
31/05/2025

1

JSON WEB TOKENS (JWT)

AHMAD HAMO
19-5-2025

Introduction to JWT

• Definition: Compact, URL-safe way to transfer claims between
client and server

• Format: Encoded JSON objects containing claims

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

2

JWT – JSON Web Token
• Instead of repeatedly sending username and password, the server verifies

the user once and returns a token.
• From this point, the client sends the token in every API request instead of

credentials.
• This improves security, performance, and flexibility.

3 biggest advantages of JWT:
• Once the token is issued, your actual password stays out of the network,

much safer.
• You can control token expiry so sessions can auto expire, reducing risk.
• And finally, tokens can carry metadata like roles or permissions, making

authorization easier.

JSON Web Token Structure

JWT consists of three parts
separated by dots:

xxxx.yyyy.zzzz

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

3

JWT Structure
Three parts separated by dots:

1. Header - Contains token type and signature algorithm

(e.g., HS256, RSA)

- Example: {"alg": "HS256", "typ": "JWT"}

2. Payload
– Contains claims (entity and other data)

– Three claim types:
• Registered (predefined)

• Public (custom)

• Private (shared between parties)

– Example: {"sub": "1234567890", "name": "John Doe", "admin":
true}

JWT Structure
Three parts separated by dots:

3. Signature
– Validates message integrity

– Created using: HMACSHA256(base64UrlEncode(header) +
"." + base64UrlEncode(payload), secret)

– The secret is a shared key(known only to the server).

– The HMAC-SHA256 algorithm hashes the concatenated string using the
secret.

→JWTs are signed (to verify integrity) but not encrypted (to hide content).
Here’s why sensitive data (e.g., passwords, credit card numbers, SSNs)

should never be stored in a JWT payload.

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

4

JWT Generation using PyJWT
import jwt

Define payload and secret

payload = {

"sub": "1234567890",

"name": "John Doe",

"iat": 1516239022

}

secret = "your-256-bit-secret"

Generate JWT

jwt_token = jwt.encode(

payload,

secret,

algorithm="HS256"

)

print(jwt_token)

Notice: When you call jwt.encode(), PyJWT internally constructs the header
using:
{

"alg": "HS256", // Taken from the `algorithm` parameter
"typ": "JWT" // Always set to "JWT" for JWTs

}

Standard JWT Claims
Claim Name Purpose

iss Issuer Indicates who created the JWT. This is a single string and often the URI of
the authentication service.

aud Audience Indicates who the JWT is for. An array of strings identifying the intended
recipients of the JWT. If there is only a single value, then it can be a simple
string value rather than an array. The recipient of a JWT must check that its
identifier appears in the audience; otherwise, it should reject the JWT.
Typically, this is a set of URIs for APIs where the token can be used.

iat Issued-At The UNIX time at which the JWT was created.

nbf Not-Before The JWT should be rejected if used before this time.

exp Expiry The UNIX time at which the JWT expires and should be rejected by
recipients.

sub Subject The identity of the subject of the JWT. A string. Usually a username or other
unique identifier.

jti JWT ID A unique ID for the JWT, which can be used to detect replay.

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

5

JWT Use Cases

1. Authentication

– Stateless authentication for APIs

– Cross-domain authentication

– Mobile and single-page applications (SPAs)

2. Information Exchange

– Securely transmit information between parties

– Signed tokens allow verification of content integrity

JWT Lifecycle

1. User logs in with credentials

2. Server validates credentials and issues JWT

3. Client stores JWT securely

4. Client includes JWT in Authorization header for protected
resources:
– Authorization: Bearer <token>

5. Server validates JWT signature and claims

6. If valid, server grants access to protected resource

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

6

JWT - Lifecycle

Login & Password Hashing

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

7

JWT Auth using Storage

Refresh Tokens

• Purpose: Renew short-lived access tokens without requiring
user to re-login

• Implementation:
– Issued alongside access token

– Longer expiration (e.g., 1 week)

– Used to generate new access token when expired

• Security:
– Must be stored securely

– Should be revocable

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

8

Best Practices

1. Security:

– Use strong algorithms (RSA256, ES256 preferred over HS256)

– Keep signing keys confidential and rotate regularly

– Always use HTTPS

– Validate tokens properly

2. Token Management:

– Use short expiration times (15-60 minutes for access tokens)

– Implement token revocation mechanisms

– Monitor and log token usage

3. Storage:

– Avoid localStorage/sessionStorage (XSS vulnerability)

– Use secure, HTTP-only cookies when possible

secure, HTTP-only cookies
• Secure Cookies: uses HTTPS

– Example: Set-Cookie: sessionId=abc123; Secure

• HTTP-Only Cookies
– A cookie marked as HttpOnly cannot be accessed by client-side JavaScript.

– Mitigates (XSS) attacks by preventing malicious scripts from stealing cookies
(e.g., session hijacking).

– Example: Set-Cookie: sessionId=abc123; HttpOnly

• Combine both flags for sensitive cookies (e.g., authentication tokens):
– Set-Cookie: sessionId=abc123; Secure; HttpOnly;

SameSite=Lax

– SameSite Attribute: Prevents cross-site request forgery
(CSRF) by restricting when cookies are sent (e.g.,
SameSite=Lax/Strict).

STUDENTS-HUB.com

https://students-hub.com

31/05/2025

9

When NOT to Use JWT

• For sensitive data in payload (JWT is signed but not
encrypted)

• Long-term sessions (use refresh token strategy instead)

• When complex token management is required

• When token size might exceed server header limits

Conclusion

JWTs provide a powerful, standardized way to handle
authentication and information exchange in modern applications
when implemented correctly with proper security measures.

The combination of access tokens and refresh tokens offers both
security and good user experience.

STUDENTS-HUB.com

https://students-hub.com

