31/05/2025

JSON WEB TOKENS (JWT)

AHMAD HAMO
19-5-2025

Introduction to JWT

* Definition: Compact, URL-safe way to transfer claims between
client and server

* Format: Encoded JSON objects containing claims

STUDENTS-HUB.com 1

https://students-hub.com

31/05/2025

JWT - JSON Web Token

* Instead of repeatedly sending username and password, the server verifies
the user once and returns a token.

* From this point, the client sends the token in every API request instead of
credentials.

* This improves security, performance, and flexibility.

3 biggest advantages of JWT:

* Once the token is issued, your actual password stays out of the network,
much safer.

* You can control token expiry so sessions can auto expire, reducing risk.

* And finally, tokens can carry metadata like roles or permissions, making
authorization easier.

JSON Web Token Structure

{

JWT consists of three parts
separated by dots:

}

Header

The header is comprised of two parts, the token type and the signature algorithm.

XXXX.YYYY.222Z

}

Payload

The payload contains the claims. Claims contain the entity and the other data.
There are three types of claims: public, private, and registered.

The Token

Three Base64 URL strings separated by a period.

(header) + "." +
) e(payload),
secret)

Signature

The signature is used to validate that the message wasn’t tampered with.

STUDENTS-HUB.com 2

https://students-hub.com

31/05/2025

JWT Structure

Three parts separated by dots:

1. Header - Contains token type and signature algorithm
(e.g., HS256, RSA)

- Example: {"alg": "HS256", "typ": "JWT"}

2. Payload

— Contains claims (entity and other data)

— Three claim types:
* Registered (predefined)
e Public (custom)
e Private (shared between parties)

- Example: {"sub": "1234567890", "name": "John Doe", "admin":
true}

JWT Structure

Three parts separated by dots:

3. Signature
— Validates message integrity

— Created using: HMACSHA256 (base64UrlEncode (header) +
"." + base64UrlEncode (payload), secret)

— The secret is a shared key(known only to the server).

— The HMAC-SHA256 algorithm hashes the concatenated string using the
secret.

-2 JWTs are signed (to verify integrity) but not encrypted (to hide content).
Here’s why sensitive data (e.g., passwords, credit card numbers, SSNs)
should never be stored in a JWT payload.

STUDENTS-HUB.com 3

https://students-hub.com

31/05/2025

JWT Generation using PyJWT

import jwt
Notice: When you call jwt.encode(), PyJWT internally constructs the header
Define payload and secret using:
pavioad = { b // Taken from the “algorith
" w. o N "alg": "HS256", Taken from the “algorithm™ parameter
sub": "1234567890
’ "typ": "IWT" // Always set to "IWT" for IWTs
"name": "John Doe", }
"iat": 1516239022
}
secret = "your-256-bit-secret" Step Manual Implementation (HMAC + Base64) PyJWT Library
Generate JWT Header Encoding Explicit baseé4url_encode(header) Automatic
jwt_token = jwt.encode(o]
Payload Encoding Explicit base64url_encode(payload) Automatic
payload,
secret, Signature Encoding Manual HMAC + Baseg4Url Automatic
algorithm="HS256"
) JWT Assembly Manual concatenation with . Automatic

print(jwt_token)

Standard JWT Claims

Claim Name Purpose

iss Issuer Indicates who created the JWT. This is a single string and often the URI of
the authentication service.

aud Audience Indicates who the JWT is for. An array of strings identifying the intended
recipients of the JWT. If there is only a single value, then it can be a simple
string value rather than an array. The recipient of a JWT must check that its
identifier appears in the audience; otherwise, it should reject the JWT.
Typically, this is a set of URIs for APIs where the token can be used.

iat Issued-At The UNIX time at which the JWT was created.

nbf Not-Before The JWT should be rejected if used before this time.

exp Expiry The UNIX time at which the JWT expires and should be rejected by
recipients.

sub Subject The identity of the subject of the JWT. A string. Usually a username or other
unique identifier.

jti JWT ID A unique ID for the JWT, which can be used to detect replay.

STUDENTS-HUB.com 4

https://students-hub.com

A W N B

ol

STUDENTS-HUB.com

JWT Use Cases

. Authentication

— Stateless authentication for APIs
— Cross-domain authentication
— Mobile and single-page applications (SPAs)

. Information Exchange

— Securely transmit information between parties
— Signed tokens allow verification of content integrity

JWT Lifecycle

. User logs in with credentials

. Server validates credentials and issues JWT

. Client stores JWT securely

. Client includes JWT in Authorization header for protected

resources.
— Authorization: Bearer <token>

. Server validates JWT signature and claims
. If valid, server grants access to protected resource

31/05/2025

https://students-hub.com

31/05/2025

JWT - Lifecycle

APl — API
Ve
5) Check JWT € —
NUserAuth ... >
DDDD‘_._... 2)Return JIWT ... - a :
T oo
: 5 0 :
: n @) 0] g -
i saemsutnrnee 4) GET protected resource with JWT -« |- » O D JWT validator
3) Validate JWT . O
signature . : oo
PR 6b) Expiredfinvalid ..o.oooiiiiiiiiiii : _ |
i ba) Valid ““’DDD
Protected D
L .) resource
\. J

Login & Password Hashing

User Server Database

Sends password
‘;

Hashes password

D)

Stores hashed password

Sends password to login -
Hashes login password
Compares hashed password Ul

Returns match result

Login success if match

Login failure if no match

STUDENTS-HUB.com 6

https://students-hub.com

STUDENTS-HUB.com

JWT Auth using Storage

Client (Browser) Storage

Purpose: Renew short-lived access tokens without requiring

Sends credentials

Server

Validates & sends JTWT

A

v

Stores JWT (LocalStorage/Cookie)

S
Lt

Sends JWT with request

B

Sends response if valid

-

Validates JTWT

y O

&

Rejects if invalid

&

Refresh Tokens

user to re-login
Implementation:

Issued alongside access token
Longer expiration (e.g., 1 week)

— Used to generate new access token when expired
Security:

Must be stored securely
Should be revocable

31/05/2025

https://students-hub.com

31/05/2025

Best Practices

1. Security:
— Use strong algorithms (RSA256, ES256 preferred over H5256)
— Keep signing keys confidential and rotate regularly
— Always use HTTPS
— Validate tokens properly
2. Token Management:
— Use short expiration times (15-60 minutes for access tokens)
— Implement token revocation mechanisms
— Monitor and log token usage
3. Storage:
— Avoid localStorage/sessionStorage (XSS vulnerability)
— Use secure, HTTP-only cookies when possible

secure, HTTP-only cookies

* Secure Cookies: uses HTTPS
— Example: Set-Cookie: sessionId=abcl23; Secure

* HTTP-Only Cookies
— A cookie marked as HttpOnly cannot be accessed by client-side JavaScript.
— Mitigates (XSS) attacks by preventing malicious scripts from stealing cookies
(e.g., session hijacking).
— Example: Set-Cookie: sessionIld=abc123; HttpOnly
* Combine both flags for sensitive cookies (e.g., authentication tokens):

— Set-Cookie: sessionId=abcl123; Secure; HttpOnly;
SameSite=Lax

— SameSite Attribute: Prevents cross-site request forgery
(CSRF) by restricting when cookies are sent (e.g.,
SameSite=Lax/Strict).

STUDENTS-HUB.com 8

https://students-hub.com

31/05/2025

When NOT to Use JWT

* For sensitive data in payload (JWT is signed but not
encrypted)

* Long-term sessions (use refresh token strategy instead)
* When complex token management is required
* When token size might exceed server header limits

Conclusion

JWTs provide a powerful, standardized way to handle
authentication and information exchange in modern applications
when implemented correctly with proper security measures.

The combination of access tokens and refresh tokens offers both
security and good user experience.

STUDENTS-HUB.com 9

https://students-hub.com

