Instruction Level Parallelism

SSSSSSSSSSSSSSSS

https://students-hub.com

Outline

e ILP

e Compiler techniques to increase ILP

e Loop Unrolling

e Static Branch Prediction

e Dynamic Branch Prediction

e Overcoming Data Hazards with Dynamic Scheduling
e (Start) Tomasulo Algorithm

e Conclusion

https://students-hub.com

Recall from Pipelining Review

e Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data
Hazard Stalls + Control Stalls

— Ildeal pipeline CPIl: measure of the maximum performance
attainable by the implementation

— Structural hazards: HW cannot support this combination of
instructions

— Data hazards: Instruction depends on result of prior instruction
still in the pipeline

— Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps)

STUDENTS-HUB.com

https://students-hub.com

Instruction Level Parallelism

e Instruction-Level Parallelism (ILP): overlap the
execution of instructions to improve performance

e 2 approaches to exploit ILP:

1) Rely on hardware to help discover and exploit the parallelism
dynamically (e.g., Pentium 4, AMD Opteron, IBM Power) , and

2) Rely on software technology to find parallelism, statically at compile-
time (e.g., Itanium 2)

STUDENTS-HUB.com

https://students-hub.com

Data Dependence and Hazards

e Instr,is data dependent (aka true dependence) on Instr,.
1. Instr, tries to read operand before Instr, writes it
C I: add rl,r2,r3
J: sub r4d,rl,r3

2. orlnstr,is data dependent on Instr, which is dependent on Instr,

e |f two instructions are data dependent, they cannot execute
simultaneously or be completely overlapped

e Data dependence in instruction sequence

—> data dependence in source code = effect of original data
dependence must be preserved

e |f data dependence caused a hazard in pipeline,
called a Read After Write (RAW) hazard

STUDENTS-HUB.com

https://students-hub.com

ILP and Data Dependencies,Hazards

HW/SW must preserve program order:
order instructions would execute in if executed sequentially as
determined by original source program

— Dependences are a property of programs

Presence of dependence indicates potential for a hazard, but
actual hazard and length of any stall is property of the pipeline

Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can possibly be exploited

HW/SW goal: exploit parallelism by preserving program order
only where it affects the outcome of the program

STUDENTS-HUB.com

https://students-hub.com

Name Dependence #1:. Anti-dependence

e Name dependence: when 2 instructions use same register
or memory location, called a name, but no flow of data
between the instructions associated with that name; 2
versions of name dependence

* Instr, writes operand before Instr reads it

I: sub r4,rl,r3
(J: add rl,r2,r3
K: mul r6,rl,r7
Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

e |f anti-dependence caused a hazard in the pipeline, called a
Write After Read (WAR) hazard

STUDENTS-HUB.com

https://students-hub.com

Name Dependence #2: Output dependence

* Instr, writes operand before Instr, writes it.

I: sub rl,r4,r3
J: add rl,r2,r3
K: mul ré6,rl,r7

e Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

e If anti-dependence caused a hazard in the pipeline, called a
Write After Write (WAW) hazard

e Instructions involved in a name dependence can execute
simultaneously if name used in instructions is changed so
instructions do not conflict

— Register renaming resolves name dependence for regs
— Either by compiler or by HW

STUDENTS-HUB.com

https://students-hub.com

Control Dependencies

e Every instruction is control dependent on some set
of branches, and, in general, these control
dependencies must be preserved to preserve

program order
if pl {
S1;

};

if p2 {
S2;

}

e S1 is control dependent on pl, and S2 is control
dependent on p2 but not on p1.

https://students-hub.com

Control Dependence Ignored

e Control dependence need not be preserved

— willing to execute instructions that should not have been
executed, thereby violating the control dependences, if can do so
without affecting correctness of the program

e Instead, 2 properties critical to program
correctness are

1) exception behavior and
2) data flow

STUDENTS-HUB.com

https://students-hub.com

Exception Behavior

e Preserving exception behavior
=> any changes in instruction execution order must not
change how exceptions are raised in program
(= no new exceptions)

e Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0 (R2)
Ll:

— (Assume branches not delayed)

 Problem with moving LW before BEQZ?

STUDENTS-HUB.com

https://students-hub.com

Data Flow

e Data flow: actual flow of data values among instructions
that produce results and those that consume them

— branches make flow dynamic, determine which instruction is supplier of

data
e Example:
DADDU R1,R2,R3
BEQZ R4, L
DSUBU R1,R5,R6
L: ..
OR R7,R1,R8

* OR depends on DADDU or DSUBU?
Must preserve data flow on execution

STUDENTS-HUB.com

https://students-hub.com

ldeas to Reduce Stalls

Hardware

STUDENTS-HUB.com

Technique

Reduces

Dynamic scheduling

Data hazard stalls

Dynamic branch
prediction

Control stalls

Issuing multiple
instructions per cycle

Ideal CPT

Speculation

Data and control stalls

Dynamic memory
disambiguation

Data hazard stalls involving
memory

Loop unrolling

Control hazard stalls

Basic compiler pipeline
scheduling

Data hazard stalls

Compiler dependence
analysis

Ideal CPI and data hazard stalls

Software pipelining and
trace scheduling

Ideal CPI and data hazard stalls

Compiler speculation

Ideal CPI, data and control stalls

https://students-hub.com

Dynamic Scheduling

SSSSSSSSSSSSSSSS

https://students-hub.com

Advantages of Dynamic Scheduling

Dynamic scheduling - hardware rearranges the
instruction execution to reduce stalls while maintaining
data flow and exception behavior

It handles cases when dependences unknown at compile
time
— it allows the processor to tolerate unpredictable delays such as cache
misses, by executing other code while waiting for the miss to resolve
It allows code that compiled for one pipeline to run
efficiently on a different pipeline

It simplifies the compiler

Hardware speculation, a technique with significant
performance advantages, builds on dynamic scheduling
(next lecture)

STUDENTS-HUB.com

https://students-hub.com

HW Schemes: Instruction Parallelism

e Key idea: Allow instructions behind stall to proceed
DIVD FO,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,Fl4

e Enables out-of-order execution and allows out-of-order
completion (e.g., SUBD)

— In a dynamically scheduled pipeline, all instructions still pass through issue
stage in order (in-order issue)

e Will distinguish when an instruction begins execution and
when it completes execution; between 2 times, the
instruction is /n execution

e Note: Dynamic execution creates WAR and WAW hazards
and makes exceptions harder

STUDENTS-HUB.com

https://students-hub.com

Example on WAR and WAW Hazards

DIV.
.D

ADD
S.D

SUB.
MUL.

D

D
D

FO,
Fo6,
Fo6,
F8,
Fo6,

F2, F4
FO, F8

0 (R1)
F10, Fl4
F10, F8

Anti-dependence between
ADD.D and SUB.D

WAR hazard on F8

Output dependence
between ADD.D and
MUL.D WAW hazard on F6

WAR and RAW hazards are caused by out-of-order
execution, but can be eliminated with register

renaming

DIV.
.D

ADD
S.D

SUB.
.D

MUL

STUDENTS-HUB.com

D

D

FO,
Fo6,
Fo6,
T1,
T2,

F2, F4
FO, F8

0 (R1)
F10, F14
F10, T1

Use temporary registers T1
and T2 to eliminate name
dependences

Register renaming can be
done statically by the compiler
or dynamically by the pipeline

https://students-hub.com

Dynamic Scheduling: Tomasulo

e Fast IBM 360/91 for scientific code

— Completed in 1967
— Before cache memories
— Implemented complex memory system

e Pipelined floating point units

— FP Adder
— FP Multiplier (Divide done in multiplier)

e Dynamic scheduling in FP unit (Tomasulo)

e The descendants of Tomasulo are found in
— Alpha 21264, Pentium 4, AMD Opteron, Power 5, etc

STUDENTS-HUB.com

https://students-hub.com

From instruction unit

Tomasulo’s

Instruction

FP registers ‘

Organization qustie

Load-store
operations
Y : : Operand
Addressunit FIoatnr;g-pount R
Store buffers operations
} Load buffers T
Y
Operation bus
Pl 1
3 b A A s
2 Reservation]
1 stations
Data Address

FP adders

FP multipliers

Common data bus (CDB)

STUDENTS-HUB.com © 2007 Elsavier, Inc. Al rights resarved.

https://students-hub.com

Tomasulo Algorithm

o Buffers & Control distributed with Function Units

— FU buffers are called “reservation stations” and have pending
operands

e Registers in instructions are replaced by values or by pointers to
reservation stations, called tags

— Reservation stations provide renaming to avoid WAR & WAW hazards

e Results are broadcast on the Common Data Bus to all reservation
stations, not through registers
— Avoids RAW hazards by executing an instruction only when its operands are available

e Load and Stores treated as Function Units (FU) with Reservation
Stations (RS) as well

STUDENTS-HUB.com

https://students-hub.com

Generalized Tomasulo’s Organization

e Enhance parallel pipeline architecture

e Apply Tomasulo's algorithm to all pipelined units

— Not just floating point

— Biggest difference: handle loads/stores like other instructions
e Use "tags" to identify data values

— Both tags and register designators can name data
e Reservation Stations (RS) distribute control

— Set of Reservation Stations per functional unit

— Tag identifies result of instruction in RS

e Common Data Bus (CDB) broadcasts all results

STUDENTS-HUB.com

https://students-hub.com

Generalized Tomasulo’s Organization

FP adder unit

. ISSUE MULT EXECUTE
and reservation RS
stations should 5
also be added . q Mult. 1> Mult. 2 > Mult. 3 Mult. 4
to this diagram —>
Load Queue
I-cache > []
access Decode D-Cache 1 D-Cache 2
—o—— | > 7y ' g
Y >
Load/Storel Address
RS]
Unit
) —
g
—» | Regs —»
ALU Store Queue
RS ALU
Integer
_>
WRITE-BACK

STUDENTS-HUB.com

sSng eljeg uowwo)d

https://students-hub.com

Three Stages of Tomasulo’s Algorithm

1.ISSUE

— Get next instruction from fetch unit
— Check for available reservation station
— If not available, stall due to structural hazard

— If RS available, issue
» Copy ready registers to RS
» Copy tags for all non-ready
registers to RS

STUDENTS-HUB.com

l

Mult. 3 Mult. 4

ache 1| D-Cache 2

vy

sng ereq uowwo)

https://students-hub.com

Three Stages of Tomasulo’s Algorithm

2. Execute
— If input operands available, issue and begin execution
— If not, monitor CDB for necessary input operands

If several instructions

ISSUE EXECUTE

become ready for the T
same functional unit in e
the same clock cycle, L e
. ecode ﬂ N D-Cache 1| D-Cache 2
one of them is chosen | »T J |
for execution I
sQ

A,
sng eleg uowwo)

WRITE-BACK

STUDENTS-HUB.com

https://students-hub.com

Three Stages of Tomasulo’s Algorithm

3. Write Back

— |If CDB available, write result on CDB
» All destinations with matching tags receive data
» CDB broadcasts results to all reservation stations
— If not, wait for CDB to
become available

ISSUE EXECUTE

Mult. 1 Mult. 2 Mult. 3 Mult. 4
E——
ress
Uni

D-Cache 1 D-Cache 2

ARS

WRITE-BACK

STUDENTS-HUB.com

sng eleg uowwod

https://students-hub.com

Reservation Station Components

Operation to perform in the unit (e.g., + or -)
Value of Source operands
— Store buffers has V field, result to be stored
Reservation stations producing source registers (value to be written)
— Note: Qj,Qk=0 => ready
— Store buffers only have Qi for RS producing result
Indicates reservation station or FU is busy

A Address information for loads or stores. Initially immediate field of
instruction then effective address when calculated.

Register result status—Indicates which functional unit will write each
register, if one exists. Blank when no pending instructions that will write
that register.

STUDENTS-HUB.com

https://students-hub.com

Dependency Graph For Example Code

Example Code
1 p

L.D F6, 34 (R2)

L.D F6, 34(R2)
L.D F2, 45(R3)
MUL.D FO, F2, F4
SUB.D F8, F6, F2
DIV.D F10, FO, F6
ADD.D F6, F8, F2

Date Dependence:

(1,4 (1,5 (2,3) (2,4
(2,6) (3,5 (4,6)
Output Dependence:

(1, 6)

Anti-dependence:

(5, 6)

MUL.D FO, F2, F4

o O A W DN PP

DIV.D F10, FO, F6

ADD.D F6, F8, F2

The same code used is the scoreboard example

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example

nstroction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Reservation Stations:

J
34+
45+

F2

F6

F8

Time Name Busy Op

Register result status:

Clock
0

STUDENTS-HUB.com

Addl
Add2
Add3
Multl
Mult2

Exec Write
k Issue Comp Result Busy Address
R2 Loadl | No
R3 Load2 | No
F4 Load3 | No
F2
F2
S S2 RS RS
V] VK Qj Qk
No
No
No
No
No
FO F2 F4 F6 F8 F10 F12 ... F30

FU

Assume the following latencies: load is 1
clock cycle, add is 2 clock cycles, multiply is
6 clock cycles, and divide is 12 clock cycles.

https://students-hub.com

Tomasulo Example Cycle 1

Instrouction status: Exec Write
Instruction i k ey Comp Result Sersy=—rivee
LD F6 34+ R2 Loadl]| Yes 34+R2
LD F2 45+ R3 Load e
MULTD FO F2 F4 Load3 | No

SuUBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Addl | No

Add2 | No

Add3 | No

Multl | No

Mult2 | No

Register result status:
Clock FO F2 F4 o F8 F10 F12 ... F30

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 2

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address

LD F6 34+ R2 Loadl | Yes 34+R2
LD F2 45+ R3 Loadf[Yes 45+R3 |
MULTD FO F2 F4 Load3 \[¢]

SuUBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Addl | No

Add2 | No

Add3 | No

Multl | No

Mult2 | No

Register result status:

Clock FO F4 F6 F8 F10 F12 ... F30
2 FU Loadl

Note: Can have multiple loads outstanding

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 3

Instruction status: Exec Write
Instruction i k Issue Camp Result Busy Address
LD F6 34+ R2 1 u Loadl | Yes 34+R2
LD F2 45+ R3 2 Load2 | Yes 45+R3
MULTD FO F2 F4 3 Load3 | No

SUBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl No

Add2 | No

Add3 e
Multl¥| Yes MULTD R(F4) Load2
Mult pbe

Register result status:

Clock < F2 F4 F6 F8 F10 F12 ... F30
3 FU Load2 Loadl

* Note: registers names are removed (“renamed”) in Reservation
Stations; MULT issued

 Loadl completing; what is waiting for Load1?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 4

Instroction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 Loadl No
LD F2 45+ R3 2 Load2 | Yes 45+R3
MULTD FO F2 F4 Load3 | No
SUBD F8 F6 P2
DIVD FI0 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name/B @la 1 ’ O] Ok
Add2 No
Add3 | No
Multl | Yes MULTD R(F4) Load?2
Mult2 | No

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 ... F30
4 FU | Multl Load2 M(A1l) Add1l

 Load2 completing; what is waiting for Load2?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 5

Instrouction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4
DIVD FI0 FO F6 5
ADDD F6 F8 F2
Reservation Stations: S1 S2 RS RS
ime J[Name Busy Op Vj < Qj Qk
2|Addl [Yes SUBD M(AL] M(A2)
Add2 | No
Add3 | No
100Multl | Yes MULTR(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F30
5 FU | Multl M(A2) M(A1l) Addl Mult2

e Timer starts down for Add1, Multl

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 6

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4
DIVD F10 FO F6
ADDD F6 F8 FZQ

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
1 Add1l 2 2

Add2]| Yes ADDD I\/I(A2) Add1 |

Add3
9 Multl YeS MULTD M(A2) R(F4)

Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F30
6 FU | Multl M(A2) Add2 Addl Mult2

* Issue ADDD here despite name dependency on F6?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 7

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4
DIVD F10 FO F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Addl | Yes SUBD M(A1) M(A2)
Add2 | Yes ADDD M(A2) Addil
Add3 | No

8 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl

Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F30
7 FU | Multl M(A2) Add2 Addl Mult2

 Add1l (SUBD) completing; what is waiting for it?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 8

Instroctionstatus:

Instruction]
LD F6 34+
LD F2 45+

MULTD FO F2
SuUBD F8 F6
DIVD F10 FO
ADDD F6 F8

Reservation Stations:

k
R2
R3
F4
F2
F6
F2

Exec Write
Issue Comp Result Busy Address
1 3 4 Loadl | No
2 4 5 Load2 | No
3 Load3 | No
4 7 8
5
6

S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Addl

2 Add2 | Yes ADDD(A2)

Add3

7 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes

No

No

DIVD M(AL) Multl

Register result status:

Clock
8

STUDENTS-HUB.com

FU

FO F2 F4 F6 F8 F10 F12

F30

Multl M(A2) Add2 Mult2

https://students-hub.com

Tomasulo Example Cycle 9

Instroctionstatus: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
5
ADDD F6 F8 F2 6
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Addl

1 Add2 | Yes ADDD (M-M) M(A2)

Add3

6 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes

No

No

M(A1) Multl

Register result status:

Clock
9

STUDENTS-HUB.com

FU

FO

F2

F4 F6 F8 F10 F12

F30

Multl M(A2)

Add2 (M-M)

https://students-hub.com

Tomasulo Example Cycle 10

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD FB F6 F2 4 7 8
5
ADDD F6 F8 F2 6 10
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
0 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
5 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F30
10 FU | Multl M(A2) Add2 (M-M)

 Add2 (ADDD) completing; what is waiting for it?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 11

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 No
SUBD F8 F6 F2 4 V4 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
4 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl

Register result status:
Clock FO F2 F4 F6 F8 F10 F12

F30

11 FU [Multl M(A2) (M-M+M{M-M) Mult2

« Write result of ADDD here?
« All quick instructions complete in this cycle!

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 12

Instroctionstatus:

Instruction]
LD F6 34+
LD F2 45+

MULTD FO F2
SuUBD F8 F6

ADDD F6 F8

Reservation Stations:

Exec Write

k Issue Comp Result
R2 1 3 4
R3 2 4 5
F4 3
F2 4 7 8

5
F2 6 10 11

S1 S2 RS

Time Name Busy Op Vj Vk Qj

Busy Address

Loadl No
Load?2 No
Load3 No
RS
Qk

No
No
No

3 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1) Multl

Add1
Add2
Add3
Register result status:
Clock
12

STUDENTS-HUB.com

FO F2 F4 F6

F8 F10 F12

F30

FU | Multl M(A2)

(M-M)

https://students-hub.com

Tomasulo Example Cycle 13

Instroctionstatus:

Instruction]
LD F6 34+
LD F2 45+

MULTD FO F2
SuUBD F8 F6

ADDD F6 F8

Reservation Stations:

Exec Write

k Issue Comp Result
R2 1 3 4
R3 2 4 5
F4 3
F2 4 7 8

5
F2 6 10 11

S1 S2 RS

Time Name Busy Op Vj Vk Qj

Busy Address

Loadl No
Load?2 No
Load3 No
RS
Qk

No
No
No

2 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1) Multl

Add1
Add2
Add3
Register result status:
Clock
13

STUDENTS-HUB.com

FO F2 F4 F6

F8 F10 F12

F30

FU | Multl M(A2)

(M-M)

https://students-hub.com

Tomasulo Example Cycle 14

Instroctionstatus:

Instruction]
LD F6 34+
LD F2 45+

MULTD FO F2
SuUBD F8 F6

ADDD F6 F8

Reservation Stations:

Exec Write

k Issue Comp Result
R2 1 3 4
R3 2 4 5
F4 3
F2 4 7 8

5
F2 6 10 11

S1 S2 RS

Time Name Busy Op Vj Vk Qj

Busy Address

Loadl No
Load?2 No
Load3 No
RS
Qk

No
No
No

1 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1) Multl

Add1
Add2
Add3
Register result status:
Clock
14

STUDENTS-HUB.com

FO F2 F4 F6

F8 F10 F12

F30

FU | Multl M(A2)

(M-M)

https://students-hub.com

Tomasulo Example Cycle 15

Instroctionstatus:

Instruction]
LD F6 34+
LD F2 45+

MULTD FO F2
SuUBD F8 F6

ADDD F6 F8

Reservation Stations:

Exec Write
k Issue Comp Result Busy Address
R2 1 3 4 Loadl | No
R3 2 4 5 Load2 | No
F4 3 15 Load3 | No
F2 4 7 8

5

F2 6 10 11

S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

0 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1) Multl

No
No
No

Add1
Add2
Add3
Register result status:
Clock
15

 Multl (MULTD) completing; what is waiting for it?

STUDENTS-HUB.com

FO F2 F4 F6 F8 F10

F12

F30

FU | Multl M(A2) (M-M)

https://students-hub.com

Tomasulo Example Cycle 16

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 V4 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
Add2 | No
Add3 | No

Multl | No

40 Mult2 | Yes DIVD (A1)

Register result status:
Clock FO F2 F4 F6 F8 F10 Fl12 .. F30

16 FU M(A2) (M-M+N (M-M) Mult2

e Just waiting for Mult2 (DIVD) to complete

STUDENTS-HUB.com

https://students-hub.com

Faster than light computation
(skip a couple of cycles)

SSSSSSSSSSSSSSSS

https://students-hub.com

Tomasulo Example Cycle 55

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 15 16 Load3 No
SUBD F8 F6 F2 4 V4 8
5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
1 Mult2 | Yes M*F4 M(A1)

Register result status:
Clock FO F2 F4 F6 F8 F10 Fl12 .. F30

55 FU | M*F4 M(A2) (M-M)

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 56

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 15 16 Load3 | No
SUBD FB F6 F2 4 7 8
5 56
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
0 Mult2 | Yes M*F4 M(A1)
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F30
56 FU | M*F4 M(A2) (M-M)

 Mult2 (DIVD) is completing; what is waiting for it?

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Example Cycle 57

Instroctionstatus:

Instruction]

LD F6 34+
LD F2 45+
MULTD FO F2
SUBD F8 F6
DIVD F10 FO
ADDD F6 F8

Reservation Stations:

R2
R3
F4
F2
F6
F2

Exec Write
Busy Address
Loadl | No
Load2 | No
Load3 No
RS RS

Time Name Busy Op Vj Vk Qj Qk

Addl
Add2
Add3
Multl
Mult2

No
No
No
No
Yes

DIVD M*F4 M(AL)

Register result status:

Clock
56

FU

FO F2 F4 F6 F8 F10 F12

F30

M*F4 M(A2) (M-M+N (M-M) Result

 Once again: In-order issue, out-of-order execution and
out-of-order completion.

STUDENTS-HUB.com

https://students-hub.com

Tomasulo’s scheme offers 2 major
advantages

1. Distribution of the hazard detection logic

— distributed reservation stations and the CDB

— If multiple instructions waiting on single result, & each
instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

— If a centralized register file were used, the units would have to

read their results from the registers when register buses are
available

2. Elimination of stalls for WAW and WAR hazards

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Drawbacks

e Complexity

— delays of 360/91, MIPS 10000, Alpha 21264,
IBM PPC 620 in CA:AQA 2/e, but not in silicon!

e Many associative stores (CDB) at high speed

e Performance limited by Common Data Bus

— Each CDB must go to multiple functional units
—>high capacitance, high wiring density

— Number of functional units that can complete per cycle limited to one!
» Multiple CDBs = more FU logic for parallel assoc stores

e Non-precise interrupts!
— We will address this later

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Loop Example

Loop: LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

e Assume FP Multiply takes 4 execution clock cycles.

e Assume first load takes 8 cycles (possibly due to a cache miss),
second load takes 4 cycles (cache hit).

e Assume R1 = 80 initially.

e Assume SUBI only takes one cycle (issue)

e Assume branch resolved in issue stage (no EX or CDB write)

e Assume branch is predicted taken and no branch misprediction.
e No branch delay slot is used in this example.

e Stores take 3 cycles (ex, mem) and do not write on CDB

e We'll go over the execution to complete first two loop iterations.

STUDENTS-HUB.com

https://students-hub.com

Tomasulo Loop Example Dependency Graph (First
three iterations shown)

First

Iteratio

1
lteratiq

STUDENTS-HUB.com

L.D FO,0(R1

Second

/ S.D F4,0 (R1

S.D F4, 0(R1)

6

MUL.D F4, FO, F3

9

S.D F4,0(R1

Example Code

1 LD FO, 0 (R1)
2 MUL.D F4,FO0,F2
3 SD F4, O(R1)
4 LD FO, O(R1)
5 MUL.D F4,F0, F2
6 SD F4, O(R1)
7 LD FO, O(R1)
8 MUL.D F4,FO0,F2
9 SD F4, O(R1)

Loop maintenance (DADDUI)

and branches (BNE) not shown

Name dependencies between iteration 3 instructions

and iteration 1 instructions are not shown in graph

https://students-hub.com

Loop Example

Instruction status: Exec-Write
ITER Instruction J k Issue CompResult Busy Addr Fu
1 LD FO 0 R1 Loadl| No
1 MULTD F4 FO F2 Load2
1 SD F4 0 R1 Load3| No
Storel| No
Store2
Store3| No
Reservation Stations: S1 S22 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
Multl | No SUBI R1 R1 #8
Mult2 BNEZ w_R1 Loop
Register result status
Clock Rr1 FO F2 F4 F6 F8 F10 F12 F30

0 80 Fu

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 1

Instruction status: Exec-Write
ITER Instruction J k Issue CompResult Busy Addr Fu
1 LD FO 0 R1 1 Loadl| Yes 80
Load3| No
Storel| No
Store?2
Store3| No
Reservation Stations: SI1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl No LD FO 0 R1
Add2 No MULTD F4 FO F2
Add3 No SD F4 0 R1
Multl | No SUBI R1 R1 #8
Mult2 BNEZ R1 Loop
Register result status
Clock Rr1 FO |[F2 F4 F6 F8 F10 F12 .. F30

1 80 Ful [Load1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 2

Instruction status: Exec-Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 Loadl| Yes 80
1 MULTD F4 FO F2 2 Load2| No
Load3| No
Storel| No
Store2| No
Store3| No
Reservation Stations: SI S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl No LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
R(F2) Loadl SuBI Rl Rl #8
BNEZ R1 Loop
Register result status
Clock R1 FO F2) F4 6 F8 F10 F12 F30
2 80 Fu |Loadl Multl

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 3

Instruction status: Exec Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 Loadl] Yes 80
1 MULTD F4 FO F2 2 '
1 SD F4 0 R1 3

Store3

Reservation Stations: S1
Time Name Busy Op Vj VK
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
Multl | Yes Multd R(F2) Load1 SUBI R1 R1 #3
Mult2 | No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30
3 80 Fu [Load1 Multl

e Implicit renaming sets up data flow graph

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 4

Instruction status: Exec-Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 Loadl| Yes 80
1 MULTD F4 FO F2 2 Load2| No
1 SD F4 0 R1 3 Load3| No
Storel| Yes 80 Multl
Store2| No
Store3| No
Reservation Stations: SI S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl No LD FO 0 R1
Add2 No MULTD F4 FO F2
Add3 No SD F4 0 R1
Multl | Yes Multd R(F2) Loadl SuBI Rl Rl #8
Mult2 | No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 F30
4 80 Fu |Loadl Multl

e Dispatching SUBI Instruction (not in FP queue)

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 5

Instruction status: Exec-Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 Loadl| Yes 80
1 MULTD F4 FO F2 2 Load2| No
1 SD F4 0 R1 3 Load3| No
Storel| Yes 80 Multl
Store2| No
Store3| No
Reservation Stations: SI S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl No LD FO 0 R1
Add2 No MULTD F4 FO F2
Add3 No SD F4 0 R1
Multl | Yes Multd R(F2) Loadl SuBI Rl Rl #8
Mult2 | No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 F30
Loadl Multl

5Fu

e And, BNEZ instruction (not in FP queue)

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 6

Instruction status:
ITER Instruction J

1 LD FO 0
1 MULTD F4 FO
1 SD F4 0
2 LD FO 0

Reservation Stations:

K
R1
F2
R1
R1

Vi

Exec-Write
Issue Compesult

o W N

S1 S2
Vk Qj

RS
QK

Time Name Busy Op
Addl | No
Add2 | No
Add3 | No
Multl | Yes Multd
Mult2 | No

R(F2) Loadl

Register result status

Clock R1 FO

F2 F4 F6 F8

Busy Addr Fu
NAaQn o ()
Load2| Yes 72
Odl \ U
Storel| Yes 80 Multl
Store2| No
Store3| No
Code:
LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop
F10 F12 F30

6 72 Fu

Load2

Multl

e Notice that FO never sees Load from location 80

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 7

Instruction status: Exec-Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 Loadl| Yes 80
1 MULTD F4 FO F2 2 Load2| Yes 12
1 SD F4 0 R1 3 Load3| No
2 LD FO 0 R1 6 Storel| Yes 80 Multl
2 MULTD F4 FO F2 7 Store2| No
Store3| No
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl No LD FO 0 R1
Add?2 No MULTD F4 FO F2
Add3 No SD F4 0 R1
Multl [Yes Multd R(F2) Loadl SUBI R1 R1 #8
Mult2 | Yes Mulid R(F2) Load2 BNEZ R1 Loop
Register result status
Clock R1 FO F23 F4 \F6 F8 F10 F12 F30
7 72 Fu |Load2 Mult2

e Register file completely detached from computation
e First and Second iteration completely overlapped

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 8

Instruction status:
ITER Instruction J

1

NN - -

2

LD
MULTD
SD
LD
MULTD
SD

FO 0
F4 FO
F4 0
FO 0
F4 FO
F4 0

Reservation Stations:

Time

Name
Addl
Add2
Add3
Multl
Mult2

Exec Write
k Issue Compesult

R1
F2
R1
R1
F2
R1

0O NO WwiN Bk

Busy Op Vj VK Qj Qk
No

No

No

Yes Multd R(F2) Loadl
Yes Multd R(F2) Load2

Register result status

Clock
8

STUDENTS-HUB.com

R1
72

FO F2 F4 F6 F8

Busy Addr
Loadl| Yes 80
Load2| Yes 72
Load3| No

Storel
Store2

Code:
LD FO
MULTD F4
SD F4
SUBI R1
BNEZ R1
F10 F12

Fu

Yes

Mult2 l

Loop

R1
F2
R1
#8

F30

Fu |Load2

Mult2

https://students-hub.com

Loop Example Cycle 9

Instruction status:
ITER Instruction

1

NN - -

2

Reservation Stations:

Time

Register result status

Clock
9

LD
MULTD
SD
LD
MULTD
SD

Name
Addl
Add2
Add3
Multl
Mult2

R1
72

FO
F4
F4
FO
F4
F4

] K
0 R1
FO F2
0 R1
0 R1
FO F2
0 R1

Busy Op Vj

Exec Write

Issue Comp=esult
1 l : l

2

3

6

7

8
S1 S2 RS
Vk Q Qk

No
No
No

Yes Multd
Yes Multd

R(F2) Loadl

R(F2) Load2

Fu

FO F2 F4 F6 F8

Busy Addr Fu

Loadl| Yes 80

Load2| Yes 72

Load3| No

Storel| Yes 80 Multl
Store2| Yes 72 Mult2
Store3| No

Code:

LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

F10 F12 F30

Load2

Mult2

e Loadl completing: who is waiting?
e Note: Dispatching SUBI

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 10

Instruction status: Exec-Write
ITER Instruction J k Issue Compzesult Busy Addr Fu
A Y R w
1 MULTD F4 FO F2 2 Load2| Yes 72
1 SD F4 0 R1]| 3 Load3| No
2 LD 0 0 RL| s Storel| Yes 80 | Multl
2 MULTD F4 FO F2 7 Store2| Yes 72 Mult2
2 SD F4 0 R1 8 Store3| No
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
4 Multl | Yes Multd M[80] R(F2) SUBI Rl Rl #8
Mult2 | Yes Multd R(F2) Load2 BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30

10 Fu |Load2 Mult2

e Load2 completing: who is waiting?
e Note: Dispatching BNEZ

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 11

Instruction status: Exec-Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 9 10 Loadl| No
1 MULTD F4 FO F2 2
1 SD F4 0 R1]| 3
2 LD F0 0 RL| 8 10 VoS o0
2 MULTD F4 FO P2 7 72
2 SD F4 0 R1 8
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1

3 Multl | Yes Multd M[80] R(F2) SUBI R1 R1 #8
4 Mult2 | Yes Mult@ M[72] R(F2) BNEZ R1 Loop
Register result status

Clock R1 FO [F2 F4 F6 F8 F10 F12 ... F30
11 64 Fu NLoad3 Mult2

e Next load in sequence

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 12

Busy Addr Fu

Loadl| No

Load2| No

Load3| Yes 64

Storel| Yes 80 Multl
Store2| Yes 72 Mult2
Store3| No

Code:

LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

F10 F12 F30

Instruction status: Exec Write
ITER Instruction J k Issue Comp-esult
1 LD FO 0 R1 1 9 10
1 MULTD F4 FO P2 2
1 SD F4 0 R1 3
2 LD FO 0 R1 6 10 11
2 MULTD F4 FO P2 7
2 SD F4 0 R1 8
Reservation Stations: SI1 S2 RS
Time Name Busy Op Vj VK Qj Qk
Addl [No
Add2 | No
Add3 [No
2 Multl | Yes Multd M[80] R(F2)
3 Mult2 | Yes Multd M[72] R(F2)
Register result status
Clock R1 FO F2 F4 F6 F8
12 64 Fu |Load3 Mult2

e Why not issue third multiply?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 13

Busy Addr Fu

Loadl| No

Load2| No

Load3| Yes 64

Storel| Yes 80 Multl
Store2| Yes 72 Mult2
Store3| No

Code:

LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

F10 F12 F30

Instruction status: Exec Write
ITER Instruction J k Issue Comp-esult
1 LD FO 0 R1 1 9 10
1 MULTD F4 FO P2 2
1 SD F4 0 R1 3
2 LD FO 0 R1 6 10 11
2 MULTD F4 FO P2 7
2 SD F4 0 R1 8
Reservation Stations: SI1 S2 RS
Time Name Busy Op Vj VK Qj Qk
Addl [No
Add2 | No
Add3 [No
1 Multl | Yes Multd M[80] R(F2)
2 Mult2 | Yes Multd M[72] R(F2)
Register result status
Clock R1 FO F2 F4 F6 F8
13 64 Fu |Load3 Mult2

e Why not issue third store?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 14

Busy Addr Fu

Loadl| No

Load2| No

Load3| Yes 64

Storel| Yes 80 Multl
Store2| Yes 72 Mult2
Store3| No

Code:

LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

F10 F12 F30

Instruction status: Exec-Write
ITER Instruction J k Issue CompResult
1 LD FO 0 R1 1 e 10
1 MULTD F4 FO F2 | 2
1 SD F4 0 R1 3
2 LD FO 0 R1 6 10 11
2 MULTD F4 F0O F2 7
2 SD F4 0 R1 8
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk
Addl | No
Add2 | No
Add3 | No
0 Multl | Yes Multd M[80] R(F2)
1 Mult2 | Yes Multd M[72] R(F2)
Register result status
Clock R1 FO F2 F4 F6 F8
14 64 Fu [Load3 Mult2

e Multl completing. Who is waiting?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 15

Instruction status: Exec Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 9 0 Loadl| No
1 MULTD F4 FO F2 | 2 14 Load2| No
1 SD F4 0 R1 3 Load3| Yes 64
2 LD F0 0 RL| 6 10 11 Storel| Yes 80 [[[80]*R
2 MULTD F4 FO F2 7 Store2| Yes 72 Mult2
2 SD F4 0 R1 8 Store3| No
Reservation Stations: SI1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD FA 0 R1
Multl | No SUBI R1 R1 #8
0 Mult2 | Yes Multd M[72] R(F2) BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30
15 64 Fu |Load3 Mult2

e Mult2 completing. Who is waiting?

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 16

Instruction status: Exec-Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 9 10 Loadl| No
1 MULTD F4 FO F2 2 14 15 Load2| No
1 SD F4 0 R1 3 Load3| Yes
2 LD FO 0 R1 6 10 Storel| Yes
2 MULTD F4 FO F2 7 15 Store2| Yes
2 SD F4 0 R1 8 Store3| No
Reservation Stations: SI S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl No LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
4 Yes Multd R(F2) Load3 SUBI R1 R1 #8

BNEZ R1 Loop

Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30
16 64 Fu [Load3 Mult1

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 17

Instruction status: Exec-\Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 9 10 Loadl| No
1 MULTD F4 FO F2 2 14 15 Load2
1 SD F4 0 R1 3 Load3| Yes 64
6 10 11 Storel| Yes 80 [[80]*R2
7 15 16 Store2
8 Storea| Yes 64
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
Multl | Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 | No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30

17 64 Fu |Load3 Multl

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 18

Instruction status: Exec-\Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 9 10 Loadl| No
1 MULTD F4 FO F2 2 by 15 Load2
1 SD FA 0 R1| 3 Load3| Yes 64
6 0 11 Storel| Yes 80 [[80]*R2
7 15 16 Store2
8 Store3| Yes 64 Multl
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
Multl | Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 | No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30

18 64 Fu |Load3 Multl

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 19

Instruction status: Exec-Write
ITER Instruction J k Issue Compesult Busy Addr Fu
1 LD FO 0 R1 1 9 10 Loadl| No
1 MULTD F4 FO FR2 2 14 Load2
1 SD A0 RL| 3 18 Load3| Yes 64
6 10 Storel] No
7 = 16 Store2
8 - Store3| Yes 64 Multl
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl | No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
Multl | Yes Multd R(F2) Load3 SuBI R1 R1 #8
Mult2 | No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30

19 56 Fu |Load3 Multl

STUDENTS-HUB.com

https://students-hub.com

Loop Example Cycle 20

Instruction status: Exec Write

ITER Instruction J K e Comp-Result Busy Addr Fu

1 LD FO 0 R1 9 10 Loadl| Yes 56
1 MULTD F4 FO F2 15 Load2| No
1 SD F4 0 R1 Load3| Yes 64
2 LD FO 0 R1 Storel| No
2 MULTD F4 FO F2 Store2| No
2 SD F4 0 R1 Store3| Yes 64 Multl
Reservation Stations: S1 S2 RS
Time Name Busy Op Vj VK Qj Qk Code:
Addl [No LD FO 0 R1
Add2 | No MULTD F4 FO F2
Add3 | No SD F4 0 R1
Multl | Yes Multd R(F2) Load3 SUBI R1 R1 #8
Mult2 | No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 F10 F12 .. F30
20 56 Fu [Load1 Multl

 Once again: In-order issue, out-of-order execution
and out-of-order completion.

STUDENTS-HUB.com

https://students-hub.com

Why can Tomasulo overlap
iterations of loops?

e Register renaming

— Multiple iterations use different physical destinations for registers (dynamic
loop unrolling).

e Reservation stations

— Permit instruction issue to advance past integer control flow operations

— Also buffer old values of registers - totally avoiding the WAR stall that we
saw in the scoreboard.

e Other perspective: Tomasulo building data flow dependency
graph on the fly.

STUDENTS-HUB.com

https://students-hub.com

Explicit Register Renaming

e Make use of a physicalregister file that is larger than number of
registers specified by ISA

e Keep a translation table:
— ISA register => physical register mapping
— When register is written, replace table entry with new register from freelist.

— Physical register becomes free when not being used by any instructions in
progress.

* Pipeline can be exactly like “standard” DLX pipeline
— IF, ID, EX, etc....

e Advantages:
— Removes all WAR and WAW hazards
— Like Tomasulo, good for allowing full out-of-order completion
— Allows data to be fetched from a single register file
— Makes speculative execution/precise interrupts easier:

» All that needs to be “undone” for precise break point
is to undo the table mappings

STUDENTS-HUB.com

https://students-hub.com

Explicit Renaming Support Includes:

e Rapid access to a table of translations

e A physical register file that has more registers than
specified by the ISA

e Ability to figure out which physical registers are free.
— No free registers = stall on issue
e Thus, register renaming doesn’t require reservation

stations. However:

— Many modern architectures use explicit register renaming + Tomasulo-like
reservation stations to control execution.

STUDENTS-HUB.com

https://students-hub.com

What about Precise Exceptions/Interrupts?

e Both Scoreboard and Tomasulo have:
— In-order issue, out-of-order execution, out-of-order completion

e Recall: An interrupt or exception is preciseif there is a
single instruction for which:
— All instructions before that have committed their state

— No following instructions (including the interrupting instruction) have
modified any state.

e Need way to resynchronize execution with instruction stream
(I.e. with issue-order)

— Easiest way is with in-order completion (i.e. reorder buffer)
— Other Techniques: Future File, History Buffer

STUDENTS-HUB.com

https://students-hub.com

HW support for precise interrupts
e Concept of Reorder Buffer (ROB):

STUDENTS-HUB.com

Holds instructions in FIFO order, exactly as they were issued
» Each ROB entry contains PC, dest reg, result, exception status
When instructions complete, results placed into ROB

» Supplies operands to other instruction between execution
complete & commit = more registers like RS

» Tag results with ROB buffer number instead of reservation station
Instructions commit =values at head of ROB placed in registers

As a result, easy to undo y
speculated instructions Reorder
on mispredicted branches Buffer
or on exceptions

Commit path 1

[Res Stations] [Res Stations]

m

https://students-hub.com

Adding Speculation to Tomasulo

Must separate execution from allowing instruction to
finish or “commit”

This additional step called instruction commit

When an instruction is no longer speculative, allow it to
update the register file or memory

Requires additional set of buffers to hold results of
instructions that have finished execution but have not
committed

This reorder buffer (ROB) is also used to pass results
among instructions that may be speculated

STUDENTS-HUB.com

https://students-hub.com

Reorder Buffer (ROB)

e In Tomasulo’s algorithm, once an instruction writes its
result, any subsequently issued instructions will find
result in the register file

e With speculation, the register file is not updated until
the instruction commits
— (we know definitively that the instruction should execute)

 Thus, the ROB supplies operands in interval between
completion of instruction execution and instruction

commit

— ROB is a source of operands for instructions, just as reservation stations
(RS) provide operands in Tomasulo’s algorithm

— ROB extends architectured registers like RS

STUDENTS-HUB.com

https://students-hub.com

Tomasulos with Speculation

Reorder bufier *

From instruction unit
Floating-
paint
operation
queLe
Register no.
To memory
(data’address) -
Frm FF registers
Memaory
(load results)
Operand
Opearation bus buges
L
L | ¥

FP multipliers

Heservation
stations

Commaon data bus

STUDENTS-HUB.com

https://students-hub.com

Reorder Buffer Entry

e Each entry in the ROB contains four fields:
1. Instruction type

e abranch (has no destination result), a store (has a memory address
destination), or a register operation (ALU operation or load, which has
register destinations)

2. Destination

e Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
e Value of instruction result until the instruction commits
4. Ready

¢ Indicates that instruction has completed execution, and the value is
ready

STUDENTS-HUB.com

https://students-hub.com

Recall: 4 Steps of Speculative Tomasulo
Algorithm

1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & send operands &
reorder buffer no. for destination (this stage sometimes called “dispatch”)

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result;
when both in reservation station, execute; checks RAW (sometimes called
“issue”)

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update register with
result (or store to memory) and remove instr from reorder buffer. Mispredicted
branch flushes reorder buffer (sometimes called “graduation”)

STUDENTS-HUB.com

https://students-hub.com

Tomasulo With Reorder buffer:

FP-Op
Queue

Reorder Buffer

Registers

Dest

- Reservation
Stations

STUDENTS-HUB.com

Done?

FO

LD F0,10 (R2)

-

Dest

M
Dest *

To
Memory

from

emory

1

10+R2

Newest

Oldest

https://students-hub.com

Tomasulo With Reorder buffer:

FP-Op
Queue

Reorder Buffer

Registers

Dest
2 DD |R (F4) ,ROB1

- Reservation
Stations

STUDENTS-HUB.com

Done?
ROB7 Newest

F10 ADDD F10,F4,F0 Oldest
FO LD FO0,10 (R2)
To
Memory
Dest from
Memory
Dest *

1 |[10+R2

https://students-hub.com

Tomasulo With Reorder buffer:

FP-Op
Queue

Reorder Buffer

Registers

Dest
2 DD |R(F4) ,ROB1

=

STUDENTS-HUB.com

Reservation
Stations

Done?

ROB7

-

Dest

F2 DIVD F2,F1l0,F6
F10 ADDD F10,F4,F0
FO LD FO,10 (R2)

[3TDIVD [ROBZ2 ,R(F6)

To
Memory

fr'om
Memory

Dest *

1 |[10+R2

Newest

Oldest

https://students-hub.com

Tomasulo With Reorder buffer:

FP-Op
Queue

Reorder Buffer

Registers

Dest

2 ADDD |R (F4) ,ROB1
6 JADDD [ROB5, R(F6)

=

STUDENTS-HUB.com

Reservation
Stations

Done?
ROB7 Newest
FO ADDD FO,F4,F6 |N
F4 LD F4,0 (R3) N
- BNE F2,<.> N
F2 DIVD F2,Fl10,F6 | N
F10 ADDD F10,F4,F0 | N Oldest
FO LD FO,10(R2) N
To
Memory
Dest fr‘om
[3TDIVD [ROB2 ,R(F6) Memory
DesT*
—TT Hhs
51 0+R3

https://students-hub.com

Tomasulo With Reorder buffer:

FP-Op
Queue

Reorder Buffer

Registers

Dest

DD |R(F4) ,ROE1
6 DD |[ROB5, R(F6)

=

STUDENTS-HUB.com

Reservation
Stations

Done?
--| ROB5 |ST 0(R3),F4 N [[ROB7 Newest
FO ADDD FO,F4,F6 |N
F4 LD F4,0 (R3) N
- BNE F2,<.> N
F2 DIVD F2,F10,F6 | N
F10 ADDD F10,F4,F0 | N Oldest
FO LD FO,10(R2) N
To
Memory
Dest fr‘om
[3TDIVD [ROB2 ,R(F6) Memory
DesT*
1T [
51 0+R3

https://students-hub.com

Tomasulo With Reorder buffer:

Done?
FP-Op --| M[10] |[ST O(R3),F4 Y [ROB7 " Newest
Queue FO ADDD FO,F4,F6 |N
F4| M[10] |LD F4,0 (R3) Y
-- BNE F2,<.> N
Reorder Buffer F2 DIVD F2,F10,F6 | N
F10 ADDD F10,F4,F0 | N Oldest
FO LD F0,10 (R2) N
Registers To
Memory
Dest
DD [R (F4) ,ROBL Dest - fgr?\rcr:\r'y
& [ADDD [M[10] R (F6) [3]PIVD JROBZ R (F'6)
DesT*
Reservation 1 |]10+R2

Stations

=

STUDENTS-HUB.com

https://students-hub.com

Tomasulo With Reorder buffer:

Done?
FP-Op --| M[10] |[ST O(R3),F4 Y [ROB7 " Newest
Queue FO|<val2>|ADDD FO,F4,F6
F4| M[10] |LD F4,0(R3) Y
-- BNE F2,<.> N
Reorder Buffer | STVD 52 F10 F6 | N
F10 ADDD F10,F4,FO0 | N Oldest
FO LD FO0,10(R2) N
Registers To
Memory
Dest
2 DD |R(F4) ROB1 Dest = fg::‘r;\ry

[3DIVD [ROB2 R (F6)

- Reservation
Stations

Dest *

1 |[10+R2

STUDENTS-HUB.com

https://students-hub.com

Tomasulo With Reorder buffer:

FP-Op
Queue

Reorder Buffér

What about memory

hazards???
Registers
Dest
2 DD |R(F4) ,ROB1

STUDENTS-HUB.com

=

Reservation
Stations

--| M[10] | ST 0(R3),F4
FO|<val2>|ADDD FO,F4,F6
M LD F4,0 (R3)

ANE F2,<.>

DIVR F2,F10,F6

Fl0

ADDD %®10,F4,FO0

Oldest

LD FO,1W (R2)

Dest
3 [DIVD

-

[3TDIVD [ROBZ2 ,R(F6)

https://students-hub.com

Avoiding Memory Hazards

e WAW and WAR hazards through memory are
eliminated with speculation because actual updating of
memory occurs in order, when a store is at head of the
ROB, and hence, no earlier loads or stores can still be
pending

e RAW hazards through memory are maintained by two
restrictions:

1. not allowing a load to initiate the second step of its execution if any
active ROB entry occupied by a store has a Destination field that
matches the value of the A field of the load, and

2. maintaining the program order for the computation of an effective
address of a load with respect to all earlier stores.

e these restrictions ensure that any load that accesses a
memory location written to by an earlier store cannot
perform the memory access until the store has written
the data

STUDENTS-HUB.com

https://students-hub.com

Memory Disambiguation:
Sorting out RAW Hazards in memory

e Question: Given a load that follows a store in program order, are
the two related?

— (Alternatively: is there a RAW hazard between the store and the load)?

Eg: st 0 (R2) ,R5
1d R6,0 (R3)

e Can we go ahead and start the load early?

— Store address could be delayed for a long time by some calculation that leads to R2
(divide?).

— We might want to issue/begin execution of both operations in same cycle.

— Today: Answer is that we are not allowed to start load until we know that address
0(R2) # O(R3)

— Next : We might guess at whether or not they are dependent (called “dependence
speculation”) and use reorder buffer to fix up if we are wrong.

STUDENTS-HUB.com

https://students-hub.com

Hardware Support for Memory
Disambiguation

e Need buffer to keep track of all outstanding stores to memory, in
program order.

— Keep track of address (when becomes available) and value (when becomes
available)

— FIFO ordering: will retire stores from this buffer in program order

e When issuing a load, record current head of store queue (know
which stores are ahead of you).

e When have address for load, check store queue:

— If any store prior to load is waiting for its address, stall load.

— If load address matches earlier store address (associative lookup), then we have a
memory-induced RAW hazard.

» store value available = return value
» store value not available = return ROB number of source
— Otherwise, send out request to memory

e Actual stores commit in order, so no worry about WAR/WAW
hazards through memory.

STUDENTS-HUB.com

https://students-hub.com

Memory Disambiguation:

FP Op
Queue

Reorder Buffer

Registers

Dest

STUDRENTS-HUB.com J

Done?

ROB7 Newest

ROB6

ROB5

LD F4, 10 (R3)

ROB4

F2

R[F5] | ST 10(R3), F5

ROB3

FO

LD FO,32(R2)

ROEZY Oldest

—-kval 1>sT 0(R3), F4

Dest

-

Reservation
Stations

M
Dest *

KlZ2|2]|2

ROB1

To

Memory

from
emory

2

32+R2

/L

ROB3

https://students-hub.com

How much to speculate?

Speculation Pro: uncover events that would otherwise stall
the pipeline (cache misses)

Speculation Con: speculate costly if exceptional event occurs
when speculation was incorrect

Typical solution: speculation allows only low-cost exceptional
events (1st-level cache miss)

When expensive exceptional event occurs, (2nd-level cache
miss or TLB miss) processor waits until the instruction causing
event is no longer speculative before handling the event

Assuming single branch per cycle: future may speculate across
multiple branches!

STUDENTS-HUB.com

https://students-hub.com

Loop unrolling

SSSSSSSSSSSSSSSS

https://students-hub.com

Software Techniques - Example

e This code, add a scalar to a vector:
for (i=1000; 1i>0; i=i-1)
x[1i] = x[1i] + s;

e Assume following latencies for all examples
— Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result /n cycles /n cycles

FP ALU op Another FP ALU op 4 3

FP ALU op Store double 3 2

Load double FP ALU op 1 1

Load double Store double 1 0

Integer op Integer op 1 0

STUDENTS-HUB.com

https://students-hub.com

FP Loop: Where are the Hazards?
* First translate info MIPS code:

-To simplify, assume 8 is lowest address

Loop: L.D FO,0(R1l) ;FO=vector element
ADD.D F4,F0,F2 ;add scalar from F2
S.D O(R1l) ,F4 ;store result
DADDUI R1,R1l,-8 ;decrement pointer 8B (DW)
BNEZ Rl,Loop ;branch Rl!=zero

STUDENTS-HUB.com

https://students-hub.com

FP Loop Showing Stalls

1 Loop: L.D FO,0(Rl) ;FO=vector element

2 stall

3 ADD.D ,FO,F2 ;add scalar in F2

4 stall

5 stall

6 S.D O(R1l), ;store result

7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)
8 stall ;assumes can’t forward to branch
9 BNEZ R1l,Loop ;branch Rl!=zero

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

e 9 clock cycles: Rewrite code to minimize stalls?

STUDENTS-HUB.com

https://students-hub.com

Revised FP Loop Minimizing Stalls

1 Loop: L.D FO,0(R1)
2 DADDUI R1,R1, -8
3 ADD.D F4,F0,F2
4 stall
5 stall
6 S.D 8(R1l) ,F4 ;altered offset when move DSUBUI
7 BNEZ R1,Loop
Swap DADDUI and S.D by changing address of S.D
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop overhead;
How make faster?

STUDENTS-HUB.com

https://students-hub.com

Unroll Loop Four Times (straightforward way)

1 Loop:L.D FO,0(R1)

3 ADD.D F4,F0,F2

6 S.D O(R1l) ,F4

7 L.D F6,-8(R1)

9 ADD.D F8,F6,F2

12 S.D -8 (R1) ,F8
13 L.D F10,-16 (R1l)
15 ADD.D F12,F10,F2
18 S.D -16(R1) ,F12
19 L.D Fl14,-24 (R1)
21 ADD.D Fl1l6,F14,F2
24 S.D -24 (R1) ,Fle6
25 DADDUI R1,R1,#-32
26 BNEZ R1l, LOOP

1 cycle stall i
Rewrite loop to

2 cycles stall . e .
4 EZm|n|m|ze stalls?

;drop DSUBUI & BN
;drop DSUBUI & BNEZ

;drop DSUBUI & BNEZ

;alter to 4*8

27 clock cycles, or 6.75 per iteration
(Assumes R1 is multiple of 4)

STUDENTS-HUB.com

https://students-hub.com

Unrolled Loop That Minimizes Stalls

1 Loop:L.D FO,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16 (R1l)
4 L.D Fl14,-24 (R1l)
5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2
8 ADD.D F1l6,Fl14,F2
9 S.D O(R1l) ,F4

10 S.D -8 (R1) ,F8
11 S.D -16 (R1) ,F12
12 DSUBUI R1,R1, #32
13 S.D 8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

STUDENTS-HUB.com

https://students-hub.com

Unrolled Loop Detall

e Do not usually know upper bound of loop

e Suppose it is n, and we would like to unroll the loop to make k
copies of the body

e Instead of a single unrolled loop, we generate a pair of consecutive
loops:
— 1st executes (n mod k) times and has a body that is the original loop
— 2nd is the unrolled body surrounded by an outer loop that iterates (n/k) times

e For large values of n, most of the execution time will be spent in the
unrolled loop

STUDENTS-HUB.com

https://students-hub.com

5 Loop Unrolling Decisions

e Requires understanding how one instruction depends on another
and how the instructions can be changed or reordered given the
dependences:

1. Determine loop unrolling useful by finding that loop iterations
were independent (except for maintenance code)

2. Use different registers to avoid unnecessary constraints forced by
using same registers for different computations

3. Eliminate the extra test and branch instructions and adjust the loop
termination and iteration code

4. Determine that loads and stores in unrolled loop can be
interchanged by observing that loads and stores from different
iterations are independent

e Transformation requires analyzing memory addresses and finding that they do
not refer to the same address

5. Schedule the code, preserving any dependences needed to yield
the same result as the original code

STUDENTS-HUB.com

https://students-hub.com

3 Limits to Loop Unrolling

1. Decrease in amount of overhead amortized with each
extra unrolling
e Amdahl’s Law

2. Growth in code size
e For larger loops, concern it increases the instruction cache miss rate

3. Register pressure: potential shortfall in registers
created by aggressive unrolling and scheduling

e If not be possible to allocate all live values to registers, may lose some
or all of its advantage

e Loop unrolling reduces impact of branches on pipeline;
another way is branch prediction

STUDENTS-HUB.com

https://students-hub.com

Branch Prediction

SSSSSSSSSSSSSSSS

https://students-hub.com

Branch Prediction

e Guess the direction of a branch
e Guess its target if necessary

e Fetch instructions from there

e Execute Speculatively

— Without knowing whether we should

e Eventually, verify if prediction was correct
— If correct, good for us
— if not, well, discard and execute down the right path

STUDENTS-HUB.com

https://students-hub.com

For Example

while (1)
if (I->data == 0)
I->data++;
| = I->next

loop: beqrl, r0, done
Id r2, 0(rl)
bne r2, r0, noinc
inc: add r2,r2,1

st r2, 0(rl)
noinc: Id rl, 4(rl)
bra loop

done:

STUDENTS-HUB.com

https://students-hub.com

Branch Prediction Steps

e Elements of Branch Prediction
— Start with branch PC and answer:
— Why just PC? Early in the pipeline!
— Q17? Branch taken or not?
— Q2? Where to?
— Q3? Target Instruction

e All must be done to be successful
e Let’s consider these separately

STUDENTS-HUB.com

https://students-hub.com

Static Branch Prediction

e Static:

— Decisions do not take into account dynamic behavior
— Non-adaptive can be another term

e Always Taken

e Always Not-Taken

e Forward NT Backward T

e If Xthen ThbutifYthen NTbutifZthenT

— More elaborate schemes are possible

e Bottom line

— Accuracy is high but not high enough
— Say it’s 60%

STUDENTS-HUB.com

https://students-hub.com

Static Branch Prediction

-—Predict-branch-statically when-we-compile the program
« Simplest scheme is to predict all branches as taken

— Untaken branch frequency = 34% of all branch instructions (SPEC
programs)

— Or predict backward branches as taken and forward branches as
not taken

« Some processors allow branch prediction hints to be inserted in code

More accurate static 25% - 550%
scheme predicts 2 209 - 1506
branches using g m 15%
profile information S .o 15% T12%% o 12% W
] D= 11% =~ o, 10%
collected from earlier 23 10% - 9%
runs, and modify £sa o0 4% 6%
prediction based on = 77
last run 0% — LU
S NG o) O A N
&S 0 s @6‘ ®° T

A
v
A
v

STUDENTSHUB com Integer Floating Point

https://students-hub.com

Dynamic Branch Prediction

e Why? Larger window -> More opportunity for
parallelism

e Basic ldea:

— hardware guesses whether a branch will be taken, and if so where it
will go

e What makes these work?

— Past Branch Behavior STRONG indicator of future branch behavior

* Branches tend to exhibit regular behavior

STUDENTS-HUB.com

https://students-hub.com

Dynamic Branch Prediction

e Why does prediction work?
— Underlying algorithm has regularities
— Data that is being operated on has regularities

— Instruction sequence has redundancies that are artifacts of way that
humans/compilers think about problems

e Is dynamic branch prediction better than static branch
prediction?
— Seems to be

— There are a small number of important branches in programs which
have dynamic behavior

STUDENTS-HUB.com

https://students-hub.com

Dynamic Branch Prediction

e Performance = f(accuracy, cost of misprediction)
e Branch History Table (BHT)
e Lower bits of PC address = index to BHT table

— Each entry consists of few bits
— Says whether or not branch is predicted to be taken
— No address check

e 1-bit BHT is simplest to implement
— Record last branch outcome and uses it to predict future
— Problem: in a loop, 1-bit BHT will cause two mispredictions
— End of loop case, when it exits instead of looping as before

— First time through loop on nexttime through code, when it predicts exit instead of
looping

STUDENTS-HUB.com

https://students-hub.com

2-bit Predictors

e 2-bit scheme change prediction only if we get two
mispredictions

BHT = 2" entries

Program Counter 10

11 s Bra_nqh
Prediction

\ 4

Upper bits n bits

00

Strongly 01

Taken
11

11

00
Weakly Strongly 00

NI EUG) Not Taken

STUDENTS-HUB.com

https://students-hub.com

BHT Accuracy

 Mispredict because either:

— Wrong guess for that branch
— Got branch history of wrong branch when index the table

« 4096 entry table:

20% 418%
18%
16% -
14% -
12% -
10% -
8% -
6% -
4% -+
2% 1 0%
O% | | | | | | | | | |:l 1
o & . @ R O A
& 0?\0 6@ O) %Q\O 6060‘ 6Q\() \QQQ) \.\(;bg

<
%é > < Af‘}'\\'
]

Floating Point

=
®
S

(=]
N

N
(@

[EBEN
o

9% 9% 9%

Misprediction Rate

v

STUDENTS-HUB.com

https://students-hub.com

Correlating Predictors

e Branches from different instructions may be
correlated

if (aa < 0) aa = 0;

if (bb < 0) bb = 0;
if (aa '=bb) { . . .}
e If the first two conditions are true, then the third one

will be false
e Save history of all recent branch outcomes

e Global Branch History Register is a m-bit shift register
— Holds most recent m branch outcomes
— Approximation to path followed

SSSSSSSSSSSSSSSS

https://students-hub.com

Correlating Predictors

e Here is the MIPS code:

— Assuming that aa and bb are assigned to registers R1 and R2:

DADDIU R3,R1,#-2

BNEZ R3,L1 Jjbranch bl (aal=2)
DADD R1.RO.RO ;aa=0

L1: DADDIU R3,R2,#-2
BNEZ R3,L2 ;branch b2 (bb!=7)
DADD R2,R0,R0 i bb=0

L2: DSUBU R3.R1.R2 ;R3=aa-bb
BEQZ R3.L3 ;branch b3 (aa==bb)

— The key observation is that the behavior of branch b3 is correlated with
the behavior of branches b1 and b2.

— A predictor that uses only the behavior of a single branch to predict the
outcome of that branch can never capture this behavior.

STUDENTS-HUB.com

https://students-hub.com

Correlated Branch Prediction

e |ldea: record m most recently executed branches as
taken or not taken, and use that pattern to select the
proper n-bit branch history table

e In general, (m,n) predictor means record last m branches
to select between 2™ history tables, each with n-bit
counters

— Thus, old 2-bit BHT is a (0,2) predictor

e Global Branch History: m-bit shift register keeping T/NT
status of last m branches.

e Each entry in table has m n-bit predictors.

https://students-hub.com

Correlating Branches

Branch address

(2,2) predictor \‘\
4

— Behavior of recent
branches selects
between four
predictions of next
branch, updating just
that prediction s I —» mmm Prediction

2-bits per branch predictor

| | |
2-bit global branch history

STUDENTS-HUB.com

https://students-hub.com

Accuracy of Different Schemes

Frequency of Mispredictions

STUDENTS-HUB.com

20% T
18% T
16% T
14% T
12% T
10% T
8% T
6% T
4% T
2% T
0% -

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

nasa’
matrix300
tomcatv
doducd
spice
fpppp

gcc
expresso
eqntott

li

B 4.096 entries: 2-bits per entry B Unlimited entries: 2-bits/entry ® 1.024 entries (2.2

https://students-hub.com

ournament Predictors

Multilevel branch predictor

e Use n-bit saturating counter to select between predictors
e Usual choice between global and local predictors

e Ability to select the right predictor for a particular branch

SSSSSSSSSSSSSSSS

https://students-hub.com

Tournament Predictors

e Example of a tournament predictor using 29K bits and
used in Alpha 21264, Pentium 4, and Power 5.

e Uses 4K 2-bit counters indexed by local branch address
to select between:
e Global predictor
— 4K entries indexed by history of last 12 branches (212~ 4K)
— Each entry is a standard 2-bit predictor
e Local predictor is a 2-level predictor

— Local history table: 1024 10-bit entries recording last 10
branch outcomes, indexed by branch address

— The pattern of the last 10 occurrences of that particular
branch used to index table of 1K entries with 3-bit saturating
counters

SSSSSSSSSSSSSSSS

https://students-hub.com

Example of a Tournament Predictor

4 Qlobal Brar_lch 4K x 2-bit\ 4 1K x 10-bit 1K x 3-bit\
History Register entries entries entries
Updated on each 10 Program Counter 1011100110 101
branch outcome 11 10 0000110000 10 000

12 | 00 10 bits F>/1010101010f- | 100
GBHR = 12 bits > 01 0100000111 011
_ 2-Level Local ' M
Global Predictor . Predictor
N\ J
4 4K x 2—bP Global Local
Program Counter 10 Y
11)
12
12 bits > 00 \ Select Predlctor/
01
Tournament l
Predictor . Final Prediction

STUDENTS-HUB.com

https://students-hub.com

Local History Table
(1024 x 10 bits)

10 bits
(LSB)

1023

Shift left at every
local branch—
collecting local
history

Local

Predictor
1024 x 3 bits

PC |

STUDENTS-HUB.com

— [

Only the most significant bit is
used-> 0=NT, 1=T

or each NT branch, it is

Predictor
4096 x 2 bits

of
choices between
Local or Glob¥l
= Predictor

1 Choice
il

1 bit 1 bit

| Predictor
1| 4096 x 2 hits

12 bits

1bit ——

\ Selector / MSB of Choice Predictor L

A4

Branch
Prediction

12 bits

] «— Shift left

(Global) Path History

Keeps the history of branch
globally

https://students-hub.com

Example of a Tournament Predictor

e The value of the saturating counter determines whether
to choose the local or global predictor.

e How does the choice predictor determine this?

— Whenever the local counter is correct and the global counter is
incorrect, the choice predictor’s corresponding counter is decremented.

— Whenever the local counter is incorrect and the global counter is
correct, the choice predictor’s corresponding counter is incremented.

— |If the counters are both correct, or both incorrect, the choice
predictor’s corresponding counter is not changed.

Use predictor 2

Use predictor 2

0/0, 1/0, 11

Use predictor 1

on

/\V

Use predictor 1

A

1/0

STUDENTS-HUB.com =

https://students-hub.com

Comparing Predictors

e Advantage of tournament predictor is ability to select the

right predictor for a particular branch

— Particularly crucial for integer benchmarks.

— A typical tournament predictor will select the global predictor
almost 40% of the time for the SPEC integer benchmarks and less
than 15% of the time for the SPEC FP benchmarks

8%
Local 2-bit predictors
6% =
5% 1|
Conditional branch 4% K\—‘
misprediction rate s‘ . -
Correlating predictors
3%
A A
- Tournament predictors
1%
OO‘C A ' A A A i L 1 L L L A ' A J
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

STUDENTS-HUB.com

lotal predictor size

https://students-hub.com

Pentium 4 Misprediction Rate
(per 1000 instructions, not per branch)

STUDENTS-HUB.com

14 -

13 A

= - =
o [l N

(o)

Branch mispredictions per 1000 Instructions

Dx
f’
|

|
~ 6% misprediction rate per branch SPECint
(19% of SPECINT instructions are branch)

~ 2% misprediction rate per branch SPECfp

| (5% of SPECFP instructions are branch)
| 5

, . :

1 . :

SPECint2000

SPECprOOO

https://students-hub.com

Branch Target Buffers (BTB)

« Branch target calculation is costly and stalls the
Instruction fetch.

« BTB stores PCs the same way as caches
« The PC of abranch is sent to the BTB

« When a match is found the corresponding
Predicted PC is returned

* If the branch was predicted taken, instruction
fetch continues at the returned predicted PC

SSSSSSSSSSSSSSSS

https://students-hub.com

Branch Target Buffers

PC of instruction to fetch

Number of
entries

in branch-
target
buffer

Predicted PC

No: instruction is
not predicted to be Branch

STUDENTS-HUB.com

branch; proceed normally predicted
taken or

Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

© 2003 Elsevier Science (USA). All rights reserved.

https://students-hub.com

Branch
Target
Buffers

STUDENTS-HUB.com

Mo

Send PC to
memory and
branch-target
bufier

Entry found in

branch-target
bufier?

Mo

L

Mormal
instruction
execution

s
instruction
a taken
branch?

Send out
predicted
P

Yes

EX

L J

Enter Mispraedictaed
branch instruction branch, kill fetched
address and instruction; restart
next PC fetch at other
into branch target; delste
target bufier entry from
target buffer

L

Branch
cormectly
predicted;
continue
execution with
no stalls

https://students-hub.com

Branch Target Cache

e Similar to BTB, but we also want to get the tfarget instruction!

— Prediction returns not just the target address, but also the instruction
stored there

— Allows zero-cycle unconditionalbranches (branch-folding)
¢ Send target-instruction to ID rather than branch
¢ Branch is not even sent into pipe

» For conditional branches? Read Branch Target
Cache
I PC of instruction to fetch
Look up Predicted PC

'\

Number of

= . farget

butor instruction

s stored
1 here

No: instruction is
= not predicted to be Branch
branch; proceed normally predicted

taken or Target |nstruct|on

Yes: then instruction is branch and predicted untaken
PC should be used as the next PC

STUDENTS-HUB.com
© 2003 Elsevier Science (USA). All rights reserved.

http://tab.computer.org/tcca/NEWS/dec97/kavi.pdf
https://students-hub.com

Return Address Predictors

e Included in many recent processors
— Alpha 21264 => 12 entry RAS (Return Address Stack)

e Procedure returns account for ~85% of indirect jumps (jumps
whose address varies at run time). It will then return to many
different locations—BTB may not predict accurately,

* Therefore, small buffer of Return Addresses=cache of the
most recent return addresses

e Like a hardware stack, LIFO
— At Procedure Call => Push Return address onto stack
— Procedure Return => Prediction off of top of stack, Pop it

e RAS tends to work quite well since call depths are typically
not large

STUDENTS-HUB.com

https://students-hub.com

Relationship between precise
Interrupts and speculation:

e Speculation is a form of guessing.

e Important for branch prediction:
— Need to “take our best shot” at predicting branch direction.

— If we issue multiple instructions per cycle, lose lots of potential instructions
otherwise:

» Consider 4 instructions per cycle
» If take single cycle to decide on branch, waste from 4 - 7 instruction slots!

e |f we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly:

— This is exactly same as precise exceptions!

e Technique for both precise interrupts/exceptions and
speculation: /in-order completion or commit

STUDENTS-HUB.com

https://students-hub.com

Speculation to greater ILP

e 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions before
control dependences are resolved

+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

STUDENTS-HUB.com

https://students-hub.com

Getting CPI < 1:
Issuing Multiple Instructions/Cycle

e Vector Processing: Explicit coding of independent loops as
operations on large vectors of numbers

— Multimedia instructions being added to many processors

e Superscalar: varying no. instructions/cycle (1 to 8), scheduled
by compiler or by HW (Tomasulo)
— IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium Il11/4

e (Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by the compiler;
put ops into wide templates

— Intel Architecture-64 (IA-64) 64-bit address
» Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

e Anticipated success of multiple instructions lead to
Instructions Per Clock cycle (IPC) vs. CPI

STUDENTS-HUB.com

https://students-hub.com

Getting CPI < 1: Issuing Multiple
Instructions/Cycle

e Superscalar MIPS: 2 instructions, 1 FP & 1 anything
— Fetch 64-bits/clock cycle; Int on left, FP on right
— Can only issue 2nd instruction if 1st instruction issues
— More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

e 1 cycle load delay expands to 3 instructions in SS
— instruction in right half can’t use it, nor instructions in next slot

STUDENTS-HUB.com

https://students-hub.com

Multiple Issue Issues

e issue packet: group of instructions from fetch unit that
could potentially issue in 1 clock

— If instruction causes structural hazard or a data hazard either due to
earlier instruction in execution or to earlier instruction in issue packet,
then instruction does not issue

— 0 to N instruction issues per clock cycle, for N-issue

e Performing issue checks in 1 cycle could limit clock cycle
time:
— => issue stage usually split and pipelined

— 1st stage decides how many instructions from within this packet can
issue, 2nd stage examines hazards among selected instructions and those
already been issued

— => higher branch penalties => prediction accuracy important

STUDENTS-HUB.com

https://students-hub.com

Multiple Issue Challenges

e While Integer/FP split is simple for the HW, get CPI of 0.5 only for
programs with:

— Exactly 50% FP operations AND No hazards

e |f more instructions issue at same time, greater difficulty of
decode and issue:

— Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 1 or 2
instructions can issue

— Register file: need 2x reads and 1x writes/cycle

— Rename logic: must be able to rename same register multiple times in one cycle!
For instance, consider 4-way issue:

add rl, r2, r3 add pll, p4, p7
sub r4, rl, r2 = sub p22, pll, p4
1w , 4(r4) 1w , 4(p22)
add r5, , r2 add pl2, , p4

Imagine doing this transformation in a single cycle!
— Result buses: Need to complete multiple instructions/cycle

» S0, need multiple buses with associated matching logic at every reservation
station.

» Or, need multiple forwarding paths

STUDENTS-HUB.com

https://students-hub.com

Superscalar Dynamic Scheduling

e The Tomasulo dynamic scheduling algorithm is extended to issue more
than one instruction per cycle.

e However the restriction that instructions must issue in program order still
== holds to avoid violating instruction dependencies (construct correct
dependency graph dynamically).
— The result of issuing multiple instructions in one cycle should be the same as if they were
single-issued, one instruction per cycle.
e How to issue two instructions and keep in-order instruction issue for
Tomasulo?

e Simplest Method: Restrict Type of Instructions Issued Per Cycle

e To simplify the issue logic, issue one one integer + one floating-point
instruction per cycle (for a 2-way superscalar).

— 1 Tomasulo control for integer, 1 for floating point.

e FP loads/stores might cause a dependency between integer and FP issue:

— Replace load reservation stations with a load queue; operands must be read in the order
they are fetched (program order).

— Replace store reservation stations with a store queue; operands must be written in the
order they are fetched.

» Load checks addresses in Store Queue to avoid RAW violation

¢ (get load value from store queue if memory address matches)
STUDENTS-HUB.com » Store checks addresses in Load Queue to avoid WAR, and checks Store Queue to avoid WAW.

https://students-hub.com

Superscalar Dynamic Scheduling

Three techniques can be used to support multiple instruction issue in Tomasulo

without putting restrictions on the type of instructions issued per cycle:

1 Issue at a higher clock rate so that issue remains in order.

— For example for a 2-Issue supercalar issue at 2X Clock Rate.

Issue Issue
First — Second
Instruction Instruction

<+—— OneCycle —

2 Widen the issue logic to handle multiple instruction issue

— All possible dependencies between instructions to be issues are detected at once and the result of the multiple issue
matches in-order issue

2-1ssue superscalar

Check _i, lssue
Instruction N Both) . .
Dependencies Instructions 0, 1 or 2 instructions issued per cycle

for either method

<+<—— One Cycle —m

Why?

For correct dynamic construction of dependency graph:
The result of issuing multiple instructions in one cycle should
Redhesame as if they were single-issued, one instruction per cycle.

https://students-hub.com

Superscalar Dynamic Scheduling

3 To avoid increasing the CPU clock cycle time in the last two approaches,
multiple instruction issue can be spilt into two pipelined issue stages:

— Issue Stage One: Decide how many instructions can issue simultaneously
checking dependencies within the group of instructions to be issued + available
RSs, ignoring instructions already issued.

— Issue Stage Two: Examine dependencies among the selected instructions from
the group and the those already issued.

e This approach is usually used in dynamically-scheduled wide superscalars
that can issue four or more instructions per cycle.

e Splitting the issue into two pipelined staged increases the CPU pipeline
depth and increases branch penalties

— This increases the importance of accurate dynamic branch prediction
methods.

e Further pipelining of issue stages beyond two stages may be necessary as
CPU clock rates are increased.

* The dynamic scheduling/issue control logic for superscalars is generally
very complex growing at least quadratically with issue width.

— e.g 4 wide superscalar -> 4x4 = 16 times complexity of single issue CPU

STUDENTS-HUB.com

https://students-hub.com

Superscalar Dynamic Scheduling with Dual-issue

Memory

Issues at Executes at access at Write CDB it
Iteratic n clock cycle clock cycle clock cycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2 R2 #1 1 5 B Waitfor LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1.#8 2 3 4 Execute directly
1 BNE R2,R3,L0O0P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11 12 Wait for LW
2 sD R2.0(R1) 5 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 9 Wait for BNE
2 ENE R2 R3,L00P 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2 R2,#1 7 17 18 Wait for LW
3 sD R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,%#8 8 14 15 Wait for BNE
3 BNE R2 R3,LO0OP 9 19 Wait for DADDIU

STUDENTS-HUB.com

https://students-hub.com

Superscalar Dynamic Scheduling with Dual-issue

and speculation

Issues Executes Read Write Com-

Iter. at atclock# accessat CDB at mits at
Instructions clock # clock # clock # clock # | Comment
] LW R2 0(R1) | 2 3 4 5 First 1ssue
1 DADDIU R2,R2,#1 1 3 6 7 Wait for LW
1 SW O0(R1l),R2 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#4 2 3 4 8 Commit in order
1 ENE R2,R3,LOOP 3 7 8 Wait for ADDDI
2 LW R2,0(R1) 4 3 6 7 9 No execute delay
2 DADDIU R2 ,R2,#1 4 8 9 10 Wait for LW
2 SW O0(Rl),R2 3 6 10 Wait for DADDIU
2 DADDIU R1,R1, #4 5 6 7 11 Commit in order
2 ENE R2,R3,LOOP 6 10 11 Wait for DADDIU
3 LW R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW
3 SW O0(R1),R2 8 9 13 Wait for DADDIU
3 DADDIU R1,R1, #4 8 9 10 14 Executes earlier
3 ENE R2,R3,LOOP 9 11 14 Wait for DADDIU

STUDENTS-HUB.com

https://students-hub.com

Limits to ILP

e Conflicting studies of amount
— Benchmarks (vectorized Fortran FP vs. integer C programs)
— Hardware sophistication
— Compiler sophistication

e How much ILP is available using existing mechanisms with
increasing HW budgets?

Do we need to invent new HW/SW mechanisms to keep on
processor performance curve?
— Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
— Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
— Motorola AltaVec: 128 bit ints and FPs
— Supersparc Multimedia ops, etc.

STUDENTS-HUB.com

https://students-hub.com

Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming— infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction— perfect; no mispredictions

3. Jump prediction - all jumps perfectly predicted
2 & 3 => machine with perfect speculation & an unbounded
buffer of instructions available

4. Memory-address alias analysis— addresses are known & a
store can be moved before a load provided addresses not
equal

Also:
unlimited number of instructions issued/clock cycle; perfect

caches;
1 cycle latency for all instructions (FP *,/);

SSSSSSSS -HUB.com

https://students-hub.com

