aW(? I4



Relations among Joint and Conditional Entropies

m Lemma: H(X,Y) < H(X) + H(Y), (Proof will be given at the end of

the video)

m If P(X,Y) = P(X)P(Y), i.e., when X and Y are independent, then

¢ H(X,Y) = H(X) + H(Y) (the joint entropy is the sum of the
individual entropies).

o H(X|Y) = H(X) and H(Y|X) = H(Y)

HX, Y)

STUDENTS-HUB.com

H(Y)

Observe that:

H(X|Y) < H(X) and

H(Y|X) < H(Y).

Equality holds when X and Y are
Independent
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Mutual Information

Given two r.v. , X and Y with marginal distributions P(X) and
P(Y), the mutual information between X and Y is the
relative entropy between the joint distribution P(X,Y) and
the product distribution P(X)P(Y). It is a measure of the
amount of information one r.v. contains about another r.v.

P(x,Y)
1(X,Y)= ) P(xy)log
va“ “P(X)P(y)

=H(X)-H(X]Y) H(X, Y)

=H({Y)-H{]X)
H(X): Uncertainty about X H(Y)
H(X/Y):Remaining uncertainty
about X after Y is being observed
The difference is the amount of R
information conveyed by Y (the I(X; Y) = I(Y; X)

reduction in uncertainty)
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Mutual Information

- Mutual information is the amount of uncertainty about
the channel input X resolved on observing the channel
output.

. For a good channel, one would expect I(X;Y) to be large,
i.e., on observing Y, we are able to resolve X with a high
degree of reliability.

1-p

=10 1-p 20 3 =1
1(X,Y)=H(X)-H(X]Y)
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Joint and Conditional Entropies: Example
Consider two random variables X and Y with the joint pdf as shown in
the table below. Find I(X;Y)

P(Y =) 1/2 1/4 1/8 1/8
P(X=x) Y 0 1 2 3
X
1/4 0 1/8 1/16 1/32 1/32
1/4 1 1/16 1/8 1/32 1/32
1/4 2 1/16 1/16 1/16 1/16
1/4 3 1/4 0 0 0

For this example, we obtained earlier that:

H(X,Y) = 3.375bits,H(Y) = 1.75 bit H(X) = 2 bits

Note that I(X;Y) = H(X) — H(X|Y)
But, H(X|Y) = H(X,Y) — H(Y), then
I(X;Y)=HX)+HY)-H(X,Y),
I(X;Y)=2+1.75—-3.375 = 0.375
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Entropy: A Proof That H(X) > H(X|Y)
H(X) = E{log(1/ P(X))} = Z P(x,y)log,(1/P(x))
H(X]Y)=E{log(l/P(X[Y))= ZP(X y)log,(d/ P(x]y))

H(X)-H(X]Y)=
P(x) ”’

2 POevIo 5T / N
P(x) “
& P P(x] Y)_l) %le |
> -2 P(x ) () P)(/y) -y 7

—Z P(x)P(y) + Z P(x,y)=0
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Mutual Information Lecture 15

Given two r.v. , X and Y with marginal distributions
P(X) and P(Y), the mutual information between
X and Y is the relative entropy between the joint
distribution P(X,Y) and the product distribution
P(X)P(Y). It is a measure of the amount of
information one r.v. conveys about another r.v.

H(X, Y)

(X.¥)= 3P y)log, o .
XY H(Y)
=HOO-HXY)

=H()-H(Y|X) -\

10X; Y) = I(Y; X)
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Mutual Information

- Mutual information is the amount of uncertainty about the
channel input X resolved upon observing the channel output Y.

- For a reliable channel, one would like to maximize I(X;Y) on
observing Y.

Oy, =0
Need to O v =1
maximize I1(X;Y) / 1(X;Y)=H(X) = H(X/Y)
H(X): H(X/Y):
uncertainty about X aREL“uT’)‘(i';ft::CE"taintY
observing Y
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Channel Capacity

s For a DMC with input X, output Y, the mutual information between the
channel input X and its output Y is

1(X3Y) = p(x;, y,)log, [p(yk > 1p(><,-)p(yk | x;)log,[ P, 1))
() | p(y,)

]

=~

Note that: I(X;Y) depends on
a. Input probability distribution p(x;)
b. Transition probabilities p(yk|x;). These probabilities depend on the

amount of noise present in the channel (usually, not under the
control of the user)

Hence, to maximize the mutual information, one would carry the
maximization over the input probability distribution.

- The channel capacity is defined as
C = max,xI(X;Y) bits/symbol

- Maximization over all input probability distributions.

- C: Channel Capacity which denotes the maximum rate at which 3
sTuntormmatieeean be transmitted reliably over the.chraBEMohammad Awawdeh



Example: Capacity of the binary symmetric channel
m Find the capacity of the BSC with cross-over probability p

m To find the capacity, assume P(1)=u, P(0)=1-u. Need to find u that
maximizes I(X; Y). The capacity is the maximum of I(X; Y).

Lo PCY, X))
1(X:Y)= IP(Y | x;)log, j
(X5Y) jZ;kZ;p(X,) (Y, [ x;)1og,[ o(y,)

. 1-p
1(X:Y)=(Q-u)1- p)l
(V) = @-w-plog =

P _
+(1—-u)plog x, =0 1-p .0y, =0
pL-u)+@1-pu 1
5 -u
+uplog
(1-p)d-u)+ pu u
1-p =10 1-p > O =1

1-p)l
+(u)(1- p)log -0+ (- p)u

P =0)=Q0-u)d-p)-+up
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Example: Capacity of the binary symmetric channel

m To obtain the Channel Capacity (this is very tedious)
¢ differentiate I(X; Y) w.r.t. u.
+ Set the derivative to zero .

¢ Solve for u. The maximum is attained when u=1/2, i.e., for
equally probable input symbols.

¢ Substitute u=1/2 into I(X;Y). The result is the channel capacity
C=max I(X;Y)=1(X;Y) |p(xo):O.5
..C=1+plog, p+(@-p)log,(d— p)=1-h(p)

where h(.) is the binary entropy function introduced earlier.
h(x) =—-xlog, x—(1-x)log, (1 - X)

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh



Example: Capacity of the binary symmetric channel
C =1+ plog, p+(1-p)log,(1-p)

C=1- h(p) m Channel Capacity
10
9
GY)=H(X) —H(X/Y)  © 3 08
g g 0.6
2S04
3 O
O é” 0.2
Remarks: - ' | |
<t 0 02 04 06 08 10

Probability of error,
C < H(X); the source entropy o P

2.

3. Cis max when channel makes no errors, p=0 (noiseless channel).

1.  When p=1 bits are inverted but information is perfect if invert
them back!

4. Channel conveys no information when p=0.5 (a very noisy
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Example: Capacity of a Noiseless Channel

m The noiseless channel is deterministic. If you know Y,
certainly, you know X (no remaining uncertainty about X
after observing Y).

m This is a special case of the BSC when p=0.
m For this channel, Y = X, and therefore, H(X/Y)=0

1(X,Y)=HX)-H(X]Y) 0 > 0
= H (X) 1 . 1

H(X) is maximized when P(X=1)=P(X=0)=1/2. This

implies that the capacity of the channel is

C = 1 bit/transmission
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Exercise: Capacity of the Erasure channel

m The input consists of the symbols (0,1) and the output consists
of the symbols 0, 1, and an erased condition (e)

1(X,Y)=H(Y)-H(Y | X) e

1-u 0 > ()
=H(Y)-h(a) 2
H(YY)=1-a)H(X)+h(x) A P ¥
By substitution, we get u 1= — 1

(XY )=(1-a)H(x) hx)=-xlog,x—(1-x)log,(1-x)

This is maximized when P(X=0)=P(X=1)=1/2. In which case, H(X)
=1, when the symbols have equal probabilities. The capacity
becomes

C =(1- ) bit/transmission
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Shannon’s Second Theorem (nhoisy coding theorem)

Consider a DMS with alphabet X and entropy H(X) that produces symbols
at a rate of one symbol every T;i,e rate R, symbols/sec . The output is
transmitted over a DMC that has a capacity C bits/ transmission and can be

used once every T, ,i.e.rate R, times per sec. Then,

a. if H(X) R, <CR_, there exists a coding scheme capable of
achieving an arbitrary low probability of error .

It IS not possible to transmit with

b. iIf H(X) R;>CR, arbitrary small error

Source Rate= Rs=1/Ts symbols/sec. Each symbol carries H bits of information.
Hence, Source information rate=HRs bits of information/ sec.

Channel rate= Rc =1/Tc transmissions/sec. Information carried/transmission is the
channel capacity C in bits/transmission. Hence, channel conveys RC bits/sec

One source bit (Ts) | One source bit (Ts) | One source bit (Ts) | One source bit (Ts) k

One One One One One One One
channel channel channel channel channel channel channel n 9

STUISI‘EKHS—HUQ@O“C) bit (Tc) bit (Tc) bit (Tc) B&cﬂﬁéd By: msfgmmad Awawdeh



Channel Coding Theorem for DMC
Example: Consider a BSC with p(x,) = 0.5. Here, H(X)=1.
Solution: Since H(X)=1, the condition for reliable communication:
R, < CR, or S<c

c %, =0 1-p Oy, =0
Let us define the code rate as:
RS TC
—_— T — _ 1- P—
r RC TS xl—lO D Ow=1

for r < C , there exists a code (with code rate less than or
equal to C) capable of achieving an arbitrary low
probability of error.

One source bit (Ts) | One source bit (Ts) | One source bit (Ts) | One source bit (Ts) | k

One One One One One One One
channel channel channel channel channel channel channel n
bit (Tc) bit (Tc) bit (Tc) bit (Tc) bit (Tc) bit (Tc) bit (Tc)

10
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Channel Coding Theorem for DMC

m Suppose r<C, where C is the capacity of a DMC, then for any >0,
there exists a code of rate r and length n such that the
probability of block error decoding < € when the code is used on
the channel.

m The theorem emphasizes the existence of a code, but does not
specify the code itself.

m Suppose that we have k independent message bits and we add
(n-k) redundant bits derived from the k bits. The result is a
codeword of length n. During transmission, there will be errors
in the n bits. But the redundant (n-k) bits will serve to reduce
the block error probability so we can recover the k message bits
with an arbitrarily small probability of error. Later on in the
course, we will consider these encoding schemes.

m Theorem will not be proved here.
STUDENTS-HUB.com Uploaded By: Mohammad Awawdéﬂ-



Capacity of the AWGN Continuous Channel
(Modulated waveform channels)  [eaets

AWGN (Additive White Gaussian Noise) Channel:

| ! ;
Channel | (0, 1) | Modu- ! | AWGN) wit)
™7 coder v A ! lation | 'n:(f} - channel OE";’UE
H i 1 _ yit
;:/ I Continuous Input Continuous Output
4 I
Channel input: Waveform \ | Physical channel | | .
i | | 2t
(Continuous RV) : " w(t) : 5 .. PSD
Channel output: Waveform | | . f
(Continuous RV) \:\) | v
I 1 -0
I J I 9 ferreeneenennnnnaee ACF
Channel | Y € Aout Demodu ! I‘ . T
77 decoder ; -lation : |
(0,1) | tcoocooeeeo - - - !
% =0 e On= v, Demodulator limits bandwidth.
Discrete Input piscrete Output Ty = 5 The noise variance at the N,

sampling times computes to —.
y=10 o n=1 3
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Continuous Sources: Differential Entropy

m For a source X with a discrete alphabet, we defined entropy
as

» HX) = — Y350 Pxlogy(Py)

m For a source X with a continuous distribution, we define the
differential entropy as

sh(X) =— [ fx(®)log,(fx(x))dx

m Here, fx(x) is the probability density function of the
random variable X.

m Note that small h is used to denote the differential entropy.
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Example: Differential Entropy of a Uniform pdf

m Consider a source X with a uniform distribution as shown below
V1/(b—a) , a< x< b
fx(x) = { 0 , otherwise

m Let A= (b — a). The differential entropy is
« h(X) = = [, fx()log; (fx () dx = = [, (Dlogs (3) dx

" h(X) = ~(Ploga (3) A= loga(A)

m When A< 1, h(X) is negative. Hence, unlike entropy, differential
entropy can be negative. 0

1/(b-a)

X

a b

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel3



Differential Entropy of the Gaussian Source

m Consider a source X with a Gaussian distribution as shown below
—(x — ux)* Note that:

1 >
fx(x) = e 2% In(ab) = In(a) + In(b)
V2 moy In(a/b) = In(a) — In(b)
In(1/b) = —In(b)
t L) log,(u) = In(u) /In(2)
ziqi _______ . Also, log, (e) = In(e) /In(2)
| Hence ln( ) = log,(e)
| \/% Therefore, log,(u) = log,(e) In(u)
i i i | ( ())__11 (2 2)_i( _ )2
/ n(fy(x)) = 5 In(2mo 2Gz(xu

2 4

Px “O0x Wy, MHxTO0x

lng(fX(x)) = —log, (9)(— In(2mo?) + ((x — u)? )
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Differential Entropy of the Gaussian Source

m The differential entropy is

s h(X) = — [ fr()logz(fx(x))dx

n log,(fx(x)) = —logze{% In(2mo?) + 2%2 ((x — w?}

m h(X) = foo fX(x)logze{lln(Znaz)} +

- I5, fx(Dlogzets ((x — w2}

s h(X) = logze{— 1n<2n02>} [0 fx@dx; 7 fx()dx =1

» +logze s 50 ) ((x — wAdx; [ fx()((x — )?}dx=0?
s h(X) = Elogze{ln(ZHGZ)} + Elogze

m h(X) = %logz(Znaz) +%logze = h((X) = %logz(Zneaz)

m h(X) depends only on the variance. As o2 increases, h(X) increases
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Definitions: Entropy and Conditional Entropy
Integration replaces summation for the case of continuous distributions

Differential entropies:

s

h(X) = = [ fx(@)lom (x(@)dz h(Y) = - [ x(w)tog, () dy

— O

hxlY)= [ [ fxr()os, (ﬁ) o E‘E"E{“’g? (fxti-m})}

00 poC 1 . 1 _

Mutual information:

(i) I(X:;Y) = I(Y; X)

(i) I(X;Y) =0

(i) I(X:Y) = h(X) — A(X|Y) = h(Y) — h(Y|X)
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Theorem: Maximum Differential Entropy for Specified Variance

Optimization Problem:
Find p.d.f. for which h(x ) is maximum, subject to two constraints

i) j”fx Odx =1 , i) j“’ (x — 2)%f, (x)dx = o =const
where 4 is the mean, and & is the variance (measure of average power)

Solution: Based on calculus of variation & use of Lagrange multiplier

L= [ =3 (010g, f, 00+ 4 f () + 2, (x— 1)* f (X) Jx
A, and A, are the Lagrange multipliers. The desired form of f, (x) is

f (X)= ! exp(— (X /21)2 j Remark: For a discrete rv, a
V2ro 20 uniform distribution results
The corresponding maximum entropy '™ Maximum entropy. For a
continuous rv, the Gaussian
distribution yields the
highest differential entropy

7
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Capacity of the AWGN Continuous Channel

(Modulated waveform channel Lecture 17

Main Results from the previous video
1. For a source X with a continuous distribution, we defined the differential entropy as
h(X) = — 7 fx(®)logz(fx(x))dx;  fx(x) is the pdf of X.
2. If X is a Gaussian RV. X~N (u, 02) , then its differential entropy is given by:

1
h(X) = > log, (2mea?)
3. Optimization Problem:

The pdf for which h(x) Is maximum, subject to two constraints
) j“; f.(x)dx=1 , i) j_i(x —u)*f, (x)dx = o* = const

where 4 is the mean, and & is the variance (measure of average power)
IS the Gaussian density function

fL (X) == exp(—(x‘“)zj
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The AWGN Channel Continuous-Input Continuous-Output Channel

Let us consider the continuous channel with input X and output Y. Additive
white Gaussian noise N is added to X during transmission over the channel.
First, we consider the capacity when X, Y, N are random variables
(representing samples from the waveforms x(t), y(t), and n(t).

The time functions will be treated later

The noise N is a zero-mean R.V following the Gaussian distribution N(u, 07)
The channel input X is a zero-mean random variable with variance ¢

The objective is to find the capacity of this channel defined as:

C = Cle(x)I(X, Y)

AWGN' n(t) [N1, Nz, ... Ny

iInput . output
- channel - -
[Xl,Xz, sz] X(t) V(t) [Yl, Yz, Yzw]
Continuous Input Continuous Output
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Mutual Information for a Continuous Channel

The channel input X and Channel output Y are related by:
Y=X+N; Xand are statistically independent.
The mutual information [(X;Y) = h(Y) — h(Y|X)
Fora given X, Y = constant(xy) + N
But, N~N(0,0%), Hence, f(Y|X = xy)~N(xq,07%)
Earlier, we found that the differential entropy of normal distribution with
meanx,, and variance o
h(Y|X =xy) = h(N) = %log(Zneaﬁ,) = h(Y|X) = Ex{% log(2meoi)}
Therefore, h(Y|X) = %109(27'[80'1\2,)

Differential entropy in Y/X = Differential entropy in N(0, 6%)
1
I(X;Y) =h(Y)—h(N) = h(Y) — Elog(Znea,\Z,)
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Capacity of the Continuous Channel
Recall, Y =X+ N;
Also, [(X; Y) = h(Y) = h(Y|X)

I(X;Y) =h(Y)—h(N) =h(Y) — %log(Zneaﬁ,)

We observe that in order to maximize I(X; Y) we need h(Y) to be maximum,
and this happens when Y is Gaussian.
Y = X + N; is Gaussian when both X and N are Gaussian. But N is already
Gaussian, so X should be Gaussian.

* Hence, let X~N(0,02) = N(0, P,)

e SinceY=X+N, then E(Y) = E(X) + E(N),

e Var(Y) = Var(X) + Var(N), o¢ = 0f + 05 = h(Y) = ilog(Zﬂe(@? + o)
C = h(Y) - h(Y|X)= 2log(2me (o} + o7) — ~log(2mea})

2
Ox
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Capacity of the Continuous Channel
2
C = %log (1 + Z—’Z‘) in bits/channel use.

N
How to find the capacity in bits/sec?

Now let the bandwidth of the channel be W Hz. By virtue of the sampling theorem, a
band-limited signal is completely characterized by its Nyquist sampling rate of 2W
samples/sec.

Hence assume that we transmit 2W samples, X;, of x(t), to each sample a noise N; is
added to produce the output sample Y; = X; + N;;

* [Y,Yy, .. Yol =[X1, X5, ... Xow| +[Nq,No, ... Noy /| ; Samples taken over one second

* The maximum mutual information between each sample X; and Y; is
2

1 .
e C; =-log (1 + a—’z‘) bits/symbol.
2 oN
Therefore, the maximum mutual information between the vectors

[Xl,Xz, ...2X2w] and [Yl, Yz, Yzw]
C = %log (1 + Z—’z‘) bits/symbol X 2W symbols/sec

N.

C = Wlog (1 + a—’z‘) bits/se; This is known as the Shannon-Hartley Law. This is one of the

fundamenta result¥’in modern communication theory.
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Capacity of the Continuous Channel
2

 C = Wlog (1 + a—’z‘) bits/sec

Oy
* Channel capacity increases as the channel bandwidth increases.

* Channel capacity increases as the signal power to noise ratio increases.

* For a channel with bandwidth W and noise power spectral density Ny /2, the

noise power a,zv = WN,. This can be substituted into the channel capacity

formula to obtain:
2

. - Oy .
C = Wlog (1 oy ) bits/sec

0

* The theorem relates the channel bandwidth, the signal power and the noise
power in one formula.

* Sets a theoretical limit on the amount of data that can transmitted reliably
over a noisy channel with a given bandwidth.
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Capacity of the Continuous Channel

2

 C = Wlog (1 + Ga—’z‘) bits/sec
N
2

. — oy :
C = Wlog (1 + WNO) bits/sec

* The theorem sets a limit on the amount of data that can transmitted reliably
over a noisy channel with a given bandwidth.

* By employing sophisticated channel encoding algorithms, it is possible to
transmit data with arbitrarily small probability of error as long as the data
rate is below the channel capacity.

* If data is transmitted at a rate greater than C, then regardless of any
encoding scheme employed, there will be a definite probability of error.
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Example 1: An Extremely Noisy Channel

* Consider an extremely noisy channel in which the value of the signal-to-
noise ratio is almost zero. In other words, the noise is so strong that the

signal is faint. For this channel the capacity Cis calculated as
2

 C = Wlog (1 + G—’z‘) bits/sec

Oy

* C = Wlog (1 + 0) =0 bits/sec

* This means that the capacity of this channel is zero regardless of the
bandwidth. In other words, we cannot receive any useful data through this
noisy channel.
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Example 2: Capacity of the Telephone Line

* Here, we calculate the theoretical highest bit rate of a regular telephone line.
A telephone line normally has a bandwidth of 3000 Hz. The signal-to-noise
ratio is usually 35dB (3162)

* For this channel, the capacity is calculated as
2

 C = Wlog (1 + 0—’2‘) bits/sec

ON

 C =3000log (1 + 3162) = 34,860 bits/sec
* This means that the highest bit rate for a telephone line is 34,860 bps.

* |f we want to send data faster than this rate, we can either increase the
bandwidth of the line or improve the signal-to-noise ratio.
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