
SERIAL 
COMMUNICATION
Shadi Daana

STUDENTS-HUB.com

https://students-hub.com


Serial and Parallel Data Transfer

• There are two different data transfer 
types: parallel and serial.

• Parallel data transfer is used to achieve high 
transfer speeds.

• One such application is receiving data from 
a digital camera or feeding data to an LCD 

• The disadvantage of parallel data transfer is 
that it requires several pins to operate 

STUDENTS-HUB.com

https://students-hub.com


Serial and Parallel Data Transfer

• Serial data transfer provides an alternative such that it only needs 
one or two pins.

• This allows communicating with more than one device at the same 
time. 

• The disadvantage of serial data transfer is that it is slow since data 
should be transmitted sequentially 

STUDENTS-HUB.com

https://students-hub.com


Serial and Parallel Data Transfer

STUDENTS-HUB.com

https://students-hub.com


Synchronous and Asynchronous Data Transfer

STUDENTS-HUB.com

https://students-hub.com


Synchronous and Asynchronous Data Transfer

• Data transfer in digital communication can be synchronous or 
asynchronous.

• In synchronous data transfer, the transmitter and receiver are 
synchronized by a common clock signal. 

• This synchronization signal can be sent along with data. 

• The asynchronous data transfer does not need such a 
synchronization signal. Instead, start and stop bits for each data 
packet are sent. However, the transmitter and receiver should know 
and agree upon the transfer speed beforehand. 

STUDENTS-HUB.com

https://students-hub.com


Signal Representation and Line Formations 

• We introduced how a bit is represented in voltage levels (HIGH and 
LOW).

• In serial communication, there are two different line formations 
called single-ended and differential to transfer data.

• Single-ended signaling is the simplest method of transmitting digital 
data. One wire carries a varying (0s and 1s) that represents data

• The transferred signal is represented as a changing voltage value with 
respect to ground in the single-ended line

STUDENTS-HUB.com

https://students-hub.com


Signal Representation and Line Formations 

• Differential signaling, employs two complementary voltage signals in 
order to transmit one information signal.

• One information signal requires a pair of conductors; one carries the 
signal and the other carries the inverted signal.

• The transferred signal is represented by the difference of two opposite 
voltage values in these lines 

STUDENTS-HUB.com

https://students-hub.com


Signal Representation and Line Formations 

STUDENTS-HUB.com

https://students-hub.com


Single-Ended Vs Differential

• The main advantage of single-ended over differential signaling is 
that fewer wires are needed to transmit multiple signals.

• If there are n signals, then there are n+1 wires, one for each 
signal and one for ground, while differential signaling uses at 
least 2n wires.

• The disadvantage of the single-ended line is that the transferred 
signal is affected by noise and line length in long-range

STUDENTS-HUB.com

https://students-hub.com


Single-Ended Vs Differential

• The advantage of the differential line usage is that it is not 
affected much by noise or range as in single-ended line.

• Hence, the differential line is used in long-range data transfer 
most of the time.

• Besides, the voltage levels used in operation exceed the ones 
available in the GPIO pins of the STM32F4 microcontroller. 
Hence, extra circuitry may be needed to use the differential line 
signal transfer. 

STUDENTS-HUB.com

https://students-hub.com


Simplex, Half, and Full Duplex Communication

• There are three communication modes as 
simplex, half, and full duplex to handle 
communication direction preferences

• The simplex mode has one-way (unidirectional) 
communication.

• In half duplex mode, two-way (bidirectional) 
communication is possible. However, only one-
way communication can be done at once.

• In full duplex mode, two-way (bidirectional) 
communication is possible. Moreover, the two-
way communication can be done at the same 
time

STUDENTS-HUB.com

https://students-hub.com


Master and Slave Modes

• During data transfer between two or more devices, one can act 
as master and the other as slave

• The master device generally starts the communication, asks 
for information from slave devices, and controls them

• the master device is the one generating the clock signal in 
synchronous communication

• The slave device is the one responding to the master or acting in 
accordance with the master device commands

STUDENTS-HUB.com

https://students-hub.com


Baud Rate 

• The baud rate indicates how many bits are transmitted in 1 
second for digital systems having logic levels 0 and 1

• This also corresponds to the bit rate definition

• It indicates the speed of data transfer

• the higher the baud rate, the faster the communication 

STUDENTS-HUB.com

https://students-hub.com


UART Protocol

• UART stands for Universal Asynchronous Receiver /Transmitter and 
defines a protocol, or set of rules, for exchanging serial data between 
two devices

• UART is very simple and only uses two wires between transmitter and 
receiver to transmit and receive in both directions

• There is also Universal Synchronous/Asynchronous 
Receiver/Transmitter (USART)

• USART works in synchronous mode with an extra clock pin

STUDENTS-HUB.com

https://students-hub.com


UART Protocol

• UART is generally preferred when fast data transfer speed is not 
needed. Hence, it is most of the times used for debugging and 
programming a microcontroller. 

• Besides, it is used to communicate two microcontrollers. 

• If two microcontrollers on different boards need to communicate with 
UART, a physical layer should be available such as RS232 or RS485.

• These will eliminate noise and power loss due to long-range signal 
transfer. 

STUDENTS-HUB.com

https://students-hub.com


UART Working Principles

• Data transfer in UART can be done in frames. 

• Each frame is composed of the start bit and stop bit, data bits , and an optional parity 
bit.

• There can be 5 to 9 user data bits, although 7 or 8 bits is most common. These data 
bits are usually transmitted with the least significant bit first.

• Start and stop bits are available in each frame.

• However, the parity bit can be used if needed. UART uses NRZ data encoding.

• In general, UART uses the TTL voltage levels to represent signals. 

STUDENTS-HUB.com

https://students-hub.com


UART Working Principles

Parity bit

• A UART frame can also contain an optional parity bit that can be used for error 
detection.

• This bit is inserted between the end of the data bits and the stop bit.

• The value of the parity bit depends on the type of parity being used (even or odd):
o In even parity, the bits whose value is 1 are counted. If that count is odd, the parity bit value is 

set to 1

o In odd parity, the bits whose value is 1 are counted. If that count is even, the parity bit value 
is set to 1

STUDENTS-HUB.com

https://students-hub.com


UART Working Principles

• UART can work in either full duplex, half duplex, or simplex modes.
• In the full duplex mode, there are two pins called Rx (receive) and Tx 

(transmit).
• In the half duplex mode, the Tx pin is used for both as Tx and Rx.
• In the simplex mode, Tx pin of one device is connected to Rx pin of the 

other device.
• The remaining pins are not connected.
• The master and slave definitions do not apply to UART.
• The most common UART baud rates in use today are 4800, 9600, 19.2K, 

57.6K, and 115.2K

STUDENTS-HUB.com

https://students-hub.com


UART Working Principles

• If two devices need to communicate with UART, a physical layer should be available such as 
RS232 or RS485.

• These will eliminate noise and power loss due to long-range signal transfer 

STUDENTS-HUB.com

https://students-hub.com


UART Modules in the STM32F4 Microcontroller

• The STM32F4 microcontroller has four 
UART modules called UART4, UART5, 
UART7, and UART8.

• It also has four USART modules USART1, 
USART2, USART3, and USART6. These 
modules can be used in UART mode.

• The clock pin (SCLK) and HW flow 
control pins (RTS and CTS) will not be 
used when UART is active

STUDENTS-HUB.com

https://students-hub.com


UART Modules in the STM32F4 Microcontroller

• The USART1 and USART6 can reach baud rates up to 11.25 
Mbits/s.

• The other modules can reach a maximum baud rate of 5.625 
Mbits/s.

• All supported baud rate values for UART and USART modules are 
given in the datasheet 

STUDENTS-HUB.com

https://students-hub.com


Setup UART via CubeIDE

• Create a New Project:

• Open CubeIDE and create a new STM32 project.

• Select the appropriate STM32 microcontroller model for your project.

• Configure System Clock:

• In the "Pinout & Configuration" tab, configure the system clock settings. This is essential for 
the proper functioning of the UART.

• Configure UART Pins:

• In the "Pinout & Configuration" tab, configure the GPIO pins that are connected to Rx and Tx 
pins

• Map these pins to the UART peripheral.

• Select UART Mode:

• Under the “Connectivity” section, select the “Asynchronous” option for UART mode

STUDENTS-HUB.com

https://students-hub.com


Setup UART via CubeIDE – Cont.

• Configure UART Settings:

• In the "Parameter Settings" tab, configure the 
UART parameters such as baud rate, word 
length, etc.

• Configure UART working mode:

• The UART module can operate in two modes 
as blocking (polling) or nonblocking 
(interrupt).

• If an interrupt is not required, then this step 
can be skipped. Otherwise, the UART interrupt 
should be enabled from the NVIC tab in the 
configuration menu

STUDENTS-HUB.com

https://students-hub.com


Setup UART via CubeIDE

• Write UART Code:

• Open the generated code files, typically in 
the "Src" folder.

• Locate the file named main.c or similar, 
and add your UART code.

• There are two functions for blocking (polling) 
mode operation of the UART module.
• HAL_UART_Transmit can be used to send 

data.

• HAL_UART_Receive can be used to receive 
data in blocking mode.

HAL_UART_Transmit(UART_HandleTypeDef *huart , uint8_t *pData 
,
uint16_t Size , uint32_t Timeout)
/*
huart: pointer to the UART_HandleTypeDef struct
pData: pointer to data buffer
Size: size of data elements to be sent
Timeout: timeout duration
*/
HAL_UART_Receive(UART_HandleTypeDef *huart , uint8_t *pData 
,
uint16_t Size , uint32_t Timeout)
/*
Size: size of data elements to be received
*/

STUDENTS-HUB.com

https://students-hub.com


Setup UART via CubeIDE

• Write UART Code – cont.

• There are two functions for non-blocking 
(interrupt) mode operation of UART 
module:
• HAL_UART_Transmit_IT can be used to send 

data in nonblocking mode.

• HAL_UART_Receive_IT can be used to 
receive data in non-blocking mode.

• If the UART interrupt has been enabled and 
data is sent or received, then the following 
callback function is called:

• HAL_UART_TxCpltCallback or

• HAL_UART_RxCpltCallback is called.

• The user can define his function, and the 
predefined weak functions are ignored

HAL_UART_Transmit_IT(UART_HandleTypeDef *huart , uint8_t *pData ,
uint16_t Size)
/*
huart: pointer to the UART_HandleTypeDef struct
pData: pointer to data buffer
Size: size of data elements to be sent
*/
HAL_UART_Receive_IT(UART_HandleTypeDef *huart , uint8_t *pData ,
uint16_t Size)
/*
Size: size of data elements to be received
*/
void HAL_UART_TxCpltCallback (UART_HandleTypeDef *huart)
void HAL_UART_RxCpltCallback (UART_HandleTypeDef *huart)

STUDENTS-HUB.com

https://students-hub.com


UART Example- Blocking mode

• In this example, the UART module 
is configured in blocking mode

• A string and counter value is sent to PC 
from the STM32F4 microcontroller via 
UART1.

• The green LED connected to pin PA13 of 
the STM32F4 board is toggled once data 
is transmitted.

• On the PC side, we should use an 
application, such as PuTTY or Tera Term, 
to receive data sent from the STM32F4 
microcontroller 

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
uint8_t serData[] = " STM32F4 UART PC Example\r\n";
uint8_t decNum[6];
uint16_t counter = 0;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
  sprintf(decNum , "%d", counter++);

  HAL_UART_Transmit(&huart1 , decNum , 
(uint16_t)sizeof(decNum),
  1000);
  HAL_UART_Transmit(&huart1 , serData , 

(uint16_t)sizeof(serData),

  1000);
  HAL_GPIO_TogglePin(GPIOA , GPIO_PIN_13);
  HAL_Delay(2000);

/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

STUDENTS-HUB.com

https://students-hub.com


UART Example – Non blocking mode

• In this example, the UART module 
is configured in blocking mode

• This time when the character ’g’ is 
received, the green LED connected to pin 
PA13 of the STM32F4 is toggled. 

• When the character ’r’ is received, the 
red LED connected to pin PA14 of the 
STM32F4 is toggled.

• To test the code, send the characters ’r’ 
and ’g’ from the host PC to the STM32F4 
microcontroller. Hence, we can observe 
that the red and green LEDs toggle. 

/* USER CODE BEGIN PV */
uint8_t serRxData;
/* USER CODE END PV */
/* USER CODE BEGIN 0 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef 
*huart)
{
if (serRxData == ’g’)
  HAL_GPIO_TogglePin(GPIOA , GPIO_PIN_13);
  else if (serRxData == ’r’)
  HAL_GPIO_TogglePin(GPIOA , GPIO_PIN_14);
  __NOP();
  HAL_UART_Receive_IT(&huart1 , &serRxData , 1);
}
/* USER CODE END 0 */
/* USER CODE BEGIN 2 */
HAL_UART_Receive_IT(&huart1 , &serRxData , 1);
/* USER CODE END 2 */

STUDENTS-HUB.com

https://students-hub.com


SPI Protocol

• The second digital communication type we will be introducing is the 
serial peripheral interface (SPI)

• SPI has an 8 or 16-bit frame consisting of only data. Hence, no start, 
stop, or parity bits are used in the frame.

• SPI can work in half or full duplex mode. Moreover, if we do not 
receive data from the slave in the full-duplex mode it works in simplex 
mode.

• SPI can work in either master or slave mode based on the application.

• The master device generates the clock signal.

STUDENTS-HUB.com

https://students-hub.com


SPI Protocol

• More than one slave device can be 
connected to the communication 
line.

• In this setting, the SPI master chip 
select (CS) pins should be used to 
select which slave to be 
communicated to.

• In this setup, one dedicated CS pin 
should be used for each slave device.

STUDENTS-HUB.com

https://students-hub.com


SPI Protocol

• There are four pins in operation 
• (MISO) as master-in/ slave-out
• (MOSI) master-out/ slave-in
• (SCLK) serial clock
• (NSS) Active-low slave select  or (CS) user-specific pin

• When the device is in master mode, MISO works for data input, MOSI for 
data output, SCLK as clock output, and NSS as slave select output (in active 
low mode)

• When the device is in slave mode, MISO works for data output, MOSI for 
data input, SCLK as clock input, and NSS as slave select input (in active low 
mode).

STUDENTS-HUB.com

https://students-hub.com


SPI Protocol

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles 

• Data transfer between the master and slave devices occurs in serial 
mode between MOSI and MISO pins. 

• The most significant bit is sent first in data transfer. Moreover, 
communication is initiated by the master device.

• When the master device transmits data to a slave device via the MOSI 
pin, the slave device responds via the MISO pin. This implies full 
duplex communication with both data out and data in, synchronized 
with the same clock signal (which is provided by the master device via 
the SCK pin). 

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles

• SPI operation is based on shift registers (8-bit or 16-bit ).

• Each devices (master and slave) uses shift registers to shift data in and 
out of the system.

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles

• Shift registers in the master and slave devices feed 1 bit to 
their output at each clock pulse generated by the master 
device.

• Since the master output pin is connected to the slave input 
pin, the bit fed from the master device shift register is 
received by the shift register in the slave device.

• Likewise, the master input is connected to the slave output. 
Hence, the bit fed from the shift register of the slave device 
is fed to the shift register in the master device.

• As the master device generates eight clock pulses, 1 data 
byte is transferred between the master and slave devices.

STUDENTS-HUB.com

https://students-hub.com


SPI Modules in the STM32F4 Microcontroller 

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles

• Usually shift register won’t be directly accessible

• If we need to transmit data, we will write it to the buffer register.

• If the master or slave device will transfer new data, it is first written to the 
Tx FIFO buffer.

• This enables the device to automatically write to the shift register when it 
is free,  then the transmission will start.

• Similarly, data is received in the shift register is automatically transferred 
to a buffer register once the reception is complete.

• Using buffer registers avoid all glitches that can happen if we try to read or 
write to the shift register directly while transmission is taking place

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles

• In SPI, the main can select the clock polarity and clock phase. 

• The CPOL bit sets the polarity of the clock signal during the idle state.

• The idle state is defined as the period when CS is high and transitioning to 
low at the start of the transmission and when CS is low and transitioning to 
high at the end of the transmission.

• The CPHA bit selects the clock phase. Depending on the CPHA bit, the 
rising or falling clock edge is used to sample and/or shift the data.

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles

STUDENTS-HUB.com

https://students-hub.com


SPI Working Principles

• The combinations of polarity and phases are referred to by these "SPI mode" 
numbers with CPOL as the high order bit and CPHA as the low order bit:

STUDENTS-HUB.com

https://students-hub.com


SPI Modules in the STM32F4 Microcontroller 

• The STM32F4 microcontroller has up to six SPI 
modules as SPI1, SPI2, SPI3, SPI4, SPI5, and SPI6.

• Each module can work either in master or slave 
mode.

• They can also work in half or full duplex modes.

• SPI modules use the peripheral clock as the clock 
signal.

• The master device has its own clock prescaler 
(inside baud rate generator) so that the clock signal 
can be divided by 2, 4, 8, 16, 32, 64, 128, or 256.

• The resulting clock signal will decide on the baud 
rate

STUDENTS-HUB.com

https://students-hub.com


SPI Modules in the STM32F4 Microcontroller 

• SPI1, SPI4, SPI5, and SPI6 modules use 
the APB2 peripheral clock (PCLK2). 
Hence, the maximum baud rate can be 
45 Mbits/s.

• The SPI2 and SPI3 modules use the 
APB1 peripheral clock (PCLK1). This 
may result in the maximum baud rate 
of 22.5 Mbits/s 

STUDENTS-HUB.com

https://students-hub.com


SPI Modules in the STM32F4 Microcontroller 

• The shift register in the module has an essential 
role in data transfer.

• The communication and CRC controller blocks are 
responsible for reading and writing data coming 
from software to FIFO buffer modules.

• Moreover, they are responsible for interrupt 
generation.

• If the SPI module is selected as master, the NSS 
logic module becomes responsible for setting the 
output and selecting the slave device.

• If the SPI module is selected as slave, then the NSS 
logic module activates the read/write operation. 

STUDENTS-HUB.com

https://students-hub.com


Setup SPI via CubeIDE

• Create a New Project:

• Open CubeIDE and create a new STM32 project.

• Select the appropriate STM32 microcontroller model for your project.

• Configure System Clock:

• In the "Pinout & Configuration" tab, configure the system clock settings. This is essential for 
the proper functioning of the SPI.

• Configure UART Pins:

• In the "Pinout & Configuration" tab, configure the GPIO pins that are connected to MOSI, 
MISO, SCLK and CS pins

• Map these pins to the SPI peripheral.

• Select UART Mode:

• Under the “Connectivity” section, select the “mode” option for SPI (Full-Duplex master, full-
duplex slave, half-duplex master, etc.)

STUDENTS-HUB.com

https://students-hub.com


Setup SPI via CubeIDE – Cont.

• Configure SPI Settings:

• In the "Parameter Settings" tab, configure the 
SPI parameters such as frame format, data 
size, etc.

• Configure SPI working mode:

• The UART module can operate in two modes 
as blocking (polling) or nonblocking 
(interrupt).

• If an interrupt is not required, then this step 
can be skipped. Otherwise, the UART interrupt 
should be enabled from the NVIC tab in the 
configuration menu

STUDENTS-HUB.com

https://students-hub.com


Setup SPI via CubeIDE – Cont.

• Configure a GPIO Pin as a CS:

• In the "GPIO configuration" tab, configure the 
CS pin and select the "GPIO output level" to 
"High"

• Whenever you want to send data using SPI, 
this pin should drive low.

STUDENTS-HUB.com

https://students-hub.com


Setup SPI via CubeIDE – Cont.

• HAL functions in polling mode:

• The function HAL_SPI_Transmit can be used to send data. 

• The function HAL_SPI_Receive can be used to receive data in blocking mode.

• HAL functions in interrupt mode:

• The function HAL_SPI_Transmit_IT can be used to send data.

• The function HAL_SPI_Receive_IT can be used to receive data in non-blocking mode.

• If the SPI interrupt is enabled, and data is sent or received, then the callback function 
HAL_SPI_TxCpltCallback or HAL_SPI_RxCpltCallback is called. 

STUDENTS-HUB.com

https://students-hub.com


Inter-integrated Circuit (I2C)

• The third digital communication type we will be using is the inter-integrated 
circuit (I2C) data.

• I2C is generally used for communication between a microcontroller and one or 
more external devices.

• More specifically, I2C is suitable for setting an external device through its 
registers and reading data from it.

• It allows reaching a maximum of 128 such (with 7-bit address) in standard mode 
and 1024 devices (with 10-bit address) in extended mode.

• In these modes, I2C simplifies circuit connection and address management while 
reaching external devices.

• Primarily used for short distance data communication

• Two wires: serial clock (SCL) and serial data (SDA)

STUDENTS-HUB.com

https://students-hub.com


Inter-integrated Circuit (I2C)

• I2C has both the master and slave modes.

• Both master and slaves can send/ receive data

• I2C is a synchronous master-slave protocol, and it works in half-duplex 
mode

• The clock is generated by the master device.

• Moreover, the communication is always started by the master device. I2C 
has standard and fast data transfer modes

• I2C can run at different speeds

STUDENTS-HUB.com

https://students-hub.com


I2C basic topology

STUDENTS-HUB.com

https://students-hub.com


Overview of I2C frames

STUDENTS-HUB.com

https://students-hub.com


I2C working principle

• The master device sends the address of the 
slave device it needs to communicate with.

• Each I2C node on a bus must have a unique, 
fixed address (7-bit or 10-bit)

• Slave address may be hard-coded

• Slave address may be (partially) configurable 
via external jumpers or zero-ohm resistors

STUDENTS-HUB.com

https://students-hub.com


I2C working principle

• The master device can send or receive data to the slave. This is declared in 
the read/write (R/W) bit sent along the address.

• R/W bit is often interpreted and/or decoded as part of the address byte

• The slave device sends an acknowledge (ACK) bit each time a byte of data 
or after the slave address is received.

• ACK after a data byte(s) confirms receipt of  data

• ACK after slave address confirms that:
o A slave with that address is on the bus

o The slave is ready to read/ write data (depending on R/W bit)

STUDENTS-HUB.com

https://students-hub.com


I2C working principle

• The data byte contains the 
information being transferred 
between the master and slave:
o The data could be the content of 

a memory address or register in the 
slave device

• The data is always 8-bit long with 
MSB first.

STUDENTS-HUB.com

https://students-hub.com


Multiple data bytes

• Multiple data bytes can be sent in one I2C frame (each byte is followed 
by ACK)

• Bytes could be all "data" or some may represent an internal address in 
the slave device

STUDENTS-HUB.com

https://students-hub.com


I2C working principle

• Each line (SDA and SCL) is connected to a voltage (VDD) via a pull-up resistor

• Typical pull-up resistor values are in the range of 1KΩ to 10 KΩ

STUDENTS-HUB.com

https://students-hub.com


I2C working principle

• I2C can operate at different bus speeds (referred as "modes")
• The STM32F4x family does not support high-speed mode

STUDENTS-HUB.com

https://students-hub.com


Questions?

STUDENTS-HUB.com

https://students-hub.com

	Slide 1: Serial communication 
	Slide 2: Serial and Parallel Data Transfer 
	Slide 3: Serial and Parallel Data Transfer 
	Slide 4: Serial and Parallel Data Transfer 
	Slide 5: Synchronous and Asynchronous Data Transfer 
	Slide 6: Synchronous and Asynchronous Data Transfer 
	Slide 7: Signal Representation and Line Formations 
	Slide 8: Signal Representation and Line Formations 
	Slide 9: Signal Representation and Line Formations 
	Slide 10: Single-Ended Vs Differential  
	Slide 11: Single-Ended Vs Differential  
	Slide 12: Simplex, Half, and Full Duplex Communication 
	Slide 13: Master and Slave Modes 
	Slide 14: Baud Rate 
	Slide 15: UART Protocol 
	Slide 16: UART Protocol 
	Slide 17: UART Working Principles 
	Slide 18: UART Working Principles 
	Slide 19: UART Working Principles 
	Slide 20: UART Working Principles 
	Slide 21: UART Modules in the STM32F4 Microcontroller 
	Slide 22: UART Modules in the STM32F4 Microcontroller 
	Slide 23: Setup UART via CubeIDE 
	Slide 24: Setup UART via CubeIDE – Cont. 
	Slide 25: Setup UART via CubeIDE 
	Slide 26: Setup UART via CubeIDE 
	Slide 27: UART Example- Blocking mode 
	Slide 28: UART Example – Non blocking mode 
	Slide 29: SPI Protocol 
	Slide 30: SPI Protocol 
	Slide 31: SPI Protocol 
	Slide 32: SPI Protocol 
	Slide 33: SPI Working Principles 
	Slide 34: SPI Working Principles
	Slide 35: SPI Working Principles
	Slide 36: SPI Modules in the STM32F4 Microcontroller 
	Slide 37: SPI Working Principles
	Slide 38: SPI Working Principles
	Slide 39: SPI Working Principles
	Slide 40: SPI Working Principles
	Slide 41: SPI Working Principles
	Slide 42: SPI Modules in the STM32F4 Microcontroller 
	Slide 43: SPI Modules in the STM32F4 Microcontroller 
	Slide 44: SPI Modules in the STM32F4 Microcontroller 
	Slide 45: Setup SPI via CubeIDE 
	Slide 46: Setup SPI via CubeIDE – Cont. 
	Slide 47: Setup SPI via CubeIDE – Cont. 
	Slide 48: Setup SPI via CubeIDE – Cont. 
	Slide 49: Inter-integrated Circuit (I2C)
	Slide 50: Inter-integrated Circuit (I2C)
	Slide 51: I2C basic topology 
	Slide 52: Overview of I2C frames
	Slide 53: I2C working principle 
	Slide 54: I2C working principle 
	Slide 55: I2C working principle 
	Slide 56: Multiple data bytes 
	Slide 57: I2C working principle 
	Slide 58: I2C working principle 
	Slide 59: Questions? 

