N2l

SERIAL
COMMUNICATION

GGGGGG

https://students-hub.com

Serial and Parallel Data Transfer

* There are two different data transfer
types: parallel and serial.

 Parallel data transfer is used to achieve high
transfer speeds.

* One such application is receiving data from
a digital camera or feeding data to an LCD

* The disadvantage of parallel data transfer is
that it requires several pins to operate

STUDENTS-HUB.com

Transmitter

Y YYVYY VYYY

COOOOED

Receiver

https://students-hub.com

Serial and Parallel Data Transfer

* Serial data transfer provides an alternative such that it only needs
one or two pins.

* This allows communicating with more than one device at the same
time.

* The disadvantage of serial data transfer is that it is slow since data
should be transmitted sequentially

Transmitter (bo)o1)o2)b3)b4)b5) o6)b7) Receiver

STUDENTS-HUB.com

https://students-hub.com

Serial and Parallel Data Transfer

Serial Communication

(TTTTTTTTTmmmmmmmm e parity idle (TTTTTTmmmmmmm
'‘Transmitter: TX > RX] 'Receiver:
-------------------- | 1 1]e ef1]e]

Parallel Communication

ETransmitterE X

RX EReceiverE

av JUE S - TR U« TR o~ JE W |

VVVVVYVYVYY

STUDENTS-HUB.com

https://students-hub.com

Synchronous and Asynchronous Data Transfer

Device 1

Device 1

Tx .
Device 2
Rx
Tx
Device 2
Rx

Clk

https://students-hub.com

Synchronous and Asynchronous Data Transfer

e Data transfer in digital communication can be synchronous or
asynchronous.

* |n synchronous data transfer, the transmitter and receiver are
synchronized by a common clock signal.

* This synchronization signal can be sent along with data.

* The asynchronous data transfer does not need such a
synchronization signal. Instead, start and stop bits for each data
packet are sent. However, the transmitter and receiver should know
and agree upon the transfer speed beforehand.

STUDENTS-HUB.com

https://students-hub.com

Signal Representation and Line Formations

 We introduced how a bit is represented in voltage levels (HIGH and
LOW).

* |n serial communication, there are two different line formations
called single-ended and differential to transfer data.

 Single-ended signaling is the simplest method of transmitting digital
data. One wire carries a varying (Os and 1s) that represents data

* The transferred signal is represented as a changing voltage value with
respect to ground in the single-ended line

N Single-Ended (One Wire) Signaling N

STUDENTS-HUB.com

https://students-hub.com

Signal Representation and Line Formations

* Differential signaling, employs two complementary voltage signals in
order to transmit one information signal.

* One information signal requires a pair of conductors; one carries the
signal and the other carries the inverted signal.

* The transferred signal is represented by the difference of two opposite
voltage values in these lines

—E Transmitter | 0 1 0 0 x 0 x 0 E Reciever —

Differential (Two Wire) Signaling

STUDENTS-HUB.com

https://students-hub.com

Signal Representation and Line Formations

Differential (Two Wire) Signaling

STUDENTS-HUB.com

https://students-hub.com

Single-Ended Vs Differential

* The main advantage of single-ended over differential signaling is
that fewer wires are needed to transmit multiple signals.

* |f there are n signals, then there are n+1 wires, one for each
signal and one for ground, while differential signaling uses at
least 2n wires.

* The disadvantage of the single-ended line is that the transferred
signal is affected by noise and line length in long-range

STUDENTS-HUB.com

https://students-hub.com

Single-Ended Vs Differential

* The advantage of the differential line usage is that it is not
affected much by noise or range as in single-ended line.

* Hence, the differential line is used in long-range data transfer
most of the time.

* Besides, the voltage levels used in operation exceed the ones
available in the GPIO pins of the STM32F4 microcontroller.

Hence, extra circuitry may be needed to use the differential line
signal transfer.

STUDENTS-HUB.com

https://students-hub.com

Simplex, Half, and Full Duplex Communication

* There are three communication modes as
simplex, half, and full duplex to handle Simplex
communication direction preferences el . PR .
* The simplex mode has one-way (unidirectional)
communi Cat 10Nn. 5 'Fr;n-sr-ni-tt;ﬁ ‘:(i ' ;r;n-sr-ni-tt:eﬁ !

I Receiver): Receiver |

* In half duplex mode, two-way (bidirectional) ~ '-=====--" e memees
communication is possible. However, only one-

1 (Take turns)

--------- Full-Duplex ! 4 e 6 T

way communication can be done at once. | Transmitter > Receiver !
* In full duplex mode, two-way (bidirectional) | Recelver ——— ! Transmitter !
communication is possible. Moreover, the two- (Simultaneote)

way communication can be done at the same
time

STUDENTS-HUB.com

https://students-hub.com

Master and Slave Modes

* During data transfer between two or more devices, one can act
as master and the other as slave

* The master device generally starts the communication, asks
for information from slave devices, and controls them

* the master device is the one generating the clock signal in
synchronous communication

* The slave device is the one responding to the master or acting in
accordance with the master device commands

STUDENTS-HUB.com

https://students-hub.com

Baud Rate

* The baud rate indicates how many bits are transmitted in 1
second for digital systems having logic levels 0 and 1

* This also corresponds to the bit rate definition
* |t indicates the speed of data transfer
* the higher the baud rate, the faster the communication

STUDENTS-HUB.com

https://students-hub.com

UART Protocol

* UART stands for Universal Asynchronous Receiver /Transmitter and
defines a protocol, or set of rules, for exchanging serial data between

two devices

* UART is very simple and only uses two wires between transmitter and
receiver to transmit and receive in both directions

* There is also Universal Synchronous/Asynchronous
Receiver/Transmitter (USART)

* USART works in synchronous mode with an extra clock pin

Device 1 Device 2

TX TX

UART D<__> UART
Inteface RX RX Inteface
GND GND

STUDENTS-HUB.com

https://students-hub.com

UART Protocol

 UART is generally preferred when fast data transfer speed is not
needed. Hence, it is most of the times used for debugging and
programming a microcontroller.

e Besides, it is used to communicate two microcontrollers.

e If two microcontrollers on different boards need to communicate with
UART, a physical layer should be available such as RS232 or RS485.

* These will eliminate noise and power loss due to long-range signal
transfer.

STUDENTS-HUB.com

https://students-hub.com

UART Working Principles

Data transfer in UART can be done in frames.

Each frame is composed of the start bit and stop bit, data bits, and an optional parity
it.

idle data bits parity idle

41 110 ol1lol1lo

There can be 5 to 9 user data bits, although 7 or 8 bits is most common. These data
bits are usually transmitted with the least significant bit first.

Start and stop bits are available in each frame.
However, the parity bit can be used if needed. UART uses NRZ data encoding.
In general, UART uses the TTL voltage levels to represent signals.

STUDENTS-HUB.com

https://students-hub.com

UART Working Principles

Parity bit

* A UART frame can also contain an optional parity bit that can be used for error
detection.

* This bit is inserted between the end of the data bits and the stop bit.

* The value of the parity bit depends on the type of parity being used (even or odd):

o In even parity, the bits whose value is 1 are counted. If that count is odd, the parity bit value is
setto1l

o In odd parity, the bits whose value is 1 are counted. If that count is even, the parity bit value
issetto 1

Data(7-bit) | Count of 1-bits | Even parity Odd parity
0000000 0 0 1
1010001 3 1 0
1101001 il 0 1
1111111 7 1 0

STUDENTS-HUB.com

https://students-hub.com

UART Working Principles

* UART can work in either full duplex, half duplex, or simplex modes.

* |n the full duplex mode, there are two pins called Rx (receive) and Tx
(transmit).

* |In the half duplex mode, the Tx pin is used for both as Tx and Rx.

* |In the simplex mode, Tx pin of one device is connected to Rx pin of the
other device.

* The remaining pins are not connected.
* The master and slave definitions do not apply to UART.

 The most common UART baud rates in use today are 4800, 9600, 19.2K,
57.6K, and 115.2K

STUDENTS-HUB.com

https://students-hub.com

UART Working Principles

* |f two devices need to communicate with UART, a physical layer should be available such as
RS232 or RS485.

* These will eliminate noise and power loss due to long-range signal transfer

3.3V
t 16
0.1pF _Tii |
e Vee 2
u1th]‘— R IS
: 3
T MAX3232 Lowr
4 6
c2 .
orpF ' L
e T__ 5] c2- EUJUF
1 TI0UT
- — 17N > 14
Rx TTLICMOS RS-232
INPUTS OUTPUTS —>B
STM32F4 10| T2m rout|7 RX —?O
X —;;—00
—15°
_ 12| riout] s AP
O
TTLCMOS) RS-232 |
GND OUTPUTS INPUTS =
9| RooUT —ron| 8
- -
GND
— 15

STUDENTS-HUB.com =

https://students-hub.com

UART Modules in the STM32F4 Microcontroller

e The STM32F4 microcontroller has four
UART modules called UART4, UARTS,
UART7, and UARTS.

* [t also has four USART modules USART1,
USART2, USART3, and USART6. These
modules can be used in UART mode.

* The clock pin (SCLK) and HW flow
control pins (RTS and CTS) will not be
used when UART is active

STUDENTS-HUB.com

PCLK1

Clock

SCLK

Control

Data
Control

TX

RTS

Hardware
Flow
Control

CTS

Registers

UART/USART

https://students-hub.com

UART Modules in the STM32F4 Microcontroller

* The USART1 and USART6 can reach baud rates up to 11.25
Mbits/s.

* The other modules can reach a maximum baud rate of 5.625
Mbits/s.

* All supported baud rate values for UART and USART modules are
given in the datasheet

https://students-hub.com

Setup UART via CubelDE

Create a New Project:
e Open CubelDE and create a new STM32 project.
* Select the appropriate STM32 microcontroller model for your project.

Configure System Clock:

* In the "Pinout & Configuration" tab, configure the system clock settings. This is essential for
the proper functioning of the UART.

Configure UART Pins:
* In the "Pinout & Configuration" tab, configure the GPIO pins that are connected to Rx and Tx
pins
* Map these pins to the UART peripheral.
Select UART Mode:
* Under the “Connectivity” section, select the “Asynchronous” option for UART mode

STUDENTS-HUB.com

https://students-hub.com

Setup UART via CubelDE - Cont.

+ Configure UART Settings:

Reset Configuration

* In the "Parameter Settings" tab, configure the

UART parameters such as baud rate, word e T
User Lonstants SWVIL setlings
length, etc.
> Configure UART Working mOde: Configure the below parameters : “
Q
* The UART module can operate in two modes - Basic Parameters
as blocking (polling) or nonblocking Baud Rate 115200 Bitss
(interru pt) Ward Length 8 Bits (including Parity)
Parity Mone
* If an interrupt is not required, then this step Stop Bits 2
can be skipped. Otherwise, the UART interrupt =~ AdvancedParameters | |
. Data Direction Receive and Transmit

configuration menu

STUDENTS-HUB.com

https://students-hub.com

Setup UART via CubelDE

e Write UART Code:

e Open the generated code files, typically in
the "Src" folder.

* Locate the file named main.c or similar,
and add your UART code.

* There are two functions for blocking (polling)
mode operation of the UART module.

« HAL UART_Transmit can be used to send
data.

« HAL UART_Receive can be used to receive
data in blocking mode.

STUDENTS-HUB.com

HAL UART_ Transmit (UART HandleTypeDef *huart , uint8 t *pData

J

uintlé t Size , uint32_t Timeout)

/*

huart: pointer to the UART _HandleTypeDef struct

pData: pointer to data buffer

Size: size of data elements to be sent

Timeout: timeout duration

*/

HAL UART Receive(UART HandleTypeDef *huart , uint8 t *pData

J

uintl6e_t Size , uint32_t Timeout)

/*

Size: size of data elements to be received
Y

https://students-hub.com

Setup UART via CubelDE

e Write UART Code — cont.

* There are two functions for non-blocking
(interrupt) mode operation of UART
module:

* HAL UART _Transmit_IT can be used to send

data in nonblocking mode.

« HAL UART_Receive IT can be used to
receive data in non-blocking mode.

* If the UART interrupt has been enabled and
data is sent or received, then the following

callback function is called:
« HAL_UART_TxCpltCallback or
 HAL_UART_RxCpltCallback is called.

* The user can define his function, and the
predefined weak functions are ignored

STUDENTS-HUB.com

HAL _UART_Transmit IT(UART HandleTypeDef *huart , uint8_t *pData ,
uintle_t Size)

/*

huart: pointer to the UART_HandleTypeDef struct

pData: pointer to data buffer

Size: size of data elements to be sent

*/

HAL_UART_Receive_ IT(UART_HandleTypeDef *huart , uint8_t *pData ,
uintle_t Size)

/*

Size: size of data elements to be received

*/

void HAL_UART_TxCpltCallback (UART_HandleTypeDef *huart)

void HAL_UART_RxCpltCallback (UART_HandleTypeDef *huart)

https://students-hub.com

UART Example- Blocking mode

* In this example, the UART module
is configured in blocking mode

* A string and counter value is sent to PC
from the STM32F4 microcontroller via
UART1.

* The green LED connected to pin PA13 of
the STM32F4 board is toggled once data
is transmitted.

* On the PCside, we should use an
application, such as PuTTY or Tera Term,
to receive data sent from the STM32F4
microcontroller

STUDENTS-HUB.com

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */
/* USER CODE BEGIN PV */
uint8 _t serData[] = " STM32F4 UART PC Example
uint8_t decNum[6];
uintl6_t counter = 0;
/* USER CODE END PV */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
sprintf(decNum , "%d", counter++);
HAL_UART_Transmit (&huartl , decNum ,
(uintl6_t)sizeof(decNum),
1000) ;
HAL_UART_Transmit (&huartl , serData ,
(uintl6_t)sizeof(serData),
1000) ;
HAL_GPIO TogglePin(GPIOA , GPIO PIN_13);
HAL Delay(2000);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */

}
/* USER CODE END 3 */

https://students-hub.com

UART Example — Non blocking mode

* In this example, the UART module
is configured in blocking mode

* This time when the character g’ is
received, the green LED connected to pin
PA13 of the STM32F4 is toggled.

* When the character’r’ is received, the
red LED connected to pin PA14 of the
STM32F4 is toggled.

* To test the code, send the characters 'r’
and g’ from the host PC to the STM32F4
microcontroller. Hence, we can observe
that the red and green LEDs toggle.

STUDENTS-HUB.com

/* USER CODE BEGIN PV */
uint8 t serRxData;
/* USER CODE END PV */
/* USER CODE BEGIN © */
void HAL UART RxCpltCallback(UART_HandleTypeDef
*huart)
{
if (serRxData == ’g’)
HAL GPIO TogglePin(GPIOA , GPIO PIN _13);

else if (serRxData == ’r’)
HAL GPIO TogglePin(GPIOA , GPIO PIN 14);
__NOP();

HAL UART Receive IT(&huartl , &serRxData , 1);
}
/* USER CODE END © */
/* USER CODE BEGIN 2 */
HAL UART Receive IT(&huartl , &serRxData , 1);
/* USER CODE END 2 */

https://students-hub.com

SPI1 Protocol

* The second digital communication type we will be introducing is the
serial peripheral interface (SPI)

* SPI has an 8 or 16-bit frame consisting of only data. Hence, no start,
stop, or parity bits are used in the frame.

* SPI can work in half or full duplex mode. Moreover, if we do not
receive data from the slave in the full-duplex mode it works in simplex
mode.

* SPI can work in either master or slave mode based on the application.
* The master device generates the clock signal.

STUDENTS-HUB.com

https://students-hub.com

SPI1 Protocol

e More than one slave device can be

connected to the communication
Iine. SPI

* In this setting, the SPI master chip e

MISO
MOSI
CLK
sl
e

select (CS) pins should be used to
select which slave to be
communicated to.

* In this setup, one dedicated CS pin
should be used for each slave device.

STUDENTS-HUB.com

MISO
MOSI
CLEK
5

5P1
Slave

MISO
MOSI
CLK
Cs

SPI
Slave

https://students-hub.com

SPI1 Protocol

* There are four pins in operation
e (MISO) as master-in/ slave-out
e (MOSI) master-out/ slave-in
e (SCLK) serial clock
* (NSS) Active-low slave select or (CS) user-specific pin

* When the device is in master mode, MISO works for data input, MOSI for
Iclata out 3|t, SCLK as clock output, and NSS as slave select output (in active
ow mode

 When the device is in slave mode, MISO works for data output, MOSI for
datg ir)mput, SCLK as clock input, and NSS as slave select input (in active low
mode).

STUDENTS-HUB.com

https://students-hub.com

SPI1 Protocol

MASTER SLAVE
SCK - SCK
MOSI > MOSI
MISO 3 MISO
SS ss
Master to Slave Slave to Master
idle next byte
Mastar FE - R
01234567 01234567
— | p— | —
MOSI _J
Master-Out SN SUNSH B BN By W
Slave-in 11001010
0x53 = ASCII 'S’
MISO
Master-in
Slave-0ut

after last
S5 byte sent
Slave-Select or received
-

STUDENTS-HUB.com

https://students-hub.com

SPI Working Principles

e Data transfer between the master and slave devices occurs in serial
mode between MOSI and MISO pins.

* The most significant bit is sent first in data transfer. Moreover,
communication is initiated by the master device.

* When the master device transmits data to a slave device via the MOSI
pin, the slave device responds via the MISO pin. This implies full
duplex communication with both data out and data in, synchronized
with the same clock signal (which is provided by the master device via

the SCK pin).

STUDENTS-HUB.com

https://students-hub.com

SPI Working Principles

» SPl operation is based on shift registers (8-bit or 16-bit).

* Each devices (master and slave) uses shift registers to shift data in and
out of the system.

o MO3l MOSI o

SPI shift register SPI shift register)"I
—{716[5]4]3[2] 1] 0k} =24[7[6]5[4]3[2] 1]0

o SPCLK SPC LK.

SPI clock
generator 55:- * _ 1

Master MCU GO Slave MCU

STUDENTS-HUB.com

https://students-hub.com

SPI Working Principles

 Shift registers in the master and slave devices feed 1 bit to
their output at each clock pulse generated by the master
device.

* Since the master output pin is connected to the slave input
pin, the bit fed from the master device shift register is
received by the shift register in the slave device.

 Likewise, the master input is connected to the slave output.
Hence, the bit fed from the shift register of the slave device
is fed to the shift register in the master device.

* As the master device generates eight clock pulses, 1 data
byte is transferred between the master and slave devices.

STUDENTS-HUB.com

https://students-hub.com

SPI Modules in the STM32F4 Microcontroller

Shift Register

A7 A6 A5 A4 A3 A2 A1 AO

Data In

Master

Clock
ITLIL

Data Qut

. Shift Register
Vo> B7[B6|BS[B4[B3[B2[B1]BO
Data In + Data Out
SCK
MISO Slave

.

STUDENTS-HUB.com

i

https://students-hub.com

SPI Working Principles

» Usually shift register won’t be directly accessible
* |f we need to transmit data, we will write it to the buffer register.

* If the master or slave device will transfer new data, it is first written to the
Tx FIFO buffer.

* This enables the device to automatically write to the shift register when it
is free, then the transmission will start.

* Similarly, data is received in the shift register is automatically transferred
to a buffer register once the reception is complete.

* Using buffer registers avoid all glitches that can happen if we try to read or
write to the shift register directly while transmission is taking place

STUDENTS-HUB.com

https://students-hub.com

SPI Working Principles

Buffer Register Buffer Register

8 i

= Shift Register M : Shift Register
Data In + Data Out Data In T Data Out
Clock SCK
Master JLIL MISO Slave

. . .. v

STUDENTS-HUB.com

https://students-hub.com

SPI Working Principles

* |[n SPI, the main can select the clock polarity and clock phase.
* The CPOL bit sets the polarity of the clock signal during the idle state.

* The idle state is defined as the period when CS is high and transitioning to
low at the start of the transmission and when CS is low and transitioning to
high at the end of the transmission.

* The CPHA bit selects the clock phase. Depending on the CPHA bit, the
rising or falling clock edge is used to sample and/or shift the data.

STUDENTS-HUB.com

https://students-hub.com

SPI Working Principles

CPHA =1

CPOL=0 | ll I i I {I I il |I i | i | i

S) G O 0 T O O)

LRI CT SN EE SN ED SN SN CIib
L Vo L Vo r

(to slave)

I =5 G5 5 B3 S5 68 D C2 (/s

STUDENTS-HUB.com

https://students-hub.com

SPI Working Principles

 The combinations of polarity and phases are referred to by these "SPI mode"
numbers with CPOL as the high order bit and CPHA as the low order bit:

STUDENTS-HUB.com

Mif:’lle Clﬂ(r::gpignli?rity Cl?é:::z?se Data is sampled on Data is shifted out on
0 0 0 Rising Falling
1 0 1 Falling Rising
2 1 0 Falling Rising
3 1 1 Rising Falling

https://students-hub.com

SPI Modules in the STM32F4 Microcontroller

* The STM32F4 microcontroller has up to six SPI
modules as SPI1, SP12, SPI13, SP14, SPI5, and SPI6.

* Each module can work either in master or slave
mode.

* They can also work in half or full duplex modes.

* SPI modules use the peripheral clock as the clock
signal.

 The master device has its own clock prescaler

PCLK1/PCLK2

MOSI

MISO

(inside baud rate gzenerator) so that the clock signal

can be divided by 2, 4, 8, 16, 32, 64, 128, or 256.

* The resulting clock signal will decide on the baud
rate

STUDENTS-HUB.com

SCLK

NSS

Rx FIFO
Communication j—

and Shift

CRC Register
Controller
T A —» TxFIFO
e »| Baud Rate
Generator
—>

NSS Logic

Registers

SPI

https://students-hub.com

SPI Modules in the STM32F4 Microcontroller

* SPI1, SPI4, SPI5, and SPI6 modules use

MOSI

MISO

SCLK

the APB2 peripheral clock (PCLK2). — £

Hence, the maximum baud rate can be - D

45 Mbits/s. 5
* The SPI2 and SPI3 modules use the T

APB1 peripheral clock (PCLK1). This | M -

may result in the maximum baud rate

of 22.5 Mbits/s

NSS

Registers

SPI

STUDENTS-HUB.com

https://students-hub.com

SPI Modules in the STM32F4 Microcontroller

* The shift register in the module has an essential

role in data transfer. Rx FIFO

* The communication and CRC controller blocks are o a Mos|
responsible for readm%:)and writing data coming ana st MISO
from software to FIFO buffer modules. Wi I8 nEga

. . A

* Moreover, they are responsible for interrupt X O
generation. T

* If the SPI module is selected as master, the NSS petkipeikz > aud Rate

1 1 1 SCLK

logic module becomes responsible for setting the 5| Generator
output and selecting the slave device.

 |f the SPI module is selected as slave, then the NSS NSS Logic me

logic module activates the read/write operation. £

Registers

SPI

STUDENTS-HUB.com

https://students-hub.com

Setup SPI via CubelDE

Create a New Project:
e Open CubelDE and create a new STM32 project.
* Select the appropriate STM32 microcontroller model for your project.

Configure System Clock:

* In the "Pinout & Configuration" tab, configure the system clock settings. This is essential for
the proper functioning of the SPI.

Configure UART Pins:

* Inthe "Pinout & Configuration" tab, configure the GPIO pins that are connected to MOSI,
MISO, SCLK and CS pins

* Map these pins to the SPI peripheral.

Select UART Mode:

e Under the “Connectivity” section, select the “mode” option for SPI (Full-Duplex master, full-
duplex slave, half-duplex master, etc.)

STUDENTS-HUB.com

https://students-hub.com

Setup SPI via CubelDE — Cont.

* Configure SPI Settings: figurat

* In the "Parameter Settings" tab, configure the

SP| parameters such as frame format, data
size, etc.

& User Constz 1r|’rL

& Parameter Settings

Configure the below parameters :

* Configure SPI working mode:

Q

 The UART module can operate in two modes - Basic Parameters
as blocking (polling) or nonblocking Frame Format ~ Motorola
. Data Size 8 Bits
(Interru pt)) First Bit MSB First
* If an interrupt is not required, then this step ~ Clock Parameters
can be skipped. Otherwise, the UART interrupt sl
should be enabled from the NVIC tab in the Clock Polarity (CPO... Low

» Advanced Parameters

STUDENTS-HUB.com

https://students-hub.com

Setup SPI via CubelDE — Cont.

e Configure a GPIO Pin as a CS:

* In the "GPIO configuration" tab, configure the
CS pin and select the "GPIO output level" to PA12 Configuration
"H Igh . GPIO output level High %

* Whenever you want to send data using SPI,

. . . GPIO mode QOutput Push Pull s
this pin should drive low.

GPIO Pull-up/Pull-down No pull-up and no pull-down -

STUDENTS-HUB.com

https://students-hub.com

Setup SPI via CubelDE — Cont.

* HAL functions in polling mode:

* The function HAL_SPIl_Transmit can be used to send data.

* The function HAL_SPI_Receive can be used to receive data in blocking mode.
* HAL functions in interrupt mode:

* The function HAL_SPI Transmit_IT can be used to send data.

* The function HAL_SPI_Receive_IT can be used to receive data in non-blocking mode.

 If the SPI interrupt is enabled, and data is sent or received, then the callback function
HAL_SPI_TxCpltCallback or HAL_SPI_RxCpltCallback is called.

STUDENTS-HUB.com

https://students-hub.com

Inter-integrated Circuit (12C)

The third digital communication type we will be using is the inter-integrated
circuit (12C) data.

e 12C is generally used for communication between a microcontroller and one or
more external devices.

* More specifically, 12C is suitable for setting an external device through its
registers and reading data from it.

* It allows reaching a maximum of 128 such (with 7-bit address) in standard mode
and 1024 devices (with 10-bit address) in extended mode.

* In these modes, 12C simplifies circuit connection and address management while
reaching external devices.

* Primarily used for short distance data communication
* Two wires: serial clock (SCL) and serial data (SDA)

STUDENTS-HUB.com

https://students-hub.com

Inter-integrated Circuit (12C)

e |2C has both the master and slave modes.
 Both master and slaves can send/ receive data

* |2Cis a synchronous master-slave protocol, and it works in half-duplex
mode

* The clock is generated by the master device.

* Moreover, the communication is always started by the master device. 12C
has standard and fast data transfer modes

* |2C can run at different speeds

STUDENTS-HUB.com

https://students-hub.com

12C basic topology

SSSSSSSSSSSSSSSS

Master

Vbp

Slave 1

— hﬂ

Slave 2

Slave N

https://students-hub.com

Overview of 12C frames

4 7 address bits 8 data bits ' *

i =

A6 | A5 | A4 A3XA2XA1 A0 JRIWAACK
T) Y o e 4

4’07} D6 | D5 | D4 | D3 | D2 | D1 | DO YACK{ |:
i ; LT | B | N | P L L L 4

v
- e .

Start condition: i ; . ’ v ACK/NACK: A '1' in this position . Stop condition:
1' - Controller is requesting data P . :
SDA goes low before SCL % Controllaria seﬂding cfata indicates that the addressed . SDA goes high after SCL
peripheral did not respond or
was unable to process the request.

STUDENTS-HUB.com

https://students-hub.com

12C working principle

 The master device sends the address of the
slave device it needs to communicate with.

Addicore 12C Backpack Addresses
PCF8574AT | PCF8574T

* Each 12C node on a bus must have a unique, |re] el T

fixed address (7-bit or 10-bit) o —
* Slave address may be hard-coded T T T
0x38 0x20 bridged bridged bridged |

* Slave address may be (partially) configurable
via external jumpers or zero-ohm resistors

STUDENTS-HUB.com

https://students-hub.com

12C working principle

 The master device can send or receive data to the slave. This is declared in
the read/write (R/W) bit sent along the address.

* R/W bit is often interpreted and/or decoded as part of the address byte

* The slave device sends an acknowledge (ACK) bit each time a byte of data
or after the slave address is received.

* ACK after a data byte(s) confirms receipt of data

e ACK after slave address confirms that:

o A slave with that address is on the bus
o The slave is ready to read/ write data (depending on R/W bit)

STUDENTS-HUB.com

https://students-hub.com

12C working principle

* The data byte contains the
information being transferred
between the master and slave:

o The data could be the content of

a memory address or register in the / = X g X DSX D4X s an X o X - \ACK
slave device

* The data is always 8-bit long with

MSB first. \

STUDENTS-HUB.com

https://students-hub.com

Multiple data bytes

* Multiple data bytes can be sent in one 12C frame (each byte is followed
by ACK)

* Bytes could be all "data" or some may represent an internal address in
the slave device

1 g 1 d 1 Y]

SCL

N _/ 1 0 0 o ’ Rw 7A 4A 3 mam Dz/ 01 Da /_

Start by ACK by ACK by ACK by ACK by Stop by
Master slave slave slave slave Master

STUDENTS-HUB.com

https://students-hub.com

12C working principle

e Each line (SDA and SCL) is connected to a voltage (VDD) via a pull-up resistor
* Typical pull-up resistor values are in the range of 1KQ to 10 KQ

VDD
% Rpull-upi
T * > SCL or SDA

High |: llol ;

STUDENTS-HUB.com = o o o o o oo oo oo o o o o o o

https://students-hub.com

12C working principle

* |2C can operate at different bus speeds (referred as "modes")
* The STM32F4x family does not support high-speed mode

STUDENTS-HUB.com

MODE

DATA RATE

NOTES

STANDARD MODE

UP TO 100kBPS

SUPPORTED BY STM32F4x

FAST MODE

UP TO 400Kbps

SUPPORTED BY STM32F4x

FAST MODE+

UP TO 1Mbps

SUPPORTED BY SOME STM32F4x MCUs

HIGH SPEED MODE

UP TO 3.4Mbps

SUPPORTED BY STM32F4x

https://students-hub.com

Questions?

https://students-hub.com

	Slide 1: Serial communication
	Slide 2: Serial and Parallel Data Transfer
	Slide 3: Serial and Parallel Data Transfer
	Slide 4: Serial and Parallel Data Transfer
	Slide 5: Synchronous and Asynchronous Data Transfer
	Slide 6: Synchronous and Asynchronous Data Transfer
	Slide 7: Signal Representation and Line Formations
	Slide 8: Signal Representation and Line Formations
	Slide 9: Signal Representation and Line Formations
	Slide 10: Single-Ended Vs Differential
	Slide 11: Single-Ended Vs Differential
	Slide 12: Simplex, Half, and Full Duplex Communication
	Slide 13: Master and Slave Modes
	Slide 14: Baud Rate
	Slide 15: UART Protocol
	Slide 16: UART Protocol
	Slide 17: UART Working Principles
	Slide 18: UART Working Principles
	Slide 19: UART Working Principles
	Slide 20: UART Working Principles
	Slide 21: UART Modules in the STM32F4 Microcontroller
	Slide 22: UART Modules in the STM32F4 Microcontroller
	Slide 23: Setup UART via CubeIDE
	Slide 24: Setup UART via CubeIDE – Cont.
	Slide 25: Setup UART via CubeIDE
	Slide 26: Setup UART via CubeIDE
	Slide 27: UART Example- Blocking mode
	Slide 28: UART Example – Non blocking mode
	Slide 29: SPI Protocol
	Slide 30: SPI Protocol
	Slide 31: SPI Protocol
	Slide 32: SPI Protocol
	Slide 33: SPI Working Principles
	Slide 34: SPI Working Principles
	Slide 35: SPI Working Principles
	Slide 36: SPI Modules in the STM32F4 Microcontroller
	Slide 37: SPI Working Principles
	Slide 38: SPI Working Principles
	Slide 39: SPI Working Principles
	Slide 40: SPI Working Principles
	Slide 41: SPI Working Principles
	Slide 42: SPI Modules in the STM32F4 Microcontroller
	Slide 43: SPI Modules in the STM32F4 Microcontroller
	Slide 44: SPI Modules in the STM32F4 Microcontroller
	Slide 45: Setup SPI via CubeIDE
	Slide 46: Setup SPI via CubeIDE – Cont.
	Slide 47: Setup SPI via CubeIDE – Cont.
	Slide 48: Setup SPI via CubeIDE – Cont.
	Slide 49: Inter-integrated Circuit (I2C)
	Slide 50: Inter-integrated Circuit (I2C)
	Slide 51: I2C basic topology
	Slide 52: Overview of I2C frames
	Slide 53: I2C working principle
	Slide 54: I2C working principle
	Slide 55: I2C working principle
	Slide 56: Multiple data bytes
	Slide 57: I2C working principle
	Slide 58: I2C working principle
	Slide 59: Questions?

